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Abstract

Game theory is usually diffi cult to test precisely in the field because predictions typically

depend sensitively on features that are not controlled or observed. We conduct one such

test using field data from the Swedish lowest unique positive integer (LUPI) game. In the

LUPI game, players pick positive integers and whoever chose the lowest unique number

wins a fixed prize. Theoretical equilibrium predictions are derived assuming Poisson-

distributed uncertainty about the number of players, and tested using both field and

laboratory data. The field and lab data show similar patterns. Despite various deviations

from equilibrium, there is a surprising degree of convergence toward equilibrium. Some

of the deviations from equilibrium can be rationalized by a cognitive hierarchy model.

jel classification: C72, C92, L83, C93.

keywords: Population uncertainty, Poisson game, guessing game, experimental meth-

ods, behavioral game theory, level-k, cognitive hierarchy.



1 Introduction

Game theory predictions are challenging to test with field data because those predictions

are usually sensitive to details about strategies, information and payoffs which are diffi cult

to observe in the field. As Robert Aumann pointed out: “In applications, when you want

to do something on the strategic level, you must have very precise rules...An auction is a

beautiful example of this, but it is very special. It rarely happens that you have rules like

that (cited in van Damme, 1998, p. 196).”

In this paper we exploit such a happening, using field data from a Swedish lottery

game. In this lottery, players simultaneously choose positive integers from 1 to K. The

winner is the player who chooses the lowest number that nobody else picked. We call

this the LUPI game, because the lowest unique positive integer wins.1 Because strategies

and payoffs are known, the field setting is unusually well-structured compared to other

strategic field data on contracting, pricing, entry, information disclosure, or auctions. The

price one pays for clear structure is that the game does not very closely resemble any other

familiar economic game. Gaining structure at the expense of generality is similar to the

tradeoff faced in using data from game shows and sports to understand general strategic

principles.

This paper analyzes LUPI theoretically and reports data from the Swedish field lottery

and from parallel lab experiments. The paper has several theoretical and empirical parts.

The parts have a coherent narrative flow because each part raises some new question which

is answered by the next part. The overarching question, which is central to all empirical

game theory, is this one: What strategic models best explain behavior in games?

The first specific question is Q1: What does an equilibrium model of behavior predict

in these games? To answer this question, we first note that subjects do not know exactly

how many other players are participating in the game and that the actual number of

1The Swedish company called the game Limbo, but we think LUPI is more mnemonic, and more apt
because in the typical game of limbo, two players who tie in how low they can slide underneath a bar do
not lose.
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players varies from day to day. We therefore approximate the equilibrium by applying the

theory of Poisson games.2 In Poisson games, the number of players is Poisson-distributed

(Myerson, 1998).3 Remarkably, assuming a variable number of players rather than a fixed

number makes computation of equilibrium simpler if the number of players is Poisson-

distributed.

The number of players in the Swedish LUPI game actually varies too much from day-

to-day to match the cross-day variance implicit in the Poisson assumption. However,

the Poisson-Nash equilibrium is (probably) the only computable equilibrium benchmark.

Field tests of theory always violate some of the assumptions of the theory, to some degree;

it is an empirical question whether the equilibrium benchmark fits reasonably well despite

resting on incorrect assumptions. (We revisit this important issue in the conclusion after

all the data are presented.)

After deriving the Poisson equilibrium in order to answer Q1, we compare the Poisson

equilibrium to the field data. In our view, the equilibrium is surprisingly close (given its

complexity and counterintuitive properties). However, there are clearly large deviations

from the equilibrium prediction and some behaviorally interesting fine-grained deviations.

These empirical results raises question Q2: Can non-equilibrium behavioral models explain

the deviations when the game is first played?

The simple LUPI structure allows us to provide tentative answers to Q2 by comparing

Poisson-Nash equilibrium predictions with predictions of a particular parametric model of

boundedly rational play: the level-k or cognitive hierarchy (CH) approach. CH predicts

too many low-number choices (compared to the Poisson-Nash), capturing some deviation

of the field data.

Because the LUPI game is simple, it is easy to go a step further and run a lab experi-

ment that matches many of the key features of the game played in the field. The lab data

2As Milton Friedman (1953) famously noted, theories with false assumptions could often predict well
(and, in economics, often do).

3This also distinguishes our paper from contemporaneous research on unique bid auctions by Eich-
berger and Vinogradov (2008), Gallice (2009), Raviv and Virag (2009), Rapoport, Otsubo, Kim and Stein
(2009) and Houba, van der Laan and Veldhuizen (2010) which all assume that the number of players is
fixed and commonly known.
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enable us to address one more question: Q3: How well does behavior in a lab experiment

designed to closely match features of a field environment parallel behavior in the field?

Q3 is important because of an ongoing debate about lab-field parallelism in economics,

rekindled with some skepticism by Levitt and List, 2007 (see Falk and Heckman, 2009

and Camerer, 2010 for replies). We conclude that the basic empirical features of the lab

and field behavior are comparable. This close match adds to a small amount of evidence

of how well experimental lab data can generalize to a particular field setting when the

experiment was specifically intended to do so.

The ability to track decisions by each player in the lab also enables us to answer some

minor questions that cannot be answered by field data. For example, it appears that

players tend to play recent winning numbers more, sociodemographic variables do not

correlate strongly with performance, and there are not strong identifiable differences in

skill across players (measured by winning frequency).

Before proceeding, we mention an important caveat. LUPI was not designed by the

lottery creators to be an exact model of a particular economic game. However, it combines

some strategic features of interesting naturally-occurring games. For example, in games

with congestion, a player’s payoffs are lower if others choose the same strategy. Examples

include choices of traffi c routes and research topics, or buyers and sellers choosing among

multiple markets. LUPI has the property of an extreme congestion game, in which having

even one other player choose the same number reduces one’s payoffto zero.4 Indeed, LUPI

is similar to a game in which being first matters (e.g., in a patent race), but if players

are tied for first they do not win. One close market analogue to LUPI is the lowest

unique bid auction (LUBA; see Eichberger and Vinogradov, 2008, Gallice, 2009, Raviv

and Virag, 2009 , Rapoport et al., 2009, and Houba et al., 2010). In these auctions,

an object is sold to the lowest bidder whose bid is unique (or in some versions, to the

highest unique bidder). LUPI is simpler than LUBA because winners do not have to pay

4Note, however, that LUPI is not a congestion game as defined by Rosenthal (1973) since the payoff
from choosing a particular number does not only depend on how many other players that picked that
number, but also on how many that picked lower numbers.
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the amount they bid, and there are no private valuations and beliefs about valuations of

others. However, LUPI contains the same essential strategic conflict: between wanting to

choose low numbers and wanting to choose unique numbers.

Finally, the scientific value of LUPI games is like the scientific value of data from game

shows and professional sports, such as “Deal or No Deal”(e.g. Andersen, Harrison, Lau

and Rutström, 2008 and Post, van den Assem, Baltussen and Thaler, 2008). Like the

LUPI lottery, game shows and sports are not designed to be replicas of typical economic

decisions. Nonetheless, game shows and sports are widely studied in economics because

they provide very clear field data about actual economic choices (often for high stakes),

and they have simple structures that can be analyzed theoretically. The same is true for

LUPI.

The next section provides a theoretical analysis of a simple form of the LUPI game,

the Poisson-Nash equilibrium. Section 3 reports the basic field data and compare them

to the Poisson-Nash approximate benchmark. It also introduces the cognitive hierarchy

behavior model and asks whether it can explain the field data. Section 4 describes the lab

replication. Section 5 concludes the paper. Supporting material is available in a separate

Online Appendix.

2 Theory

In the simplest form of LUPI, the number of players, N , has a known distribution, the

players choose integers from 1 to K simultaneously, and the lowest unique number wins.

The winner earns a payoff of 1, while all others earn 0.5

Wefirst analyze the game when players are assumed to be fully rational, best-responding,

and have equilibrium beliefs. We assume that the number of players N is a random vari-

5In this stylized case, we assume that if there is no lowest unique number then there is no winner.
This simplifies the analysis because it means that only the probability of being unique must be computed.
In the Swedish game, if there is no unique number then the players who picked the smallest and least-
frequently-chosen number share the top prize.
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able that has a Poisson distribution.6 The Poisson assumption proves to be easier to

work with than a fixed N , both theoretically and computationally. The actual variance

of N in the field data is much larger than in the Poisson distribution so the Poisson-Nash

equilibrium is only a computable approximation to the correct equilibrium. Whether it

is a good approximation will partly be answered by looking at how well the theory fits

the field data.7 In addition, we implement the Poisson distribution of N exactly in lab

experiments.

2.1 Properties of Poisson Games

In this section, we briefly summarize the theory of Poisson games developed by Myerson

(1998, 2000). The theory is then used in the next section to characterize the Poisson-Nash

equilibrium in the LUPI game.

Games with population uncertainty relax the assumption that the exact number of

players is common knowledge. In particular, in a Poisson game the number of players N

is a random variable that follows a Poisson distribution with mean n. We have

N ∼ Poisson(n) : N = k with probability
e−nnk

k!

and, in the case of a Bayesian game (or the cognitive hierarchy model developed below),

players’ types are independently determined according to the probability distribution

r = (r(t))t∈T on some type space T . Let a type profile be a vector of non-negative integers

listing the number of players of each type t in T , and let Z (T ) be the set of all such type

profiles in the game. Combining N and r can describe the population uncertainty with

the distribution y ∼ Q(y) where y ∈ Z (T ) and y(t) is the number of players of type

t ∈ T .
6Players did not know the number of total bets in both the field and lab versions of the LUPI game.

