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Abstract
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1 Introduction

Models with structural breaks (SB) have been of interest to many researchers for at

least the last four decades. Most of the work in this area of research has been related

to the case of detecting and estimating a single break. See Chow (1960), Andrews

(1993), and Bai, Lumsdaine, and Stock (1998), among others. The questions related

to multiple structural changes have received somewhat less attention. Early works

include Yao (1988) and Liu, Wu, and Zidek (1997) who advocated the use of the

(modified) Bayesian Information Criterion and showed that the number of breaks

can be estimated consistently (at least for a normal sequence of random variables

with shifts in mean). In Bai (1997) it was shown that one can consistently estimate

break-points, one-by-one, in a multiple break model even when the number of breaks

estimated is smaller than the actual number of breaks. He also proposed a simple

sequential procedure for consistently estimating the number of breaks. In a seminal

paper Bai and Perron (1998) proved consistency of the estimators of the break dates,

provided tests for multiple structural changes and constructed confidence intervals

for the break dates. Last, but not least, they also proposed several methods (one

of which is purely sequential) for determining the number of breaks and efficient

algorithms for computing the estimates. In two companion papers, see Bai and Per-

ron (2006, 2003a), the authors considered practical matters related to the methods

proposed in Bai and Perron (1998): such as the behaviour of estimators and tests

in finite samples, and comparisons between different methods for determining the

number of breaks. Since all the tests considered have nonstandard distributions,

Bai and Perron (2003b) also provided asymptotic critical values for a set of possible

specifications (nominal level α = {0.10, 0.05, 0.025, 0.01}, the minimum relative

regime size ǫR = {0.05, 0.10, 0.15, 0.20, 0.25} and the number of regressors whose

parameters are allowed to vary across regimes q = 1, . . . , 10). In coming sections,

we refer to papers by Bai and Perron providing the theory and simulations results,

and to the methodology in general, as BP.

More recently, Prodan (2006) proposed a new procedure, including a restricted

version designed to detect trend reversions, for choosing the number of breaks. This

method is based on a sequence of likelihood ratio-type tests of Bai (1999) for which

the critical values have to be bootstrapped. Ben Äıssa, Boutahar, and Jouini (2004)

proposed a method based on the stability of the evolutionary spectral density anal-

ysis. They apply their method and Bai and Perron’s method on US inflation data,

but unfortunately no size and power comparisons are performed.
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The main limitation of the current implementation of Bai and Perron sequential

procedure is that critical values exist for a restricted number of combinations only

(four significance levels, five regime sizes, up to ten regressors). If one wants to test

for breaks, say, in 11 monthly dummies, then one would have to simulate the critical

values. Furthermore, as documented in Prodan (2006), the asymptotic critical values

obtained under the null of independent and identically distributed errors might be

inadequate for relatively short (in her simulations T = 125) but persistent series,

which in turn can cause severe size distortions. The main limitation of the procedure

proposed by Prodan is that it is rather time-consuming since the critical values have

to be bootstrapped for every test in the sequence.

In this paper we propose an alternative sequential procedure for determining

the number of breaks in a structural break model. The technique itself is based

on a sequence of parameter constancy tests in Smooth Transition Regression (STR)

framework where a model with m breaks (transitions) is tested against one with m+1

breaks. Its advantages include the fact that standard statistical inference applies and

the modeller has control over the significance level of each test. Our technique is easy

to implement, it imposes no restrictions on the number of regressors, significance

levels of individual tests or minimum regime size (as long as the moment matrix is

well-defined). It can be applied to situations where all parameters are assumed to

change over time (pure structural change model) and to the ones in which just a

subset of parameters is subject to change (partial structural change model).

The plan of the paper is as follows. Section 2 contains a brief overview of

smooth transition regression models and of tests against switching-type parameter

nonconstancy. Section 3 describes our method step-by-step. Section 4 contains the

results of a simulation study, where the size and power properties of our method

are discussed and compared to results in Bai and Perron (2006). An empirical

application based on the quarterly US ex-post real interest rate series can be found

in Section 5, and Section 6 concludes.

2 Smooth transition regression framework

2.1 The Model

The general idea underlying our procedure is quite old. Goldfeld and Quandt (1972,

pp. 263–264) considered the estimation of parameters in the switching regression

model and pointed out that discontinuity of the log-likelihood complicates the esti-
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mation. Their suggestion was to replace the sudden switch by a smooth transition.

This removes the discontinuity, and the parameters of the resulting smooth transi-

tion regression model can be estimated by conditional maximum likelihood, using

an appropriate iterative algorithm.

We will apply the idea of approximating sudden changes with smooth transitions

to the regime selection problem. That, in turn, allows us to use standard inference

in determining the number of regimes in a (multiple) structural break model.

A classical logistic STR (LSTR) model for a univariate time series yt is given by

yt = x′
tβ0 + x′

tβ1G1t + εt , t = 1, . . . , T, (1)

where xt = (1, x1t, x2t, . . . , xkt)
′ = (1, yt−1, . . . , yt−p, w1t, . . . , wnt)

′ = (1, x̃t)
′ with

k = p+n is a ((k+1)×1) vector of explanatory variables, β0 and β1 are ((k+1)×1)

parameter vectors and {εt} is a sequence of independent, normally distributed errors

with zero mean and variance σ2. The transition function G1t in (1) is defined as

follows:

G1t = G1(st; γ1, c1) = (1 + exp{−γ1(st − c1)})−1 , γ1 > 0. (2)

As γ1 → ∞ in (2) , the logistic function G1t approaches the indicator function

I[st > c1] and the LSTR model becomes a switching regression (SR) model. The

parameter c1 is then the switch or breakpoint parameter. Thus the STR model (1)

with (2) is a reasonable approximation to the SR model when γ1 is sufficiently large.

Letting the variable st = t (or, rescaling time to be between 0 and 1, st = t∗ = t/T )

and γ1 → ∞, we obtain a single structural break model.

Analogously, we can approximate a multiple structural change model with a Mul-

tiple LSTR (MLSTR) model. For example, an MLSTR model with two transitions

has the form

yt = x′
tβ

∗
0 + x′

tβ
∗
1G1t + x′

tβ
∗
2G2t + εt, (3)

where the transition function G2t = G2(t
∗; γ2, c2) is defined as in (2). For the

purposes of this paper we set γ1 = γ2 = γ.

2.2 Testing parameter constancy

Testing linearity (or parameter constancy) should be one of the first steps before

actually fitting a more complicated nonlinear model. Lin and Teräsvirta (1994) de-

veloped a test for testing parameter constancy against continuous structural change.

As structural break models are a special case of the more general time-varying au-

toregressive (TV-AR) models, the test developed in Lin and Teräsvirta (1994) has
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power against TV-AR but also against SB (γ → ∞) alternatives. What follows is a

short description of the test.

Suppose we want to test parameter constancy of (1), where xt = (1, x̃t)
′ =

(1, yt−1, . . . , yt−k)
′. One could achieve this by setting γ1 = 0 in G1t(t

∗; γ1, c1)

or β1 = 0. In order to circumvent the identification problem we approximate the

transition function by its Taylor expansion around γ1 = 0. The third-order approx-

imation can be written as T3 = δ0 + δ1t
∗ + δ2t

∗2 + δ3t
∗3 + R3(γ1, c1; t

∗) where R3 is

the remainder and δ0, δ1, δ2 and δ3 are constants. Substituting T3 for G1 in (1) and

reparameterizing we obtain

yt = x′
tθ0 + (xtt

∗)′θ1 + (xtt
∗2)′θ2 + (xtt

∗3)′θ3 + ε∗t , (4)

where ε∗t = εt + (x′
tβ1)R3(γ1, c1; t

∗). The parameter vectors θj = γθ̃j , where

θ̃j 6= 0, and thus our null hypothesis of linearity (parameter constancy) in (1) implies

H′
0 : θj = 0, j = 1, 2, 3, in (4). Since the auxiliary regression (4) is linear in param-

eters and ε∗t = εt under H′
0, one can test this null hypothesis by a straightforward

Lagrange Multiplier (LM)-type test

χ2
LM = σ̂−2

(
T∑

t=1

ûtwt

)′

(M̂11 − M̂10M̂
−1
00 M̂01)

−1

(
T∑

t=1

wtût

)
, (5)

where M̂00 =
∑T

t=1 ztz
′
t, M̂01 = M̂′

10 =
∑T

t=1 ztw
′
t, M̂11 =

∑T

t=1 wtw
′
t, σ̂2 =

1/T
∑T

t=1 û2
t . Here ût is the residual estimated under the null hypothesis, zt = xt

and wt = (xtt
∗,xtt

∗2,xtt
∗3). Under the null hypothesis, the test statistic has an

asymptotic χ2-distribution with 3(k + 1) degrees of freedom. This result requires

the existence of all the moments implied by (5).

