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profile robust to strategic uncertainty if it is the limit, as uncertainty vanishes,
of some sequence of strategy profiles in each of which every player’s strategy
is optimal under under his or her uncertainty about the others. We apply this
definition to Bertrand games with a continuum of equilibrium prices and show
that our robustness criterion selects a unique Nash equilibrium price. This
selection agrees with recent experimental findings.
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1. Introduction
Price competition is usually modelled as a game with a continuum of prices available
to each competitor. If the good is homogeneous, payoff discontinuities naturally
arise. For instance, in canonical Bertrand competition, the slightest undercutting of
competitors’ lowest price results in a discrete upward jump in sales. As is well-known,
if the competing firms have the same constant average cost, then their common and
constant marginal cost is the unique Nash equilibrium market price. By contrast, if
marginal costs are strictly increasing, then there is a whole continuum of equilibrium
market prices (Dastidar, 1995). In both settings, even the slightest uncertainty about
competitors’ price choices might lead firms to deviate from any given equilibrium
price vector. It is then arguably reasonable to require equilibria to be robust to small
amounts of uncertainty about other players’ strategies.
In this note we formalize a notion of strategic uncertainty and propose a criterion

for robustness to such uncertainty. Our approach is roughly as follows. Given any
game with finitely many players in which each player’s strategy set is a continuum,
a player’s uncertainty about others’ strategy choices is represented by a probability
distribution anchored at those strategies and scaled with a parameter t ≥ 0. The
probability distributions are assumed to be atomless and have standard properties.
For each level of this perturbation parameter t, we define a t-equilibrium as a Nash
equilibrium of the accordingly perturbed game, in which each player strives to maxi-
mize her expected payoff under her strategic uncertainty. We call a strategy profile of
the original game robust to strategic uncertainty if there exists a collection of prob-
ability distributions, one for each player, such that some accompanying sequence of
t-equilibria converges to this profile, as the perturbation parameter t tends to zero.
We call the strategy profile strictly robust if this holds for all probability distributions
in the admitted class. The aim of this note is limited: we here only study in detail
the implications of these definitions for a particular class of games.
We apply this refinement to Bertrand competition.1 By way of a simple duopoly

example with constant and identical marginal costs, we first show that our refinement
admits the unique and weakly dominated Nash equilibrium. Nevertheless, when mar-
ginal costs are strictly increasing, our robustness criterion selects a unique strategy
profile out of the continuum of Nash equilibria. This prediction agrees with re-
cent findings in experimental studies of (discretized versions of) Dastidar’s (1995)
model, see Abbink and Brandts (2008) and Argenton and Müller (2009).2 Abbink

1Following Vives (1999, p.117), we take Bertrand competition to mean that (a) sellers simulta-
neously choose their prices and (b) each firm has to serve all its clients at the price it has chosen.

2Abbink and Brandts (2008) ran experiments with fixed groups of two, three, and four identical
firms. They find that duopolists are often able to collude on the joint profit-maximizing price.
However, the lowest price in the range of Nash equilibria which involves no loss in case of mis-
coordination (24 in their specification), a much smaller number than the collusive price, is also an
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and Brandts (2008) remark that “[that] price level (...) is not predicted by any
benchmark theory [they] are aware of” (p. 3). The present refinement provides a the-
oretical foundation for their finding. Heuristically, strategic uncertainty, as modelled
here, results in perturbed profit functions that are continuous, since the likelihood of
serving the entire market is continuous in one’s own price. The deviation incentives
are asymmetric, though. For high Nash equilibrium prices, a strategically uncertain
player has an incentive to cut her price, since she has a lot to lose if others’ prices
lie a bit below her price and little to gain if they lie a bit above it. Conversely, for
low Nash equilibrium prices, each player has an incentive to raise her price, since she
has a lot to loose if others’ prices lie a bit above her price and little to gain if they
lie a bit below. The only price that is robust to strategic uncertainty is the price at
which the monopoly profit is zero. This is also the maximal Nash equilibrium price
in the limit as the number of competitors tend to infinity. At that price, and no other
price, the incentives to move up and down for a strategically uncertain player are of
the same order of magnitude.
Our robustness criterion is closely related to Selten’s (1975) “substitute perfec-