Although players in the field could get information about the current number of bets that had been made
so far during the day, players had to place their bets before the game closed for the day and therefore
could not know with certainty the total number of players that would participate in that day.

7For small N , we show in Online Appendix A that the equilibrium probabilities for fixed-N Nash and
Poisson-Nash equilibrium are practically indistinguishable (Figure A1).
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Players have a common finite action space C with at least two alternatives, which

generates an action profile Z(C) containing the number of players that choose each action.

Utility is a bounded function U : Z(C) × C × T → R, where U(x, b, t) is the payoff of a

player with type t, choosing action b, and facing an opponent action profile of x. Let x(c)

denote the number of other players playing action c ∈ C.

Myerson (1998) shows that the Poisson distribution has two important properties that

are relevant for Poisson games and simplify computations dramatically. The first is the

decomposition property, which in the case of Poisson games imply that the distribution of

type profiles for any y ∈ Z (T ) is given by

Q(y) =
∏
t∈T

e−nr(t)(nr(t))y(t)

y(t)!
.

Hence, Ỹ (t), the random number of players of type t ∈ T , is Poisson with mean

nr(t), and is independent of Ỹ (t′) for any other t′ ∈ T . Moreover, suppose each player

independently plays the mixed strategy σ, choosing action c ∈ C with probability σ(c|t)

given his type t. Then, by the decomposition property, the number of players of type

t that chooses action c, Y (c, t), is Poisson with mean nr(t)σ(c|t) and is independent of

Y (c′, t′) for any other c′, t′.

The second property of Poisson distributions is the aggregation property, which states

that any sum of independent Poisson random variables is Poisson distributed. This prop-

erty implies that the number of players (across all types) who choose action c, X̃(c), is

Poisson with mean
∑

t∈T nr(t)σ(c|t), independent of X̃(c′) for any other c′ ∈ C. We refer

to this property of Poisson games as the independent actions (IA) property.

Myerson (1998) also shows that the Poisson game has another useful property: envi-

ronmental equivalence (EE). Environmental equivalence means that conditional on being

in the game, a type t player would perceive the population uncertainty as an outsider

would, i.e., Q(y). If the strategy and type spaces are finite, Poisson games are the only

games with population uncertainty that satisfy both IA and EE (Myerson, 1998). EE is
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a surprising property.

Take a Poisson LUPI game with 27 players on average. In our lab implementation, a

large number of players are recruited and are told that the number of players who will be

active (i.e. play for real money) in each period varies. Consider a player who is told she

is active. On the one hand, she might then act as if she is playing against the number

of opponent players that is Poisson-distributed with a mean of 26 (since her active status

has lowered the mean of the number of remaining players). On the other hand, the fact

that she is active is a clue that the number of players in that period is large, not small.

If N is Poisson-distributed the two effects exactly cancel out so all active players in all

periods act as if they face a Poisson-distributed number of opponents. EE, combined with

IA, makes the analysis rather simple.

An equilibrium for the Poisson game is defined as a strategy function σ such that every

type assigns positive probability only to actions that maximize the expected utility for

players of this type; that is, for every action c ∈ C and every type t ∈ T ,

if σ(c|t) > 0 then U(c|t, σ) = max
b∈C

U(b|t, σ)

for the expected utility

U(b|s, σ) =
∑

x∈Z(C)

∏
c∈C

(
e−nτ(c)(nτ(c))x(c)

x(c)!

)
U(x, b, s)

where

τ(c) =
∑
t∈T

r(t)σ(c|t)

is the marginal probability that a random sampled player will choose action c under

σ. Note that this equilibrium is by definition symmetric; asymmetric equilibria where

players of the same type could play differently are not defined in games with population

uncertainty since ex ante we do not know the list of participating players.

Myerson (1998) proves existence of equilibrium under all games of population uncer-
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tainty with finite action and type spaces, which includes Poisson games.8 This existence

result provides the basis for the following characterization of the Poisson-Nash equilib-

rium.

2.2 Poisson Equilibrium for the LUPI Game

In the (symmetric) Poisson equilibrium, all players employ the same mixed strategy p =

(p1, p2, · · · , pK) where
∑K

i=1 pi = 1. Let the random variable X(k) be the number of

players who pick k in equilibrium. Then, Pr(X(k) = i) is the probability that the

number of players who pick k in equilibrium is exactly i. By environmental equivalence

(EE), Pr(X(k) = i) is also the probability that i opponents pick k. Hence, the expected

payoffs for choosing different numbers are:

π(1) = Pr(X(1) = 0) = e−np1

π(2) = Pr(X(1) 6= 1) · Pr(X(2) = 0) =
(
1− np1e

−np1
)
· e−np2

π(3) = Pr(X(1) 6= 1) · Pr(X(2) 6= 1) · Pr(X(3) = 0)

...

π(k) =

(
k−1∏
i=1

Pr(X(i) 6= 1)

)
· Pr(X(k) = 0)

=

(
k−1∏
i=1

[
1− npie−npi

])
· e−npk

for all k > 1. If both k and k+ 1 are chosen with positive probability in equilibrium, then

π(k) = π(k + 1). Rearranging this equilibrium condition implies

enpk+1 = enpk − npk. (1)

8For infinite types, Myerson (2000) proves existence of equilibrium for Poisson games alone.
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Alternatively, this condition can be written as

pk − pk+1 = − 1

n
ln(1− npke−npk). (2)

In addition to condition 1 (or 2), the probabilities must sum up to one and the expected

payoff from playing numbers not in the support of the equilibrium strategy cannot be

higher than the numbers played with positive probability.

The three equilibrium conditions allows us to characterize the equilibrium and show

that it is unique.

Proposition 1 There is a unique mixed equilibrium p = (p1, p2, · · · , pK) of the Poisson

LUPI game that satisfies the following properties:

1. Full support: pk > 0 for all k.

2. Decreasing probabilities: pk+1 < pk for all k.

3. Convexity/concavity: (pk+1−pk+2) > (pk−pk+1) for pk+1 > 1/n, and (pk+1−pk+2) <

(pk − pk+1) for 1/n > pk.

4. Convergence to uniform play with many players: for any fixed K, n → ∞ implies

pk+1 → pk.

5. Probability asymptotes to zero with more numbers to guess: for any fixed n, K →∞

implies pK → 0.

Proof. We first prove the five properties and then prove that the equilibrium is

unique.

1. We prove this property by induction. For k = 1, we must have p1 > 0. Otherwise,

deviating from the proposed equilibrium by choosing 1 would guarantee winning for

sure. Now suppose that there is some number k+1 that is not played in equilibrium,

but that k is played with positive probability. We show that π (k + 1) > π (k),
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implying that this cannot be an equilibrium. To see this, note that the expressions

for the expected payoffs allows us to write the ratio π (k + 1) /π (k) as

π (k + 1)

π (k)
=
Pr(X(k + 1) = 0) ·

∏k
i=1 Pr(X(i) 6= 1)

Pr(X(k) = 0) ·
∏k−1

i=1 Pr(X(i) 6= 1)

=
Pr(X(k + 1) = 0) · Pr(X(k) 6= 1)

Pr(X(k) = 0)
.

If k+ 1 is not used in equilibrium, Pr(X(k+ 1) = 0) = 1, implying that the ratio is

above one. This shows that all integers between 1 and K are played with positive

probability in equilibrium.

2. Rewrite condition (1) as

enpk+1 − enpk = −npk.

By the first property, both pk and pk+1 are positive, so that the right hand side is

negative. Since the exponential is an increasing function, we conclude that pk >

pk+1.

3. Condition (2) can be re-written as

pk − pk+1 = − 1

n
ln (1− f(npk)) (3)

where f(x) = xe−x, f ′ (x) = (1− x) e−x and x = npk. Hence, f ′(x) > 0 if x < 1,

and f ′(x) < 0 if x > 1. If pk+1 >
1
n
, by the second property, npk > npk+1 > 1. So,

f(npk+1) > f(npk). It follows that

(pk+1 − pk+2) = − 1

n
ln(1− f(npk+1)) > − 1

n
ln(1− f(npk)) = (pk − pk+1).

If pk < 1
n
, by the second property, npk+1 < npk < 1. So, f(npk+1) < f(npk). Thus,

(pk+1 − pk+2) = − 1

n
ln(1− f(npk+1)) < − 1

n
ln(1− f(npk)) = (pk − pk+1).
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4. Taking the limit of (2) as n→∞ implies that pk+1 = pk.

5. Since 1 =
∑K

k=1 pk > K · pK by the second property, we have pK < 1
K
→ 0 as

K →∞.

In order to show that the equilibrium p = (p1, p2, · · · , pK) is unique, suppose by con-

tradiction that there is another equilibrium p′ = (p′1, p
′
2, · · · , p′K). By the equilibrium

condition (1), p1 uniquely determines all probabilities p2, ..., pK , while p′1 uniquely deter-

mines p′2, ..., p
′
K . Without loss of generality, we assume p

′
1 > p1. Since in any equilibrium,

pk+1 is strictly increasing in pk by condition (1), it must be the case that all positive

probabilities in p′ are higher than in p. However, since p is an equilibrium,
∑K

k=1pk = 1.

This means that
∑K

k=1p
′
k > 1, contradicting the assumption that p′ is an equilibrium.

Q.E.D.

