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Abstract

This paper studies two-party electoral competition in a setting where no
policy is unbeatable. It is shown that if parties take turns in choosing plat-
forms and observe each other’s choices, altering one’s policy platform so as
to win is pointless since the other party never accepts an outcome where it
is sure to loose. If there is any cost to changing platform, the prediction is
that the game ends in the first period with the parties converging on what-
ever platform the incumbent chooses. If, however, there is a slight chance
of a small mistake, the incumbent does best in choosing a local equilibrium
platform. This suggests that local equilibrium policies can be the predicted
outcome even if the voting process is not myopic in any way.
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bles
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1 Introduction

When Anthony Downs in his classic book An economic theory of democracy (1957)

considered electoral competition he concluded that, in settings where no policy is

unbeatable, incumbent parties always lose elections. The reason for this is simple:

no matter what policy an incumbent advocates, there is always some other policy

which is majority preferred to it. If this policy is chosen by a challenger, he can be

sure to win the election. In Downs’ words:

The opposition need only [ . . .] wait for the government to commit itself

[ . . .]. Then it merely selects the policy that defeats whatever the govern-

ment has chosen, and - presto! - it is elected! 1

But what if the incumbent government is allowed to react to the policy an-

nouncement of the opposition? Why would they then stick to their loosing policy?

After all, whatever the challenger has chosen, there is, by definition, always some

other policy which defeats that choice. If the incumbent government were to move

to this point, it would again be in a winning position. There may, of course, be

costs associated with such a change, but it must surely be better to move than to

passively wait to be defeated?

This paper studies a pre-election game with precisely these features. Two parties,

an incumbent and a challenger, choose policy platforms sequentially. They observe

each others’ announcements and whenever one of them has made a choice, the other

can respond either by altering his position or by keeping to his initial choice. If

either party chooses to stop, the policy platforms last chosen will be the positions

held by the parties in the election.

This modified version of Downsian electoral competition is very similar to the

Rubinstein-Ståhl bargaining game, with the important difference that the possible

outcomes are indivisible. Parties can either be positioned so as to represent a winning

policy, a loosing policy, or one where both parties have equal probability of winning

the election. This leads to the game having many subgame perfect equilibrium

outcomes. However, after iterated elimination of weakly dominated actions, the

1Downs (1957), p.62. The underlying problem of voting in a setting without an unbeatable
policy was first studied by Condorcet (1785) and later “rediscovered” and formalized by Black
(1948) and Arrow (1951), which led Downs to call this situation an “Arrow-problem”.
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game ends after the first round with both parties advocating the platform initially

chosen by the incumbent and with both parties having an equal chance of winning

the election.

In terms of predicting an equilibrium policy, this suggests inertia. Any policy

which has been picked by the incumbent government, for whatever reason, is likely

to remain in place after the election. As such, it gives an answer to Gordon Tullock’s

(1981) question about why there seems to be such a contrast between the theoret-

ically predicted policy cycling and the observed stability in actual politics.2 The

reason suggested here is simply that “entering a cycle” is costly but never increases

ones chances of winning. In the absence of a Condorcet winner no matter which pol-

icy a party chooses, his opponent always has the same responses available: play so

as to win, so as to loose, or so as to having an equal chance of winning the election.

If no party accepts loosing, and continued play is costly, immediate convergence is

to be preferred.

However, the above reasoning does not single out any particular policy as being

more likely then the next. The incumbent can choose any initial policy, the opponent

still does best in choosing the same policy at once. This naturally raises the question:

is there a best initial choice for the incumbent and, if so, what characterizes such a

policy?

What is argued in this paper is that when taking the possibility of mistakes

into account, a local equilibrium policy turns out to be the best initial choice for

the incumbent. This choice is best since it maximizes the likelihood of winning

the election if the opponent makes a mistake. This result relies on the following

interpretation of what it means to make a mistake in this kind of spatial game: If a

party is to choose a platform represented by a point on the real line, a tremble will

lead the party to choose a point close (in terms of distance) to the one aimed for.

