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Abstract

We consider forward rate rate models of Heath-Jarrow-Morton type,
as well as more general infinite dimensional SDEs, where the volatil-
ity/diffusion term is stochastic in the sense of being driven by a separate
hidden Markov process. Within this framework we use the previously
developed Hilbert space realization theory in order provide general nec-
essary and sufficent conditions for the existence of a finite dimensional
Markovian realizations for the stochastic volatility models. We illustrate
the theory by analyzing a number of concrete examples.
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1 Introduction

The main object under study in this paper is a general forward rate model of
Heath-Jarrow-Morton type (see [19]) with “stochastic volatility”. The stochastic
volatility is modeled by allowing the volatility term in the forward rate equation
to depend on a hidden Markov process, as well as on the present forward rate
curve. The goal of the paper is to investigate when and how the given, inherently
infinite dimensional, stochastic volatility forward rate model, admits a finite
dimensional Markovian realization in terms of a finite dimensional diffusion
process. Since many of the results do not depend upon the particular structure
of a forward rate model (where the drift is uniquely determined by the volatility
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through the HJM drift condition) the investigation below is to a large extent
carried out for an arbitrary infinite dimensional stochastic differential equation
where the diffusion term which is allowed to depend upon a hidden Markov
process. The general results obtained are then specialized to the particular case
of a forward rate model.

There exists a substantial literature on finite dimensional realizations (FDRs)
for forward rate models with non-stochastic volatility. For special cases of the
HJM volatility structure, the existence of an FDR is investigated in [1], [5], [9],
[10], [14], [11], [21], [22], and [24]. In all these special cases, the existence of an
FDR is proved by actually constructing a concrete realization.

A more systematic study of the general FDR problem from a geometric point
of view was first undertaken in a series of papers [4], [7], and [6] (see [3] for an
overview). In [7], Björk and Svensson provide the first general necessary and
sufficient conditions for the existence of an FDR for SDEs in Hilbert space. The
main technical tool is the Frobenius theorem. and the main result is that there
exists an FDR if and only if the Lie algebra generated by the (Stratonovich)
drift and diffusion terms is finite dimensional. This general result was then used
in order to analyze a number of special cases, thereby including and extending
the earlier results (see above) in the field.

The results in [7] were, however, pure existence results and no concrete
realizations were constructed. The problem of actually constructing an FDR for
a given model was then studied in [6], where the authors presented a systematic
method for the construction of a concrete realization from a knowledge of the
structure of the underlying Lie algebra.

The FDR problem is intimately related to the so called “consistency prob-
lem” for infinite dimensional SDEs. This problem was first formulated and
discussed in [4], extended in [15], and then investigated in great detail in [16].

While in one sense the general FDR problem was more or less completely
solved in [7], a major technical problem was still remaining. This had to do with
the fact that in [7] the framework was that of strong solutions of infinite dimen-
sional SDEs in Hilbert space and this forced Björk and Svensson to construct a
particular Hilbert space of real analytic functions as their space of forward rate
curves. While serving reasonably well, it was clear that this particular space
was very small, and in particular it was pointed out by Filipović and Teichmann
that the space does not include the forward rate curves generated by the Cox-
Ingersoll-Ross model (see [12]). It was therefore necessary to extend the theory
to a larger space but such an extension is far from to trivial to carry out, the
problem being that on a larger Hilbert space you will loose the smoothness of
the differential operator ∂/∂x appearing in the drift term of the forward rate
equation. This problem was overcome with great elegance by Filipović and Te-
ichmann who, partly building on the geometric and analytic results from [16],
in [17] managed to extend the Lie algebraic FDR theory to a much larger space
of forward rate curves than the one considered in [7]. In doing so, Filipović and
Teichmann first extend the space of [7] to a larger Hilbert space. On the new
space, however, the operator ∂/∂x becomes unbounded so they then change the
topology on the space, thus making it into a Frechet space where the opera-
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tor in fact is bounded. This approach, however, leads to new problems, since
on a Frechet space there is no easy way of introducing differential calculus–in
fact there is even no obvious way of defining the concept of smoothness which
is necessary in order to have a Frobenius theorem. In order to overcome this
problem, Filipović and Teichmann used the framework of so called “convenient
spaces” developed some ten years ago (see [17] for references) in order to carry
out analysis on the enlarged space. The main result of all this is that the Lie
algebra conditions obtained by Björk and Svensson are shown to still hold in
this more general setting. At this point it is worth mentioning that the technical
price one has to pay for going into the deep parts of the theory of convenient
analysis is quite high. It is therefore fortunate that the Lie algebraic machinery
of [17] can be used without going into these (sometimes very hard) technical
details. In fact, one of the main result of [17] can be formulated in the following
pedestrian terms for the working mathematician: “When you are searching for
FDRs for equations of HJM type, you can compute the relevant Lie algebra
without worrying about the space”. In [17] and in the follow up paper [18], the
extended Lie algebra theory in [17] is used in to analyze a number of concrete
problems concerning the forward rate equation, and in particular it was shown
that any forward rate model admitting an FDR must necessarily have an affine
term structure.

2 Basics

In this section we give the basic definitions, present the stochastic volatility
model, and provide a precise formulation of the main problem to be treated.

2.1 Setup and model specification

As in Heath, Jarrow and Morton [20], we consider a default free bond market liv-
ing on a filtered probability space {Ω,F , Q, {Ft}t≥0} carrying an m-dimensional
Wiener process W . Let p(t, x) denote the price at time t ≥ 0 of a zero-coupon
bond with maturity t+x. Note that we use the so called Musiela parameteriza-
tion (see [8] and [23]) with x denoting time to maturity, rather than the standard
HJM parameterization with T denoting time of maturity. The instantaneous
forward rate rt(x) is defined as usual by

rt(x) = − ∂

∂x
ln p(t, x),

and the short rate R is defined by

Rt = rt(0).

We assume that the bond market is is arbitrage-free in the sense that the
probability measure Q is a martingale measure for the model. In other words;
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for each T ≥ 0 we assume that p(t, T − t)/Bt is a Q-martingale for t ≤ T , where
B denotes the money account defined by

Bt = exp
{∫ t

0

Rsds

}
.

In the sequel we will mainly concentrate on the entire forward rate curve
x 7→ rt(x), as opposed to the individual forward rate rt(x), and in order to
emphasize this point of view the forward rate curve at time t will henceforth be
denoted by rt. The forward rate process {rt; t ≥ 0} is thus a stochastic process
taking values in a function space H of forward rate curves. In the present paper
the precise choice of space H is in fact left to the reader. He/she can read the
entire paper either within the restricted but technically simple framework of
[7], or within the more general but technically more complicated framework of
[17]. Regardless of the choice of space, all computations and all results (with
one exception) will be the same (see the comment at the end of the introduction
above). The only exception is that the discussion concerning the CIR model has
to be read within the [17] framework. For easy reference we include an appendix
with the main results of [7]. For all details concerning regularity requirements
and the precise functional analytic setup we refer the reader to [7] and [17].

The main object under study in the present paper is a HJM model of the
forward rates, with a stochastic volatility driven by a k dimensional hidden
Markov process y. The model is defined as follows.

Definition 2.1 The Itô formulation of the stochastic volatility model (hence-
forth SVM) is defined as the process pair (r, y), where the Q-dynamics of r and
y are defined by the following system of SDEs.

drt(x) =
{

∂

∂x
rt(x) + Hσ(rt, yt, x)

}
dt + σ(rt, yt, x)dWt (1)

dyt = a0(yt)dt + b(yt)dWt, (2)

where H is defined by

Hσ(r, y, x) = σ(r, y, x)
∫ x

0

σ?(r, y, s)ds, (3)

and ? denotes transpose.
In this specification we consider the following objects as given a priori:

• The volatility structure σ for the forward rates, i.e. a deterministic map-
ping

σ : H× Rk × R+ → Rm.

• The drift vector field a0 for y, i.e. a deterministic mapping

a0 : Rk → Rk.

(The superindex on a0 will be explained below)
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• The volatility vector field b for y, i.e. a deterministic mapping

b : Rk → M(k, m).

where M(k, m) denotes the set of k × m matrices.

We view σ as a row vector

σ(r, y, x) = [σ1(r, y, x), . . . , σm(r, y, x)] ,

the drift a0 is viewed as a column vector

a0(y) =

 a0
1(y)
...

a0
k(y)

 ,

and the volatility b is a matrix

b(y) =


b11(y) b12(y) · · · b1m(y)
b21(y) b22(y) · · · b2m(y)

...
...

...
bk1(y) bk2(y) · · · bkm(y)

 ,

We note in particular that the forward rate volatility σ is allowed to be an
arbitrary functional of the entire forward rate curve r, as well as a function
of the k-dimensional variable y. We may also view each component of σ as a
mapping from H × Rk to a space of functions (parameterized by x), and we
will in fact assume that each σi, viewed in this way, is a smooth mapping with
values in H, i.e.

σi : H× Rk → H.

We make the following regularity assumptions.

Assumption 2.1 From now on we assume that:

• The mappings σi : H× Rk → H are smooth for i = 1, . . . , m.

• The mapping Hσ : H× Rk → H, defined by (3) is smooth.

• The mappings a0 and b are smooth on Rk.

In the forward rate dynamics (1) we recognize the drift term in the r-
dynamics above as the HJM drift condition, transferred into the Musiela pa-
rameterization. Note the particular structure of the equations (1)-(2): The
y-process is feeding the drift and diffusion terms of the r-dynamics, but the
r-process does not appear in the y-dynamics. Thus the y process is a Markov
process in its own right, but this is not the case for the r-process. The extended
process r̂ = (r, y) is, however, Markovian. In many applications we want r and
y to be driven by independent Wiener processes, and this case is of course in-
cluded in our setup by choosing σ and b such that r and y are driven by different
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components of the (multidimensional) W process, i.e. by choosing b and σ such
that σb? = 0.

In many applications it is natural to study, not only the full SVM above but
also a restricted model, where we forget about the dynamics of y and consider
y as a constant parameter. In this way we obtain a parameterized model, and
the formal definition is as follows.

Definition 2.2 Consider the SVM defined by (1)-(2) above. For any fixed
value of y ∈ Rk, the induced parameterized forward rate model is defined
by the dynamics

dry
t (x) =

{
∂

∂x
ry
t (x) + Hσ(ry

t , y, x)
}

dt + σ(ry
t , y, x)dWt. (4)

Note that in the parameterized model, the forward rate process ry itself is
Markovian, whereas this is not the case in the full stochastic volatility model.
For ease of reading we will sometimes drop the superscript y.