The intuition for the results in Proposition 1 are as follows. For the first property,

first note that if k is chosen, so is k + 1, since deviating from k to k + 1 would otherwise

be profitable. Nothing matters if there is a smaller number than k uniquely chosen by

an opponent, but if not, picking k wins only if nobody else chooses k, while picking

k + 1 wins if either nobody chooses k or if more than two opponents choose k. Together

with the fact that 1 has to be chosen guarantees full support. Secondly, lower numbers

should be chosen more often because the LUPI rule favors lower number. For example, if

everyone is choosing uniformly, you should pick 1. However, as more people participate

in the game, this advantage disappears which implies convergence to uniform (property

4).9 Thirdly, condition 2 shows that the difference between pk and pk+1 solely depends

on the function f(x) = xe−x where x = npk. Since f ′(x) > 0 if x < 1, and f ′(x) < 0 if

x > 1, the critical cutoff for concavity/convexity happens at pk = 1/n. Lastly, since pK is

the smallest among all probabilities, if pK does not converge to zero as K becomes large,

the probabilities will not sum up to one.
9For example, when K = 100 and n = 500 the mixture probabilities start at p1 = 0.0124 and end with

p97 = 0.0043, p98 = 0.0038, p99 = 0.0031, p100 = 0.0023; so the ratio of highest to lowest probabilities is
about six-to-one. When K = 100 and n = 5, 000, all mixture probabilities for numbers 1 to 100 are 0.01
(up to two-decimal precision).
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In the Swedish game the average number of players was n = 53, 783 and number choices

were positive integers up to K = 99, 999. As Figure 1 shows, the equilibrium involves

mixing with substantial probability between 1 and 5500, starting from p1 = 0.0002025.

The predicted probabilities drop off very sharply at around 5500. This is due to the

concavity/convexity switch around 1/n, which happens at T = 5513 (pT = 0.00001857);

the difference (pk − pk+1) increases as you move toward 1/n from either side. Figure

1 shows only the predicted probabilities for 1 to 10,000, since probabilities for numbers

above κ = 5518 are positive but minuscule. Note that n = 53, 783 < K = 99, 999 implies

that K/n > 1, and hence, the concavity/convexity switch (and the “sharp drop”) has to

occur at T < K.10

The central empirical question that will be answered later is how well actual behavior in

the field matches the equilibrium prediction in Figure 1. Keep in mind that the simplified

game analyzed in this section differs in some potentially important ways from the actual

Swedish game. Computing the equilibrium is complicated and its properties are not

particularly intuitive. It might therefore be surprising if the actual data matched the

equilibrium closely. Because there are 49 days of data, we can also see whether choices

move in the direction of the Poisson-Nash benchmark over time.

3 The Field LUPI Game

The field version of LUPI, called Limbo, was introduced by the government-owned Swedish

gambling monopoly Svenska Spel on the 29th of January 2007. This section describes its

essential elements; additional description is in Online Appendix C.

In Limbo, players chose an integer between 1 and 99,999. Each number bet costs 10

SEK (approximately 1 EURO). The game was played daily and the winning number was

presented on TV in the evening and on the Internet. The winner received 18 percent of the

10pT is close to 1/n by the concavity/convexity switch. So, T is positively related to n. Since pK
converges to zero for large K due to Property 5 of Proposition 1, T does not depend on K as long as K
is large (and “non-binding”).
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total sum of bets, with the prize guaranteed to be at least 100,000 SEK (approximately

10,000 EURO). If no number was unique the prize was shared evenly among those who

chose the smallest and least-frequently chosen number. There were also smaller second

and third prizes (1000 SEK and 20 SEK) for being close to the winning number.

During the first three to four weeks, it was only possible to play the game at physical

branches of Svenska Spel by filling out a form (Figure A11 in the Online Appendix). The

form allowed players to bet on up to six numbers11, to play the same numbers for up to 7

days in a row, or to let a computer choose random numbers for them (a “HuxFlux”option).

During the following weeks it was also possible to play online, see Online Appendix C for

a description of the online interface.

Daily data were downloaded for the first seven weeks, ending on the 18th of March

2007. The game was stopped on March 24th, one day after a newspaper article claimed

that some players had colluded in the game, but it is unclear whether collusion actually

occurred or how it could be detected.

Unfortunately, we have only gained access to aggregate daily frequencies, not to

individual-level data. We also do not know how many players used the randomization

HuxFlux option. However, because the operators told us how HuxFlux worked, we can

estimate that approximately 19 percent of players were randomizing in the first week.12

Note that the theoretical analysis of the LUPI game in the previous section differs

from the field LUPI game in three ways. First, the theory used a tie-breaking rule in

which nobody wins if there is no uniquely chosen number (to simplify expected payoff

calculations enormously). In the field game, however, players who tie by choosing the

smallest and least-frequently chosen number share the prize. This is a minor difference

because the probability that there is no unique number is very small and it never happened

during the 49 days for which we have data. A second, more important, difference is that

11The rule that players could only pick up to six numbers a day was enforced by the requirement that
players had to use a “gambler’s card” linked to their personal identification number when they played.
Colluding in LUPI can conceivably increase the probability of winning but would require a remarkable
degree of coordination across a large syndicate, and is also risky if others collude in a similar way.
12In the first week, the randomizer chose numbers from 1 to 15,000 with equal probability. The drop

in numbers just below and above 15,000 suggests the 19 percent figure.
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we assume that each player can only pick one number. In the field game, players are

allowed to bet on up to six numbers. This does play a role for the theoretical predictions,

since it allows players to coordinate one’s guesses to avoid choosing the same number more

than once (as could be the case when each bid is placed by a different player). Finally,

we do not take the second and third prizes present in the field version into account, but

this is unlikely to make a big difference given the strategic nature of the game.

Nevertheless, these three differences between the payoff structures of the game an-

alyzed theoretically, and the field game as it was played, are a motivation for running

laboratory experiments with single bets, no opportunity for direct collusion, and only a

first prize, which match the game analyzed theoretically more closely.

3.1 Descriptive Statistics

Table 1 reports summary statistics for the first 49 days of the game. Two additional

columns display the corresponding daily averages for the first and last weeks to see how

much learning takes place. The last column displays the corresponding statistics that

would result from play according to the Poisson equilibrium.

Overall, the average number of bets N was 53,783, but there was considerable varia-

tion over time. There is no apparent time trend in the number of participating players,

but there is less participation on Sundays and Mondays (see Figure A2 in the Online Ap-

pendix).13 The variation of the number of bets across days is therefore much higher than

what the Poisson distribution predicts (its standard deviation is 232). However, note that

larger variance in N means sometimes there are many fewer players (so chosen numbers

should be smaller) and sometimes there are many more players (so chosen numbers should

be larger). Fixing the mean of N and increasing the variance might therefore have little

overall impact on the equilibrium number distribution (and has little effect in the lab data

reported later).

13The Sunday-Monday average N (std. dev.) is 44, 886 (4001) and the Tuesday-Saturday average is
57, 341(5810). Dividing the sample in this way does reduce the variance in N by almost half. However,
the summary statistics in the two groups are very close together (the means are 2792 and 2941).
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Despite some differences between the simplified theory and the way the field lottery

game was implemented, the average number chosen overall was 2835, which is close to

the equilibrium prediction of 2595. The mean number in the last week is 2484, compared

to the prediction of 2595.14 The median converged toward the equilibrium prediction of

2542, from 1204 in the first week to 1936 in the last week. Winning numbers, and the

lowest numbers not chosen by anyone, also varied a lot over time.

In equilibrium, the first and foremost prediction is that essentially nobody (fewer

than 0.01 percent) should choose a number above T = 5513. In the field lottery game, 20

percent chose these high numbers in the first week, but in the last week only 2.8 percent

did. For numbers above 10,000, 12 percent chose these extremely high numbers in the first

week, but in the last week only 1 percent did. This indicates both compelling convergence,

as well as initial deviation. In fact, the third quartile (75%) was 7610 in day 1, but quickly

dropped below 3200, resulting in an average of 3779 for week 1 and 2443 for week 2. Then,

the third quartile converged back toward the equilibrium prediction (3901), ending up at

3137 in week 7. All other aggregate statistics in Table 1 are closer to the equilibrium

predictions in the last week than in the first week. Many of the statistics converge rather

swiftly and closely. For example, although 20 percent chose numbers above T = 5513 in

week 1, less than 5 percent did each day from week 3 to 7.15

An interesting feature of the data is a tendency to avoid round or focal numbers and

choose quirky numbers that are perceived as “anti-focal” (as in hide-and-seek games,

see Crawford and Iriberri, 2007a). Even numbers were chosen less often than odd ones

(46.75% vs. 53.25%). Numbers divisible by 10 are chosen a little less often than predicted.

14To judge the significance of the difference between theory and data we simulated 1000 weekly average
numbers from the Poisson-Nash equilibrium. That is, 7 × 53, 783 i.i.d. draws were drawn from the
equilibrium distribution and the average number was computed. This yields one simulated average. The
procedure was then repeated a total of 10, 000 times to create 10, 000 simulated averages. The low and
high range of 9500 of these simulated averages– a 95% confidence interval– is 2590 to 2600. Since the
weekly averages in the data lie outside this extremely tight interval, we can conclude that the data are
significantly different than those predicted by theory. But note that this is an extremely demanding test
because the very large sample sizes mean that the data must lie very close to the theory to not reject the
theory.
15Figure A3 (in Online Appendix) provides weekly boxplots of the data and Figure A4 plots average

daily frequencies for week 1, 3, 5, and 7 for those who are interested in weekly changes in the distribution
and percentiles.
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All days 1st week 7th week Eq.
Avg. Std. Min Max Avg. Avg. Avg.