To be very explicit, if a party attempts to pick a particular point between 0 and 1

2The large literature concerned with the question of stability inspite of the Condorcet paradox
is often grouped into three categories: probabilistic voting models, structure induced equilibrium
models, and agenda-setter models. See Persson and Tabellini (2000), pp 32-40 for an overview.
The rationale for stability suggested here is quite different from these.
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as their platform, say the point 0.33, a tremble will lead them to accidentally choose

0.32 or 0.34 (or generally 0.33±ε). The idea is clearly related to refinements such
as Selten’s (1975) perfect equilibrium and Myerson’s (1978) proper equilibrium, but

it is not the same. The spatial tremble suggested here implies that the likelihood

of the mistake is related to the distance from the point aimed for, and not to the

consequences when making the mistake, even though these are of course taken into

account when deciding on a strategy.3 The intuition for this spatial interpretation

of a tremble is that if the points on the line corresponds to actual policies, like a

tax rate in many applications, it is somewhat difficult to see how an actual mistake,

when trying to pick 0.33, could result in accidentally picking, say 0.58.4 In contrast,

mistakes leading to 0.33±ε are relatively easy to envision.
That local equilibria emerge as the predicted outcome is interesting for at least

two reasons. Firstly, a local equilibrium exists under very general conditions when

the alternative set is one dimensional, as shown by Kramer and Klevorick (1974).5

Secondly, there are numerous examples of one dimensional political-economic prob-

lems where the existence of a global equilibrium can not be guaranteed in general.6

These have typically been dealt with by restricting the problem to cases where a

global equilibrium exists, (an exception is a recent paper by Crémer and Palfrey

(2002)). The main reason for this reluctance towards the local equilibrium concept

is that it has been considered unsatisfactory since it “required the voting process

to be myopic”. To quote Atkinson and Stiglitz (1980): “whether it provides a per-

suasive resolution to the “majority-voting paradox” depends on the extent to which

choices are limited to small perturbations of the existing situation”.7 This paper

3If, for example, a first best strategy prescribes choosing 0.33, while the second best choice is
0.55 and the third best 0.29 in a game without mistakes, a proper equilibrium refinement would
place the most weight on the second best choice and less on the third best. In contrast 0.29 is
more likely with a spatial tremble since it is closer. (Noting this difference may also be of some
general interest).

4It is important to note that what is considered here is the possibility of a mistake, not uncer-
tainty. The model developed is one of perfect information.

5As is well known, if the alternative set is multidimensional local equilibria exist only under
very extreame assumptions, as shown by Plott (1967).

6A classical example of such problems are those dealing with the public provision of private
goods, as noted by Musgarave (1956), Barzel (1973) and Stiglitz (1974), and more recently studied
in e.g. Epple and Romano (1996a), (1996b), and Fernandez and Rogerson (1995).

7Atkinson and Stiglitz (1980), p. 307.
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shows that a local equilibrium is the predicted outcome in a reasonable extensive

form game without any such myopic restrictions.

Wuffle et al. (1989) study a situation very similar to the one considered in

this paper, namely the outcome of a two-candidate sequential competition in an

n-dimensional majority rule spatial voting game without a core. Their claim is

that in the absence of a Condorcet winning policy, an incumbent will locate at the

“Finagle point”. This position has the property that every point in the space is

defeated by some point very close to the Finagle point. This implies that no matter

what a challenger suggests, the incumbent does not have to change his policy by

much to counter the challenge. The main reason for advocating such a point lies

in the assumption that altering a policy is costly, and that this cost increases with

the spatial distance moved. Wuffle et al. do not, however, explicitly model the

game, leading to that some problems, such as motivating who will be the “last

mover”, remains.8 In contrast, this paper explicitly studies a formally specified pre-

election game. The fact that changing platforms is costly is modeled in the simplest

possible way, namely that both candidates have a cost for each round of continued

campaigning. As will be shown, this results in different predictions.

Most of the literature which has modified and extended Rubinstein’s bargain-

ing game to a political setting has used it to study legislative bargaining situations

(such as Baron and Ferejohn (1989), Baron (1994) and Baron (1996)) with explicit

proposal, amendment and voting stages. Other studies that have taken a sequential

choice theoretic approach to electoral competition (following e.g. Kramer (1977))

have considered sequential elections. What is suggested here is much closer to Rubin-

stein’s original model and differs from legislative bargaining games in that it studies

electoral competition between two candidates. In contrast to models of sequential

elections, the sequential game considered here takes place before an election.