tion”. Selten defined a Nash equilibrium in a finite game to have this property if
there exists a sequence of completely mixed strategy profiles, converging to the equi-
librium in question, such that each player’s equilibrium strategy is a best reply to
all but finitely many strategy profiles in the sequence. Substitute perfect equilibria
exist in all finite games, and, as Selten (1975) shows, they coincide with (trembling-
hand) perfect equilibria. However, in generic non-linear games with continuum strat-
egy spaces, no Nash equilibrium is literally substitute perfect, the reason being that
small perturbations of players’ beliefs induce small changes in their best replies (while
the discreteness in finite games allows best replies to remain unchanged under such
perturbations).
Simon and Stinchcombe (1995) extended Selten’s perfection criterion to games

with compact strategy sets and continuous payoff functions. By contrast, we here
focus on a class of games with discontinuous payoff functions. Binmore (1987) and
Carlsson (1991) study equilibrium selection in the Nash demand game (Nash, 1953),
which also admits a continuum of equilibria. Both authors assume that players “trem-
ble.” By contrast, players do not “tremble” in our model; they are only uncertain
about other players’ action. Carlsson and Ganslandt (1998) investigate “noisy equi-
librium selection” in symmetric coordination games and derive results that agree with
the experimental findings on minimal effort games in Van Huyck et al. (1990). While
Carlsson and Ganslandt’s (1998) study is tailored to the minimal effort game, we

attractor of play. With more than two firms in a market, it actually is the predominant market
price. This outcome is also observed in the complete information, symmetric treatment in Argenton
and Müller (2009).
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here make general assumptions concerning players’ beliefs, assumptions that permit
an operational definition of robustness to strategic uncertainty for a large class of
games. Our approach is related to that in Friedman and Mezzetti (2005), who in-
troduce a notion of “robust equilibria” in finite games, as the limit of sequences of
“random belief equilibria.” In a random belief equilibrium, all players’ beliefs are
random variables, and a player’s best-reply distribution, implied by her belief distri-
bution, is required to be consistent, in terms of statistical expectation, with others’
beliefs about that player’s action. By contrast, we analyze continuum-action games
and impose no such consistency requirement.
The application is here to Bertrand games in which firms are committed to serve

any demand addressed to them at the posted price; they cannot turn customers down
or ration them. As mentioned by Vives (1999), for certain utilities and auctions,
provision is legally mandated, and in other markets firms have a strong incentive to
serve all their clients, especially in industries in which customers have an on-going
relationship with suppliers (subscription, repeat purchases, etc.) or where the costs
of restricting output in real time are high. There are a number of papers focused on
price competition with convex costs. Dixon (1990) studies such competition when
firms are not obliged to serve all demand, but incur a cost when turning costumers
down. He shows that under such circumstances there may still exist a continuum
of pure-strategy Nash equilibria. Spulber (1995) assumes that firms are uncertain
about rivals’ costs and shows that there exists a unique symmetric Nash equilibrium
in pure strategies. As the number of firms grows, equilibrium pricing strategies tend
to average cost pricing. Chowdhury and Sengupta (2004) show that, in Bertrand
games with convex costs, there exists a unique coalition-proof Nash equilibrium (in
the sense of Bernheim, Peleg andWhinston 1987), which converges to the competitive
outcome under free entry. Our criterion selects another price, which, moreover, does
not depend on the number of firms.