2.2 Problem formulation

The basic problem to be discussed in this paper is under what conditions the,
inherently infinite dimensional, SVM defined above by (1)-(2), with given initial
conditions r0 = r0, y0 = y0, admits a generic finite dimensional Markovian
realization in the sense of [7]. More precisely we thus want to investigate under
what conditions the extended process r̂t = (rt, yt) possesses a local representa-
tion of the form

r̂t = Ĝ(Zt), Q − a.s. (5)

where, for some d, Z satisfies a d-dimensional SDE of the form{
dZt = A0(Zt)dt + B(Zt)dWt,
Z0 = z0.

(6)

and where Ĝ is a smooth map G : Rd → H×Rk. The drift and diffusion terms
A0 and B are assumed to be smooth and of suitable dimensions.

In a realization of this kind, the objects Ĝ, A0, B and z0 will typically
depend upon the choice of starting point (r0, y0). The term “generic” above
means that we demand that there exists a realization, not only for the given
initial point (r0, y0), but in fact for all initial points (r0, y0) in a neighborhood
of (r0, y0). When we speak of realizations in the sequel we always intend this
to mean generic realizations.

Note that the state process Z above is driven by the same Wiener process as
the r̂ system, and that the realization above is assumed to hold almost surely
and trajectory wise.

We may now formulate some natural problems:
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Main problems:

• Find necessary and sufficient conditions for the existence of an FDR for a
given stochastic volatility model.

• Assuming the existence of an FDR has been guaranteed, how do you
construct it?

• How is the existence of an FDR for the full stochastic volatility model
related to the existence of an FDR for the induced parameterized model?
More precisely: is the existence of an FDR for the parameterized model
necessary and/or sufficient for the existence of an FDR for the full model?

2.3 Test examples: I.

To give more concretion to the discussion, and to illustrate technique, we now
present four simple and natural test examples, which will be recurrent through-
out the paper. In all cases we consider the case with a scalar driving Wiener
process W r for the forward rates, a scalar y process and a scalar driving Wiener
process W y for the y process. Furthermore we assume that W r and W y are
independent. To motivate our choice of examples we recall (see [2]) the following
well known (non stochastic) HJM volatilities for the forward rates.

I. Hull-White extended Vasiček:

σ(r, x) = σe−ax. (7)

Here a and the right hand side occurrence of σ are real constants. This
HJM model has a short rate realization of the form.

dRt = {Φ(t) − aRt} dt + σdWt, (8)

where the deterministic function Φ depends on the initial term structure.
The parameters σ and a are the same as in (7).

II. Hull-White extended Cox-Ingersoll-Ross:

σ(r, x) = σ
√

r(0) · λ(x, σ, a), (9)

Here a and the right hand side occurrence of σ are real constants, whereas
λ is given by

λ(x, σ, a) = − ∂

∂x

(
2(eγx − 1)

(γ + a)(eγx − 1) + 2γ

)
, (10)

where
γ =

√
a2 + 2σ2.

Also this HJM model admits a short rate realization, namely

dRt = {Φ(t) − aRt} dt + σ
√

RtdWt (11)

The role of Φ is as in the extended Vasiček model above.
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It is now natural to ask if we can extend these models by allowing one or several
parameters to be stochastic, and still retain the existence of a finite dimensional
realization.

We consider the following extensions of the above volatility structures. In
all cases we assume that the scalar y process has dynamics of the form

dyt = a0(yt)dt + b(yt)dW y
t ,

with b(y) 6= 0 for all y.

1. HW with stochastic a:

σ(r, y, x) = σe−yx (12)

2. HW with stochastic σ:

σ(r, y, x) = ye−ax (13)

3. CIR with stochastic σ:

σ(r, y, x) = y
√

r(0) · λ(x, y, a) (14)

4. CIR with stochastic a:

σ(r, y, x) = σ
√

r(0) · λ(x, σ, y) (15)

For all these models, the induced parameterized model admits, by construction,
an FDR. It is now reasonable to ask if this also holds for the corresponding
stochastic volatility models.

3 Finite realizations for general stochastic volatil-
ity models

In order to solve the FDR problem for stochastic volatility models we will need
the Lie algebra theory for the existence of FDRs in Hilbert space, developed in
[7] and extended in [17]. The main result that we will use is Theorem 3.2 of [7]
(or the corresponding result in [17]). This result basically says that, for an SDE
of HJM type on a Hilbert space, there exists a generic FDR if and only if the
Lie algebra generated by the Stratonovich drift and diffusion terms is locally of
finite dimension. In Appendix A we provide a brief recapitulation of that theory
and the reader is referred to [7] and [17] for proofs and details.
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3.1 Lie algebra conditions for the existence of an FDR

Our problem is to study the existence of an FDR for a stochastic volatility
model of the form

drt = µ0(rt, yt)dt + σ(rt, yt)dWt (16)
dyt = a0(yt)dt + b(yt)dWt. (17)

In the particular case of a forward rate model, the drift term is given by

µ0(r, y, x) =
∂

∂x
r(x) + Hσ(r, y, x) (18)

but none of the results in this section does in fact depend upon this particular
structure of µ0. Therefore we will, for the rest of the section, consider a general
abstract stochastic volatility model of the form (16)-(17). Within the framework
of [7] the drift µ0 has to be assumed to be smooth. If instead, we use the
framework of [17], then µ0 is allowed to be of the form

µ0(r, y) = Fr + α(r, y).

Here F is assumed to be a linear densely defined operator, generating a strongly
continuous semigroup on H, whereas α is assumed to be smooth.

To apply the Lie algebra results of [7] and [17] to the present situation we
proceed in the following way.

• Define the Hilbert space Ĥ by Ĥ = H× Rk.

• Define the Ĥ-valued process r̂ by

r̂t =
[

rt

yt

]
(19)

• Write the dynamics of r̂ on Stratonovich form instead of the original Itô
form.

• Use the abstract Lie algebra results from [7] (see Appendix A) and [17]
on the process r̂.

We will thus view r̂ as an infinite dimensional “column vector” process, and we
will henceforth always write it on block vector form as above.

The Stratonovich dynamics of r̂ are routinely derived as

drt = µ(rt, yt)dt + σ(rt, yt) ◦ dWt (20)
dyt = a(yt)dt + b(yt) ◦ dWt, (21)

where

µ(r, y) = µ0(r, y) − 1
2
σr(r, y)σ(r, y) − 1

2
σy(r, y)b(y) (22)

a(y) = a0(y) − 1
2
by(y)b(y). (23)
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Here σr denotes the partial Frechet derivative of σ w.r.t. the vector variable r
and similarly for the other terms.

Written as a single equation on Ĥ we thus have

dr̂t = µ̂(r̂)dt + σ̂(r̂) ◦ dWt, (24)

where µ̂ and σ̂ are given by

µ̂(r, y) =
[

µ(r, y)
a(y)

]
(25)

σ̂(r, y) =
[

σ̂1(r, y), . . . , σ̂m(r, y)
]

(26)

Here the vector fields σ̂1, . . . , σ̂m are defined by

σ̂i(r, y) =
[

σi(r, y)
bi(y)

]
(27)

where bi is the i : th column of the b matrix, i.e.

bi(y) =

 b1i(y)
...

bki(y)

 (28)

We make the following standing regularity assumption which is assumed to
hold throughout the entire paper.

Assumption 3.1 We assume that the dimension of the Lie algebra

{µ̂, σ̂1, . . . , σ̂m}LA < ∞, (29)

is constant in a neighborhood of r̂0 ∈ Ĥ

Our first general result now follows immediately from the Lie algebra results
of [7] and [17].

Theorem 3.1 Under Assumption 3.1, the stochastic volatility model (16)-(17)
will have a generic FDR at the point r̂0 if and only if

dim {µ̂, σ̂1, . . . , σ̂m}LA < ∞, (30)

in a neighbourhood of r̂0 ∈ Ĥ.

For simplicity of notation we will often use the shorthand notation {µ̂, σ̂}LA

for the Lie algebra {µ̂, σ̂1, . . . , σ̂m}LA.
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3.2 Geometric intuition

At this level of generality it is hard to obtain more concrete results. As an
example: there seems to be no simple result connecting the existence of an
FDR for the full model with existence of an FDR for the parameterized model.
The geometric intuition behind this is roughly as follows.

• From [7] we know that existence of an FDR for r̂ is equivalent to the
existence of a finite dimensional invariant manifold in Ĥ passing through
r̂0. See Appendix A.

• If the parameterized model admits a generic FDR then, for every fixed y
near y0, there exists an invariant manifold G in H through r0. Thus one
would perhaps guess that the manifold G × Rk would be invariant for r̂,
thus implying the existence of an FDR for r̂.

• However, the manifold G above will generically depend on y. Writing it as
Gy , what may (and generically will) happen is that, as r̂t moves around
in Ĥ, yt will move in Rk and the family {Gyt ; t ≥ 0} may sweep out an
infinite dimensional manifold in Ĥ. Thus the existence of an FDR for the
parameterized model is not sufficient for the existence of an FDR for the
full model.

• Conversely, the existence of an FDR for the parameterized model does not
even seem to be necessary for the existence of an FDR for the full model.
Suppose for example that, for each y, there does not exist an invariant
manifold for the parameterized model. This means that the parameterized
model does not possess an FDR. Despite this it could well happen that the
process r̂ does live on a finite dimensional invariant manifold (and thus
possesses an FDR). The reason for this is that there could be a subtle
interplay between the dynamics of r and y, and in particular one might
intuitively expect this interplay to be possible if there is strong correlation
between the Wiener process components driving r and y.

• From the argument above we are led to guess that the simplest structural
situation occurs when r and y are driven by independent Wiener processes.
Since in this case, the evolution of y is independent of the present state of
r, we may even guess (bravely) that any FDR properties of the full model
will be “uniform” w.r.t. y in the sense that the results will not depend
much on the particular dynamics of y.

As we shall see below, the intuition outlined above is basically substantiated.

4 General orthogonal noise models

Based on the informal arguments in the previous section we now go on to study
the case when r and y are driven by independent Wiener processes. We will
refer to this type of model as an “orthogonal noise model”. As in the previous
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section, we will not use the particular structure of the drift term that is induced
by the HJM drift condition for a forward rate model. Thus, in the present
section we consider a general drift term.

4.1 Model specification and preliminary results

Assumption 4.1 For the rest of the section we assume that we can write the
Wiener process W on block vector form as

Wt =

 W r
t

W y
t


where W r and W y are vector Wiener processes of dimensions mr and my re-
spectively. Furthermore we assume that the (r, y) dynamics are of the particular
form

drt = µ0(rt, yt)dt + σ(rt, yt)dW r
t (31)

dyt = a0(yt)dt + b(yt)dW y
t , (32)

where the coefficients satisfy suitable smoothness conditions (see Section 3).

Under this assumption r and y are driven by orthogonal noise terms, and
this leads to an important simplification of the geometric structure of the model.