8They have examples where they argue that locating at the Finagle point may be advantageous
both when the incumbent moves last, as well as when he does not. In the latter case, the argument
relies on the attractiveness of being positioned at the Finagle point in subsequent elections, even
though losing the “current one”.
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2 The Game

Consider a situation where two parties, A andB, are to choose their policy platforms,

xA and xB, before an election. The set of alternatives is such that xi ∈ [0, 1]. The
underlying preferences of the electorate are such that every policy, x, has a relation

to every other policy, x0, such that x Â x0, (x is majority preferred to x0), or x0 Â x,

(x0 is majority preferred to x), or x ∼ x0 (an equal share of the population supports

the respective policies or equivalently, everyone is indifferent between x and x0). For

simplicity, I assume that only the same policy has this last property, i.e. x ∼ x0

only if x = x0. Furthermore, the situation is such that there is no unbeatable policy,

that is, for all x there exist x0 Â x, (i.e. there is no Condorcet winner). There is,

however, at least one local equilibrium policy, x∗, such that it is majority preferred

to any neighboring policy, with simplified notation, x∗ Â x∗± ε.9 The consequences

for the election outcome is obviously that if xA Â xB at the time of the election,

then A wins with certainty, if xA ≺ xB, B wins with certainty, and if xA = xB, both

face an equal chance of winning. Parties are assumed to only care about winning

the election, (as implied by the fact that they are Downsian candidates), not about

the margin by which they win or about the policy implemented.

Before the election, candidates can alter their platforms any number of times.10

Party A, the incumbent, makes a first choice, xA0 . Party B, the challenger can now

choose a competing platform, xB0 , which is such that either x
B
0 Â xA0 , or x

B
0 ≺ xA0 ,

or xB0 = xA0 . After observing this choice, party A can choose to alter his position or

“stop the game”. If A stops, the election is held with parties representing platforms

xA0 and xB0 respectively. If A moves, he picks a new platform xA1 which is observed

by B, who then has the option of stopping or continuing one more period, etcetera.

Continuing the game has a cost for both players, (which can be thought of as a cost

of continued campaigning), captured by the outcomes being discounted by δ ∈ (0, 1)
9More precisely, x∗ is a local equilibrium policy if there exist η > 0 such that for all x such that

|x− x∗| < η, x∗ is majority preferred to x.
10One may think of this as capturing the fact that “there is always some time left before the

election” and hence, no party can expect to have the last move. See e.g. Myerson (1991) for a
discussion on the interpretation of an infinite horizon in bargaining games.
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Figure 1: The pre-election game with alternating platform choices and no unbeatable

policy.

in each period, t ∈ {0, 1, 2, ...}.
The situation is obviously analogous to a bargaining game with alternating offers,

as in Rubinstein (1981). Figure I shows the structure of the game and the payoffs

from different outcomes.

However, unlike the traditional alternating offer game, the continuum of platform

choices does not correspond to a continuum of outcomes. After partyA has made the

initial choice, only three responses in terms of relevant strategic choices are available

for party B : either B chooses a platform which is majority preferred to A’s initial

policy, or a policy such that A’s initial policy is majority preferred to his choice, or

one where the population is split between the two parties. The situation is the same

whenever a player who is called upon to move chooses to continue the game. This

strategic simplification of the game is possible since the candidates only care about

winning or losing, not by how much, and not about which policy is implemented.
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2.1 The equilibrium outcome without mistakes

Unlike Rubinstein’s game, which has a unique subgame perfect equilibrium, this

game has many subgame perfect equilibria, due to the indivisibility of outcomes.

There is, however, only one type of play that survives an iterated elimination of

weakly dominated actions. This gives subgame perfect equilibria which predict that

the game ends in the first period with both parties converging on the platform

initially chosen by party A, with both parties having an expected gain of 1
2
.

Proposition 1 In the only subgame perfect equilibrium that survive the elimi-

nation of weakly dominated strategies, a player i, who has the choice of stopping or

continuing the game, stops whenever xi º xj and continues otherwise.