2. Robustness to strategic uncertainty
Let G = (N,S, π) be an n-player normal-form game with player set N = {1, ..., n}, in
which the pure-strategy set of each player is the real line, Si = R, and thus S = Rn

is the set of pure-strategy profiles s = (s1, ..., sn), and π : S → Rn is the combined
payoff-function, with πi (s) being the payoff to player i when s is played.3

Let F be the class of cumulative probability distribution functions F : R→ [0, 1]
with everywhere positive and continuous density f = F 0 and with non-decreasing
hazard rate, that is, such that the hazard-rate function h : R→ R+, defined by

h(x) =
f (x)

1− F (x)
,

3See below for how this machinery can be adapted to restrictions on strategy sets.
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is non-decreasing.4 Examples of probability distributions with this property are the
normal, exponential and Gumbel distributions. Bagnoli and Bergstrom (2005) show
that a sufficient condition for this property is that f be log-concave, that is, that log f
be a (strictly) concave function.5

Definition 1. For any given t ≥ 0, a strategy profile s is a t-equilibrium of G if,
for each player i, the strategy si maximizes i’s expected payoff under the probabilistic
belief that all other players’ strategies are random variables of the form

s̃ij = sj + t · εij (1)

for some statistically independent “noise” terms εij ∼ Φij, where Φij ∈ F for all
j 6= i.

Remark 1. For t = 0, this definition coincides with that of Nash equilibrium.

Remark 2. For t > 0, the random variable s̃ij has the c.d.f. F t
ij ∈ F defined by

F t
ij (x) = Φij

µ
x− sj

t

¶
∀x ∈ R.

Note that we do not require that noise terms are symmetric or have expectation
zero, only that Φij has a non-decreasing hazard rate. In particular, in a t-equilibrium
players may believe that others have a systematic tendency to deviate upwards or
downwards.

Example 1. Let Φij be a normal distribution, N (μ, σ), with μ = σ = 1, and hence
E [s̃ij] = sj + t. Then the density f tij is skewed to the right, as shown in the diagram
below for sj = 10, and t = 0.3 (thick), t = 0.1 (dashed) and t = 0.05 (thin).

Let s̃−i denote the (n− 1)-vector of random variables (s̃ij)j 6=i. We note that a
t-equilibrium is a Nash equilibrium of a game with perturbed payoff functions:

Remark 3. Let t > 0 and Φij ∈ F for all i ∈ N and j 6= i. A strategy profile
s ∈ S is a t-equilibrium of G = (N,S, π), with εij ∼ Φij, if and only if it is a Nash

4For the present application, this condition is sufficient. However, in other applications the
methodology developed here may require, for asymmetric noise distributions, that a corresponding
condition be imposed on the “reversed hazard rate”, the density divided by the mass of the left tail.

5The log-concavity assumption is common in the economics literature and has applications in
mechanism design, game theory and labor economics, see Bagnoli and Bergstrom (2005).
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Figure 1: Player i’s probabilitic belief about sj

equilibrium of the game Gt = (N,S, πt), where

πti (s) = E [πi (si, s̃−i)]

=

Z
S1

..

Z
Si−1

Z
Si+1

..

Z
Sn

πi (si, s−i) dF
t
i1 (s1) ..dF

t
i,i−1 (si−1) dF

t
i,i+1 (si+1) ..dF

t
in (sn)

=
1

tn−1

Z
..

Z
..

Z "Y
j 6=i

φij

µ
xj − sj

t

¶
πi (si, x−i)

#
dx1..dxi−1dxi+1..dxn

We are now in a position to define robustness to strategic uncertainty.

Definition 2. A strategy profile s∗ in the game G is robust to strategic uncer-
tainty if there exists a collection of c.d.f:s {Φij ∈ F : ∀i ∈ N, j 6= i} and an accom-
panying sequence of t-equilibria, hstkik∈N with tk ↓ 0, such that stk → s∗ as k → +∞.
The strategy profile s∗ is strictly robust to strategic uncertainty if this holds for all
collections of c.d.f:s {Φij ∈ F : ∀i ∈ N, j 6= i}.