# Bets 53783 7782 38933 69830 57017 47907 53783
Average number played 2835 813 2168 6752 4512 2484 2595
Median number played 1675 348 436 2273 1204 1936 2542
Winning number 2095 1266 162 4465 1159 1982 2595
Lowest number not played 3103 929 480 4597 1745 3462 4938
Above T = 5513 (%) 6.65 6.24 2.56 30.32 20.11 2.80 0.00
First (25%) quartile 780 227 66 1138 425 914 1251
Third (75%) quartile 2898 783 2130 7610 3779 3137 3901
Below 100 (%) 6.08 4.84 2.72 2.97 15.16 3.19 2.02
Below 1000 (%) 32.31 8.14 21.68 63.32 44.91 27.52 20.03
Below 5000 (%) 92.52 6.44 68.26 96.74 78.75 96.44 93.32
Below 10000 (%) 96.63 3.80 80.70 98.94 88.07 98.81 100.00
Even numbers (%) 46.75 0.58 45.05 48.06 45.91 47.45 50.00
Divisible by 10 (%) 8.54 0.466 7.61 9.81 8.43 9.01 9.99
Proportion 1900—2010 (%) 71.61 4.28 67.33 87.01 79.39 68.79 49.78
11, 22,...,99 (%) 12.2 0.82 10.8 14.4 12.39 11.44 9.09
111, 222,...,999 (%) 3.48 0.65 2.48 4.70 4.27 2.78 0.90
1111, 2222,...,9999 (1/1000) 4.52 0.73 2.81 5.80 4.74 3.95 0.74
11111, 22222,...,99999 (1/1000) 0.76 0.84 0.15 5.45 2.26 0.21 0

Proportion of numbers between 1900 and 2010 refers to the proportion relative to numbers between
1844 and 2066. “11, 22,...,99”refers to the proportion relative to numbers below 100, “111,222,...,999”
relative to numbers below 1000, and so on. The “Eq. Avg.”predictions refers to the prediction of the
Poisson-Nash equilibrium with n = 53, 783 and K = 99, 999.

Table 1: Descriptive statistics and Poisson-Nash equilibrium predictions for field LUPI
game data

Strings of repeating digits (e.g., 1111) are chosen too often. Players also overchoose

numbers that represent years in modern time (perhaps their birth years). If players had

played according to equilibrium, the fraction of numbers between 1900 and 2010 divided

by all numbers between 1844 and 2066 should be 49.78 percent, but the actual fraction

was 70 percent.16

Figure 2 shows this focality in a histogram of numbers between 1900 and 2010 (ag-

gregating all 49 days). Note that although the numbers around 1950 are most popular,

16We compare the number of choices between 1900 and 2010 to the number of choices between 1844
and 2066 since there are twice as many strategies to choose from in the latter range compared to the
first. If all players randomized uniformly (an approximation to the equilibrium strategy with large n and
K), the proportion of numbers between 1900 and 2010 would be about 50 percent.
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there are noticeable dips at focal years that are divisible by ten.17 Figure 2 also shows

the aggregate distribution of numbers between 1844 and 2066, which clearly shows the

popularity of numbers around 1950 and 2007. There are also spikes in the data for special

numbers like 2121, 2222 and 2345. Explaining these “focal”numbers with the cognitive

hierarchy model presented below is not easy (unless the 0-step player distribution is de-

fined to include focality), so we will not comment on them further (see Crawford and

Iriberri, 2007a for a successful application in simpler hide-and-seek games).

3.2 Results

Do subjects in the field LUPI game play according to the Poisson-Nash equilibrium bench-

mark? In order to investigate this, we assume that the number of players is Poisson

distributed with mean equal to the empirical daily average number of numbers chosen

(53, 783). As noted previously, this assumption is wrong because the variation in number

of bets across days is much higher than what the Poisson distribution predicts.

Figure 3 shows the average daily frequencies from the first week together with the

equilibrium prediction (the dashed line), for all numbers up to 99,999 and for the re-

stricted interval up to 10,000. Recall that in the Poisson-Nash equilibrium, probabilities

of choosing higher numbers first decrease slowly, drop quite sharply at around 5500, and

asymptotes to zero after p5513 ≈ 1/n (recall Proposition 1 and Figure 1). Compared to

equilibrium, there is overshooting at numbers below 1000, undershooting at numbers be-

tween 2000 and 5500, and again overshooting beyond 5500.18 It is also noteworthy how

spiky the data is compared to the equilibrium prediction, which is a reflection of clustering

on special numbers, as described above.

Nonetheless, the ability of the very complicated Poisson-Nash equilibrium approxima-

17Note that it would be unlikely to observe these dips reliably with typical experimental sample sizes.
It is only with the large amount of data available from the field (2.5 million observations) that these dips
are visually obvious and different in frequency than neighboring unround numbers.
18This overshooting-undershooting-overshooting pattern could explain why in Table 1, the average

number played is close to the equilibrium prediction, while the first quartile and median are always too
low (though converging up) and the percentage above 5513 is always too high.
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tion to capture some of the basic features of the data is surprisingly good. For example,

most of the guesses (79.89% in the first week) are concentrated at or below T = 5513. As

a referee nicely expressed this central result: “To me, the truncation of the distribution

(i.e., the set [T,K] has negligible mass) is the first-order effect of equilibrium reasoning.

Furthermore, the relationship between k, K and T is not obvious so the finding that, by

the 7th week, almost all of the mass of the empirical distribution is concentrated in [0,T]

is quite striking.”

Figure 4 shows average daily frequencies of choices from the second through the last

(7th) week. Behavior in this period is closer to equilibrium than in the first week. In

particular, the overshooting of high numbers almost vanishes– only 4.41% of the choices

are above 5513. However, when only numbers below 10,000 are plotted, the overshooting

of low numbers and undershooting of intermediate numbers is still clear (although the

undershooting region shrinks to numbers between 4000 and 5500) and there are still

many spikes of clustered choices.

The first three columns of Table 2 provide the frequencies for the last week of field data

(Figure A4 in the Online Appendix) with a bin size of 500 up to number 5500 and compare

it with the Poisson-Nash equilibrium prediction. The χ2 test statistic is 53864.6, strongly

rejecting the equilibrium model. This suggests that although there is only substantial

undershooting in the last three bins, the data from the final week is still far from the

Poisson-Nash equilibrium. Moreover, the drop from around 43, 000 (in the first four bins)

to around 30, 000 (in the next four bins) is also diffi cult to account for.

Nevertheless, given there are so much data, it is not surprising that the equilibrium

model is rejected. One possible remedy is to use the average number of guesses for each

number (in the bin range), instead of the total number of guesses. This is done by simply

dividing the bin totals by 500. We then round these numbers into integers so we can

perform a χ2 test (like for the total number of guesses). The results are shown in column

4 and 5 of Table 2. The χ2 test statistic is 107.6, still rejecting the equilibrium model,

but much smaller than that of the total.
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Week 7 vs. Equilibrium Week 7 vs. Cognitive Hierarchy
Total frequency Average frequency Total frequency Average frequency
(for all numbers) (for each number) (for all numbers) (for each number)

Bin range Week 7 Eq. Week 7 Eq. Week 7 CH Week 7 CH
1 — 500 47047 33796.5 94 67.6 47047 43538.8 94 87.1

501 —1000 45052 33448.3 90 66.9 45052 42641.2 90 85.3
1001 —1500 41489 33060.8 83 66.1 41489 42343.9 83 84.7
1501 —2000 43815 32624.0 88 65.2 43815 41257.8 88 82.5
2001 —2500 33827 32123.5 68 64.2 33827 39631.4 68 79.3
2501 —3000 29850 31537.8 60 63.1 29850 36794.6 60 73.6
3001 —3500 33115 30832.0 66 61.7 33115 32437.4 66 64.9
3501 —4000 25765 29943.8 52 59.9 25765 25532.5 52 51.1
4001 —4500 16810 28745.2 34 57.5 16810 16006.9 34 32.0
4501 —5000 6614 26891.5 13 53.8 6614 6401.8 13 12.8
5001 —5500 2463 22130.7 5 44.3 2463 2075.7 5 4.2

χ2 53864.6*** 107.6*** 2891.4*** 5.66

*=10 percent, **=5 percent and ***=1 percent significance level.

Table 2: Frequency table for the last week of field data, the Poisson-Nash equilibrium and
cognitive hierarchy model

The top panel of Table 3 provides additional weekly goodness-of-fit measures for the

Poisson-Nash equilibrium. Weekly χ2 test results are shown in the first two rows. In

particular, the χ2 test statistics drop sharply from more than 640 in the first week to less

than 110 in the last week. Nevertheless, the equilibrium prediction is rejected at the 0.1

percent level for all weeks.

Another possibility is to calculate the proportion of the empirical density that lies

below the predicted density. This measure is one minus the summed “miss rates”, the

differences between actual and predicted frequencies, for numbers which are chosen more

often than predicted. In Table 3, the percentage of empirical data that lies below equi-

librium density is reported in the third row, increasing from just below 50 percent in the

first week to more than 75 percent in the last week.