Proof. First, note that the game is stationary after the initial choices, that is,

the subgame starting in period 1, (3, 5, etc.) is identical to that starting in 2 (4,

6, etc.), with the players’ roles reversed. This means that party A faces the same

choices in every odd numbered period, while party B faces the same situation in

every even numbered period. Given this, the following is true for any subgame:

i) If given the option to stop when facing a certain win, this is always optimal

since no continuation of the game can give a higher payoff (in any period t, the

value of winning with certainty is δt, while the highest possible continuation value

is δt+1 < δt).

ii) If given the option to stop when facing a certain loss, this is at least weakly

dominated, since no continuation of the game can give a lower payoff than zero.

Hence, no strategy profile involving stopping at a certain loss survives an iterated

elimination of weakly dominated strategies.

iii) Finally, faced with a fifty percent chance of winning, stopping has an expected

value of δt/2 in any period t. All profiles involving continuing and accepting a loss in

the future are obviously worse since 0 < δt/2. The outcome 1
2
in a future period t+s

is also worse, since δt+s/2 < δt/2. So only a profile resulting in a certain future win

can be better than stopping at once (this would be the case whenever δt+s > δt/2).

However, no such profiles exist by ii), since the opponent never stops in t+ 1 when



9

facing a certain loss. Hence, it is always optimal to stop when facing a fifty percent

chance of winning.

This implies that a player i, at any point t, chooses to stop when xi º xj, while i

always continues if xi ≺ xj. Consequently, a player j who “responds” to the platform

chosen by i, takes the position xj = xi, which is “accepted” by player i.

Even if there is no majority-rule equilibrium, in a social-choice theoretic sense,

this modified version of Downsian electoral competition, with alternating platform

choices, predicts the following equilibrium outcome:

Proposition 2 The equilibrium outcome of the pre-election game, where candi-

dates take turns in choosing their policy platform, is that both candidates immediately

converge on the policy suggested by the incumbent. Both candidates have an equal

chance of winning the election.

Proof. Follows immediately from Proposition 1.

In terms of predicting an outcome, this suggests that policies are likely to remain

unchanged. Whatever policy is initially picked by the incumbent will also be the

outcome of the game. Player A can choose any policy, xA0 , in the initial round and

B will choose xB0 = xA0 , after which the game ends.
11

2.2 The equilibrium outcome with spatial trembles

Even though the above, for a very simple reason, predicts policy stability and that

parties have equal chances of winning elections, as oppose to cycling and incumbents

always loosing, the prediction that any policy can be the outcome is clearly unap-

pealing. Surprisingly, introducing a small probability that parties make mistakes in

their platform choices narrows down the number of equilibrium outcomes to parties

converging on a local-equilibrium policy.

What does it mean to “make a mistake” when choosing a platform? The sug-

gestion here is that when deciding on a location in a policy space, a mistake should
11One can also note that there is nothing in the proof which is specific to a one-dimensional

setting. The prediction of immediate convergence can easily be extended to an n− dimensional
policy space.
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have a spatial interpretation. In a setting where similar policies are also close in

distance, it seems natural that a small mistake should lead to accidentally choosing

a platform close to the one aimed for. In terms of the analogy often used when

explaining “trembling-hand perfect equilibria”, a mistake can literally be described

as the result of a hand trembling slightly when trying to point out a position on a

line (or in space). The suggested equilibrium is, hence, a “spatial trembling-hand

perfect equilibrium”. With this interpretation of trembles, it turns out that a local

equilibrium policy has the property of maximizing the likelihood of winning in case

the opponent trembles, leading to it being a best initial choice for the incumbent.

To simplify the analysis we assume that the incumbent does not make a mistake

in his initial choice, which is also reasonable in this setting. Being the incumbent

means having ample time to position oneself before any challenger appears. It is

also assumed that mistakes only take the form of accidentally choosing neighboring

points to the one aimed for.12

In terms of the above game A, being the incumbent, chooses the initial platform,

xA0 with certainty. However, when the challenger, B is to choose xB0 , he may by

mistake play xB0 ± ε, which happens with some positive probability p, (xB0 + ε with

probability p/2 and xB0 − ε with probability p/2). If A chooses to continue after

having observed B’s choice he no longer has the advantage of having had time to

position himself and may also tremble around his choice xA1 , and may by mistake

play xA1 ± ε, with probability p. Crucially, it is assumed that the probability of

mistakes is so small that it does not alter the optimal play given by Proposition 1,

that is when player i is called upon to move he stops whenever xi º xj and continues

otherwise. The assumption needed for this to be the case is that the expected value