Lemma 4.1 The Stratonovich formulation of (31)-(32) is given by

drt = µ(rt, yt)dt + σ(rt, yt) ◦ dW r
t (33)

dyt = a(yt)dt + b(yt) ◦ dW y
t , (34)

where

µ(r, y) = µ0(r, y) − 1
2
σr(r, y)σ(r, y) (35)

a(y) = a0(y) − 1
2
by(y)b(y). (36)

Proof. In order to find the Stratonovich form of the r dynamics we need to
compute

d〈σ, W r〉t = dσ(rt, yt).

The infinite dimensional Itô formula gives us

dσ(rt, yt) = (dt-terms) + σr(rt, yt)σ(rt, yt)dW r
t + σy(rt, yt)b(yt)dW y

t

We thus obtain

d〈σ, W r〉t = σr(rt, yt)σ(rt, yt)d〈W r , W r〉t + σy(rt, yt)b(yt)d〈W y , W r〉t

13



Since W r and W y are independent this simplifies to

d〈σ, W r〉t = σr(r, y)σ(r, y)dt.

In order to see more clearly the geometric structure of the orthogonal noise
model we write it on block operator form as

d

[
rt

yt

]
=
[

µ(rt, yt)
a(yt)

]
dt +

[
σ(rt, yt)

0

]
◦ dW r

t +
[

0
b(yt)

]
◦ dW y

t (37)

We thus have the following immediate and preliminary result.

Proposition 4.1 The orthogonal noise model (31)-(32) admits an FDR if and
only if the Lie algebra generated by the vector fields[

µ(r, y)
a(y)

]
,

[
σ1(r, y)

0

]
, . . . ,

[
σmr (r, y)

0

]
,

[
0

b1(y)

]
, . . . ,

[
0

bmy(y)

]
is finite dimensional at r̂0.

More compactly we will often write the generators of the Lie algebra above as

µ̂(r, y), σ̂(r, y), b̂(y)

where, in obvious shorthand notation,

µ̂(r, y) =
[

µ(r, y)
a(y)

]
, σ̂(r, y) =

[
σ(r, y)

0

]
, b̂(y) =

[
0

b(y)

]
(38)

A very useful property of the orthogonal noise model is the simple structure
of the Stratonovich formulation of the parameterized model. The proof is trivial.

Lemma 4.2 For the orthogonal noise model (31)-(32), the Itô formulation of
the parameterized model is defined by

drt = µ0(rt, y)dt + σ(rt, y)dW r
t , (39)

and the Stratonovich formulation of the parameterized model is given by

drt = µ(rt, y)dt + σ(rt, y) ◦ dW r
t , (40)

with µ defined by (35).

14



The point of this Lemma is that it shows that, for orthogonal noise mod-
els, the operations “restrict to the parameterized model” and “compute the
Stratonovich dynamics” commute, i.e. the Stratonovich formulation of the pa-
rameterized model is identical to the parameterized version of the Stratonovich
formulation of the original model.

In order to obtain easily verifiable necessary and sufficient conditions for
the existence of an FDR we will in the next sections introduce some further
structural assumptions. In doing this we will have to deal with Lie brackets in
several spaces, so we have to clarify some notation.

Definition 4.1 From now on, the following notation is in force:

• For any vector smooth fields f̂(r, y) and ĝ(r, y) on Ĥ, the expression
[
f̂ , ĝ
]

denotes the Lie bracket in Ĥ.

• For any smooth mapping f(r, y) where f : Ĥ → H and for any fixed
y ∈ R, the parameterized vector field fy : H → H is defined by
fy(r) = f(r, y)

• For any smooth mappings f, g : Ĥ → H , the expression [fy, gy] denotes
the Lie bracket on H between fy and gy. This Lie bracket will sometimes
also be denoted by [f(·, y), g(·, y)]H.

• For vector fields c(y) and d(y) on Rk, the notation [c, d] denotes the Lie
bracket on Rk.

4.2 Necessary conditions

It turns out that, in order to obtain easy necessary condition, a crucial role is
played by the geometric relation between the drift vector field a(y) and the Lie
algebra on Rk generated by the diffusion vector fields b1(y), . . . , bmy .

Our first result relates the stochastic volatility model to the corresponding
parameterized model.

Proposition 4.2 Consider the model (31)-(32). Assume that

a ∈ {b1, . . . , bmy

}
LA

(41)

in a neighbourhood of y0. Under this assumption, a necessary condition for the
existence of an FDR for the stochastic volatility model is that the corresponding
parameterized model

drt = µ(rt, y)dt + σ(rt, y)dW r
t (42)

admits a generic FDR at y0.
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Proof. We assume that the full stochastic volatility model admits an FDR,
and we also assume that (41) is satisfied. We now have to show that, under
these assumptions, the parameterized model admits and FDR, i.e. that the
Lie algebra (on H) of the parameterized model is finite dimensional near r0,
for every fixed y near y0. From Lemma 4.2 we know that the Stratonovich
formulation of the parameterized model is given by

drt = µ(rt, y)dt + σ(rt, y) ◦ dW r
t , (43)

which we write as
drt = µy(rt)dt + σy(rt) ◦ dW r

t . (44)

Our task is now to show that
{µy, σy}LA

is finite dimensional near r0 for all y near y0.
Since we assumed that the full model possessed an FDR we know that the

Lie algebra{
µ̂, σ̂, b̂

}
LA

=
{[

µ(r, y)
a(y)

]
,

[
σ(r, y)

0

]
,

[
0

b(y)

]}
LA

is finite dimensional near r̂0. We now have the trivial inclusion{
b̂
}

LA
⊆
{
µ̂, σ̂, b̂

}
LA

,

and we go on to compute
{

b̂
}

LA
=
{

b̂1, . . . , b̂my

}
LA

. For any i and j, let us

thus compute the Lie bracket
[
b̂i, b̂j

]
. Since

b̂i(y) =
[

0
bi(y)

]
we easily obtain the block matrix form for the Frechet derivative of b̂i on Ĥ as

b̂′i(y) =
[

0 0
0 b′i(y)

]
where b′i denotes the Frechet derivative on Rk of the vector field bi. Performing
the same calculation for b̂j we obtain[

b̂i, b̂j

]
Ĥ

=
[

0 0
0 b′i

] [
0
bj

]
−
[

0 0
0 b′j

] [
0
bi

]
=
[

0
[bi, bj ]Rk

]
.

Continuing in this way by taking repeated brackets, wee see that if β̂ denotes a
generic element of

{
b̂
}

LA
then it has the form

β̂ =
[

0
β

]

16



where β denotes a generic element of {b}LA. We can formally write this as{
b̂
}

LA
=
{

b̂1, . . . , b̂my

}
LA

=
[

0{
b1, . . . , bmy

}
LA

]
=
[

0
{b}LA

]
We assumed that a ∈ {b}LA, so there exists vector fields c1(y), . . . , cn(y) in

{b}LA and scalar fields α1(y), . . . , αn(y) on Rk such that

a(y) =
n∑
1

αi(y)ci(y)

for all y near y0. Since
{
b̂
}

LA
⊆
{

µ̂, σ̂, b̂
}

LA
we see from the above that the

vector fields ĉ1, . . . , ĉn where

ĉi =
[

0
ci(y)

]
all lie in

{
µ̂, σ̂, b̂

}
LA

. We may now invoke Lemma A.1 to perform Gaussian

elimination. More precisely, we may replace µ̂ by µ̂ −∑n
1 αiĉi, and we obtain

µ̂ −
n∑
1

αiĉi =
[

µ
a

]
−

n∑
1

αi

[
0
ci

]
=
[

µ
0

]
.

From this we see that the Lie algebra
{
µ̂, σ̂, b̂

}
LA

for the full model is in fact

generated by the much simpler system m̂, σ̂ and b̂ where m̂ is defined by

m̂ =
[

µ
0

]
.

Since we assumed that
{
µ̂, σ̂, b̂

}
LA

was finite dimensional, then also the smaller
Lie algebra

{m̂, σ̂}LA =
{[

µ
0

]
,

[
σ
0

]}
LA

is necessarily also finite dimensional. In computing this latter Lie algebra we
may now argue as for {b}LA above. Let us, for example, compute the Lie bracket
[m̂, σ̂i]. The Frechet derivatives (in Ĥ) are given by

m̂′ =
[

µr µy

0 0

]
, , σ̂′

i =
[

σir σiy

0 0

]
where subindex r and y denotes the partial Frechet derivative w.r.t r and y
respectively. We thus obtain

[m̂, σ̂i] =
[

µr µy

0 0

] [
σi

0

]
−
[

σir σiy

0 0

] [
µ
0

]
=
[

µrσi − σirµ
0

]

17



Now we observe that µr(r, y)σi(r, y) − σir(r, y)µ(r, y) = [µy, σy
i ] (r) so we have

[m̂, σ̂i] (r, y) =
[

[µy, σy
i ]

0

]
(r),

and continuing in this way we obtain

{m̂, σ̂}LA (r, y) =
{[

µ
0

]
,

[
σ
0

]}
LA

(r, y) =
[ {µy, σy}LA

0

]
(r)

Since {m̂, σ̂}LA is finite dimensional for all (r, y) near (r0, y0) we thus see that
{µy, σy}LA has to be finite dimensional near r0 for all y near y0. This however
is equivalent to the existence of an FDR for the parameterized model.

We have the following obvious corollary, which seems to be enough for many
concrete applications.

Corollary 4.1 Assume that the Lie algebra generated by b in Rk is full, i.e.
that {

b1, . . . , bmy

}
LA

= Rk. (45)

Then, regardless of the form of a, the existence of an FDR for the parameterized
model is necessary for the existence of an FDR for the full model. In particular,
the assumption above is valid, and thus the conclusion holds, for the following
special cases.

• my = k and the k × k diffusion matrix b(y) is invertible near y0.

• y is scalar and driven by a scalar Wiener process (i.e. k = my = 1), and
the scalar field b(y) is nonzero near y0.

We now go on to obtain more precise (but still easily verifiable) necessary
conditions, and the simplest case is when the diffusion matrix b is square and
invertible. Since the multidimensional case is a bit messy we start with the scalar
case, and we will in fact use the scalar result in the proof of the multidimensional
case.

Proposition 4.3 Assume that y and W y are scalar and that the (scalar) diffu-
sion term b(y) is nonzero near y0. Then the following conditions are necessary
for the existence of an FDR for the full model.

• For every fixed r and y near (r0, y0) the partial derivatives of µ and σi(r, y)
i = 1, . . . , mr w.r.t y span a finite dimensional space in H. Formally, for
every (r, y)

dim span

{
∂nµ

∂yn (r, y); n = 0, 1, 2, . . .

}
< ∞ (46)

and

dim span

{
∂nσi

∂yn (r, y); n = 0, 1, 2, . . .