Finally, when all models are not literally true, one can compare models using the

“equivalent number of observations” (ENO) of the relevant model computed from raw

mean squared errors. ENO was first proposed by Erev, Roth, Slonim and Barron (2007)

to compare relative performance of different learning models (that were all rejected) pre-
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dicting subject behavior in games with mixed strategy equilibria, a similar situation to

what we have here. Roughly speaking, ENO represents the weight one should put on the

model relative to the existing data when predicting new observations. As stated in Erev

et al. (2007), “the ENO of the model is the value of N (the size of the experiment) that is

expected to lead to a prediction that is as accurate as the model’s prediction.”As shown

in the fourth row of Table 3, the ENO of the Poisson-Nash equilibrium increases from

about 2, 200 in week 1 to almost 14, 000 in week 7, demonstrating the improvement of

equilibrium from week 1 to 7.19

Week 1 2 3 4 5 6 7
Poisson-Nash equilibrium
χ2(for average frequency) 640.45 323.76 257.42 259.27 261.19 121.29 107.60
(Degree of freedom) ***(10) ***(10) ***(10) ***(10) ***(10) ***(10) ***(10)
Proportion below (%) 48.95 61.29 67.14 67.44 69.93 76.25 76.23

ENO 2176.4 4964.4 6178.4 7032.4 8995.0 14056.8 13879.3
Cognitive hierarchy model

Log-likelihood -53740 -31881 -22085 -19672 -19496 -19266 -17594
τ 1.80 3.17 4.17 4.64 5.02 6.76 6.12
λ 0.0034 0.0042 0.0058 0.0068 0.0069 0.0070 0.0064

χ2(for average frequency) 77.92 52.21 7.64 3.90 4.60 4.64 5.48
(Degree of freedom) ***(9) ***(9) (8) (8) (8) (9) (9)
Proportion below (%) 62.58 72.57 78.65 80.17 82.09 82.43 82.24

ENO 3188.8 7502.5 9956.0 12916.1 17873.0 21469.6 21303.0

*=10 percent, **=5 percent and ***=1 percent significance level.
The degree of freedom for a χ2 test is the number of bins minus one.
The proportion below the theoretical prediction refers to the fraction of the empirical density that
lies below the theoretical prediction.

Table 3: Goodness-of-fit for Poisson-Nash equilibrium and cognitive hierarchy for field
data

The next question is whether an alternative theory can explain both the degree to

which the equilibrium prediction is surprisingly accurate and the degree to which there

is systematic deviation.

19However, since there are on average 47, 907 (≈ 335, 347/7) guesses every day in week 7, even an ENO
of 14,000 can still be easily outweighed by one day of data.
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3.3 Rationalizing Non-Equilibrium Play

A natural way to model limits on strategic thinking is by assuming that different players

carry out different numbers of steps of iterated strategic thinking in a cognitive hierarchy

(CH). This idea has been developed in behavioral game theory by several authors (e.g.,

Nagel, 1995, Stahl andWilson, 1995, Costa-Gomes, Crawford and Broseta, 2001, Camerer,

Ho and Chong, 2004 and Costa-Gomes and Crawford, 2006) and applied to many games

of different structures (e.g., Crawford, 2003, Camerer et al., 2004, Crawford and Iriberri,

2007b and Ellingsen and Östling, 2010).20

One alternative candidate to cognitive hierarchy would be the quantal response equilib-

rium (QRE). QRE and CH have been compared to Nash predictions in many experimental

studies, and they often explain deviations from Nash equilibrium in similar ways (e.g.,

Rogers, Palfrey and Camerer, 2009). However, QRE and CH can be clearly distinguished

in LUPI games since QRE seems to predict too few low-number choices. For example,

for n = 26.9 players and number choices from 1 to K = 99 (as implemented in our lab

experiment), Figure 5 shows a 3-dimensional plot of the QRE probability distributions

for many values of λ, along with the Poisson-Nash equilibrium.21 When λ is low, the

distribution is approximately uniform. As λ increases more probability is placed on lower

numbers 1-12. When λ is high enough the QRE closely approximates the Poisson-Nash

equilibrium, which puts roughly linear declining weight on numbers 1 to 15 and infinites-

imal weight on higher numbers. We therefore focus on a cognitive hierarchy model in this

paper.

Level-k and cognitive hierarchy models require a specification of how k-step players

behave and the proportions of players for various k. We follow Camerer et al. (2004) and

assume that the proportion of players that do k thinking steps is Poisson distributed with

20A precursor to these models was the insight, developed much earlier in the 1980’s by researchers
studying negotiation, that people often ‘ignore the cognitions of others’in asymmetric-information bidding
and negotiation games (Bazerman, Curhan, Moore and Valley, 2000).
21The plot shows the QRE based on a power function, but the picture looks identical with a logit

function.
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mean τ , i.e., the proportion of players that think in k steps is given by

f (k) = e−ττ k/k!.

We assume that k-step thinkers incorrectly believe that all other players can only think

fewer steps than themselves, but correctly guess the proportions of players doing 0 to

k − 1 steps (as a truncated Poisson distribution). In other words, level-1 thinkers believe

all other players are level-0 types. Level-2 thinkers believe there are level-0 types and

level-1 types. Level-3 thinkers believe there are level-0, level-1 and level-2 types, and so

on.22 Then the conditional density function for the belief of a k-step thinker about the

proportion of l < k step thinkers is

gk (l) =
f (l)∑k−1
h=0 f (h)

.

The IA and EE properties of Poisson games (together with the general type specifi-

cation described earlier) imply that the number of players that a k-step thinker believes

will play strategy i is Poisson distributed with mean

nqki = n
k−1∑
j=0

gk (j) pji .

Hence, the expected payoff for a k-step thinker of choosing number i is

πk(i) =

i−1∏
j=1

[
1− nqkj e−nq

k
j

]
· e−nqki .

To fit the data well, it is necessary to assume that players respond stochastically (as

in QRE) rather than always choose best responses (see also Rogers et al., 2009).23 We

22An alternative approach which often has advantages is that level-k types think all other players are
exactly level (k − 1). However, this does not work in LUPI games: If we start out with L0 types playing
random, L1 types should all play 1. If L2 types believe there are only L1 types, they should never play
1. If L3 types best respond to only L2 types, then they should all play 1 (since they believe nobody is
playing 1), and this logic will continue to cycle.
23The CH model with best-response piles up most predicted responses at a very small range of the
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assume that level-0 players randomize uniformly across all numbers 1 to K, and higher-

step players best respond with probabilities determined by a normalized power function

of expected payoffs.24

The probability that a k step player plays number i is given by

pki =

(∏i−1
j=1

[
1− nqkj e−nq

k
j

]
e−nq

k
i

)λ
∑K

l=1

(∏i−1
j=1

[
1− nqkj e−nq

k
j

]
e−nql

)λ ,
for λ > 0. Since qkj is defined recursively– it only depends of what lower step thinkers

do– it is straightforward to compute the predicted choice probabilities numerically for

each type of k-step thinker (for given values of τ and λ) using a loop, then aggregating

the estimated pkk across steps k. Apart from the number of players and the number of

strategies, there are two parameters: the average number of thinking steps, τ , and the

precision parameter, λ.

Figure 6 shows the prediction of the cognitive hierarchy model for the parameters of

the field LUPI game, i.e., when n = 53, 783 andK = 99, 999. The dashed line corresponds

to the case when players do relatively few steps of reasoning and their responses are very

noisy (τ = 1.80 and λ = 0.0034). The dotted line corresponds to the case when players do

more steps of reasoning and respond more precisely (τ = 6.12 and λ = 0.0064). Increasing

τ and λ creates a closer approximation to the Poisson-Nash equilibrium, although even

with a high τ there are too many choices of low numbers.

Can the cognitive hierarchy model account for the main deviations from equilibrium

lowest integers (1-step thinkers choose 1, 2-step thinkers choose 2, and k-step thinkers will never pick
a number higher than k). Assuming quantal response smoothes out the predicted choices over a wider
number range.
24In many previous studies logit choice functions are typically used and they fit comparably to power

functions (e.g., Camerer and Ho, 1998 for learning models). Some QRE applications have used power
functions and found better fits (e.g., in auctions, Goeree, Holt and Palfrey, 2002). However, in this case
a logit choice function fits substantially worse for the field data (with 99,999 numbers to choose from).
The reason is that logit choice probabilities are convex in expected payoff. This implies, numerically that
probabilities are either substantial for only a small number of the 99,999 possible numbers, or are close to
uniform across numbers. The logit CH model simply cannot fit the intermediate case in which thousands
of number are chosen with high probability and many other numbers have very low probability (as in the
data).
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described in the previous section? The bottom panel of Table 3 reports the results from

the maximum likelihood estimation of the data using the cognitive hierarchy model.25 The

best-fitting estimates week-by-week, shown in the last two rows of Table 3, suggest that

both parameters increase over time. The average number of thinking steps that people

carry out, τ , increases from about 1.8 in the first week– an estimate in line with estimates

from 1.0 to 2.5 that typical fit experimental data sets well (Camerer et al., 2004)– to 6

in the last week.

Figure 7 shows the average daily frequencies from the first week together with the

CH estimation and the equilibrium prediction. The CH model does a reasonable job of

accounting for the over- and undershooting tendencies at low and intermediate numbers

(with the estimated τ̂ = 1.80). In later weeks, the week-by-week estimates of τ drift

upward a little (and λ increases slightly), which is a reduced-form model of learning as an

increase in the mean number of thinking steps. In the last week the cognitive hierarchy

prediction is much closer to equilibrium (because τ is around 6) but is still consistent

with the smaller amounts of over- and undershooting of low and intermediate numbers

(see Figure 8).

To get some notion of how close to the data the fitted cognitive hierarchy model is,

the bottom panel of Table 3 displays several goodness-of-fit statistics. First, the log-

likelihoods reveal that the cognitive hierarchy model does better in explaining the data

toward the last week and is always much better than Poisson-Nash.26 However, as shown

in the right panel of Table 2, though predictions of the cognitive hierarchy model are

much closer to the data than that of equilibrium, the large number of observations simply

forces the χ2 test to reject the model, even when we bin 500 numbers into one category.