of continuation is smaller than the expected value of immediate convergence, even

when one may make a mistake, i.e. EV (continue) < δt 1
2
(1− p) ∀t. This is certainly

true for some positive p as p→ 0.13

12This is also a simplyfying assumption. In general what is important is that it is more likely
that a mistake results in the choice of a point close in distance, rather than in the choice of a more
distant point. This, as well as the allowing for the possibility that the incumbent trembles, will be
discussed in the next section.
13Unlike the previous assumptions this is not a simplifying one but rather crusial. Without this
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Proposition 3: If there is a small positive probability that the challenger B

trembles in his initial choice of platform, then it is optimal for the incumbent A to

initially choose a local-equilibrium policy platform x∗. The global policy outcome will

be this local-equilibrium policy, and party A has a slightly better chance of winning

the election than party B.

Proof. First, note that the game is still a game of complete information and

that the optimal strategy given in Proposition 1 is valid, that is, whenever a player

i is to move or to stop, it is optimal to stop if xi º xj, while i always continues if

xi ≺ xj. As in the case above, the best continuation is always xit+1 = xjt .

Consider first any choice of initial policy, xA0 , which is not a local equilibrium,

(that is xA0 6= x∗). B’s best response is to choose the same policy xB0 = xA0 . If B

makes a mistake and instead chooses xB0 = xA0 ± ε with probability p, this will, with

probability p/2, lead to a situation where xB0 ≺ xA0 and A stops the game facing a

certain win, but it can also, with equal probability p/2, lead to a situation xB0 Â xA0 ,

where A continues the game. The expected value of choosing any policy xA0 6= x∗

is EV (xA0 6= x∗) = (1 − p)1
2
+ p

2
+ p

2
EV (continue) = 1

2
+ p

2
EV (continue), where

EV (continue) < 1 since the maximum possible continuation value is δ < 1.

If A instead chooses the local equilibrium policy, any tremble from B will yield

a situation where xB0 ≺ xA0 since, by the definition of a local equilibrium, it is such

that x∗ Â x∗±ε. This implies that the expected value for party A from choosing the

local equilibrium is strictly greater than choosing any other initial platform, since

EV (xA0 = x∗) = (1− p)1
2
+ p

2
+ p

2
= 1

2
+ p

2
> EV (xA0 6= x∗).

B’s best response is to choose xB0 = xA0 = x∗, which means that the game will

end after the initial choices since A’s optimal response is to stop if xB0 = xA0 = x∗

as well as if xB0 = xA0 ± ε = x∗ ± ε. This means that the game always ends with

the local equilibrium policy x∗ being implemented and A having a slightly higher

assumption the optimal play would be determined by a combination of the likelihood of mistakes
and the consequences of a mistake. Assume for example that a player would like to converge (this
has the highest payoff in the absence of mistakes) but faces a situation where, if he makes a mistake,
he looses with certainty. He may then prefer to play in a way which leads to a continuation of the
game if the probability of a mistake is large enough. This would change the whole premises of the
game.
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possibility of winning.

By the same logic as for propositions one and two, the prediction is still that the

candidates immediately converge to the same policy. However, having the advantage

of moving first, the incumbent chooses a locally “unbeatable” point and positions

himself so that any mistake from the challenger leads to a situation which is favorable

to the incumbent.

3 Discussion

The analysis in the previous section broadly suggest two things about two party

competition in a setting where no policy platform is unbeatable.

The first is that, even if the possibility of cycling over policies exist in terms of

the underlying preferences of the voters, whether “the cycle is played” by the par-

ties depends on the costs and consequences of such play. In particular, if changing

platforms is costly, without leading to an increased probability of winning a subse-

quent election, parties do best in not engaging in such costly cycling behavior. The

consequence of this is that the opposition does best in trying to mimic whatever

policy platform the incumbent party advocates. This would also suggest that an

incumbent party can move the policy anywhere if it does so well before the election,

the opposition still does best in copying their platform in the pre-election phase.

Second, if the incumbent can position himself at any policy before an election,

knowing that the opposition will try to copy his platform, he does best in locating at

a point which is a local equilibrium, since any mistakes on behalf of the opposition

will lead to the incumbent winning the election.

There are a number of ways in which the analysis could be extended without

changing these results.