}
< ∞ (47)

for every i = 1, . . .mr.
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• The drift term µ, and each volatility component σi have the form

µ(r, y, x) =
n0∑

j=1

c0j(r, y)λ0j(r, x). (48)

and

σi(r, y, x) =
ni∑

j=1

cij(r, y)λij(r, x). (49)

Proof. In order to obtain necessary conditions we assume that the full model
admits an FDR, and for simplicity of notation we assume that mr = 1 (this
will not affect the proof). The Lie algebra for the full model is then finite
dimensional and it is generated by

µ̂ =
[

µ(r, y)
a(y)

]
, σ̂ =

[
σ
0

]
, b̂ =

[
0

b(y)

]
.

Since b is scalar and nonzero we can use Gaussian elimination (Lemma A.1)
and locally replace b̂ by

1
b(y)

b̂(y) =
[

0
1

]
,

and, with further elimination, we see that the full Lie algebra is in fact generated
by

µ̂ =
[

µ(r, y)
0

]
, σ̂ =

[
σ
0

]
, 1̂ =

[
0
1

]
.

We start by proving (47), the proof for (46) being identical. Since the full
algebra is finite dimensional, also the smaller Lie algebra generated by σ̂ and 1̂
has to be finite dimensional. In particular the space spanned in Ĥ by the vector
fields

σ̂,
[
σ̂, 1̂
]
,
[[

σ̂, 1̂
]
, 1̂
]
,
[[[

σ̂, 1̂
]
, 1̂
]
, 1̂
]
, . . .

obtained by starting with σ̂ and then taking repeated brackets with 1̂, has to
be finite dimensional at every point (r, y) near r̂0. We can write these vectors
more compactly as

Ad0
1̂
(σ), Ad1

1̂
(σ), Ad2

1̂
(σ), . . .

where for any vector field f̂ the operators Adn
f̂

: Ĥ → Ĥ are defined recursively
by

Ad0
f̂
(ĝ) = ĝ,

Ad1
f̂
(ĝ) =

[
ĝ, f̂
]
,

Adn+1

f̂
(ĝ) =

[
Adn

f̂
(ĝ), f̂

]
.

19



We easily obtain the Frechet derivatives of σ̂ and 1̂ as

σ̂′ =
[

∂rσ ∂yσ
0 0

]
, 1̂′ =

[
0 0
0 0

]
,

where ∂r and ∂r denotes the corresponding partial Frechet derivatives. Thus we
have

Ad1
1̂
(σ̂) =

[
σ̂, 1̂
]

=
[

∂rσ ∂yσ
0 0

] [
0
1

]
−
[

0 0
0 0

] [
σ
0

]
=
[

∂yσ
0

]
Similarly we have {

Ad1
1̂
(σ̂)
}′

=

 ∂r∂yσ ∂2
yσ

0 0


and thus

Ad2
1̂
(σ̂) =

[
Ad1̂1(σ̂), 1̂

]
=

 ∂r∂yσ ∂2
yσ

0 0

[ 0
1

]
−
[

0 0
0 0

] [
∂yσ
0

]
=
[

∂2
yσ
0

]
Continuing this way we see by induction that

Adn
1̂
(σ̂) =

[
∂n

y σ
0

]
.

Since, by the argument above,
{
Adn

1̂
(σ̂)(r, y); n ≥ 0

}
span a finite dimensional

subspace of Ĥ for all (r, y) near r̂0, we thus see that{
∂n

y σ(r, y), n ≥ 0
}

must span a finite dimensional subspace in H for all (r, y) near r̂0. We have
thus proved (47) for the case when W r is scalar. The general case is proved by
applying the above argument for each component of σ.

We now go on to prove the necessary condition (49) and we will in fact
show that (49) follows from (47). Again we carry out a separate argument
for each component σi, so without loss of generality we may assume that σ
only has a single component (i.e that mr = 1). Now, if (47) holds and we
denote the dimension of the spanned subspace by n+1, there exists scalar fields
aj(r, y); j = 0, . . . n, such that we have the following H-valued vector identity
holding locally at r̂0

∂n+1
y σ(r, y) =

n∑
j=0

aj(r, y)∂j
yσ(r, y) (50)

We now fix an arbitrary r, and for this fixed r we define the H-vector functions
Z0(y), Z1(y), . . . Zn(y) by

Z0(y) = σ(r, y),
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Z1(y) = ∂yσ(r, y),
...

...
Zn(y) = ∂n

y σ(r, y),

and the Hn+1-valued block vector function Z(y) by

Z(y) =


Z0(y)
Z1(y)

...
Zn(y)


The point of this is that we can now write equation (50) as the linear ODE

d

dy


Z0(y)
Z1(y)

...
Zn(y)

 =


0 I 0 . . . 0
0 0 I . . . 0
...

... I
a0(y)I a1(y)I a2(y)I . . . an(y)I




Z0(y)
Z1(y)

...
Zn(y)


where I denotes the identity on H. More compactly we can thus write it as

dZ(y)
dy

= (A(y) ⊗ I)Z(y) (51)

where ⊗ denotes the Kronecker product, and the (n+1)×(n+1) matrix function
A is defined as the companion matrix

A(y) =


0 1 0 . . . 0
0 0 1 . . . 0
...

... 1
a0(y) a1(y) a2(y) . . . an(y)

 .

As one would perhaps guess, the solution of (51) can be shown (see Lemma 4.3
below) to have the representation

Z(y) = [Φ(y, y0) ⊗ I] Z(y0), (52)

where Φ is the transition matrix induced by A. In particular we thus obtain

Z0(y) =
n∑

j=0

cj(y)Zj(0)

where cj(y) = Φ(y, y0)1,j . Recalling that there is a suppressed r and that
Zj(y) = ∂j

yσ(r, 0) we obtain

σ(r, y) =
n∑

j=0

cj(r, y)∂j
yσ(r, 0), (53)

which proves (49). The proof for (48) is identical.
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Lemma 4.3 The solution of the linear ODE (51) has the representation

Z(y) = [Φ(y, y0) ⊗ I] Z(y0), (54)

Here the (n + 1) × (n + 1) matrix function Φ is the transition matrix for the
ODE

dz(y)
dy

= A(y)z(y),

i.e. Φ(t, s) is the unique solution of the linear matrix ODE

∂Φ(t, s)
∂t

= A(t)Φ(t, s),

Φ(s, s) = In+1, ∀s,

where In+1 is the identity matrix on Rn+1.

Proof. Let us define Z0 by Z0(y) = [Φ(y, y0) ⊗ I] Z(y0). Using the formula
CD ⊗ EF = (C ⊗ E)(D ⊗ F ) we obtain

dZ0(y)
dy

=
(

d

dy
Φ(y, y0) ⊗ I

)
Z(y0)

= {A(y)Φ(y, y0) ⊗ I}Z(y0)
= {A(y) ⊗ I} {Φ(y, y0) ⊗ I}Z(y0)
= {A(y) ⊗ I}Z0(y).

Thus Z0, defined by (54), satisfies (51) and, since the initial value is the correct
one, we have by uniqueness Z = Z0 thus finishing the proof of the Lemma.

In order to state the corresponding multidimensional result we need to in-
troduce some notation.

Definition 4.2 A multi index α ∈ Zk
+ is any k-vector with nonnegative inte-

ger elements. For a multi index α = (α1, . . . , αk) the differential operator ∂α
y is

defined by

∂α
y =

∂α1

∂yα1
1

∂α2

∂yα2
2

. . .
∂αk

∂yαk

k

We can now state and prove a multidimensional version of the theorem
above. The crucial assumption needed is that the Lie algebra generated by the
diffusion matrix b(y) spans the entire space Rk.

Proposition 4.4 Assume that the condition{
b1, . . . bmy

}
LA

= Rk, (55)

is satisfied near y0.
Then the following conditions are necessary for the existence of an FDR for

the stochastic volatility model.
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• For every fixed r and y near (r0, y0) the partial derivatives of µ(r, y) and
σi(r, y) w.r.t y span a finite dimensional space in H. Formally, for every
(r, y)

dim span
{
∂α

y µ(r, y); α ∈ Zk
+

}
< ∞ (56)

and
dim span

{
∂α

y σi(r, y); α ∈ Zk
+

}
< ∞ (57)

for every i = 1, . . .mr.

• The drift µ and every volatility component σi have the form

µ(r, y, x) =
ni∑

j=1

cij(r, y)λij(r, x). (58)

σi(r, y, x) =
ni∑

j=1

cij(r, y)λij(r, x). (59)

Proof. We confine ourselves to proving (57) and (59), the proof of (56) and (58)
being identical. We assume that the full model admits and FDR i.e. that the
full Lie algebra

{
µ̂, σ̂, b̂

}
LA

is finite dimensional. From the spanning assumption

(55) it follows easily that, after Gaussian elimination, this Lie algebra is in fact
generated by the vector fields

f̂0 =
[

µ(r, y)
0

]
, σ̂ =

[
σ
0

]
, Î =

[
0
Ik

]
,

where Ik denotes the identity matrix in Rk. The smaller Lie algebra obtained by
selecting one fixed component of σ̂ (say the i : th component) and then taking
successive Lie brackets with different columns of Î is included in

{
µ̂, σ̂, b̂

}
LA

and thus also finite dimensional. As in the proof of Proposition 4.3 it is however
easy to see that these repeated brackets will be of the form[

∂α
y σi(r, y)

0

]
,

which proves (57).
We now go on to show that (59) follows from (57). We thus assume that

(57) holds and we will in fact prove that for each component σi and each natural
number n ≤ k we have a representation of the form

σi(r, y) =
∑

α∈Zn
+

cα(r, y)∂α
y σi(r, 0n, yn+1) (60)

where the sum only contains a finite number of terms. In the expression above,
the differential operator ∂α

y for α ∈ Rn will only contain partial derivatives
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w.r.t the n first variables y1, . . . yn and cα is some scalar field. The expression
0n denotes the zero vector (0, . . . , 0) in Rn, and for any y ∈ Rk yn denotes the
vector (yn, . . . , yk).

We prove (60) by induction and for notational simplicity we suppress the
subindex i in σi. The case n = 1 is easily proved in exactly the same way as
when we proved (53). For the induction step, let us assume that (60) holds
for a fixed n. From the assumption (57) it follows in particular that the space
spanned of the vector fields{

∂j
yn+1

σ(r, y); j = 0, 1, . . .
}

is finite dimensional near (r0, y0). Again adapting the proof of (53) (keep r
and all y components except yn+1 fixed) to the present situation, we obtain a
representation of σ as a finite sum of the form

σ(r, y) =
N∑

j=1

γj(r, y)∂j
yn+1

σ(r, y1, . . . , yn, 0, yn+2), (61)

where γj(r, y) is a scalar field. We can now apply ∂j
yn+1

to (60) and set yn+1 = 0
to obtain

∂j
yn+1

σ(r, y1, . . . , yn, 0, yn+2) =
∑

α∈Zn+1
+

βα(r, y)∂α
y σi(r, 0n+1, y

n+2).