In particular, the last week χ2 test statistic for the cognitive hierarchy model is 2891.4,

25It is diffi cult to guarantee that these estimates are global maxima since the likelihood function is
not smooth and concave. We also used a relatively coarse grid search, so there may be other parameter
values that yield slightly higher likelihoods and different parameter values.
26Since the computed Poisson-Nash equilibrium probabilities are ε for k > 5518, the likelihood is

always essentially zero for the equilibrium prediction. In Online Appendix B, however, we compute the
log-likelihood for the low numbers only. Based on the Schwarz (1978) information criterion, the cognitive
hierarchy model still performs better in all weeks.
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much smaller than that of equilibrium (53864.6), but still at an extremely high level of

significance.

As discussed above, one remedy is to consider rounded averages for each bin. This

is reported in the last two columns of Table 2. The last week χ2 test statistic is 5.66,

implying that the prediction is not statistically different from the cognitive hierarchy

prediction. Since there is one cell that has a predicted value less than five, it might

not be appropriate to conduct a χ2 test including that cell. Hence, the bottom panel of

Table 3 reports weekly χ2 test results that focus on only the bins that have a predicted

value greater than 5. The second column of the bottom panel provides the number of

bins used, and the first column reports χ2 test statistics. As can be seen, the cognitive

hierarchy model is still strongly rejected in the first two weeks, though not as strongly as

equilibrium, but not in the following weeks.

Two other measures of goodness-of-fit previously discussed are computed, in order to

compare the CH model with the equilibrium prediction. In particular, the proportion of

the empirical density that lies below the predicted density is reported in third row of the

bottom panel (in Table 3). The cognitive hierarchy model does better than the equilibrium

prediction in all seven weeks based on this statistic. For example, in the first week, 63

percent of players’choices were consistent with the cognitive hierarchy model, whereas 49

percent were consistent with equilibrium. However, both models improve substantially

across the weeks. On the other hand, weekly ENO is calculated and reported in the fourth

row of the bottom panel (in Table 3). Again, the cognitive hierarchy model does better

in all seven weeks, starting from around 3200 in the first week and end up at 21, 000 in

the final two.27

In conclusion, the cognitive hierarchy model performs better than the Poisson-Nash

equilibrium in all seven weeks of data regardless of what measure is used, explaining the

systematic deviation from equilibrium. In particular, the cognitive hierarchy model can

rationalize the tendencies that some numbers are played more, as well as the undershooting

27Again, since the total number of guesses in week 7 is 335,347, even though the CH model has a much
higher ENO than Poisson-Nash equilibrium, it also can be easily outweighed by merely one day of data.
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below the equilibrium cutoff. The value-added of the cognitive hierarchy model is not

primarily that it gives a slightly better fit, but that it provides a plausible story for how

players manage to play so close to equilibrium.28

4 The Laboratory LUPI Game

We conducted a parallel lab experiment for two reasons.

First, the rules of the field LUPI game do not exactly match the theoretical assump-

tions used to generate the Poisson-Nash equilibrium prediction. In the field data some

choices were made by a random number generator, some players might have chosen mul-

tiple numbers or colluded, there were multiple prizes, and the variance in N is larger than

the Poisson distribution variance.

In the lab, we can more closely implement the assumptions of the theory. If the theory

fits poorly in the field and closely in the lab, then that suggests the theory is on the right

track when its underlying assumptions are most carefully controlled. If the theory fits

closely in both cases, this suggests that the additional factors in the field that are excluded

from the theory do not matter. If the theory fits both well, but slightly better in the lab,

this is also reassuring since it indicates the additional factors in the field contributed

merely noise.

Second, because the field game is rather simple, it is possible to design a lab experiment

which closely matches the field in its key features. How closely the lab and field data

match provides some evidence in ongoing debate about how well lab results generalize to

comparable field settings (e.g., Levitt and List, 2007 and Falk and Heckman, 2009).

28Nonetheless, one might wonder whether the parameter-free Poisson-Nash equilibrium does worse
than cognitive hierarchy merely because the latter has two parameters. We address this issue in Online
Appendix B by estimating the Poisson-Nash equilibrium model week-by-week to obtain the the best n
(mean of the Poisson distribution) that minimizes mean squared error instead of maximizing empirical
likelihood. As shown in Table A3, the estimated Poisson-Nash model still performs worse than the
cognitive hierarchy model in week 1-5, but catches up and is comparable to cognitive hierarchy in week
6 and 7. Nevertheless, to make this prediction, the estimated n have to be much lower than the actual n
and it is not clear how such incorrect beliefs could be sustained.
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In designing the laboratory game, we compromise between two goals: to create a

simple environment in which theory should apply (theoretical validity), and to recreate

the features of the field LUPI game in the lab (specialized external validity). Because

we use this opportunity to create an experimental protocol that is closely matched to

a particular field setting, we often sacrificed theoretical validity in favor of close field

replication.

The first choice is the scale of the game: The number of players (N), possible number

choices (K), and stakes. We choose to scale down the number of players and the largest

payoff by a factor of 2000. This implies that there were on average 26.9 players and the

prize to the winner in each round was $7. We scaled down K by a factor of 1000 since

K = 99 allows for focal numbers such as 66, 77, 88, and 99 to be chosen, and the shape of

the equilibrium distribution has some of the basic features of the equilibrium distribution

for the field data parameters (e.g. most numbers should be below 10 percent of K). Since

the field data span 49 days, the experiment also has 49 rounds in each session. (We

typically refer to experimental rounds as “days”and seven-“day”intervals as “weeks”for

semantic comparability between the lab and field descriptions.)

The number of players in each round was drawn from a distribution with mean 26.9.

In three of the four sessions, subjects were told the mean number of players, and that

the number varied from round to round, but did not know the distribution (in order to

match the field situation in which players were very unlikely to know the total number

playing each day). Due to a technical error, in these three sessions, the variance was

lower than the Poisson variance (7.2 to 8.6 rather than 26.9). However, this mistake is

likely to have little effect on behavior because subjects only know the winning number in

each round and can draw little inference about the underlying distribution of the number

of players. In the last session, the number of players in each round was drawn from a

Poisson distribution with mean 26.9 and the subjects were informed about this (Figure

A5 in the Online Appendix). Furthermore, the data from the true Poisson session and

the lower-variance sessions look statistically similar so we pool them for all analysis (see
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below).

Some design choices made the lab setting different from the field setting but closer to

the assumptions of the theory. In contrast to the field game, in the lab each player was

allowed to choose only one number, they could not use a random number generator, there

was only one prize per round, $7, and if there was no unique number nobody won.

In the field data we do not know how much Swedish players learned each day about

the full distribution of numbers that were chosen. The numbers were available online and

partially reported on a TV show. To maintain parallelism with the field, only the winning

number was announced in the lab.

Four laboratory sessions were conducted at the California Social Science Experimental

Laboratory (CASSEL) at the University of California Los Angeles on the 22nd and 25th

of March 2007, and on the 3rd of March 2009. The experiments were conducted using

the Zürich Toolbox for Ready-made Economic Experiments (zTree) developed by Urs

Fischbacher, as described in Fischbacher (2007). Within each session, 38 graduate and

undergraduate students were recruited, through CASSEL’s web-based recruiting system.

All subjects knew that their payoff will be determined by their performance. We made

no attempt to replicate the demographics of the field data, which we unfortunately know

very little about. However, the players in the laboratory are likely to differ in terms of

gender, age and ethnicity compared to the Swedish players. In the four sessions, we had

slightly more male than female subjects, with the great majority clustered in the age

bracket of 18 to 22, and the majority spoke a second language. Half of the subjects had

never participated in any form of lottery before. Subjects had various levels of exposure

to game theory, but very few had seen or heard of a similar game prior to this experiment.

4.1 Experimental Procedure

At the beginning of each session, the experimenter first explained the rules of the LUPI

game. The instructions were based on a version of the lottery form for the field game

translated from Swedish to English (see Online Appendix D). Subjects were then given
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the option of leaving the experiment, in order to see how much self-selection influences ex-

perimental generalizability. None of the recruited subjects chose to leave, which indicates

a limited role for self-selection (after recruitment and instruction).

In three of the four sessions, subjects were told that the experiment would end at a

predetermined, but non-disclosed time to avoid an end-game effect (also matching the

field setting, which ended abruptly and unexpectedly). Subjects were also told that

participation was randomly determined at the beginning of each round, with 26.9 subjects

participating on average. Subjects in the fourth session were explicitly told there were

49 rounds, and the number of players was drawn from a Poisson distribution. They

were also shown in the instructions a graph showing a distribution function for a Poisson

distribution with mean 26.9.

In the beginning of each round, subjects were informed whether they would actively

participate in the current round (i.e., if they had a chance to win). They were required

to submit a number in each round, even if they were not selected to participate. The

difference between behavior of selected and non-selected players gives us some information

about the effect of marginal incentives on performance (cf. Camerer and Hogarth, 1999).

When all subjects had submitted their chosen numbers, the lowest unique positive

integer was determined. If there was a lowest unique positive integer, the winner earned

$7; if no number was unique, no subject won. Each subject was privately informed,

immediately after each round, what the winning number was, whether they had won

that particular round, and their payoff so far during the experiment. This procedure was

repeated 49 times, with no practice rounds (as is the case of the field). After the last

round, subjects were asked to complete a short questionnaire which allowed us to build

the demographics of our subjects and a classification of strategies used. In two of the

sessions, we included the cognitive reflection test as a way to measure cognitive ability

(to be described below). All sessions lasted for less than an hour, and subjects received

a show-up fee of $8 or $13 in addition to earnings from the experiment (which averaged

$8.60). Screenshots from the experiment are shown in Online Appendix D.
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4.2 Lab Descriptive Statistics

We focus only on the choices from incentivized subjects that were selected to actively

participate in the remainder of the paper. It is noteworthy, however, that the choices

of participating and non-participating subjects did not significantly differ (p-value 0.66,

Mann-Whitney). The choices of participating subjects from the session with the an-

nounced Poisson distribution and the pooled other three sessions do not significantly

differ at the five percent level (p = 0.058, Mann-Whitney, p = 0.59 based on t-test with

clustered standard errors). In the remainder of the paper we therefore pool all four ses-

sions.