Remark 4. This definition can be adapted as follows to games in which the strategy
set of each player j is an interval Sj = [0, bj] for some bj > 0. For any Φij ∈ F , let

F t
ij (x) =

Φij

¡x−sj
t

¢
−Φij

¡
−sj

t

¢
Φij

³
bj−sj

t

´
−Φij

¡
−sj

t

¢
This defines a c.d.f. for s̃ij with support [0, bj], such that, for any sj, x ∈ [0, bj]:

lim
t→0

F t
ij (x) =

½
0 if x < sj
1 if x ≥ sj
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Taking expectations with respect to such c.d.f:s F t
ij, one obtains a perturbed game

with payoff functions

πti (s) = E [πi (si, s̃−i)]

=
1

tn−1

Z
...

Z
...

Z "Y
j 6=i

φtij

µ
xj − sj

t

¶
πi (si, x−i)

#
dx1...dxi−1dxi+1...dxn

where

φtij

µ
xj − sj

t

¶
=

φij
¡x−sj

t

¢
Φij

³
bj−sj

t

´
−Φij

¡
−sj

t

¢ . (2)

We note that for any interior strategy profile, s ∈ ×i∈N (0, bi), our robustness criterion
is the same, whether or not the noise terms are fitted to the strategy sets in this way:
for any sj ∈ (0, bj), the denominator in (2) converges to 1 and its derivative converges
to zero. If instead Si = R+ for all players i, then all properties are retained by setting

F t
ij (x) =

Φij

¡x−sj
t

¢
−Φij

¡
−sj

t

¢
1− Φij

¡
−sj

t

¢ . (3)

As we show in the subsequent sections, this definition of robustness selects a
unique Nash equilibrium out of a continuum of equilibria in a class of price competi-
tion games. Before embarking on that analysis, let us briefly consider the canonical
Bertrand model of pure price competition.

Example 2. Consider two identical firms, each with constant unit cost c > 0, in a
simultaneous-move pricing game à la Bertrand in a market for a homogeneous good.
Let the demand function be linear, D (p) = a−p, for all p ∈ [0, a] with a > c.6 Then,
the monopoly profit function, Π (p) = (a−p)(p− c), is strictly concave with a unique
maximum at pm = (a+ c) /2 and Π (pm) > 0. By contrast, the unique duopoly Nash
equilibrium, p1 = p2 = c, results in zero profits. This Nash equilibrium is weakly
dominated. Nevertheless, it is robust to strategic uncertainty. For sufficiently small
degrees of strategic uncertainty, both firms will set their prices a little bit above
marginal cost, and less so, the less uncertain they are. To see this, suppose that
εij ∼ Φ ∈ F .7 For each t > 0 and all p1, p2 ∈ [0, a],

πti (pi, pj) =

"
1−

Φ
¡pi−pj

t

¢
−Φ

¡
−pj

t

¢
1− Φ

¡
−pj

t

¢ #
·Π (pi) i = 1, 2, j 6= i.

6To keep the intuition clear, we take a simple functional form but the argument extends to general
demand curves.

7We focus on symmetric error distributions in this example only for expositional convenience.
The Nash equilibrium is robust to strategic uncertainty under asymmetric distributions as well.
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This can be rewritten as

πti (pi, pj) = [1−Φ (−pj/t)]−1 ·
∙
1−Φ

µ
pi − pj

t

¶¸
·Π (pi) i = 1, 2, j 6= i,

where the first factor is positive and independent of pi. A necessary first-order
condition for symmetric t-equilibrium8 is thus that

t · Π
0 (pi)

Π (pi)
=

φ (0)

[1−Φ (0)]
i = 1, 2, j 6= i. (4)

The RHS of (4) is a positive constant. Consequently, in the perturbed game, it is
never optimal to choose pi ≤ c or pi ≥ pm. Hence, without loss of generality, we
restrict attention to pi ∈ (c, pm). On this interval, the LHS is a continuous and
strictly decreasing function that runs from plus infinity to zero. Hence, there exists
a unique symmetric t-equilibrium price, pt, for every t > 0. Moreover, as t→ 0, the
denominator of the LHS has to tend to zero for (4) to hold. Consequently, pt ↓ c.
The diagram below shows how the t-equilibrium price pt depends on t, when Φ is the
standard normal distribution, a = 1 and c = 0.2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

0.2

0.3

0.4

t

p

Figure 2: The t−equilibrium price as a function of t in the standard Bertrand game.