If we plug this into (61) we obtain an expression of the form

σ(r, y) =
∑

α∈Zn+1
+

cα(r, y)∂α
y σ(r, 0n+1, y

n+2)

and we have thus proved the induction step.

We now go on to study the more complicated, but also more interesting, situa-
tion when the Lie algebra

{
b1, . . . bmy

}
LA

does not span the whole of Rk. We
will need the following geometric result.

Lemma 4.4 Define the integer l by

l = dim
{
b1, . . . , bmy

}
LA

,

and choose any vector fields f1, . . . , fl such that

span {f1, . . . , fl} =
{
b1, . . . , bmy

}
LA

near a given point y0 ∈ Rk. Choose furthermore any vectors gl+1, . . . , gk such
that Rk = Rf1(y0) ⊕ . . . ⊕ Rf1(y0) ⊕ Rgl+1 ⊕ . . . ⊕ Rgk. Then the mapping
Ψ : Rk → Rk defined by

Ψ(s1, . . . , sk) = ef1s1 . . . eflsl

(
y0 +

k∑
n=l+1

sngn

)
.
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is a local diffeomorphism near y0. Furthermore, defining ϕ as ϕ = Ψ−1 near
y0, we have

ϕ?

{
b1, . . . , bmy

}
LA

=
l⊕

n=1

Ren

where e1, . . . , el are the l first unit vectors in Rk.

Proof. The proof is a fairly straightforward extension of the proofs of Theorem
2.1 and Proposition 2.1 in [7].

Using this Lemma we may now formulate our final necessary condition.

Proposition 4.5 Assume that dim {b}LA = l, and let f1, . . . , fl be as in Lemma
4.4. For a fixed but arbitrary point y ∈ Rk and for s ∈ Rl define the functions
µ̄(r, s, x; y) and σ̄i(r, s, x; y), for i = 1, . . . , mr by

σ̄i(r, s, x; y) = σi(r, ef1s1 . . . eflsly, x),
µ̄(r, s, x; y) = µ(r, ef1s1 . . . eflsly, x)

Then the following conditions are necessary for the existence of an FDR for the
stochastic volatility model.

• For every (r, y) near (r0, y0), it holds that

dim span
{
∂α

s σ̄i(r, s; y); α ∈ Zl
+

}
< ∞, i = 1, . . .mr (62)

and
dim span

{
∂α

s µ̄(r, s; y); α ∈ Zl
+

}
< ∞ (63)

• For every (r, y) near (r0, y0) the drift and volatility terms have the form

σ̄i(r, s, x; y) =
ni∑

j=1

cij(r, s; y)λij(r, x; y). (64)

and

µ̄(r, s, x; y) =
n0∑

j=1

c0j(r, s; y)λ0j(r, x; y). (65)

Proof. Choose a fixed y and define Ψ and ϕ as in Lemma 4.4. We now change
coordinates from y to u on Rk by setting u = ϕ(y). We do not however change
coordinates on H , so in the new coordinate system we have the variables (r, u)
instead of the former variables (r, y). In terms of transformations on Ĥ = H×Rk

we have thus defined a diffeomorphism ϕ̂ : Ĥ → Ĥ by

ϕ̂

[
r
y

]
=
[

r
ϕ(y)

]
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and in block operator form we can write

ϕ̂ =
[

I
ϕ

]
where I denotes the identity mapping on H.

Under this transformation, the original SDE

d

[
rt

yt

]
=
[

µ(rt, yt)
a(yt)

]
dt +

[
σ(rt, yt)

0

]
◦ dW r

t +
[

0
b(yt)

]
◦ dW y

t

will be transformed into

d

[
rt

ut

]
= ϕ̂?

[
µ(rt, ut)
a(ut)

]
dt + ϕ̂?

[
σ(rt, ut)

0

]
◦ dW r

t + ϕ̂?

[
0

b(ut)

]
◦ dW y

t

and it is easily seen that

ϕ̂?

[
σ(r, u)

0

]
=
[

σ(r, ϕ−1(u))
0

]
,

and

ϕ̂?

[
0

b(u)

]
=
[

0
ϕ?b(u)

]
.

Since we are looking for necessary conditions we assume that the original model
possesses an FDR and thus that the Lie algebra generated by µ̂, σ̂, and b̂ is
finite dimensional. Since ϕ̂? is a Lie algebra homomorphism, this implies that
the Lie algebra generated by ϕ̂?µ̂, ϕ̂?σ̂, and ϕ̂?b̂ is finite dimensional. This Lie
algebra obviously includes the subalgebra generated by ϕ̂?b̂, and again using
the fact that ϕ̂? preserves the Lie bracket we have{

ϕ̂?b̂
}

LA
= ϕ̂?

{
b̂
}

LA
=
[

0
ϕ? {b}LA

]
.

From this and Lemma 4.4 it now follows that
{
ϕ̂?b̂
}

LA
is in fact spanned by[

0
e1

]
, . . . ,

[
0
el

]
.

where ei is the i:th unit column vector in Rk. Defining σ̃ by σ̃(r, u) = σ(r, ϕ−1(u))
we thus see that the Lie algebra generated by the vector fields[

σ̃1(r, u)
0

]
, . . . ,

[
σ̃mr(r, u)

0

]
,

[
0
e1

]
, . . . ,

[
0
el

]
will be finite dimensional. An argument almost identical to the one in the proof
of Proposition 4.4 now shows that for each i, and at each point (r, u), we have

dim span
{
∂α

u σ̃i(r, u); α ∈ Zl
+

}
< ∞, (66)
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where the point is that the partial derivatives are only taken over the variables
u1, . . . , ul. Exactly as in the proof of Proposition 4.4 this implies that there is
a representation of the form

σ̃i(r, u) =
ni∑

j=1

cij(r, u)λij(r, ul+1, . . . , uk), (67)

where the point is that the vector field λij does not depend upon the coordinates
u1, . . . , ul. Setting ul+1 = . . . = uk = 0 and denoting u1, . . . , ul by s1, . . . , sl in
(66) and (67) gives us (62) and (64). The corresponding results for µ are proved
similarly.

4.3 Test examples: II.

We illustrate the necessary conditions obtained so far by studying the test ex-
amples of Section 2.3. We recall the volatility structures as

1. HW with stochastic a:

σ(r, y, x) = σe−yx (68)

2. HW with stochastic σ:

σ(r, y, x) = ye−ax (69)

3. CIR with stochastic σ:

σ(r, y, x) = y
√

r(0) · λ(x, y, a) (70)

4. CIR with stochastic a:

σ(r, y, x) = σ
√

r(0) · λ(x, σ, y) (71)

By the assumptions of Section 2.3, all three examples are within the class of
orthogonal noise models. We may thus directly apply Proposition 4.2, or (since
we have a scalar model) Corollary 4.1 and check whether the corresponding
parameterized models possess finite dimensional realizations. In all these cases,
however, this test is trivially satisfied since the volatility structures were con-
structed directly from HJM models possessing short rate realizations. Thus all
the models pass this necessary conditions.

We now go on to the necessary conditions of Proposition (4.3). From (49)
and ocular inspection of the examples above we immediately have the following
result.

Proposition 4.6 Assuming a scalar y-process with non zero diffusion term, the
stochastic volatilities in (68), (70) and (71) do not admit an FDR.
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Thus (68), (70) and (71) are out of the race. In particular it is noteworthy
(and perhaps surprising) that there is no stochastic volatility extension of the
CIR model (in the sense above) for which there exists a finite dimensional re-
alization. In fact, it is easy to see that we in fact have the following stronger
result where we allow both the parameters a and σ to depend upon the process
y.

Proposition 4.7 Consider any stochastic volatility extension of the CIR model
of the form

σ(r, y, x) = σ(y)
√

r(0) · λ(x, σ(y), a(y)) (72)

where the functions σ(y) and a(y) are assumed to be non-constant and where
the y process is assumed to have non zero diffusion term. Then the stochastic
volatility model does not possess an FDR.

It remains to study the volatility structure (68) in more detail, and this will
be done below.

4.4 Necessary and sufficient conditions

In this section we provide necessary and sufficient conditions for the existence
of an FDR in the case of an orthogonal noise model, thus improving upon the
general results of Theorem 3.1.

We need the following definition.

Definition 4.3 Define, for each y, the parameterized Lie algebra Ly on H by

Ly =
{
∂α

y µy, ∂α
y σy

1 , . . . , ∂α
y σy

mr
; α ∈ Zk

+

}
LA

In this expression ∂α
y µy is, for each fixed y, considered as a (parameterized)

vector field on H, and correspondingly for the σ components.

In order to obtain reasonably concrete results we need to assume that the
Lie algebra generated by the b matrix is full dimensional, leaving the general
case as an open problem.

Proposition 4.8 Assume that

dim
{
b1, . . . , bmy

}
LA

= k. (73)

Under this assumption, a necessary and sufficient condition for the existence of
an FDR for the stochastic volatility model is that, for each y, we have

dim Ly < ∞ (74)

near r0.
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Proof. From proposition 4.1 we know that there exists an FDR if and only if
the Lie algebra L on Ĥ generated by[

µ(r, y)
a(y)

]
,

[
σ1(r, y)

0

]
, . . . ,

[
σmr (r, y)

0

]
,

[
0

b1(y)

]
, . . . ,

[
0

bmy(y)

]
is finite dimensional. Under the assumption (73), and using Gaussian elimina-
tion, we see that L is generated by[

µ(r, y)
0

]
,

[
σ1(r, y)

0

]
, . . . ,

[
σmr (r, y)

0

]
,

[
0
Ik

]
,

where Ik is the identity matrix on Rk. Using the fact that repeated bracketing
of a vector field of the form [

f(r, y)
0

]
with different columns in [

0
Ik

]
will produce a vector field of the form[

∂α
y f(r, y)

0

]
it now follows that L is in fact generated by[

∂α
y µ(r, y)

0

]
,

[
∂α

y σ(r, y)
0

]
, . . . ,

[
∂α

y σmr(r, y)
0

]
,

[
0
Ik

]
; α ∈ Zk

+

From this it is clear that L is generated by[ Ly

0

]
,

[
0
Ik

]
; y ∈ Rk,

and the proof is finished if we can show that for each multi index α we have

∂α
y Ly ⊆ Ly. (75)

It follows by induction that in order to prove (75) we may WLOG assume that
k = 1 (i.e.y is scalar) and that it is in fact enough to prove that

∂y Ly ⊆ Ly. (76)

Now, it is easily seen that

Ly =
∞⋃

k=0

Ly
k,

where

Ly
0 = span

{
∂n

y µy, ∂n
y σy

1 , . . . , ∂n
y σy

mr
; n ≥ 0

}
Ly

k+1 = span {Ly
k, [Ly

k, Ly
k]} , k = 0, 1, . . .
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so it is enough to prove that each Ly
k is invariant under ∂y and we prove this by

induction. The case k = 0 is clear, so assume that

∂yLy
n ⊆ Ly

n

for all n ≤ k. Now fix an arbitrary f ∈ Ly
k+1. We start by considering two

cases: the case when f ∈ Ly
k and the case when f = [g, h] with g, h ∈ Ly

k. If
f ∈ Ly

k then ∂y ∈ Ly
k by the induction assumption, so ∂y ∈ Ly

k+1. If f = [g, h]
with g, h ∈ Ly

k then an easy calculation shows that

∂yf =
[
∂yg, h

]
+
[
g, ∂yh

]
which is in [Ly

k, Ly
k] by the induction assumption. Thus also in this case we have

∂yf ∈ Ly
k+1. A generic f ∈ Ly

k+1 is, by definition, a linear combination of terms
of the above type so we are finished.