First, the local equilibrium prediction does not hinge on the incumbent not

making mistakes. Even if there is a small possibility that the incumbent makes a

mistake when announcing his first choice, he still does best in aiming for a local
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equilibrium policy. To see this, consider a game-tree with both players trembling to

either side of the point they aim for with probability p
2
, and recall that each player

always tries to mimic the platform of the previous one. If the incumbent aims for

a point which is a local equilibrium there are five ways in which the game can still

end in the first period: Either both parties manage not to make a mistake in which

case the expected outcome is (1
2
,1
2
), or A misses the point he aimed for (to the right

or to the left) but B does not, also leading to the outcome (1
2
,1
2
), or A does not

miss but B misses (to the right or to the left), in which case both mistakes lead to

A winning since the initial choice was a local equilibrium. Now the difference if A

was to choose a point which is not a local equilibrium is, analogous to the proof of

Proposition 3, that if A manages not to make a mistake but B misses, only one of

these outcomes leads to A winning while the other leads to continued play, which

is obviously worse since no continuation is preferred to winning at once. (In both

cases there is, of course, also the possibility that both parties make mistakes in their

implementation. The outcome of such continuations are specific to each setting

and can not be compared in general, and are therefore assumed equal in the above

comparison. Even though very unlikely, parties could in principle keep missing what

they aim for, with the consequence that policy moves far from the initial point).

A second observation is that even if a player is allowed to revise a choice which

accidentally resulted in a mistake, this does not change the predictions about policy

outcomes, it only increases the probability of both parties ending up with the same

platform.

Third, with the simplifying assumption that trembles are restricted to points

close to the one aimed for, there is no difference between different local equilibrium

points, all are equally “resistant to trembles”. In particular, in a setting where there

is a local, as well as a global equilibrium policy, both would be equally attractive

initial choices. This would, however, not be the case if it is possible to tremble over

the whole policy space. In general, assuming that the probability of mistakes is such

that points close by are more likely than those further away, but all points can be
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chosen with positive probability. Then a global equilibrium platform - if one exist -

is preferable since no continuation can lead to its’ defeat while a local equilibrium

does not have this feature.

4 Conclusion

This paper has suggested a new way of pinning down the outcome of a classical

Downsian two-candidate competition without a Condorcet winner. In contrast to

“the continual defeat of incumbents” suggested by Downs (1957), and the “per-

petual change of platforms” in the absence of an unbeatable policy, the suggested

interpretation has been the following. Knowing that no party can ever find an un-

beatable position, the candidates may as well converge to the same platform at

once, since continually changing platforms (to be in a winning position) is costly

and the probability of winning can never exceed one half anyway. It has been shown

that such reasoning is indeed an equilibrium outcome in an “alternating-platform”

pre-election game.

While this result predicts direct convergence to the policy chosen by the incum-

bent, it says nothing about which policy will be chosen initially. The “refinement”

suggested here is that a local-equilibrium platform is stable in a specific sense. A

local equilibrium platform beats any neighboring policy and is therefore an opti-

mal initial choice for the incumbent party, whenever there is a small probability

that the challenger makes a (spatial) mistake when trying to mimic the incumbent’s

platform. The prediction is therefore that the outcome will be a local equilibrium

policy, even though the candidates are farsighted and can choose their platforms

without any restrictions. As such, this paper presents a defense of the local major-

ity rule equilibrium-concept, first suggested by Kramer and Klevorick (1974), and

shows that the assertion by Atkinson and Stiglitz (1980) that “whether it provides

a persuasive resolution to the “majority-voting paradox” depends on the extent to

which choices are limited to small perturbations of the existing situation” need not

be true.
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The motivation for many of the papers following Downs (1957) has been the

sharp contrast between the disequilibrium results in the models, and the relative

inertia in actual politics. As Tullock (1981) phrased it, “Why so much stability?”.

This paper predicts policy stability in that candidates immediately converge to the

same platform. The very absence of a Condorcet winning policy makes any attempt

from a candidate to win pointless, since any position can always be beaten. Entering

a “cycle” is costly but does not increase the chances of winning. The paper also

predicts a slight advantage for the incumbent, since he can choose to position himself

so as to win every time the challenger makes a mistake in his implementation. These

two predictions are consistent with two real-world observations, namely stability of

policy and the electoral advantage of incumbents.
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