Following the suggestions in earlier papers, see Teräsvirta (1994), for example,

an F -approximation to the χ2
LM statistic is recommended. The test can be carried

out in three stages using just linear regressions:

1. Regress yt on xt and compute the residual sum of squares

SSR0 =
1

T

T∑

t=1

û 2
t .

2. Regress ût (or yt) on xt, xtt
∗, xtt

∗2 and xtt
∗3, and compute the residual sum

of squares SSR1 =
1

T

T∑

t=1

v̂ 2
t .

3. Compute

F =
(SSR0 − SSR1)/(3(k + 1))

SSR1/(T − 4k − 4)
.

4



This statistic is approximately F3(k+1),T−4k−4 distributed under the null of linearity.

The test can also be based on the first-order Taylor approximation of G1t. In

that case T1 = δ0 + δ1t
∗ + R1(γ1, c1; t

∗), where R1 is the remainder and δ0 and δ1

are constants, and one substitutes T1 for for G1 in (1). The null of linearity is now

θ1 = 0 in (4) whereas θ2 = θ3 = 0 by definition. This variant of the test is less

powerful than the test of H′
0 in (4) in cases where the process is returning back to its

original level after the second break. We return to these issues in Section 4 where

we compare the performance of different tests by simulation. For further discussion

of the LM-type test, see, for example, Luukkonen, Saikkonen, and Teräsvirta (1988)

or Teräsvirta (1998).

3 Determining the number of structural breaks

3.1 The sequential procedure

In this section we describe our procedure for determining the number of breakpoints

in the piecewise linear structural break model. The proposed sequential testing pro-

cedure (ST-procedure) mixes the parameter constancy testing of smooth transition

regression modelling framework and SB model estimation. The strategy is based

on the fact that the estimators of break fractions/parameters in the SB model are

superconsistent, see Bai (1997) and Bai and Perron (1998).

For illustration, consider the following three-regime SB model

yt = x′
tβ

†
0I(t∗ ≤ c1) + x′

tβ
†
1I(c1 < t∗ ≤ c2) + x′

tβ
†
2I(t∗ > c2) + εt t = 1, . . . , T, (6)

which can alternatively be written as

yt = x′
tβ

∗
0 + x′

tβ
∗
1I(t∗ > c1) + x′

tβ
∗
2I(t∗ > c2) + εt t = 1, . . . , T, (7)

where c1 6= c2 (for identification reasons we may assume c1 < c2). Let m denote

the number of breaks. We assume that Assumptions A1-A5 in Bai and Perron

(1998) are satisfied for model (6). They are required for consistent estimation of

the parameters. Note, that our timevariable, t∗, is bounded between zero and one,

and thus, our break points ci correspond to the break fractions λi in Bai and Perron

(1998).

The starting-point of the procedure is that the true model is either a linear model

or a SB model (but possibly with just one break), so the first choice is between m = 0

(linearity) and m = 1 (two regimes). The ST-procedure as a whole works as follows:
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1. Set β∗
2 = 0 in (7) and replace I(t∗ > c1) by G1t(t

∗; γ1, c1). Test linearity of (7)

as outlined in Section 2.2; the null hypothesis H0 : γ1 = 0.

2. If H0 is rejected at a predetermined significance level α(T ), chosen such that

α(T ) → 0 as T → ∞, estimate the parameters of the model (7) assuming

β∗
2 = 0 (single break). According to the results in Bai and Perron (1998), ĉ1

is super consistent for c1 and the following continuation suggests itself.

3. Test linearity of

yt = x′
tβ

†
0I(t∗ ≤ ĉ1) + x′

tβ
†
1I(t∗ > ĉ1) + εt , t = 1, . . . , T, (8)

against

yt = x′
tβ

†
0I(t∗ ≤ ĉ1) + x′

tβ
†
1I(t∗ > ĉ1) + x′

tβ
†
2G2t + εt , t = 1, . . . , T, (9)

where G2t is a transition function satisfying the regularity conditions in Eitrheim

and Teräsvirta (1996), so the Taylor expansion based test is applicable.

4. Estimate (6) if the null hypothesis is rejected at significance level τα(T ), 0 <

τ < 1. Reducing the significance level compared to the preceding test favours

parsimonious models. Choosing τ is left to the modeller: in the simulations

we set τ = 0.5.

5. Proceed by testing linearity of (6) where c2 is substituted for its super consis-

tent estimator ĉ2.

6. The sequential estimation and testing is continued until the first non-rejection

of a null hypothesis. This yields the specification for the final model.

The key point here is that the convergence rate of ĉ1 is faster (T ) than the

corresponding rate of the other estimates (
√

T ). For the purposes of the test, ĉ1 can

therefore be treated as a known parameter and (8) assumed to be a linear model.

This assumption does not affect the asymptotic theory of the linearity test described

in Section 2.2. Consequently, the test in Step 3 is just another parameter constancy

test, and its asymptotic significance level is known.

It is easy to incorporate testing for partial structural breaks into this framework.

The parameter constancy tests can be carried out for any subset of parameters. This

is done by setting some elements (the ones we assume to be constant) β1i = 0 in

(1) a priori. This in turn means that the same elements in auxiliary regressions are

assumed to be equal to zero as well.
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For the testing part in our procedure to work in the univariate case we have

to assume that εt are iid and that x1t, . . . , xkt are jointly stationary. In addition

we require that all the cross-moments Ewitwjt and Eyt−iwjt exist (given that the

coefficients of all explanatory variables among xt are changing). Finally, the errors

are assumed uncorrelated with xt.

3.2 TV-AR-approximation approach

It is also possible to apply TV-AR-approximation to the whole procedure1. The

first step is identical to Step 1 in Section 3.1. If parameter constancy is rejected,

a TV-AR model with a large fixed γ is estimated and the adequacy of the model

tested using the appropriate misspecification tests; see, for example, Eitrheim and

Teräsvirta (1996) or Teräsvirta (1998). Estimation and testing is continued until

the first non-rejection of the ”no parameter non-constancy”-hypothesis. This yields

the specification for the final model, i.e the number of transitions is equal to the

number of structural breaks, after which the parameters of the final SB model can

be estimated.

An advantage of this simple method is that one obtains accurate estimates for the

break parameters even when some of them lie near the smallest or largest observation

in the sample. A theorethical drawback is that the asymptotic properties of those

estimators are difficult to obtain. For a practitioner who is working with finite data

sets it appears that there are no noticeable differences between the TV-AR approach

and the consistent one outlined in Section 3.1. The finite-sample performances of

the two procedures are very similar.

4 Simulation study

In this section we investigate the small-sample behaviour of our model selection

procedure by simulation. This also allows us to compare the proposed technique

with the one Bai and Perron developed.