4.5 A simple sufficient condition

The object of this section is to show that, under some rather restrictive but
nontrivial assumptions, it is possible to derive an extremely simple sufficient
condition for the existence of an FDR for the full stochastic volatility model
in terms of the FDR for the parameterized model. Furthermore; under these
assumptions the realization for the full model can be constructed directly, and
in a trivial manner, from the realization for the parameterized model.

Assumption 4.2

1. The Ito formulation of the r-dynamics of the stochastic volatility model is
of the form

drt = µ0(rt, yt)dt + σt(rt, yt)dWt. (77)

2. We assume that y is independent of W . Apart from this assumption, the
process y is allowed to be an arbitrary semimartingale with values in Rk.

3. For any fixed y, the parameterized r-model is assumed to possess an FDR
of the form

ry
t = G(Zy

t ), (78)
dZy

t = A(Zy
t , y)dt + B(Zy

t , y) ◦ dWt, (79)

where Zy is Rd valued and G is a smooth mapping G : Rd → H.

The important part of this assumption is that, for the parameterized model,
the parameter y only appears in the Zy dynamics, but not the output mapping
G. We will discuss the geometric significance of this below, but first we state
the result.
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Proposition 4.9 Under Assumption 4.2, the stochastic volatility model pos-
sesses an FDR, and a concrete realization is in fact given by

rt = G(Zt), (80)
dZt = A(Zt, yt)dt + B(Zt, yt) ◦ dWt, (81)

With G, A and B as in (78)-(79).

Proof. From the independence between y and W it follows that the Stratonovich
formulation of the r-dynamics is given by

drt = µ(rt, yt)dt + σ(rt, yt) ◦ dWt, (82)

where
µ(r, y) = µ0(r, y) − 1

2
σr(r, y)σ(r, y).

Now let us consider (80)-(81) as an Ansatz. The r-dynamics induced by (80)-
(81) are given by

drt = G′(Zt)A(Zt, yt)dt + G′(Zt)B(Zt, yt) ◦ dWt, (83)

so it follows that (80)-(81) is a realization of (82) if and only if

µ(r, y) = G?A(r, y), (84)
σ(r, y) = G?B(r, y). (85)

We thus have to prove that (84)-(85) hold, and to this end we use the fact that,
by assumption, (78)-(79) is a realization for the parameterized model. The
Stratonovich formulation for the parameterized model is easily seen to be given
by

dry
t = µ(ry

t , y)dt + σ(ry
t , y) ◦ dWt, (86)

and the important point here is that this is precisely the parameterized version
of the Stratonovich formulation of the original r-dynamics. The ry-dynamics
induced by (78)-(79) are given by

dry
t = G′(Zy

t )A(Zy
t , y)dt + G′(Zy

t )B(Zy
t , y) ◦ dWt, (87)

and since this was assumed to be a realization of (86) we thus have

µ(r, y) = G?A(r, y),
σ(r, y) = G?B(r, y),

which was to be proved.
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Remark 4.1 If the Stratonovich differential in (79) is replaced by an Itô dif-
ferential i.e. by

dZy
t = A(Zy

t , y)dt + B(Zy
t , y)dWt,

then the conclusion of Proposition 4.9 still holds if the Stratonovich differential
in (81) is replaced by an Itô differential, i,.e. by

dZt = A(Zt, yt)dt + B(Zt, yt)dWt.

This is useful if the realization of the parameterized model is originally given in
Itô form.

This, very strong but also very restrictive, result has a clear and simple
geometric interpretation. First, we know from general (orthogonal noise) theory
that a necessary condition for an FDR is that the parameterized model possesses
an FDR. In general, the realization for the parameterized model will of course
be of the form

ry
t = G(Zy

t , y), (88)
dZy

t = A(Zy
t , y)dt + B(Zy

t , y) ◦ dWt, (89)

where the output function G as well as the drift term A and diffusion term B
depend upon y, but in Proposition 4.9 we have assumed that G does not in
fact depend on y. To understand the geometric meaning of this assumption we
recall from [7] that the parameterized model, for a fixed y, admits an FDR if
and only if there exists an invariant manifold Gy passing through r0, and in the
generic case this invariant manifold will of course depend upon y. The relation
between Gy and the realization (88)-(89) is that

Gy = Im Gy,

where the mapping Gy : Rd → H is defined by Gy(z) = G(z, y). Thus; assuming
that G does not depend upon the parameter y is equivalent to assuming that
the invariant manifold for the parameterized model passing through r0 does
not depend upon y. In that case, denoting the invariant manifold by G it is of
course geometrically obvious that G × Rk will be a finite dimensional invariant
manifold for the process (rt, yt) thus guaranteeing the existence of an FDR for
the full model.

Furthermore, it follows from Theorem A.2 that the invariant manifold Gy is
determined uniquely by the parameterized Lie algebra

Ly =
{
µy, σy

1 , . . . , σy
mr

}
LA

, (90)

so if Ly does not depend upon y then neither will G(z, y). We thus have the
following result.

Proposition 4.10 Assume that

• The process y is an Rk-valued semimartingale which is independent of W .
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• The parameterized model admits an FDR for every fixed y.

• Lie algebra Ly defined in (90) does not depend upon the parameter y.

Then the full model will possess an FDR.

We finish this discussion by noticing that for the general Lie algebraic ma-
chinery of [7] and [17] to work it is essential that all processes are Wiener driven.
The geometric reason for this is that the Wiener process acts locally in space
(the infinitesimal generator is a partial differential operator) and this allows us
to analyze the realization problems using differential geometry (i.e. local analy-
sis). It is therefore noteworthy that in the simple situation discussed above in
this section, we did not have to assume that y is driven by a Wiener process –
it can also have jumps.

4.6 An example

As an application of the results in Section 4.5, we consider the following volatility
structure for a standard forward rate model driven by a scalar Wiener process
W r,

σ(r, x) = ϕ(r)e−αx. (91)

Here ϕ is assumed to be an arbitrarily chosen smooth scalar field, and α is a
positive constant. This is an extension of the model investigated in [24], where
an FDR was constructed for the case when ϕ was assumed to be of the particular
form ϕ(r) = g (r(0)), for some smooth function g : R → R. As was shown in
[7], also the extended model admits an FDR, and from [6] a realization is easily
obtained in the following way.

Define the mapping G : R+ × R2 → H by

G(t, z1, z2)(x) = r0(x + t) + z1e
−αx + z2e

−2αx (92)

The realization is then given by

rt(x) = G (t, Z1(t), Z2(t)) (x), (93)

dZ1(t) =
{

1
α

ϕ2 [Gt] − αZ1(t)
}

dt + ϕ [Gt]dW r
t , (94)

dZ2(t) = −
{

2αZ1(t) +
1
α

ϕ2 [Gt]
}

dt. (95)

where we have used the shorthand notation

Gt = G (t, Z1(t), Z2(t)) .

The important point to notice is that the mapping G in (92) does not involve
ϕ. We may now extend the model above to a stochastic volatility model with
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an arbitrary scalar y-process (assumed to be independent of W r), by defining
the volatility structure as

σ(r, y, x) = ϕ(r, y)e−αx. (96)

where ϕ is an arbitrarily chosen scalar field.
By construction, the parameterized model admits an FDR of the form (93)-

(95) where G is exactly as above, and where ϕ [Gt] is replaced by ϕ [Gt, y]. The
point is again that G does not involve y , so it now follows immediately from
Proposition 4.9 that a realization for the stochastic volatility model is given by

rt(x) = G (t, Z1(t), Z2(t)) (x),

dZ1(t) =
{

1
α

ϕ2 [Gt, yt] − αZ1(t)
}

dt

+ ϕ [Gt, yt] dW r
t ,

dZ2(t) = −
{

2αZ1(t) +
1
α

ϕ2 [Gt, yt]
}

dt.

Remark 4.2 In this example we have used the Itô dynamics instead of the
Stratonovich dynamics. The reason is that the Itô dynamics of the realization
are simpler than the Stratonovich dynamics.

5 Forward rate models

We now go on to apply the general results above to the more concrete case
of forward rate models. we recall that the Ito formulation of the stochastic
volatility forward rate model is given by

drt(x) =
{

∂

∂x
rt(x) + Hσ(rt, yt, x)

}
dt + σ(rt, yt, x)dWt (97)

dyt = a0(yt)dt + b(yt)dWt, (98)

where H is defined in (3). On Stratonovich form the model has the form

drt = µ(rt, yt)dt + σ(rt, yt) ◦ dWt (99)
dyt = a(yt)dt + b(yt) ◦ dWt, (100)

where

µ(r, y) = Fr + Hσ(r, y) − 1
2
σr(r, y)σ(r, y) − 1

2
σy(r, y)b(y) (101)

a(y) = a0(y) − 1
2
by(y)b(y). (102)

As usual F denotes the operator ∂
∂x , σr denotes the partial Frechet derivative

of σ w.r.t. the vector variable r and similarly for σy.
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5.1 Necessary conditions for orthogonal noise models

In the orthogonal noise case the model has the following Stratonovich form

drt = µ(rt, yt)dt + σ(rt, yt) ◦ dW r
t (103)

dyt = a(yt)dt + b(yt) ◦ dW y
t , (104)

where

µ(r, y) = Fr + Hσ(r, y) − 1
2
σr(r, y)σ(r, y) (105)

a(y) = a0(y) − 1
2
by(y)b(y). (106)

We now have the following surprisingly restrictive result.

Proposition 5.1 Assume the following:

• The model is an orthogonal noise model.

• The condition {
b1, . . . bmy

}
LA

= Rk, (107)

is satisfied near y0.