Figure 9 shows the data for the choices of participating players (together with the

Poisson-Nash equilibrium prediction). There are very few numbers above 20 so the num-

bers 1 to 20 are the focus in subsequent graphs. In line with the field data, players have a

slight predilection for certain numbers, while others are avoided. Judging from Figure 9,

subjects avoid some even numbers, especially 10, while they endorse the odd (and prime)

numbers 11, 13 and 17. Interestingly, only one subject played 20, while 19 was played ten

times and 21 was played seven times.

Table 4 shows some descriptive statistics for the participating subjects in the lab

experiment. As in the field, some players in the first week tend to pick very high numbers

(above 20) but the percentage shrinks by the seventh week. The average number chosen

in the last week corresponds closely to the equilibrium prediction (5.8 vs. 5.2) and the

medians are identical (5.0). Both the average winning numbers and the lowest unchosen

numbers are relatively close to the equilibrium prediction. The tendency to pick odd

numbers decreases over time– 42 percent of all numbers are even in the first week, whereas

49 percent are even in the last week. As in the field data, the overwhelming impression

from Table 4 is that convergence to equilibrium is quite rapid over the 49 periods (despite

receiving feedback only about the winning number).
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All rounds R. 1-7 R. 43—49 Eq.
Avg. Std.dev. Min Max Avg. Avg. Avg.

Average number played 5.96 1.43 4.32 12.55 8.56 5.84 5.22
Median number played 4.65 1.03 3 10 6.14 5.00 5
First (25%) quartile 2.50 0.54 2 4 3.00 2.43 3
Third (75%) quartile 7.24 1.72 5 17 10.21 7.14 8
Below 20 (%) 98.02 2.77 81.98 100.00 93.94 98.42 100.00
Above T = 11 (%) 5.60 6.52 0 42.34 16.52 4.64 2.44
Even numbers (%) 45.19 4.47 35.16 53.47 42.11 49.15 46.86
Session 1
Winning number 6.02 9.38 1 67 13.00 2.50 5.22
Lowest number not played 8.08 2.57 1 12 4.86 8.14 8.44
Session 2
Winning number 5.07 2.59 1 10 5.83 5.14 5.22
Lowest number not played 7.47 2.96 1 12 6.29 8.43 8.44
Session 3
Winning number 5.61 3.26 1 14 6.14 5.67 5.22
Lowest number not played 7.53 2.68 2 13 7.43 10.00 8.44
Session 4 (Poisson)
Winning number 5.81 3.62 1 17 6.71 3.14 5.22
Lowest number not played 7.61 3.30 1 13 5.14 8.14 8.44

Summary statistics are based only on choices of subjects who are selected to participate. The
equilibrium column refers to what would result if all players played according to equilibrium (n = 26.9
and K = 99)

Table 4: Descriptive statistics for laboratory data
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4.3 Aggregate Results

In the Poisson equilibrium with 26.9 average number of players, strictly positive prob-

ability is put on numbers 1 to 16, while other numbers have probabilities numerically

indistinguishable from zero. Figure 10 shows the average frequencies played in week 1 to

7 together with the equilibrium prediction (dashed line) and the estimated week-by-week

results using the cognitive hierarchy model (solid line). These graphs clearly indicates

that learning is quicker in the laboratory than in the field. Despite that the only feedback

given to players in each round is the winning number, behavior is remarkably close to equi-

librium already in the second week. However, we can also observe the same discrepancies

between the equilibrium prediction and observed behavior as in the field. The distribution

of numbers is too spiky and there is overshooting of low numbers and undershooting at

numbers just below the equilibrium cutoff (at number 16).

Figure 10 also displays the estimates from a maximum likelihood estimation of the

cognitive hierarchy model presented in the previous section (solid line).29 In this esti-

mation, we use the estimated weekly τ from the field data and estimate λ only.30 We

do not estimate both parameters since we are most likely over-fitting by allowing two

free parameters to estimate relatively few choice probabilities.31 The cognitive hierarchy

model can account both for the spikes and the over- and undershooting. Table 5 shows

the estimated λ parameter. There is no clear time trend in this parameter and the λ

parameter moves around quite a lot over the weeks. We also estimate the precision para-

meter λ while keeping the average number of thinking steps fixed at 1.5, which has been
29To illustrate how the CH model behaves, consider N = 26.9 and K = 99, with τ = 1.5 and λ = 2.

Figure A6 (in the Online Appendix) shows how 0 to 5 step thinkers play LUPI and the predicted aggregate
frequency, summing across all thinking steps. In this example, 1-step thinkers put most probability on
number 1, 2-step thinkers put most probability on number 5, and 3—step thinkers put most probability
on numbers 3 and 7.
30The alternative would be to fix λ and estimate τ , but there is no way to tell what a “reasonable”

value of λ is. The precision parameter λ depends on scaling of payoffs, the number of strategies etc and
can not be interpreted across games.
31When trying to estimate both parameters simultaneously, we found different estimates for different

grid sizes and initial values. Most estimates of τ were between 6 and 12 and λ were most often between
10 and 20 (apart from the first week which always resulted in a λ of 1.32). The log-likelihood is neither
smooth nor concave with fixed τ either, but with only one parameter to estimate we could use a very fine
grid to search for the best-fitting parameter.
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shown to be a value of τ that predicts experimental data well in a large number of games

(Camerer et al., 2004). The estimated precision parameter is in this case considerably

lower in the first week, but is then relatively constant.32

Table 5 provides some goodness-of-fit statistics for the cognitive hierarchy model and

the Poisson-Nash equilibrium prediction. Consistent with results in the field, the cog-

nitive hierarchy model fits data slightly better than the (parameter free) Poisson-Nash

equilibrium in most weeks. In particular, the χ2 test rejects equilibrium for all 7 weeks,

but cannot reject the cognitive hierarchy model starting from week 3, even when we only

bin 2 numbers into one category.33 Similarly, based the proportion below the predicted

density, the equilibrium prediction does remarkably well, while the cognitive hierarchy

model does even better in all but the second and sixth weeks.34

The ENO results also confirm that equilibrium does pretty well starting from the

second week, while cognitive hierarchy always does better than equilibrium.

4.4 Individual Results

An advantage of the lab over the field, in this case, is that the behavior of individual

subjects can be tracked over time and we can gather more information about them to link

to choices. Online Appendix D discusses some details of these analyses but we summarize

them here only briefly.

In a post-experimental questionnaire, we asked people to state why they played as they

did. We coded their responses into four categories (sometimes with multiple categories):

32Figure A7 (in the Online Appendix) shows the fitted cognitive hierarchy model when τ is restricted
to 1.5. It is clear that the model with τ = 1.5 can account for the undershooting also when the number
of thinking steps is fixed, but it has diffi culties in explaining the overshooting of low numbers. The main
problem is that with τ = 1.5, there are too many zero-step thinkers that play all numbers between 1 and
99 with uniform probability. The log-likelihoods for the CH model with τ = 1.5 range from -241 in week
1 to -212 in week 2, which are much worse than when using the field values of τ .
33We only use 6 bins (up to number 12) here to prevent the predicted number of observations to drop

below 5. Even if we do not bin numbers at all, the χ2 test (up to number 12) yields similar results,
rejecting the equilibrium prediction for all weeks, and rejecting the cognitive hierarchy model for week 1,
2, 3, 6 and 7 (at the 5 percent level) and marginally for week 4 and 5 (at the 10 percent level).
34In Online Appendix B we calculate the log-likelihoods using data from numbers 1 to 16, which allows

us to compare the equilibrium prediction with cognitive hierarchy. Based on Schwarz (1978) information
criterion, the cognitive hierarchy model outperforms equilibrium in all weeks.
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Week 1 2 3 4 5 6 7
Poisson-Nash equilibrium
χ2(for average frequency) 24.69 24.14 18.86 21.81 20.17 11.58 21.39
(Degree of freedom) ***(5) ***(5) ***(5) ***(5) ***(5) **(5) ***(5)
Proportion below (%) 82.25 88.55 87.61 88.64 88.64 92.86 87.06
ENO 158.5 202.5 173.2 239.5 244.1 844.4 200.3
Cognitive hierarchy model
Log-likelihood -210.4 -104.3 -88.6 -88.7 -87.5 -80.2 -99.4
τ (from field) 1.80 3.17 4.17 4.64 5.02 6.76 6.12
λ 1.26 5.97 16.89 5.59 5.28 22.69 4.52

χ2(for average frequency) 24.31 18.80 8.49 4.57 6.83 2.74 10.06
(Degree of freedom) ***(5) ***(5) (5) (5) (5) (5) *(5)
Proportion below (%) 84.62 87.44 90.52 92.54 92.42 91.11 91.07
ENO 296.0 263.3 466.8 4909.9 3475.8 894.7 502.9
Restricted cognitive hierarchy model
λ (τ = 1.5) 1.09 2.52 2.57 2.63 2.60 2.31 2.08

*=10 percent, **=5 percent and ***=1 percent significance level.

The degree of freedom for a χ2 test is the number of bins minus one.
The proportion below the theoretical prediction refers to the fraction of the empirical density that
lies below the theoretical prediction.