Several versions of the Bai and Perron testing sequence can be constructed (and

are supported in their GAUSS code) depending on the assumptions on the distri-

bution of the covariates and the errors across segments: the errors can be serially

correlated or uncorrelated, regressors are either identically distributed or are allowed

1Longer discussion using stationary random variables as transition variables can be found in
Strikholm and Teräsvirta (2005).
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to have heterogenous distributions across segments, and finally also heteroskedastic-

ity of residuals can be permitted. When serial correlation and/or heteroskedasticity

is present, BP use a heteroskedasticity and serial correlation consistent (HAC) esti-

mator of the parameter covariance matrix and allow for prewhitening. The authors

do not, however, give clear guidelines for when prewhitening should be applied. For

the simulation study, they use prewhitening only when the data generating process

involves serially correlated errors. They do not discuss the size/power properties of

their procedure when prewhitening is applied to uncorrelated series or not applied

to serially correlated series. Our results suggest that this issue should be addressed,

because the power of the BP procedure can vary by 15 percentage points when

prewhitening is erroneously applied to uncorrelated series, see the simulation study

below. Some information about the size distortion implied by robustification, when

the corresponding features are not present in the data, can be found in Bai and

Perron (2006). Bai and Perron also note that the correction for possible serial cor-

relation can be made, allowing the distribution of the regressors and errors to differ

across regimes. In the construction of the tests, they do not consider imposing the

restriction that the distribution of the regressors zt be the same across segments even

if they are. This means that they explicitly allow the regressors to have heterogenous

distributions.

We, on the other hand, do not make use of these above-mentioned nonparametric

techniques. To make our procedure comparable with the one Bai and Perron sug-

gest, we use “parametric correction” for possible serial correlation. This amounts to

first determining the AR order of the linear model using BIC (maximum lag length

considered is p = 5) and setting up the testing sequence as we do when testing for a

partial structural change and letting only the parameters of interest to change (the

non-AR parameters in this study, if not noted otherwise). This is how most practi-

tioners would cope with serial correlation. To be fair to both procedures, we report

the results for both uncorrected and corrected versions (even if the data generated

contain no features that have to be corrected for). The columns in Tables 1 – 8

labelled “LM1” and “LM3” correspond to the ST-procedure, making use of the first-

order and third-order Taylor expansion, respectively. “Corrected” test sequences

involve the nonparametric correction technique of BP and “parametric correction”

in our method. The subscript “PW” denotes that prewhitening has been used in

BP’s sequence.
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4.1 Estimating the empirical size

Following Bai and Perron (2006) we simulate a number of univariate models with no

structural changes and study how often the methods actually select the alternative

of no breaks. The models are as follows:

Generate data from Estimate yt = z′tδj + ut, j = 1, . . . , m + 1
(a) yt = et zt = {1}
(b) yt = et + Ψt zt = {1, Ψt}
(c) yt = 0.5yt−1 + et zt = {1, yt−1}
(d) yt = 0.5yt−1 + et zt = {1}
(e) yt = 0.5et−1 + et zt = {1}
(f) yt = −0.3et−1 + et zt = {1}

where {et} ∼ nid(0, 1), {Ψt} ∼ nid(1, 1) and uncorrelated with {et}, and zt denotes

the vector of covariates whose coefficients are allowed to change. For each DGP, we

generate 2000 Monte Carlo replications with T = 120 observations2. Because the

size of the BP sequential procedure is somewhat affected by the size of the trimming

ǫR (minimum relative regime size), we report, following their recommendations, the

results using ǫR = 0.05 for cases with no serial correlation correction, and ǫR = 0.20

for cases with serially correlated errors (if not otherwise noted). The nominal test

size is α = 0.05. For the ST-procedure, we choose τ = 0.5, that is we halve the level

of the test at each consecutive step. This has no effect on size simulations, because

the first linearity test still has the correct nominal size. If we choose not to reduce

the level of the test at every step, that is τ = 1, the only differences would appear

in probabilities P (m = a), a 6= 0, where m denotes the number of breaks.

Table 1 contains the results for the six DGPs listed above. The size distortion

when correcting for non-existing serial correlation for our procedure is minor, see

panels (a) and (b). The size of the BP sequential procedure depends heavily on

whether prewhitening is used or not. Applying the prewhitening for the DGP in

panel (b) can cause a size distortion as large as 10 percentage points. In the presence

of serial correlation, one should try to correct for it, because ignoring its presence

may lead to serious size distortions, see the results for the uncorrected versions of the

tests in panels (d) and (e). Both procedures are well sized when the serial correlation

in the errors is accounted for, although the BP procedure appears more oversized

than our technique when the nonzero autocorrelations are positive. Prewhitening

2We first generate 200 initial observations that will be removed, to minimize the possible effect
of the starting-values.
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does affect the size of the BP sequential procedure even here, and not applying it

when it would be necessary to do so can cause noticeable size distortion, see panel

(d), for example.

A thorough discussion of size distortion in the Bai and Perron sequential pro-

cedure can be found in Prodan (2006). Simple simulations with an AR(1) model

show that the size distortion becomes severe the closer we get to the unit root. Our

simulations support her results. Our “corrected” procedure displays somewhat less

size distortion than the BP sequential procedure, but is still oversized when the au-

toregressive coefficient approaches one. On nominal 5% level with ρ = 0.9 we reject

LM1 test in about 11% and the LM3 test in about 21% of the cases (compared to

about 22% for BP).

4.2 Simulating structural break models

To study the power of the procedures, we again replicate the experiments in Bai

and Perron (2006). Even here, {Ψt} ∼ nid(1, 1) and {et} ∼ nid(0, 1), and these

sequences are mutually uncorrelated. The minimum relative regime size for cases

with no error autocorrelation correction is ǫR = 0.05, and for cases with serial

correlation ǫR = 0.2, that is 20% of the length of the series.

4.2.1 A single break

First we look at a battery of data generating processes with a single break in the

middle of the series. The model has a general form

yt = µ1 + ν1Ψt + et, if t ≤ [0.5T ]

yt = µ2 + ν2Ψt + et, if t > [0.5T ],
(10)

and we are testing for the break in both parameters, i.e. zt = {1, Ψt}. The results

appear in Table 2. In the case of a single break, the power of our procedure (either

LM1 or LM3) is generally somewhat higher than that of the Bai-Perron sequential

procedure. The test based on the first-order Taylor approximation performs a bit

better than the one based on the third-order approximation because in the case of a

single break, the higher-order auxiliary terms do not carry helpful extra information.

Correcting for non-existing serial correlation does not seem to have a large effect

on the power of our procedure. The BP procedure, on the other hand, can lose

as much as 15 percentage points of its power when prewhitening is applied. When

prewhitening is not applied, the results are similar to the ones of our LM1 test, see

panels (c), (f), (g) and columns labelled “BP” and “BPPW” in Table 2.
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Second, we consider two different DGPs (and two sample sizes) with one break

and serially correlated errors. The model has the following general form:

yt = µ1 + vt, if t ≤ [0.5T ]

yt = µ2 + vt, if t > [0.5T ],
(11)

where vt = 0.5vt−1+et and we are testing for the break in the intercept, i.e. zt = {1}.
The results appear in Table 3. Again, our LM1 test does about as well as the BP

sequential procedure. It is easier to detect small breaks with procedures without

serial correlation correction than with procedures with correction. A problem arises

because the correction tends to partially absorb the break. This seems to be true

for both methods. If the jump (the break is in the intercept) and sample size are

large enough, then accounting for serial correlation pays off (panel (k)), otherwise

the effect is rather the opposite. In three cases out of four, the sequential method

of BP has an advantage of a few percentage points in power, but the differences are

not large. Differences become somewhat larger if one did (erroneously) not apply

the prewhitening technique when using BP’s procedure, especially for smaller breaks

and sample sizes.

4.2.2 Two breaks

To see how the procedures compare to each other in the presence of multiple struc-

tural breaks, we simulate data from the following model:

yt = µ1 + ν1Ψt + et, if 1 < t ≤ [T/3]

yt = µ2 + ν2Ψt + et, if [T/3] < t ≤ [2T/3] (12)

yt = µ3 + ν3Ψt + et, if [2T/3] < t < T.