Then, a necessary condition for the existence of an FDR is that the volatility
structure has the form

σi(r, y, x) =
N∑

j=1

ϕij(r, y)λj(x), i = 1, . . . , mr, (108)

where λ1, . . . , λN are constant vector fields, and ϕij are smooth scalar fields.

Proof. Since we have assumed orthogonal noise, Proposition 4.2 implies that
a necessary condition for the existence of an FDR is that the parameterized
model admits an FDR. Furthermore; applying Theorem 4.13 of [17] to the pa-
rameterized model it follows that the volatility must be of the form

σi(r, y, x) =
N∑

j=1

ϕij(r, y)λj(y, x). (109)

Given this expression, an application of Proposition 4.4 finishes the proof.

Given a volatility structure of the form (108) we now go on to find sufficient
conditions for the existence of an FDR.
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5.2 Sufficient conditions for the general noise models

We now consider a multidimensional forward rate model of the form

drt = µ(rt, yt)dt + σ(rt, yt) ◦ dWt (110)
dyt = a(yt)dt + b(yt) ◦ dWt. (111)

where W is assumed to be m-dimensional, and y is as usual k-dimensional. We
will assume that the volatility structure is of the form (108), but we stress the
fact that we do not restrict ourselves to the orthogonal noise model.

We recall from [7] that a real valued function f : R → R is said to be quasi
exponential if it can be written as

f(x) = ceAxb,

where c is a row vector, b is a column vector and A is a matrix. It is easy to see
that a function is quasi exponential if and only if it satisfies a linear ordinary
differential equation with constant coefficients. The general form of a quasi
exponential function is given by

f(x) =
∑

i

eγix +
∑

j

eαjx [pj(x) cos(ωjx) + qj(x) sin(ωjx)] , (112)

where γi, αj , ωj are real numbers, whereas pj and qj are real polynomials.
The main result is as follows.

Proposition 5.2 Consider the model (110)-(111) and assume that the compo-
nents of σ are of the form

σi(r, y, x) =
N∑

j=1

ϕij(r, y)λj(x), i = 1, . . . , m. (113)

Under this assumption a sufficient condition for the existence of an FDR is that
λ1(x), . . . , λm(x) are quasi exponential. The scalar fields ϕij(x) are allowed to
be arbitrary.

Proof. In order to avoid to much and messy notation, we give the proof only
for the simplified case when

σi(r, y, x) = ϕi(r, y)λi(x).

The arguments in the general case are almost identical. Under the given as-
sumption the Stratonovich drift term of r is given by

µ = Fr +
m∑

i=1

ΦiDi − 1
2

m∑
i=1

ϕir[λi]ϕiλi − 1
2

m∑
i=1

ϕiy [bi]λi (114)
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where bi denotes the i.th column of the matrix b. The Lie algebra L under study
is the one generated by the vector fields[

µ
a

]
,

[
ϕ1λ1

b1

]
, . . . ,

[
ϕmλm

bm

]
.

Obviously, L is included in the larger algebra L1, generated by[
µ
0

]
,

[
ϕ1λ1

0

]
, . . . ,

[
ϕmλm

0

]
,

[
0
a

]
,

[
0
b1

]
, . . . ,

[
0

bm

]
.

Using the structure of µ we can reduce this generator system to[
Fr +

∑m
i=1 ΦiDi

0

]
,

[
λ1

0

]
, . . . ,

[
λm

0

]
,

[
0
a

]
,

[
0
b

]
.

From this we see that L1 is included in the algebra L2, generated by[
Fr
0

]
,

[
D1

0

]
, . . . ,

[
Dm

0

]
,

[
λ1

0

]
, . . . ,

[
λm

0

]
,

[
0
a

]
,

[
0
b

]
.

As in the previous section, it is now easily seen (see Section 5 in [7]) that L2 is
finite dimensional if and only if λ1, . . . , λm are quasi exponential.

5.3 The scalar case

We finish by a reasonably complete investigation of the most important spe-
cial case, which occurs when y is scalar, r and y are driven by scalar Wiener
processes, and the volatility has the form

σ(r, y, x) = ϕ(r, y)λ(x). (115)

Such a model will have the form

drt(x) = {Frt(x) + Φ(r, y)D(x)} dt + ϕ(r, y)λ(x)dW r
t

dyt = a0(yt)dt + b(yt)dW y
t .

where

Φ(r, y) = ϕ2(r, y),

D(x) = λ(x)
∫ x

0

λ(s)ds.

In order to allow for a correlation, ρ, between W r and W y we write them as

W r
t = ρW 1

t +
√

1 − ρ2W 2
t ,

W y
t = W 1

t
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where W 1 and W 2 are independent Wiener processes. We then have the dy-
namics

drt = {Frt + ΦD} dt + ϕλρW 1
t + ϕλ

√
1 − ρ2W 2

t

dyt = a0dt + bdW 1
t .

We can now prove the following main result for the scalar case.

Proposition 5.3 Assume that ϕy(r, y) 6= 0, and that b(y) 6= 0 i.e. that the
model is non trivial. Then the following hold.

• In the non-perfectly correlated case |ρ| < 1, a necessary and sufficient
condition for the existence of an FDR is that the vector field λ is quasi
exponential. The scalar field ϕ(r, y) is allowed to be arbitrary.

• In the perfectly correlated case |ρ| = 1, the condition above is sufficient.

Proof. The Stratonovich dynamics of the model are given by

drt =
{
Frt + ΦD − 1

2
ϕr[λ]ϕλ − 1

2
ϕybλ

}
dt + ϕλ ◦ W 1

t +
√

1 − ρ2ϕλ ◦ W 2
t

dyt = adt + b ◦ dW 1
t .

Thus the relevant Lie algebra L on Ĥ is generated by the vector fields[
Fr + ΦD − 1

2ϕr[λ]ϕλ − 1
2ϕybλ

a

]
,

[
ρϕλ
b

]
,

[ √
1 − ρ2ϕλ

0

]
,

We start with the non-perfectly correlated case, so we assume that |ρ| < 1.
Then, by Gaussian elimination, the system of generators can immediately be
reduced to [

Fr + ΦD
0

]
,

[
0
1

]
,

[
λ
0

]
The Lie bracket between the first two vector fields gives us[

ΦyD
0

]
,

so after reducing this field we have the generators[
Fr + ΦD

0

]
,

[
D
0

]
,

[
λ
0

]
,

[
0
1

]
,

which finally reduce to [
Fr
0

]
,

[
D
0

]
,

[
λ
0

]
,

[
0
1

]
.
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From this it follows immediately (see [7] section 5) that the Lie algebra is finite
dimensional if an only if the linear span of

{Fnλ, FnD; n ≥ 0}
is a finite dimensional subspace in H. It is however easily seen that this happens
if and only if λ is quasi exponential.

In the perfectly correlated case |ρ| = 1 we can WLOG assume that ρ = 1 and
we are left with the following generators for the Lie algebra L.[

Fr + ΦD − 1
2ϕr[λ]ϕλ − 1

2ϕybλ
a

]
,

[
ϕλ
b

]
,

There seems tho be no easy way of reducing this set of generators, but it is
obvious that L is included in the Lie algebra Lext generated by the fields[

Fr + ΦD − 1
2ϕr[λ]ϕλ − 1

2ϕybλ
a

]
,

[
ϕλ
0

]
,

[
0
b

]
Thus a sufficient condition for an FDR is that the larger Lie algebra Lext is
finite dimensional. It is however easily seen that Lext is identical with the
algebra discussed in the non-perfectly correlated case above, so we are finished.

5.4 Test examples: III.

We can now continue our study of the test examples of Section 2.3. In fact, only
one example is left in the race, namely

2. HW with stochastic σ:

σ(r, y, x) = ye−ax. (116)

We now have the following result, which is immediately obtained from Propo-
sition 5.3.

Proposition 5.4 The stochastic volatility version of the Hull-White extended
Vasiček volatility structure with stochastic σ, as in (116) admits an FDR.

5.5 Construction of realizations

In the previous sections we have provided existence results for FDRs, but so far
we have not constructed any concrete realizations. The object of this section
is to present a general method for the construction of an FDR for any multidi-
mensional forward rate model of the form (110)-(111), for which there exists an
FDR. We will then apply this methodology to concrete cases. The methodology
is basically the one presented in [6], so we will be rather brief.
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5.5.1 General theory, results and examples

A general method for constructing an FDR of a forward rate system, for which
such a realization exists, was presented in [6]. This method involved the follow-
ing steps:

• Choose a finite number of vector fields f1, . . . , fd such that

{µ̂, σ̂}LA ⊆ span{f1, . . . , fd}. (117)

• Compute the mapping Ĝ : Rd → H× Rk using the formula

Ĝ(z1, . . . , zd) = efdzd . . . ef1z1 r̂0. (118)

Here r̂0 denotes an initial point admitting an FDR and for the definition
of eftr̂ we refer to Definition A.3 in the Appendix.

• We now have that r̂ = Ĝ(Z). Make the following Ansatz for the dynamics
of the state space variables Z

dZ = A(Z)dt + B(Z) ◦ dWt. (119)

It must then hold that

Ĝ∗A = µ̂, Ĝ∗B = σ̂. (120)

Now use the equations in (120) to obtain the vector fields A and B.

To insure that the model we are considering possesses an FDR we recall Propo-
sition 5.2 and assume that the components of σ are of the form

σi(r, y, x) = ϕi(r, y)λi(x), i = 1, . . . , m, (121)

where ϕi is an arbitrary smooth functional i = 1, . . . , m and λi is given by

λi(x) = pi(x)eαix, i = 1, . . . , m. (122)

Here pi is a polynomial of degree ni and αi is a scalar constant. Furthermore
we will assume that

{b1, . . . , bm}LA = Rk. (123)

Working through the steps outlined above will prove the proposition stated
below, provided you choose the vector fields mentioned in the first step as follows[

Fr
0

]
,

[
Fjλi

0

]
,

[
FlD̃i

0

]
,

[
0
ei

]
. (124)

Here D̃i is defined by

D̃i(x) = Di(x) − γiλi(x), i = 1, . . . , m, (125)
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where the constant γi is given by

γi =
ni∑

j=0

(−1
αi

)j+1

Fjpi(0), i = 1, . . . , m, (126)

furthermore, ei denotes the i:th unit vector in Rk, i = 1, . . . , m; j = 0, 1, . . . , ni

and l = 0, 1, . . . , qi = 2ni.