Table 5: Goodness-of-fit for Poisson-Nash equilibrium and cognitive hierarchy model for
laboratory data
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“Random”, “stick” (with one number), “lucky”, and “strategic” (explicitly mentioning

response to strategies of others). The four categories were coded 35%, 30%, 11% and

38% of the time. These categories had some relation to actual choices because “stick”

players chose fewer distinct numbers and “lucky” players had number choices with a

higher mean and higher variance. The only demographic variable with a significant effect

on choices and payoffs was “exposure to game theory”; those subjects chose numbers

with less variation across rounds. A measure of “cognitive reflection”(Frederick, 2005),

a short-form IQ test, did not correlate with choice measures or with payoffs.

As is often seen in games with mixed equilibria, there is some mild evidence of “purifi-

cation”since subjects chose only 9.65 different numbers on average (see Online Appendix

D), compared to 10.9 expected in Poisson-Nash equilibrium.

All periods Week 1 Week 2 Week 3-7
Round (1-49) 0.001 -0.109 -0.065 0.023

(0.13) (-0.42) (-0.62) (1.58)
t− 1 winner 0.178∗∗∗ 0.148∗∗ 0.304∗∗∗ 0.059∗

(4.89) (2.38) (2.98) (1.89)
t− 2 winner 0.133∗∗∗ 0.096 0.242∗∗ 0.038∗

(2.98) (1.18) (2.40) (1.68)
t− 3 winner 0.083∗ 0.052 -0.050 0.030

(1.94) (0.65) (-0.63) (1.18)
Fixed effects Yes Yes Yes Yes
Observations 4360 421 585 3354
R2 0.03 0.09 0.01 0.00

*=10 percent, **=5 percent and ***=1 percent significance level.
The table report results from a linear subject fixed effects panel
regression. Only actively participating subjects are included.
t−statistics based on clustered standard errors are within paren-
theses.

Table 6: Panel data regressions explaining individual number choices in the laboratory

In the post-experimental questionnaire, several subjects said that they responded to

previous winning numbers. To measure the strength of this learning effect we regressed

players’ choices on the winning number in the three previous periods. Table 6 shows

that the winning numbers in previous rounds do affect players’choices early on, but this

tendency to respond to previous winning numbers is considerably weaker in later weeks
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(3 to 7). The small round-specific coeffi cients in Table 6 also show that there does not

appear to be any general trend in players’choices over the 49 rounds.

5 Conclusion

It is often diffi cult to test game theory using field data because equilibrium predictions

depend so sensitively on strategies, information and payoffs, which are usually not observ-

able in the field. This paper exploits an empirical opportunity to test game theory in a

field setting which is simple enough that clear predictions apply (when some simplifying

assumptions are made). The game is a LUPI lottery, in which the lowest unique positive

integer wins a fixed prize. LUPI is a close relative of auctions in which the lowest unique

bid wins.

One contribution of our paper is to characterize the Poisson-Nash equilibrium of the

LUPI game and analyze behavior in this game using both a field data set, including more

than two million choices, and parallel laboratory experiments which are designed to first

permit a clear test of the theory while also matching the field setting. In both the field

and lab, players quickly learn to play close to equilibrium, but there are some diagnostic

discrepancies between players’behavior and equilibrium predictions.

As noted earlier, the variance in the number of players in the field data is much larger

than the variance assumed in the Poisson-Nash equilibrium. So the field data is not

an ideal test of this theory, strictly speaking. Therefore, the key issues are how much

the theory’s predictions vary with changes in var(N), and how much behavior changes

in response to var(N). If either theory or behavior is insensitive to var(N), then the

Poisson-Nash equilibrium could be a useful approximation to the field data.

As for theory: For the simple examples in which fixed-N and Poisson equilibria can be

computed, zero variance (fixed-N) and Poisson variance equilibria are almost exactly the

same (see Online Appendix A). In fact, as shown in Figure A1 (in the Online Appendix),

the equilibrium probabilities for the fixed-N and Poisson-Nash equilibrium for the LUPI
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game played in the lab (n = 26.9 and K = 99) are practically indistinguishable. Keep

in mind that increasing var(N) (holding n constant) implies that sometimes there are a

lot of extra players so number choices should be higher, and sometimes there are fewer

players so number choices should be lower. These two opposing effects could minimize

the effect of variance on mean choices (as the low-K cases in Online Appendix A suggest

they do).

As for behavior: There are two sources of evidence that actual behavior is not too

sensitive to var(N). First, in the field data the Sunday and Monday sessions have lower

n and lower standard deviation than all days, but choices are very comparable to data

from all days (in which var(N) about twice as large). Second, in the lab data different

sessions with var(N) ≈ 8 and var(N) = 27 lead to indistinguishable behavior.

These theoretical and behavioral considerations suggest why the ’wrong’theory (Poisson-

Nash) might approximate actual behavior surprisingly well in the field (despite the field

var(N) being empirically far from what the theory assumes).

A different way to describe our contribution is this: A LUPI game was actually played

in the field, with specific rules. Can we produce any kind of theory which fits the data

from this game? In this view, it does not matter whether the field setting matches the

predictions of a theory exactly. Instead, all that matters is whether the theory fits well,

even if its assumptions are wrong.

Here the answer is rather clear: The empirical distribution of choices clearly is moving

in the direction of the Poisson-Nash equilibrium over the 49 days (as judged by every

number choice statistic) and is numerically close. As a bonus, the CH model improves a

little on the Poisson-Nash equilibrium, when optimally parameterized, in the sense that

it can explain the key ways in which behavior departs from Poisson-Nash (too many low

and very high numbers) in the short run. The estimated number of thinking steps is in

the first week 1.80, which is in line with estimates from many lab experiments.

Note that the point of the cognitive hierarchy model is not simply to fit the data better

than Poisson-Nash, but also to show how people with limited computational power might
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start near, and converge to, such a complex equilibrium. However, the cognitive hierarchy

model provides merely suggestive evidence regarding this convergence, and hence, should

be viewed as a potential stepping stone (instead of the final word) to an investigation

using a formal learning model.

Finally, because the LUPI field game is simple, it is possible to do a lab experiment

that closely replicates the essential features of the field setting (which most experiments

are not designed to do). This close lab-field parallelism in design adds evidence to the

ongoing debate about when lab findings generalize to parallel field settings (e.g., Levitt

and List, 2007 and Falk and Heckman, 2009). The lab game was described very much like

the Swedish lottery (controlling context), experimental subjects were allowed to select

out of the experiment after it was described (allowing self-selection), and lab stakes were

made equal to the field stakes (in expected terms). Basic lab and field findings are

fairly close: In both settings, choices are close to equilibrium, but there are too many

large numbers and too few agents choose intermediate numbers at the high end of the

equilibrium range. We interpret this as a good example of close lab-field generalization,

when the lab environment is designed to be close to a particular field environment.35

35Of course, it is also conceivable that there is a genuine lab-field behavioral difference but it is ap-
proximately canceled by differences in the design details which have opposite effects.
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Figure 1. Poisson-Nash equilibrium for the LUPI game (n=53,783, K=99,999). 
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Figure 2. Numbers chosen between 1900 and 2010, and between 1844 and 2066, during 
all days in the field. 
 
 
 

Numbers chosen (truncated at 10000) 

 
 
 
 
Above 1/53783: Concave  
                  ↓ 
 
 
 
 
 
 
 
 
 

Below 1/53783: Convex, 
asymptotes to zero  

                                                   ↓ 

0 1000 2000 3000   6000 7000 8000 9000 10000
0

1

2

x 10 
-4

P
ro

ba
bi

lit
y 

4000 5000

1930 

1940

1950

1960

1970

1980

1990

2001

2007



 44

0
5

0
1

00
1

50
A

ve
ra

g
e/

ex
p

ec
te

d
 d

ai
ly

 fr
e

qu
en

cy

0 20000 40000 60000 80000 100000
Number chosen

0
5

0
1

00
1

50
A

ve
ra

g
e/

ex
p

ec
te

d
 d

ai
ly

 fr
e

qu
en

cy

0 2000 4000 6000 8000 10000
Number chosen

 
Figure 3. Average daily frequencies and Poisson-Nash equilibrium prediction for the 
first week in the field (n=53,783, K=99,999). 
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Figure 4. Average daily frequencies and Poisson-Nash equilibrium prediction for week 
2-7 in the field (n=53,783, K=99,999). 
 



 45

0
2

4
6

8
10

12
14

16
18

20 0 

3

6

9
Equilibrium0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

 
Figure 5. Probability of choosing numbers 1 to 20 in symmetric QRE (n=26.9, K=99, λ 
=0.001,...,10) and in the Poisson-Nash equilibrium (n=26.9, K=99) 
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Figure 6. Probability of choosing numbers 1 to 10000 in the Poisson-Nash equilibrium 
and the cognitive hierarchy model (n=53,783, K=99,999). 
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Figure 7. Average daily frequencies, cognitive hierarchy (solid line) and Poisson-Nash 
equilibrium prediction (dashed line) for the first week in the field (n=53,783, K=99,999, 
τ=1.80, λ=0.0034). 
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Figure 8. Average daily frequencies, cognitive hierarchy (solid line) and Poisson-Nash 
equilibrium prediction (dashed line) for the last week in the field (n=53,783, K=99,999, 
τ=6.12, λ=0.0064). 
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Figure 9. Laboratory total frequencies and Poisson-Nash equilibrium prediction (all 
sessions, participating players only, n=26.9, K=99). 
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Figure 10. Average daily frequencies in the laboratory, Poisson-Nash equilibrium 
prediction (dashed lines) and estimated cognitive hierarchy (solid lines), week 1 to 7 
(n=26.9, K=99).  
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