In model (12) there are two equally-spaced breaks and all parameters of the model

are potentially subject to change (zt = {1, Ψt}), and the errors are serially uncor-

related and homoskedastic. The results are presented in Table 4. If there are only

breaks in the intercept, however large, the power loss for our procedure is substan-

tial when correcting for non-existing serial correlation. As an example, the power

may drop from 70% to 10%, see panel (g) in Table 4. This suggests that a break in

the intercept can be “explained” by adding dynamic structure to the model. This,

however is common practice in cases where there is no prior information about the

dynamic behaviour of yt. The loss in power is only a few percentage points when

the other parameters change as well. BP for some reason often gain from correcting
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for non-existing serial correlation (and often even more so when prewhitening the

data) and their sequential procedure with (erroneous) correction is working better

than ours.

In the presence of multiple breaks of opposite direction, the test based on the

third-order Taylor expansion (LM3) generally works better than the one based on

first-order approximation (LM1). Differences in the performance can be large, see

panels (g) and (i), for example. This can be explained by the added flexibility in the

third-order approximation that allows for nonmonotonic and asymmetric parameter

nonconstancy. The sequence based on LM1 still works better than the one based on

LM3 when the change in the parameters is gradual, see panels (c), (f), (j) – (l).

To further study the properties of the tests, we simulate data with intercept

shifts and serially correlated errors. That is,

yt = µ1 + vt, if 1 < t ≤ [T/3]

yt = µ2 + vt, if [T/3] < t ≤ [2T/3] (13)

yt = µ3 + vt, if [2T/3] < t < T,

where vt = 0.5vt−1 + et with {et} ∼ nid(0, 1). We focus on cases where the mean

returns to its old value at the second break, i.e µ1 = µ3 = 0. The results can be

found in Table 5. When no correction is carried out for the serial correlation present

in the data, our procedure (LM3) clearly dominates and the procedure of BP selects

models with m ≥ 3 more often than parsimonious models, see panels (c) – (f). Our

procedure also dominates when the autocorrelation is accounted for, except when

shifts are small and samples short. As one would expect, the test sequence based

on the first-order Taylor approximation has no power at all, but the one based on

the third-order approximation performs well. In BP case, prewhitening improves

the power when breaks are large and samples long.

We replicate two more experiments from Bai and Perron (2006). The data is

generated from equation (12) but allowing the distribution of errors and variables

to change across segments. That is, we use:

Ψ∗
t ∼ nid(ς1, 1), if 1 < t ≤ [T/3]

Ψ∗
t ∼ nid(ς2, 1), if [T/3] < t ≤ [2T/3] (14)

Ψ∗
t ∼ nid(ς3, 1), if [2T/3] < t < T
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and

et ∼ nid(0, σ2
1), if 1 < t ≤ [T/3]

et ∼ nid(0, σ2
2), if [T/3] < t ≤ [2T/3] (15)

et ∼ nid(0, σ2
3), if [2T/3] < t < T

in (12).

In Table 6 we report the results of one of the experiments where the fixed pa-

rameters (regression coefficients) are set as follows: ν1 = 1, ν2 = 1.5, ν3 = 0.5 and

µ1 = 0, µ2 = 0.5, µ3 = −0.5. The minimum relative regime size is set to ǫR = 0.15

as in Bai and Perron (2006). The changes in error variance and in the mean of Ψ∗
t

are of the same type: starting from value one, jumping to a higher level, and then

returning to value one again. That is, for every DGP in this experiment σ2
1 = σ2

3 = 1

and ς1 = ς3 = 1.

The results in first few columns in Table 6 concern the case where no correction

for serial correlation and/or heteroskedasticity is made. Columns 6 – 9 refer to

the case most likely to be encountered in practice, which is correcting for serial

correlation but not accounting for changes in error variance. The last column covers

the results for the correct variant of BP’s test sequence. The test statistics used there

account for heteroskedasticity and do not allow for serial correlation correction. That

test performs exceptionally well and requires no further comment. Currently there

does not exist an ST counterpart to it.

When no correction is undertaken for heteroskedasticity or serial correlation,

the BP procedure excels. That is to be expected, as their test accommodates the

possibility of heterogenous regressors and, allowing for that possibility, is highly

recommended by BP. Although the best of the LM tests is somewhat less powerful

than the sequential procedure of BP, it is able to choose m = 2 frequently enough,

except for cases when the sample size is small and either ς2 = 4 or σ2
2 = 4 or both. In

situations like that, parsimonious models may get selected more often than a model

with two breaks. If one corrects for the serial correlation, then results are mixed:

no test clearly dominates the other and the power of both methods decreases. BP

can lose even as much as 74 percentage points (see panel (d)) when prewhitening is

used, and even more when data are not prewhitened. At least in half of the cases,

see panels (c), (d), (g), (h), the correction (partly) absorbs the changes, and models

that are too parsimonious are selected most frequently.

Table 7 reports the results of the other experiment. The DGPs are such that

the intercept and slope parameters increase at breakpoints gradually, i.e. ν1 = 1,

13



ν2 = 1.5, ν3 = 2 and µ1 = 0, µ2 = 0.5, µ3 = 1. Even here σ2
1 = σ2

3 = 1 and ς1 = ς3 = 1

in all cases, whereas the second segment mean and variance differ from the values

above. Again, the test with exactly correct setup has the best performance, see the

last column in Table 7. The uncorrected3 version of BP performs somewhat better

than ours in some cases, because it has the advantage of explicitly allowing for

heterogenous regressors. For larger samples, our procedure is able to select m = 2

reasonably frequently. In this case the serial correlation correction has a rather

devastating effect on the procedure of BP. Our procedure loses some power as well

but not nearly as much as BP and has superior power in four cases out of eight and

about equal power in one more.

The results of our technique depend somewhat on the choice of the discount

coefficient τ . It is clear that increasing τ makes the strategy less parsimonious.

When τ = 1, we retain the same nominal level for each test in the sequence and

are more likely to choose less parsimonious models than if we choose τ < 1. When

setting τ = 1, our ST-procedure can lose up to 7 percentage points in power for

the current DGPs with one break compared to the case τ = 0.5. The hypothesis of

only one break is rejected somewhat more frequently and some probability mass is

shifting from P (m̂ = 1) to P (m̂ = 2). On the other hand, for models with two breaks

we can gain up to 15 percentage points in power. This is true for configurations

where it was previously difficult to detect the second break. We may also lose a

little in the cases where the number of breaks was estimated precisely, since now

models with more than two breaks have a chance to be selected. Setting τ < 0.5 has

the opposite effect - parsimony is strongly preferred and finding the second break

becomes more difficult.

We can also conclude that it is not necessary to set the minimum regime size

equal to 15− 20% for the “corrected” cases when the ST-procedure is applied. One

could easily set the minimum regime length to be 5 − 10% of the total sample size,

without much affecting the power of our test. Depending on the DGP, the average

change would be less than one percentage point and maximum gains and losses

about three percentage points.

3In their original paper BP set the minimum regime size to ǫR = 0.20 to ensure tests with
adequate sizes. In practice, the heterogeneity of error terms might not be known in advance and
using a large minimum regime size with Uncorrected version of the test is not justified. By setting
ǫR = 0.20 already here BP gain up to 13 percentage points in power (for panels (a) and (h) in
Table 7). The power of our procedure does not depend on the regime size in this exercise; the
power does not vary by more than 0.5 percentage points.
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4.2.3 Dynamic models and breaks

It is not completely clear, however, how one would in practice handle the problem

of detecting breaks in the presence of autocorrelation. The design of the simulations

just discussed implicitly suggests that the model builder is primarily prepared for

finding a break in the intercept. The conditional mean of the simulated models

has a very simple structure, and the error process is assumed to be autocorrelated.