3. Price competition with convex costs
There are n ≥ 2 firms i ∈ N = {1, 2, ..., n} in a market for a homogeneous good.
Aggregate demand D : R+ −→ R+ is twice differentiable and such that D(0) =
qmax ∈ R and D(pmax) = 0 for some pmax, qmax > 0.9 Moreover, we assume that

8It is easily verified that there does not exist any asymmetric t-equilibrium.
9In this section, we follow closely Dastidar (1995).
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D0(p) < 0 for all p ∈ (0, pmax). All firms i simultaneously set their prices pi ∈ R+.
Let p = (p1, p2, ..., pn) be the resulting strategy profile (or price vector). The minimal
price, p0 := min {p1, p2, ..., pn}, will be called the (going) market price. Let k be the
number of firms that quote the going market price, k := | {i : pi = p0} |. Each firm i
faces the demand

Di(p) :=

½
D(p0)/k if pi = p0
0 otherwise

All firms have the same cost function, C : R+ −→ R+, which is twice differentiable
with C(0) = 0 and C 0, C 00 > 0. Each firm is required to serve all demand addressed
to it at its posted price. The profit to each firm i is thus

πi(p) =

½
p0D(p0)/k − C [D(p0)/k] if pi = p0
0 otherwise

(5)

This defines a simultaneous-move n-player game G in which each player i has
pure-strategy set R+ and payoff function πi : Rn

+ → R, defined in equation (5). A
strategy profile p will be called symmetric if p1 = ... = pn, and we will call a price
p ∈ R+ a symmetric Nash equilibrium price if p = (p, p, ..., p) is a Nash equilibrium
of G. For each positive integer k ≤ n and non-negative price p, let

vk (p) = pD(p)/k − C [D(p)/k]

This defines a finite collection of twice differentiable functions, hvkik∈{1,2,..,n}, where
vk (p) is the profit to each of k firms if they all quote the same price p and all other
firms post higher prices (so that p is the going market price). In particular, v1 defines
the profit to a monopolist as a function of its price p.
We impose one more condition on C andD, namely, that the associated monopoly

profit function, v1, is strictly concave. More exactly, we assume that v001 < 0 and
v01 (p

mon) = 0 for some price pmon ∈ (0, pmax). Since the cost function is strictly con-
vex by assumption, this concavity assumption on v1 effectively requires the demand
function to be “not too convex”.10 We have v1(pmon) ≥ 0. By convexity of the cost
function, there exists prices p ∈ (0, pmax) at which all n firms, when quoting the same
price p, make positive profits, vn(p) > 0.
GameG has a continuum of symmetric Nash equilibria.11 For any number of firms,

n ≥ 2, let p̌n ∈ (0, pmax) be the price p at which vn(p) = 0 and let p̂n ∈ (0, pmax)
be the price p at which vn(p) = v1(p). Dastidar (1995, Lemmas 1, 5 and 6) shows
existence and uniqueness of p̌n and p̂n and that p̌n < p̂n. As also shown in Dastidar