Proposition 5.5 Given the initial point r̂0 the forward rate system (110)-(111)
with volatility defined by equations (121)-122 and satisfying the condition (123)
has a finite dimensional realization given by

r̂t = Ĝ(Zt), (127)

where Ĝ is given by

Ĝ(z0, z
1
ij , z

2
il, z

3
p) =

[
G(z0, z

1
ij , z

2
il, z

3
p)

y0 + z3

]
. (128)

Here G is given by

G(z0, z
1
ij , z

2
il, z

3
p)(x) = r0(x+z0)+

m∑
i=1

ni∑
j=0

Fjλi(x)z1
ij+

m∑
i=1

2ni∑
l=0

FlD̃i(x)z2
il, (129)

z3 denotes the column vector z3 = (z3
1 , . . . , z3

k)∗, i = 1, . . . , m; j = 0, 1, . . . , ni;
l = 0, 1, . . . , qi = 2ni and p = 1, . . . , k.

The dynamics of the state space variables are given by

dZ0 = dt,

dZ1
i0 = [ci0Z

1
ini

+ γiΦi(Ĝ(Z))]dt + ϕi(Ĝ(Z))dWt,

dZ1
ij = (cijZ

1
ini

+ Z1
i,j−1)dt

dZ2
i0 = (di0Z

2
iqi

+ Φi(Ĝ(Z)))dt

dZ2
il = (dilZ

2
il + Z2

i,l−1)dt,

dZ3 = a0(Z3
t )dt + b(Z3

t )dWt.

(130)

Here cij and dil denote the constants

cij = −
(

ni + 1
j

)
(−αi)ni+1−j , (131)

and

dil = −
(

2ni + 1
l

)
(−2αi)2ni+1−l, (132)
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respectively, the constants γi were defined in (126), Φi = ϕ2
i , a0(y) is given by

a0(y) = a(y) + 1
2by(y)b(y), i = 1, . . . , m; j = 0, 1, . . . , ni and l = 0, 1, . . . , qi =

2ni.

Remark 5.1 The reader familiar with the paper [6] will recognize that the real-
ization of the model with stochastic volatility is almost identical to the realization
of the model without stochastic volatility, except of course for the inclusion of
the y-dynamics in the form of Z3.

5.5.2 A simple special case: Hull-White

To see the general results above in a very simple special case, we now ap-
ply Proposition 5.5 to the Hull-White extended Vasiček model with stochastic
volatility, i.e. the model with volatilities given by

σ(r, y, x) = ye−αx. (133)

Note that we have k = 1, m = 1 and n = 0. If we assume that the dynamics of
y satisfy the condition (123) Proposition 5.5 gives us that, given r̂0 = (r0, y0)∗,
the forward rate model of the form (110)-(111), with volatilities given by (133),
has a finite dimensional realization given by

r̂t = Ĝ(Zt). (134)

Here Ĝ is defined by

Ĝ(z0, z1, z2, z3) =
[

G(z0, z1, z2, z3)
y0 + z3

]
, (135)

where G is given by

G(z0, z1, z2, z3)(x) = r0(x + z0) + e−αxz1 − e−2αx

α
z2. (136)

The dynamics of the state space variables are given by

dZ0 = dt,

dZ1 =
[−αZ1 + 1

α (y0 + Z3)2)
]
dt + (y0 + Z3)dWt,

dZ2 =
[−2αZ2 + (y0 + Z3)2

]
dt

dZ3 = a0(Z3)dt + b(Z3)dWt.

(137)

Here a0(y) = a(y) + 1
2by(y)b(y).

A Appendix: Realization theory in Hilbert space

In this appendix we will give a brief recapitulation of Lie algebra theory for
the existence of FDRs in Hilbert space, developed in [7]. See [7] for proofs and
details and [3] for an overview.
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A.1 Problem statement

Take as given an m-dimensional standard Wiener process W with components
W 1, . . . , Wm, and a separable Hilbert space Ĥ, where a generic point will be
denoted by r̂. (In our applications to interest rates we will of course choose r̂ as
the extended process (r, y) like in Section 2.1.) Let furthermore µ̂, σ̂1, . . . , σ̂m be
smooth vector fields on Ĥ. For a given initial point r̂o ∈ Ĥ we can then consider
the following SDE on H.{

dr̂t = µ̂(r̂t)dt + σ̂(r̂t) ◦ dWt,

r̂0 = r̂o,
(138)

Here σ̂(r̂t) ◦ dWt =
∑m

1 σ̂i(r̂t) ◦ dW i
t and ◦ denotes the Stratonovich integral

(see Remark A.1 below). For information on SDEs in Hilbert space see [13].

Definition A.1 We say that the SDE (138) has a finite dimensional real-
ization (FDR) if there exists a point z0 ∈ Rd, smooth vector fields A, B1, . . . , Bm

on some open subset Z of Rd and a smooth (submanifold) map Ĝ : Z → Ĥ,
such that r̂ has the local representation

r̂t = Ĝ(Zt), P − a.s. (139)

where Z is the strong solution of the d-dimensional Stratonovich SDE{
dZt = A(Zt)dt + B(Zt) ◦ dWt,

Z0 = z0,
(140)

and where the driving Wiener process W in (140) is the same as in (138). The
prefix “local” above means that the representation is assumed to hold for all t
with 0 ≤ t < τ(ro), P -a.s. where, for each r̂o ∈ Ĥ, τ(r̂o) is a strictly positive
stopping time.

Remark A.1 Note the use of the Stratonovich integral. The reason for this
is that the main theorems are most naturally formulated (and proved) within
the Stratonovich framework. If (as is the case for us) the original problem is
stated in Itô terms, this simply means that you translate your Itô equations
into the corresponding Stratonovich ones. For that purpose we recall that, if X
is a semimartingale of suitable dimension, the Stratonovich integral/differential
concept is related to the corresponding Itô concept by the formula

Xt ◦ dWt = XtdWt +
1
2
d〈X, W 〉t (141)

We also recall that for the Stratonovich integral, the Itô formula for continuous
semimartingales takes the form

dF (t, Xt) =
∂F

∂t
(t, Xt)dt +

∂F

∂x
(t, Xt) ◦ dXt (142)

for any F ∈ C1,3.
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The main problem is now to find necessary and sufficient conditions on µ̂
and σ̂ for the existence of an FDR. For this we need some basic terminology
from differential geometry.

A.2 Basic concepts in differential geometry

We recall the following concepts from infinite dimensional differential geometry.
We only give the global definitions, but there are also local versions (see [7])
which will use without comment.

Consider a real Hilbert space Ĥ. By an n-dimensional distribution we
mean a mapping F , which to each r̂ ∈ Ĥ associates an n-dimensional subspace
F (r̂) ⊆ Ĥ. A mapping (vector field) f : Ĥ → Ĥ, is said to lie in F if f(r̂) ∈ F (r̂)
for every r̂ ∈ Ĥ. A collection f1, . . . , fn of vector fields lying in F generates (or
spans) F if span {f1(r̂), . . . , fn(r̂)} = F (r̂) for every r̂ ∈ Ĥ, where span denotes
the linear hull over the real field. The distribution is smooth if, to every r̂ ∈ Ĥ,
there exist smooth vector fields f1, . . . , fn spanning F . A vector field is smooth
if it belongs to C∞. If F and G are distributions and G(r̂) ⊆ F (r̂) for all r̂ we
say that F contains G, and we write G ⊆ F . The dimension of a distribution
F is defined pointwise as dimF (r̂).

Let f and g be smooth vector fields on U . Their Lie bracket is the vector
field

[f, g](r̂) = f ′(r̂)g(r̂) − g′(r̂)f(r̂),

where f ′(r̂) denotes the Frechet derivative of f at r̂, and similarly for g′. We will
sometimes write f ′(r̂)[g(r̂)] instead of f ′(r̂)g(r̂) to emphasize that the Frechet
derivative is operating on g. A distribution F is called involutive if for all
smooth vector fields f and g lying in F on U , their lie bracket also lies in F , i.e.

[f, g](r̂) ∈ F (r̂) ∀r̂ ∈ Ĥ.

We are now ready to define the concept of a Lie algebra which will play a central
role in what follows.

Definition A.2 Let F be a smooth distribution on Ĥ. The Lie algebra gen-
erated by F , denoted by {F}LA or by L{F}, is defined as the minimal (under
inclusion) involutive distribution containing F .

If, for example, the distribution F is spanned by the vector fields f1, . . . , fn

then, to construct the Lie algebra {f1, . . . , fn}LA, you simply form all possible
brackets, and brackets of brackets, etc. of the fields f1, . . . , fn, and adjoin these
to the original distribution until the dimension of the distribution is no longer
increased.

When one tries to compute a concrete Lie algebra the following observations
are often very useful. Taken together they basically say that, when computing
a Lie algebra, you are allowed to perform Gaussian elimination.

Lemma A.1 Take the vector fields f1, . . . , fk as given. It then holds that the
Lie algebra {f1, . . . , fk}LA remains unchanged under the following operations.
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• The vector field fi may be replaced by αfi, where α is any smooth nonzero
scalar field.

• The vector field fi may be replaced by

fi +
∑
j 6=i

αjfj ,

where α1, . . . , αk are any smooth scalar fields.

Let F be a distribution and let ϕ : Ĥ → Ĥ be a diffeomorphism on Ĥ. Then
we can define a new distribution ϕ?F on Ĥ by

(ϕ?F )(ϕ(r̂)) = ϕ′(r̂)F (r̂).

For any smooth vector field f on Ĥ the field ϕ?f is defined analogously. It is
straightforward to verify that

ϕ?[f, g] = [ϕ?f, ϕ?g]. (143)

A.3 Existence of an FDR

We can now formulate the abstract Hilbert space results concerning the existence
of an FDR. There are two main results and the first one gives us he general
necessary and sufficient conditions for existence.

Theorem A.1 (Björk and Svensson) Consider the SDE in (138) and as-
sume that the dimension of the Lie algebra {µ̂, σ̂1, . . . , σ̂m}LA is constant near
the initial point r̂0 ∈ Ĥ. Then (138) possesses an FDR if and only if

dim {µ̂, σ̂1, . . . , σ̂m}LA < ∞

in a neighbourhood of r̂0

The second theorem gives us a parameterization of the forward rate curves
produced by the model. To state this theorem we need the following definition.

Definition A.3 Let f be a smooth vector field on Ĥ, and let r̂ be a fixed point
in H. Consider the ODE {

dr̂t

dt
= f(r̂t),

r̂0 = r̂.

We denote the solution r̂t as r̂t = eftr̂.

The second theorem now reads as follows.
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Theorem A.2 (Björk and Svensson) Assume that the Lie algebra {µ̂, σ̂}LA

is spanned by the smooth vector fields f̂1, . . . , f̂d. Then, for the initial point r0,
all forward rate curves produced by the model will belong to the manifold Ĝ ∈ Ĥ,
which can be parameterized as Ĝ = Im[Ĝ], where

Ĝ(z1, . . . , zd) = efdzd . . . ef1z1 r̂0,

and where the operator efizi is given in Definition A.3

The manifold Ĝ in the above theorem is obviously invariant under the forward
rate dynamics. It will be therefore be referred to as the invariant manifold
in the sequel.
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