An interesting question is what would happen if the breaks were of more general

character. In order to illuminate this situation, we simulated data from an AR(2)

model with two structural breaks in the dynamic behaviour of the process:

yt =





2.7 + 0.8yt−1 − 0.2yt−2 + εt if 1 < t ≤ [T/3]
0.3 − 0.2yt−1 + 0.5yt−2 + εt if [T/3] < t ≤ [2T/3]

1 + 0.7yt−1 − 0.3yt−2 + εt if [2T/3] < t < T.
(16)

In (16) each segment is covariance stationary and an example of a generated series

can be found in Figure 1.

Figure 1: Data simulated according to (16)

We consider the following three strategies for proceeding that are also supported in

the GAUSS code of BP:

• Strategy (1): One makes the assumption that there are breaks in the overall

unconditional mean of the process but that the dynamics are not changing

over time. In that case, when using BP’s sequential method, one would only

test for breaks in the intercept and correct for possible serial correlation in the

errors using nonparametric methods.

• Strategy (2): One assumes that both the mean and the dynamics of the process

are changing over time, but that the distribution of regressors should be the

same in every segment. This would mean that the AR order of the model is
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first selected by an appropriate information criterion and the model is then

tested for structural breaks using the homogenous version of BPs sequential

procedure.

• Strategy (3): One proceeds as in Strategy (2) but follows the recommendations

of BP and relaxes the homogeneity assumption.

In Table 8 we report the model selection frequencies of the sequential procedure

of BP for those three strategies and the model selection frequencies of the “practi-

tioner’s strategy” (similar to the second strategy above) when using our ST-method.

Strategy (1) is using nonparametric correction, and the minimum regime size should

be set to 15 − 20% of the sample size, according to BP-s suggestions. We let

ǫR = 0.20. For the rest of the strategies the minimum regime size should not have

a large effect on the outcome, so we set ǫR = 0.05. It is clear from the table that

prewhitening and using the HAC estimator is about sufficient in this specific case if

one sets the minimum regime size equal to 20%. Failing to do so will affect the re-

sults considerably. For regime lengths ǫR = 0.05, 0.10, 0.15 the correct decisions are

made in 42.45%, 55.10% and 63.20% of the time, respectively, instead of 72% that

is reported in Table 8. The frequency of choosing the correct number of breaks in

the column corresponding to the second strategy is very low. Comparing the results

in columns (2) and (3), it is obvious why Bai and Perron strongly recommend one

allows for different variances of regressors across segments, or in this case, a different

variance for y in each regime. It appears that this assumption has a large positive

effect on power. It is rather striking how much the results in columns (2) and (3)

can differ from each other. Both strategies also gain power when one increases the

minimum required regime length. With ǫR = 0.20 the correct decision is made in

about 96% of cases. ST-procedures perform as expected, LM3 is more powerful than

LM1 because there are two breaks in the simulated model. The power is robust to

the regime length selected. This small experiment indicates that model uncertainty

is a serious issue and that results depend on the modelling approach used in the

study.

16



5 Empirical example

We consider an applications of the procedures presented in this paper. The US

ex-post real interest rate series that has been studied in Bai and Perron (2003a) and

González and Teräsvirta (2006), among others. The conclusions from these studies

are that there are two to three breaks (or shifts) in the mean of the series.

The US ex-post real interest rate is defined as the three-month treasury bill rate

deflated by the consumer price index (CPI) inflation rate. Figure 2 presents the

quarterly series containing 103 observations for the period 1961:1-1986:3. Looking

at the series one may, indeed, suspect the presence of two or three breaks.

Figure 2: US ex-post real interest rate 1961:1 - 1986:3

Below we present the results from testing sequences at the 5% level of significance. If

one is interested in finding out the number of changes only in the mean of the series,

one should consider the test specification in Bai and Perron (2003a), that is identical

to the Strategy (1) in Section 4.2.3. The only parameter to be tested for instability

in this case is the intercept. Following BP, we set the minimum regime size to 15%

of the total sample size, take care of serial correlation through pre-whitening and

allow the residual variances be different across segments. As a result, we find three

breaks, estimated at 1966:4, 1972:3 and 1980:3.

To use any of the other strategies or the sequential procedure proposed in this

paper, one has to choose the lag length k, initially assumed equal for every regime.

It is selected from the linear autoregressive model using the Schwarz Bayesian in-

formation criterion and the Breusch-Godfrey LM test of no error autocorrelation.

This results in the estimated lag length k̂ = 3. If we then follow Strategy (2) we

detect three breaks at: 1967:2, 1974:3 and 1979:4. The number of breaks coincides

with the results form Strategy (1), but the location of them does not. Following
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Strategy (3) by relaxing the homogeneity restriction renders two breaks at 1974:3

and 1979:4.

Given the nature of the series (changes in opposite directions) we would expect

the testing sequence based on the third-order Taylor expansion have more power

than the one based on the first-order expansion. For LM1-based sequence the first

p-value is equal to 0.485 and thus linearity is not rejected. LM3-based test sequence

is able to detect the nonlinearity. The p-value for the presence of a structural break

is 0.0053 and the most prominent break found at 1979:4. At the second step, the

linearity is again rejected, with p = 0.0134 and the second break is found at 1974:3.

The third test in our sequence renders a p-value 0.048 and the presence of an ad-

ditional break is rejected. If we would decide not to halve the significance level on

each step the third p-value would signal the presence of another break. Summary of

the results for all approaches considered can be found in Table 9.

6 Conclusions

In this paper we show how a smooth transition regression approximation to a piece-

wise linear structural break model is useful in determining the number of breaks

in the latter model when it is not known in advance. The approach proposed and

simulated in the paper is based on sequential hypothesis testing and is simple to

apply in practice. The whole procedure is based on standard inference and the user

can control the overall significance level of the tests in the sequence. In addition,

no restrictions are imposed on the number of changing parameters. The simulations

show that our procedure is well-sized and works well in comparison with the sequen-

tial procedure suggested by Bai and Perron. Neither of the alternatives dominates

the other in small and moderate samples.

The examples discussed above show that the results of both our and Bai and

Perron’s approaches depend on the way the error autocorrelation is being taken care

of. Adding lags to the model is a common practice, but sometimes small breaks can

get absorbed by the extra dynamics. Then again, in practice a firm knowledge of the

presence of a break is rather an exception than rule and a casual modeller would add

lags to the model. One has to be careful when applying Bai and Perron’s technique

as well. The results can depend heavily on the assumptions one is or is not willing to

make about the error term and series at hand. Allowing for different distributions of

covariates in different segments helps a great deal, but an unnecessary prewhitening
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can considerably weaken the procedure’s ability to detect breaks.

Overall, our ST-method can be considered a complement to the classical ap-

proach of Bai and Perron. Our procedure may be extended to accommodate het-

eroskedasticity by making the error variance change over time at the same points as

the mean. This extension is, however, left for further research.
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Tables

Table 1: Selection frequencies of Bai and Perron sequential pro-
cedure (BP) and ST-procedures (LM1 and LM3). Data are gen-
erated with no breaks, i.e. m = 0.