10This is a more stringent assumption than the one made in Dastidar (1995), who instead assumes
that there exists a unique monopoly price.
11Dastidar (1995) and Weibull (2006) have shown existence and multiplicity of Nash equilibria

under weaker conditions.
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(1995, Proposition 1), all prices in the interval PNE
n = [p̌n, p̂n] are symmetric Nash

equilibrium prices in the game G, and no price outside this interval is a symmetric
Nash equilibrium price.
As shown in Dastidar (1995, Lemmas 4 and 6), there exists a unique price p̄

at which a monopolist makes zero profit, v1 (p̄) = 0, and, moreover, p̄ ∈ (p̌n, p̂n).
Dastidar (1995, Lemma 7) also shows that both p̌n and p̂n are strictly decreasing
in n. In the present setting, it is easily verified that p̌n ↓ 0 and p̂n ↓ p̄, and hence
PNE
n → (0, p̄], as n→∞.

Example 3. Consider a duopoly with identical firms with quadratic cost functions,
C (q) = cq2, where c = 0.2, and linear aggregate demand: D (p) = max {0, 1− p}.
The diagram below shows the graphs of v1 (dashed curve) and v2 (solid curve). The
associated set, PNE

2 , is the interval [1/11, 3/13], indicated by the two solid vertical
lines, and p̄ = 1/6 is indicated by the dashed vertical line.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.1

0.0

0.1

0.2

0.3

p

v1, v2

Figure 3: Monopoly (dashed) and duopoly (solid) profits, as functions of a common
price p.

We make two further observations. First, that p̂n cannot exceed the monopoly
price, and second, that the pricing game G admits no asymmetric Nash equilibrium.

Proposition 1. p̂n ≤ pmon for all n > 1.

Proof : Dastidar (1995; Lemma 3) shows that, if vn(p) ≥ v1(p) then v1(p) >
v1(p − α), ∀α > 0 for p − α ∈ [0, p). So, if p is a Nash equilibrium, then the left-
derivative of v1 at p must be positive. The concavity of v1 implies that p̂n ≤ pmon.
End of proof.
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Proposition 2. Every Nash equilibrium in G is symmetric.

Proof : Let (p1, ..., pn) be a Nash equilibrium. Suppose, first, that pi < minj 6=i pj
for some i. If pi < p̂n, then firm i could increase its profit by unilaterally increasing
its price. Hence, pi ≥ p̂n. If pi ≤ pmon, then any firm j 6= i could increase its
profit by unilaterally decreasing its price to pi and earn v2(pi) > 0 instead of zero. If
pi > pmon then firm i can increase its profit by a unilateral deviation to pmon. Hence,
pi ≥ minj 6=i pj for all i. Suppose, secondly, that pi = minj 6=i pj and that pk > pi for
some k. Either v|j∈N :pj=pi|(pi) > 0 or v|j∈N :pj=pi|(pi) = 0. (If v|j∈N :pj=pi|(pi) < 0, then
i can profitably deviate to pmax and earn zero profit.) In any case, k can profitably
deviate to pi and make a positive profit since by strict convexity of C, if vl(p) ≥ 0,
then vl+1(p) > 0. Hence, pi = pj for all i, j ∈ N .End of proof.

4. Robust price equilibrium

We proceed to apply the robustness definition from Section 2 to the pricing game
described in Section 3. Let t > 0 and suppose that a firm i holds a probabilistic belief
of form (1) about other firms’ prices. For any price pi that firm i might contemplate
to set, its subjective probability that any other firm will choose exactly the same
price is zero. Hence, with probability one, its own price will either lie above the going
market price or it will be the going market price and all other firms’ prices will be
higher, so i will then be a monopolist at its price pi. From equation (3), each firm i’s
payoff function in the perturbed game Gt = (N,S, πt) is, for any t > 0, defined by

πti (p) = v1 (pi) ·
ÃY

j 6=i

∙
1−Φij

µ
−pj
t

¶¸−1!
·
ÃY

j 6=i

∙
1−Φij

µ
pi − pj

t

¶¸!
(6)

The second factor being positive and independent of pi, a price profile p is a Nash
equilibrium of Gt if and only if

pi ∈ arg max
p∈[p̄,pmon]

uti (p,p−i) ∀i, (7)

where

uti (p) = v1 (pi) ·
Y
j 6=i

∙
1−Φij

µ
pi − pj

t

¶¸
and the restriction p ∈ [p̄, pmon] is non-binding, since v1 (p) < 0 for all p < p̄, v1 (p) > 0
for all p ∈ (p̄, pmon), and v01 (p) < 0 for all p > pmon. For any t > 0, let Ḡt be the
normal-form game (N, [p̄, pmon]n , ut). We have established

Lemma 1. For any t > 0, a price profile p is a t-equilibrium in the pricing game G
if and only if it is a Nash equilibrium of the game Ḡt.
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Proposition 3. Let t > 0 and assume that {Φij : ∀i ∈ N, j 6= i} ⊂ F . Then Ḡt has
at least one Nash equilibrium. Moreover, any such Nash equilibrium pt is interior.

Proof: The strategy sets in Ḡt are compact and all payoff functions are con-
tinuous. Existence of Nash equilibrium follows if, moreover, each player’s payoff is
quasi-concave in the player’s own strategy. To see whether this is the case, differen-
tiate i’s payoff with respect to pi:

∂uti (p)

∂pi
=
Y
j 6=i

∙
1−Φij

µ
pi − pj

t

¶¸
·
"
v01 (pi)−

v1 (pi)

t

X
j 6=i

hij

µ
pi − pj

t

¶#
where hij is the hazard-rate function of Φij. This is a continuous function of pi. The
expression in the first square bracket is positive and decreasing. Moreover, v01 and
v1 are both positive on (p̄, pmon), with v01 decreasing from a positive value towards
zero, and v1 increasing from zero to a positive value (by the assumed concavity of
v1). Since hazard-rates are non-decreasing by assumption, each term in the sum is
non-decreasing in pi. Hence, the expression in the second square bracket is decreasing
from a positive to a negative value. Hence, ∂uti/∂pi is decreasing in pi, so u

t
i is concave

in pi on [p̄, pmon], and thus also quasi-concave. This establishes existence. Clearly, no
price can lie on the boundary of the strategy set in Ḡt, since ∂uti/∂pi is positive at
its left boundary and negative at its right boundary. End of proof.

Theorem 1. The Nash equilibrium (p̄, ..., p̄) is strictly robust to strategic uncer-
tainty. No other strategy profile of G is robust to strategic uncertainty.

Proof: Let {Φij : ∀i ∈ N, j 6= i} ⊂ F . Consider any sequence htki∞k=1 → 0, where
each tk > 0. For each k ∈ N , let pk be a Nash equilibrium of Ḡtk . Since all games
Ḡtk have the same strategy space, [p̄, pmon]n, and this is non-empty and compact, the
sequence hptki∞k=1 contains a convergent subsequence with limit in [p̄, pmon]n, accord-
ing to the Bolzano-Weierstrass Theorem. Hence, without loss of generality we may
assume that limk→∞ pk = p∗ ∈ [p̄, pmon]n.
First, we prove that p∗i = p∗j for all i, j ∈ N . For this purpose, note that p̄ < pki <

pmon for all i and k, and, moreover (from the proof of Proposition 3),

tkv
0
1

¡
pki
¢
= v1

¡
pki
¢X

j 6=i
hij

Ã
pki − pkj

tk

!
∀i, k (8)

where hij is the hazard-rate function of Φij. Consider a firm i ∈ N . Suppose that
p∗j < p∗i for some j 6= i, and let ε = p∗i − p∗j > 0. Then, there is a K such that
pki − pkj > ε/2 for all k > K. The hazard rate being non-decreasing, we thus have

hij

Ã
pki − pkj

tk

!
≥ hij

µ
ε

2tk

¶
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for that j 6= i and all k > K. Let δ = hij [ε/ (2tK)] > 0. Then

hij

Ã
pki − pkj

tk

!
≥ δ

for that j 6= i and all k > K, and hence, since all hazard rates are positive:

tkv
0
1

¡
pki
¢
> δ · v1

¡
pki
¢

for all k > K. However, tkv01
¡
pki
¢
→ 0 and v1

¡
pki
¢
→ v1 (p

∗
i ) as k → ∞, since v1

is continuous, so v1 (p
∗
i ) = 0. Hence, p∗i = p̄. But this contradicts the hypothesis

p∗i > p∗j ∈ [p̄, pmon]. Hence, p∗j ≥ p∗i . Since holds for all i and j 6= i, we conclude that
p∗j = p∗i for all i, j ∈ N .
Secondly, we prove p∗i = p̄ for all i ∈ N . Since v1

¡
pki
¢
> 0 on (p̄, pmon) and all

hazard rates are positive, by (8),

v1
¡
pki
¢
· hij

Ã
pki − pkj

tk

!
→ 0 ∀i, j 6= i

as k → +∞. Suppose that p∗i > p̄. Then v1 (p
∗
i ) > 0 and thus

hij

Ã
pki − pkj

tk

!
→ 0 ∀j 6= i

implying that pki < pkj for all k sufficiently large. But, by the same token: since
p∗j = p∗i , for all j 6= i, we also have p∗j > p̄ and v1

¡
p∗j
¢
> 0 and thus

hji

Ã
pkj − pki

tk

!
→ 0

implying that pkj < pki for all k sufficiently large. Both strict inequalities cannot
hold. Hence, p∗i = p̄ for all i ∈ N . In sum: the only strategy profile that is robust
to strategic uncertainty is (p̄, ..., p̄). The strict robustness claim follows immediately
from the fact that the collection {Φij : ∀i ∈ N, j 6= i} ⊂ F above was arbitrary. End
of proof.

Example 4. Consider again a duopoly with identical firms, with quadratic cost
function, C (q) = 0.2q2, and linear aggregate demand: D (p) = max{0, 1 − p}.
Suppose that both firms’ uncertainty takes the form of normally distributed noise,



Robustness to strategic uncertainty in price competition 14

ε1, ε2 ∼ N (0, 1). We then have p̄ = 1/6 ≈ 0.1667. The necessary first-order condition
for interior t-equilibrium consists of the equations

tv01 (p1) = v1 (p1)h

µ
p1 − p2

t

¶
and

tv01 (p2) = v1 (p2)h

µ
p2 − p1

t

¶
.

The diagram below shows these “best-reply curves” (solid and dashed, respectively)
and t = 0.1, with p̄ marked by thin straight lines.The next diagram illustrates the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1.0

p1

p2

Figure 4: The best-reply curves in the perturbed pricing game.

convergence of t-equilibria towards (p̄, p̄) = (1/6, 1/6). It displays the best-reply
curves of both players for t = 0.25 (solid curves), t = 0.1 (thin curves), and t = 0.05
(dashed curves). As t decreases, the intersection of the associated pair of curves
approaches (p̄, p̄), the intersection between the thin horizontal and vertical lines.

5. Conclusion
In this paper, we have investigated Bertrand games with convex costs. This is a class
of games with discontinuous payoff functions and with a whole continuum of Nash
equilibria Arguably, strategic uncertainty will be considerable, due to the richness of
the strategy spaces and the large number of equilibria We have introduced a general
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Figure 5: Convergence of t-equilibria towards (p̄, p̄)

notion of robustness to strategic uncertainty and shown that this notion is powerful
enough to reduce the equilibrium set to a singleton in these price-competition games.
Although we here focus on a particular class of games, we believe that our concept of
robustness to strategic uncertainty has a wide domain of application. Indeed, in the
Nash demand game (Nash, 1953), which also has a continuum of Nash equilibria, we
can show that, under symmetric strategic uncertainty, the Nash bargaining solution
is the unique equilibrium outcome that is robust to strategic uncertainty.
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