Uncorrected Corrected
Model Choice BP LM1 LM3 BPPW BP LM1 LM3

m = 0 95.15 94.15 95.55 93.60 94.35 94.25 95.55

(a) m = 1 4.70 5.85 4.15 6.15 5.55 5.75 3.95
m = 2 0.15 0.00 0.30 0.25 0.10 0.00 0.45

m = 0 95.95 94.45 95.55 84.40 94.00 94.55 95.50

(b) m = 1 3.90 5.55 4.35 13.50 5.80 5.45 4.00
m = 2 0.15 0.00 0.10 1.95 0.20 0.00 0.50

m = 0 94.75 94.75 94.95

(c) m = 1 5.05 5.10 4.65
m = 2 0.15 0.15 0.35

m = 0 46.90 73.30 53.90 91.90 86.20 93.75 93.15

(d) m = 1 28.15 24.85 30.35 7.45 12.70 6.25 5.95
m = 2 16.85 1.85 12.85 0.65 1.05 0.00 0.80

m = 0 73.75 84.35 77.15 97.70 90.55 94.60 93.95

(e) m = 1 20.70 15.50 18.85 2.20 9.15 5.40 5.10
m = 2 4.95 0.15 3.85 0.10 0.30 0.00 0.85

m = 0 99.85 99.70 99.90 97.35 97.40 97.20 97.70

(f) m = 1 0.15 0.30 0.10 2.55 2.45 2.80 2.10
m = 2 0.00 0.00 0.00 0.10 0.15 0.00 0.20

Notes : The table contains selection frequencies in per cent based on 2000
Monte Carlo replications. Columns labelled “Uncorrected” contain the
results when not correcting for serial correlation, and columns labelled
“Corrected” correspond to tests that correct for serial correlation either
non-parametrically or parametrically. The column labelled “BPPW” con-
tains the results of the BP sequential test when prewhitening is applied
before estimating the long-run covariance matrix. The columns labelled
“LM1” and “LM3” correspond to the linearity tests that make use of the
first-order and third-order Taylor expansions, respectively.
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Table 2: Model selection frequencies of the uncorrected and corrected
versions of the BP and ST-procedures. Data are generated from equation
(10), i.e. errors are uncorrelated and m = 1.

Uncorrected Corrected
Model Choice BP LM1 LM3 BPPW BP LM1 LM3

Change in the intercept only: ν1 = ν2 = 1

µ1 = 0 m = 0 55.75 46.50 58.80 36.75 44.25 47.00 59.65
(a) µ2 = 0.5 m = 1 42.60 52.90 39.90 54.65 53.95 52.35 38.80

T = 120 m = 2 1.60 0.55 1.20 8.00 1.80 0.65 1.20

µ1 = 0 m = 0 20.20 14.90 25.25 14.25 13.60 15.35 25.75
(b) µ2 = 0.5 m = 1 77.85 83.40 73.40 78.00 84.60 83.25 72.90

T = 240 m = 2 1.95 1.65 1.35 7.70 1.75 1.40 1.30

µ1 = 0 m = 0 0.90 0.85 2.95 1.35 0.45 2.25 5.25
(c) µ2 = 1 m = 1 95.00 96.75 94.65 80.90 95.20 95.85 92.65

T = 120 m = 2 4.10 2.30 2.20 16.95 4.30 1.90 1.75

Change in the slope only: µ1 = µ2 = 0

ν1 = 1 m = 0 21.85 15.40 26.75 11.55 14.75 15.85 27.10
(d) ν2 = 1.5 m = 1 75.45 83.15 71.25 73.50 82.30 82.80 70.80

T = 120 m = 2 2.65 1.45 1.95 14.35 2.95 1.30 1.80

ν1 = 1 m = 0 0.90 0.70 2.30 0.45 0.50 0.70 2.25
(e) ν2 = 1.5 m = 1 96.25 97.60 95.60 88.95 97.15 97.60 95.85

T = 240 m = 2 2.75 1.70 2.00 10.30 2.20 1.65 1.90

Change in all parameters: ν1 = 1, µ1 = 0

ν2 = 1.5 m = 0 0.30 0.30 1.10 0.10 0.15 0.45 1.55
(f) µ2 = 0.5 m = 1 95.75 97.15 96.40 82.15 95.20 97.30 96.20

T = 120 m = 2 3.90 2.40 2.30 17.00 4.60 2.25 1.95

ν2 = 2 m = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(g) µ2 = 1 m = 1 95.40 97.10 97.00 81.65 95.20 97.45 96.95

T = 120 m = 2 4.55 2.70 2.85 17.55 4.75 2.55 2.65

Notes : The table contains selection frequencies in per cent based on 2000 Monte
Carlo replications. Columns labelled “Uncorrected” contain the results when not
correcting for serial correlation, and columns labelled “Corrected” correspond to
tests that correct for serial correlation either nonparametrically or parametrically.
The column labelled “BPPW ” contains the results of the BP sequential test when
prewhitening is applied before estimating the long-run covariance matrix. The
columns labelled “LM1” and “LM3” correspond to the linearity tests that make
use of the first-order and third-order Taylor expansions, respectively.
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Table 3: Model selection frequencies of the uncorrected and corrected
versions of the BP and ST-procedures. Data are generated from equation
(11), i.e. errors are serially correlated and m = 1.

Uncorrected Corrected
Model Choice BP LM1 LM3 BPPW BP LM1 LM3

µ1 = 0 m = 0 27.15 46.55 34.35 75.35 64.80 78.35 82.25
(h) µ2 = 0.5 m = 1 38.20 48.35 45.40 24.10 33.55 21.60 16.25

T = 120 m = 2 24.15 4.95 16.60 0.55 1.65 0.05 1.30

µ1 = 0 m = 0 14.85 30.00 23.05 62.30 52.05 62.60 71.60
(i) µ2 = 0.5 m = 1 41.25 60.50 51.20 36.60 46.05 37.20 26.30

T = 240 m = 2 26.60 9.15 20.25 1.05 1.85 0.20 1.70

µ1 = 0 m = 0 4.95 10.80 7.80 32.85 23.60 41.00 52.30
(j) µ2 = 1 m = 1 49.35 75.20 62.90 64.20 70.80 58.85 45.35

T = 120 m = 2 30.90 13.65 23.85 2.85 5.40 0.15 1.90

µ1 = 0 m = 0 0.40 1.40 0.75 8.15 5.00 11.15 19.10
(k ) µ2 = 1 m = 1 43.85 80.20 66.60 89.05 89.80 86.50 77.75

T = 240 m = 2 32.75 17.45 25.85 2.75 5.15 2.35 2.65

Notes : The table contains selection frequencies in per cent based on 2000 Monte
Carlo replications. Columns labelled “Uncorrected” contain the results when not
correcting for serial correlation, and columns labelled “Corrected” correspond to
tests that correct for serial correlation either nonparametrically or parametrically.
The column labelled “BPPW” contains the results of the BP sequential test when
prewhitening is applied before estimating the long-run covariance matrix. The
columns labelled “LM1” and “LM3” correspond to the linearity tests that make
use of the first-order and third-order Taylor expansions, respectively.
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Table 4: Model selection frequencies of the uncorrected and corrected
versions of the BP and ST-procedures. Data are generated from equation
(12), m = 2.

Uncorrected Corrected
Model Choice BP LM1 LM3 BPPW BP LM1 LM3

Change in the intercept only: ν1 = ν2 = ν3 = 1

µ1 = 0 m = 0 88.90 95.10 79.90 70.10 82.70 95.30 80.70
(a) µ2 = 0.5 m = 1 9.60 4.70 16.90 17.65 13.45 4.55 14.95

µ3 = 0 m = 2 1.50 0.20 3.10 11.55 3.85 0.15 4.30

m = 3 0.00 0.00 0.10 0.70 0.00 0.00 0.05

µ1 = 0 m = 0 57.60 97.15 29.60 52.00 57.25 97.55 39.25
(b) µ2 = 1 m = 1 8.90 1.40 27.40 6.45 6.55 1.55 24.40

µ3 = 0 m = 2 31.30 1.40 42.60 40.10 36.10 0.90 35.95

m = 3 2.15 0.05 0.40 1.45 0.10 0.00 0.40

µ1 = 0 m = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.40
(c) µ2 = 1 m = 1 41.50 47.50 64.95 25.05 31.40 67.25 79.70

µ3 = 2 m = 2 55.10 52.05 34.30 72.85 68.15 32.50 19.20

m = 3 3.20 0.45 0.75 2.10 0.45 0.25 0.70

µ1 = 0 m = 0 0.00 10.40 0.05 0.45 0.00 57.50 17.45
(d) µ2 = 1 m = 1 12.45 15.65 28.85 10.45 9.25 17.45 34.10

µ3 = −1 m = 2 83.45 73.10 70.25 88.55 90.70 24.85 47.80

m = 3 4.00 0.85 0.85 0.55 0.05 0.20 0.65

µ1 = 0 m = 0 0.00 0.00 0.00 0.00 0.00 35.50 15.65
(e) µ2 = −1 m = 1 14.80 18.55 30.15 11.50 10.90 23.20 38.10

µ3 = 2 m = 2 81.80 80.75 69.15 87.90 88.95 40.80 45.60

m = 3 3.30 0.70 0.70 0.60 0.15 0.50 0.65

µ1 = 0 m = 0 0.00 0.00 0.00 0.00 0.00 0.05 0.45
(f) µ2 = 1 m = 1 14.25 18.70 31.65 11.05 9.65 43.00 58.85

µ3 = 3 m = 2 80.95 80.50 67.50 88.40 90.20 56.35 39.45

m = 3 4.60 0.80 0.85 0.55 0.15 0.60 1.25

µ1 = 0 m = 0 0.00 29.25 0.00 0.55 0.55 88.90 37.95
(g) µ2 = 2 m = 1 0.00 0.05 0.05 0.00 0.00 0.90 2.75

µ3 = −1 m = 2 93.95 69.65 98.65 99.35 99.35 10.05 58.45

m = 3 5.85 1.05 1.30 0.10 0.10 0.15 0.85

Notes : See the Notes of Table 3.
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Table 4: Model selection frequencies of the uncorrected and corrected
versions of the BP and ST-procedures. Data are generated from equation
(12), m = 2, (cont.).

Uncorrected Corrected
Model Choice BP LM1 LM3 BPPW BP LM1 LM3

Change in the slope only: µ1 = µ2 = µ3 = 0

ν1 = 1 m = 0 78.05 95.30 60.65 58.60 74.45 95.35 61.35
(h) ν2 = 1.5 m = 1 14.35 4.05 25.85 13.90 14.00 3.85 23.30

ν3 = 1 m = 2 7.25 0.60 13.15 26.15 11.45 0.80 15.20

m = 3 0.35 0.05 0.35 1.35 0.10 0.00 0.15

ν1 = 1 m = 0 20.05 96.20 6.55 31.40 53.60 96.30 7.60
(i) ν2 = 2 m = 1 1.25 0.65 7.90 1.25 1.10 0.75 7.65

ν3 = 1 m = 2 72.20 3.15 84.85 65.40 44.95 2.95 84.20

m = 3 6.35 0.00 0.70 1.95 0.35 0.00 0.55

ν1 = 1 m = 0 0.25 0.10 0.50 0.30 0.50 0.10 0.55
(j) ν2 = 1.5 m = 1 86.70 86.45 90.70 56.30 75.85 87.20 91.35

ν3 = 2 m = 2 12.55 13.45 8.55 42.15 23.55 12.65 7.85

m = 3 0.50 0.00 0.25 1.25 0.10 0.05 0.25

ν1 = 1 m = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(k) ν2 = 2 m = 1 2.35 5.50 10.90 2.05 3.40 7.35 13.40

ν3 = 3 m = 2 89.50 93.60 88.30 94.10 95.45 91.90 85.70

m = 3 7.75 0.90 0.80 3.85 1.15 0.75 0.90

ν1 = 1 m = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(l) ν2 = 0.5 m = 1 60.95 62.10 74.00 35.70 50.15 66.70 78.85

ν3 = −0.5 m = 2 37.50 37.45 25.55 62.50 49.55 33.05 20.65

m = 3 1.55 0.45 0.45 1.80 0.30 0.25 0.50
Change in all parameters

µ1 = 0, ν1 = 1 m = 0 87.85 94.40 79.40 76.20 82.05 94.60 79.55
(m) µ2 = 0.5, ν2 = 0.5 m = 1 10.55 5.40 17.25 15.85 14.70 5.20 15.95

µ3 = 0, ν3 = 1 m = 2 1.55 0.20 3.10 7.60 3.20 0.20 4.30

m = 3 0.05 0.00 0.25 0.35 0.05 0.00 0.20

µ1 = 0, ν1 = 1 m = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(n) µ2 = 1, ν2 = 1.5 m = 1 13.75 15.90 27.55 13.50 9.65 17.80 30.75

µ3 = 2, ν3 = 2 m = 2 83.70 83.15 71.65 86.15 90.35 81.50 68.55

m = 3 2.55 0.95 0.80 0.35 0.00 0.70 0.70

µ1 = 0, ν1 = 1 m = 0 0.00 0.00 0.00 0.00 0.00 3.75 0.30
(o) µ2 = 1, ν2 = 2 m = 1 16.20 20.40 30.45 20.15 12.20 21.90 32.50

µ3 = 2, ν3 = 1 m = 2 80.10 78.85 68.50 78.90 87.70 73.95 66.30

m = 3 3.55 0.75 1.05 0.95 0.10 0.40 0.90

Notes : See the Notes of Table 3.
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Table 5: Model selection frequencies of the uncorrected and corrected
versions of the BP and ST-procedures. Data are generated from equa-
tion (13), i.e. errors are serially correlated and m = 2.

Uncorrected Corrected
Model Choice BP LM1 LM3 BPPW BP LM1 LM3

m = 0 37.65 74.30 43.10 88.75 82.50 94.95 88.40
(a) µ2 = 0.5 m = 1 25.20 22.90 31.55 9.90 14.30 5.05 8.90

T = 120 m = 2 22.45 2.70 21.20 1.35 3.20 0.00 2.40

m = 3 10.75 0.10 4.15 0.00 0.00 0.00 0.30

m = 0 27.45 75.05 35.05 87.75 82.10 95.45 84.70
(b) µ2 = 0.5 m = 1 22.25 19.50 31.35 9.35 12.55 4.55 11.05

T = 240 m = 2 27.00 5.20 28.25 2.90 5.35 0.00 4.15

m = 3 16.45 0.25 5.35 0.00 0.00 0.00 0.10

m = 0 18.75 77.15 22.05 81.80 74.75 97.45 79.05
(c) µ2 = 1 m = 1 14.15 14.20 25.15 11.95 14.85 2.55 13.15

T = 120 m = 2 32.80 7.95 43.90 6.15 10.30 0.00 7.45

m = 3 24.45 0.70 8.90 0.10 0.10 0.00 0.35

m = 0 4.20 77.95 7.40 67.85 64.90 97.80 57.80
(d) µ2 = 1 m = 1 5.20 6.95 12.35 12.40 11.35 2.05 19.25

T = 240 m = 2 39.55 14.05 64.95 19.55 23.40 0.15 22.80

m = 3 33.10 1.05 15.30 0.20 0.35 0.00 0.15

m = 0 0.35 85.35 1.30 75.85 78.05 99.80 63.15
(e) µ2 = 2 m = 1 0.65 1.45 2.00 2.90 2.15 0.20 9.35

T = 120 m = 2 39.05 11.50 75.35 20.90 19.55 0.00 27.25

m = 3 38.50 1.70 21.35 0.35 0.25 0.00 0.25

m = 0 0.00 85.55 0.00 34.30 59.80 99.80 21.05
(f) µ2 = 2 m = 1 0.00 0.00 0.05 0.05 0.00 0.10 4.75

T = 240 m = 2 35.60 12.15 75.25 64.90 39.95 0.10 73.45

m = 3 37.65 2.30 24.70 0.75 0.25 0.00 0.75

m = 0 0.00 96.95 0.00 92.70 99.25 100.00 74.00
(g) µ2 = 4 m = 1 0.00 0.00 0.00 0.00 0.00 0.00 1.20

T = 120 m = 2 37.50 2.25 72.75 7.30 0.75 0.00 24.05

m = 3 38.90 0.80 27.25 0.00 0.00 0.00 0.75

m = 0 0.00 96.80 0.00 48.30 98.10 100.00 45.35
(h) µ2 = 4 m = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.10

T = 240 m = 2 36.35 2.35 72.40 51.70 1.90 0.00 53.15

m = 3 37.55 0.85 27.60 0.00 0.00 0.00 1.40

Notes : See the Notes of Table 3.
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Table 6: Model selection frequencies of the uncorrected and corrected versions
of the BP and ST-procedures. Uncorrelated but heterogenous data and errors
across segments, m = 2, ǫR = 0.15 for the corrected versions.

Uncorrected AC-Correct σ2

i
(u)

Model Choice BP LM1 LM3 BPPW BP LM1 LM3 BP

σ2

2
= 2 m = 0 0.00 20.85 0.00 0.70 1.00 42.90 5.35 0.00

(a) ς2 = 2 m = 1 11.45 13.35 23.80 23.75 30.70 32.40 55.10 6.20
T = 120 m = 2 83.90 65.30 75.60 56.80 65.65 24.45 39.25 91.95

σ2

2
= 2 m = 0 0.00 1.10 0.00 0.00 0.00 10.05 0.10 0.00

(b) ς2 = 2 m = 1 0.15 0.35 0.85 3.45 3.55 14.65 24.35 0.05
T = 240 m = 2 96.60 97.55 98.30 72.95 94.35 74.75 74.75 98.95

σ2

2
= 2 m = 0 0.00 24.30 0.00 12.60 7.90 30.20 1.65 0.00

(c) ς2 = 4 m = 1 25.85 39.40 41.50 63.60 87.20 57.45 71.50 9.45
T = 120 m = 2 70.35 36.10 57.75 19.45 4.85 12.20 26.30 88.75

σ2

2
= 2 m = 0 0.00 2.20 0.00 0.15 0.15 4.55 0.00 0.00

(d) ς2 = 4 m = 1 0.75 12.40 5.55 73.50 94.80 54.60 45.05 0.10
T = 240 m = 2 95.90 84.35 93.55 21.70 5.00 40.15 54.10 98.55

σ2

2
= 4 m = 0 0.00 34.70 0.30 1.95 3.10 57.15 14.80 0.00

(e) ς2 = 2 m = 1 33.10 24.80 44.40 35.45 50.30 31.10 59.50 19.80
T = 120 m = 2 62.70 40.35 54.65 47.70 45.10 11.75 25.35 78.80

σ2

2
= 4 m = 0 0.00 3.40 0.00 0.00 0.00 19.15 0.65 0.00

(f) ς2 = 2 m = 1 4.80 4.30 8.45 17.90 23.05 23.20 40.35 1.75
T = 240 m = 2 91.00 91.25 90.40 63.45 75.15 57.45 58.30 97.35

σ2

2
= 4 m = 0 0.00 36.05 0.15 31.00 19.05 46.95 7.60 0.00

(g) ς2 = 4 m = 1 51.55 45.35 62.30 47.35 76.70 47.45 76.95 17.80
T = 120 m = 2 44.75 18.50 36.90 18.25 4.25 5.60 15.25 79.80

σ2

2
= 4 m = 0 0.00 4.80 0.00 4.00 0.45 12.10 0.35 0.00

(h) ς2 = 4 m = 1 10.45 27.80 20.55 70.90 96.15 62.40 64.20 1.05
T = 240 m = 2 85.30 66.95 78.35 21.35 3.40 25.30 35.00 96.75

Notes : The table contains selection frequencies in per cent based on 2000 Monte Carlo
replications. Columns labelled “Uncorrected” contain the results when not correcting for
serial correlation, and columns labelled “AC-Correct” correspond to tests that correct
for serial correlation either nonparametrically or parametrically. The column labelled
“BPPW ” contains the results of the BP sequential test when prewhitening is applied
before estimating the long-run covariance matrix. The column labelled “σ2

i
(u)” contains

the results of the BP sequence when the correct specification of the test is applied. The
columns labelled “LM1” and “LM3” correspond to the linearity tests that make use of
the first-order and third-order Taylor expansions, respectively.
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Table 7: Model selection frequencies of the uncorrected and corrected
versions of the BP and ST-procedures. Uncorrelated but heterogenous data
and errors across segments, m = 2.

Uncorrected AC-Correct σ2

i
(u)

Model Choice BP LM1 LM3 BPPW BP LM1 LM3 BP

σ2

2
= 2 m = 0 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

(a) ς2 = 2 m = 1 35.75 38.90 56.95 41.15 59.25 51.80 67.65 21.80
T = 120 m = 2 60.35 60.50 42.55 56.70 40.65 48.05 32.00 78.00

σ2

2
= 2 m = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) ς2 = 2 m = 1 0.80 1.90 3.85 6.80 8.65 11.95 17.70 0.35
T = 240 m = 2 90.85 97.10 95.25 90.90 90.45 87.35 81.50 97.70

σ2

2
= 2 m = 0 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00

(c) ς2 = 4 m = 1 46.50 65.40 65.25 81.00 98.75 72.85 74.80 20.40
T = 120 m = 2 50.45 34.30 34.05 13.65 1.25 27.05 24.80 78.75

σ2

2
= 2 m = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(d) ς2 = 4 m = 1 2.15 20.75 10.45 83.25 99.00 42.05 31.60 0.15
T = 240 m = 2 93.35 78.70 88.70 16.60 1.00 57.45 67.85 99.20

σ2

2
= 4 m = 0 0.00 0.00 0.10 0.85 0.20 0.00 0.25 0.00

(e) ς2 = 2 m = 1 75.00 75.00 86.50 61.05 86.80 79.55 88.75 58.90
T = 120 m = 2 22.55 24.10 12.90 37.00 12.95 20.40 10.65 41.10

σ2

2
= 4 m = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(f) ς2 = 2 m = 1 17.35 17.70 34.10 35.95 51.40 29.95 49.65 8.75
T = 240 m = 2 75.80 81.35 64.45 62.30 48.55 69.80 49.45 90.50

σ2

2
= 4 m = 0 0.00 0.05 0.00 15.60 0.00 0.05 0.00 0.00

(g) ς2 = 4 m = 1 76.80 84.55 84.70 71.95 99.35 87.40 87.85 36.10
T = 120 m = 2 20.25 14.95 14.25 12.20 0.65 12.55 11.70 63.15

σ2

2
= 4 m = 0 0.00 0.00 0.00 1.75 0.00 0.00 0.00 0.00

(h) ς2 = 4 m = 1 23.75 49.30 40.50 81.05 99.55 60.55 54.80 2.00
T = 240 m = 2 71.00 50.45 57.90 16.85 0.45 39.35 44.20 95.70

Notes : See the Notes of Table 6.
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Table 8: Model selection frequencies at 5% nominal level,
data generated from (16).

Choice BP(1) BP(2) BP(3) LM1 LM3

m = 0 0.00 0.00 0.00 29.75 0.65
m = 1 27.55 3.40 5.85 10.60 21.35
m = 2 72.00 23.95 86.05 59.10 76.80

m = 3 00.45 24.75 7.45 1.40 1.20

Notes : The columns labelled “BP(i)”, i = 1, 2, 3, refer to the
Strategy (i) on page 15. The columns labelled “LM1” and “LM3”
correspond to the linearity tests that make use of the first-order
and third-order Taylor expansions, respectively.

Table 9: Selected break dates for the US ex-
post real interest rate series.

BP(1) BP(2) BP(3) LM1 LM3

1966:4 1967:2
1972:3 1974:3 1974:3 1974:3
1980:3 1979:4 1979:4 1979:4

Notes : The columns labelled “BP(i)”, i = 1, 2, 3, re-
fer to the Strategy (i) on page 15. The columns la-
belled “LM1” and “LM3” correspond to the linearity
tests that make use of the first-order and third-order
Taylor expansions, respectively.
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