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Abstract

This paper considers testing the unit root hypothesis against a smooth transition

autoregressive model as the alternative. The model specification makes it possi-

ble to discriminate between nonstationary random walk and stationary nonlinear

processes. Some new limit results are presented, extending earlier work, and two

F type tests are proposed. Small sample simulations show some size distortions,

why a bootstrap method for estimating p-values to the tests are considered. Power

simulations show some gain in power, compared to the common Augmented Dickey-

Fuller tests. Finally, the two proposed F type tests are applied on a number of real

exchange rates. For several of the exchange rates considered the linear unit root

is rejected in favor of the stationary nonlinear model, supporting the purchasing

power parity hypothesis.
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1 Introduction

There are situations in which the standard Dickey-Fuller tests do not function as well
as one might desire. Difficulties in detecting structural change, shifts in mean or growth
rate, or nonlinear behavior have been noticed in several studies. Nelson and Plosser (1982)
showed for a number of financial and macroeconomical time series that the Dickey-Fuller
tests are unable to reject the unit root hypothesis. Pippenger and Goering (1993) argued
that examining long-run economic relationships using the unit root tests is questionable
in the presence of transaction costs or hysteresis thresholds. Perron (1989) argued that
low power against structural breaks in level and growth rate can result in overstating
the evidence in favor of unit roots. However, the standard Dickey-Fuller tests are also
affected by size distortions in a number of situations. Size distortions, in the form of
too frequent rejections of the null, have been observed when there is a single structural
break in trend or variance under the null hypothesis, see Leybourne, Mills and Newbold
(1998) and Hamori and Tokihisa (1997). Similar size distortion, when the true null model
contains Markov regime switching in trend growth rate, was demonstrated by Nelson,
Piger and Zivot (2001). They also showed power loss when the unit root hypothesis was
tested against a true alternative process with a Markov-switching trend.

The emphasis in these studies, and in a major part of the early literature, has been
on the linear model which today is increasingly viewed to be somewhat inadequate. Any
possible nonlinear characteristics of the time series have thus been ignored. The increasing
empirical evidence on nonlinear relationships and features in economical time series during
the last few years has resulted in efforts to incorporate nonlinear models and techniques
into the existing econometric framework. The literature on testing the unit root hypothesis
against nonlinear models, or vice versa, has recently grown rapidly in this direction.

One of the more recent studies in this area is Caner and Hansen (2001) who analyzed
and provided tests of the unit root hypothesis against the threshold autoregressive (TAR)
model. The authors also proposed a bootstrap method to approximate the limit distribu-
tion of the test under the null, and showed that the unit root hypothesis can be rejected
for the U.S. unemployment rate in favor of the nonlinear TAR model. Also considering
the TAR model as an alternative to the unit root, Enders and Granger (1998) found that
movements toward long-run equilibrium relationship of an interest rate are best described
as an asymmetric process. Modifying the test in Enders and Granger (1998), Berben and
van Dijk (1999) found evidence of asymmetric adjustments towards long-run equilibrium
for a number of forward premium time series. Kapetanios and Shin (2000) developed and
analyzed the unit root test with the self-exciting threshold autoregressive (SETAR) model
as the alternative process. Designed to take into account the threshold nature under the
alternative, they reported some gain in power compared to the Dickey-Fuller test. Other
studies have integrated the unit root test with nonlinear models with a smooth transition
between the regimes. Kapetanios, Shin and Snell (2003) proposed a test of the joint unit
root and linearity hypothesis against a very simple exponential smooth transition autore-
gressive (ESTAR) model that only allows a regime shift in the slope parameter. They
were able to reject the unit root for a number of the real interest rates in favor of the
ESTAR model. Bec, Salem and Carrasco (2002) tested the unit root hypothesis against
a nonlinear logistic STAR model with three regimes. Rejecting the unit root for eleven
out of twenty eight real exchange rates considered, their empirical results lent support to
the so called purchasing power parity (PPP) hypothesis and indicated also strong mean
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reversion for large departures from PPP. Eklund (2003) proposed and analyzed the unit
root test against the logistic smooth transition autoregressive (LSTAR) model, allowing
for regime shift in both intercept and growth rate, and showed that the U.S. monthly
unemployment rate is better described by a STAR model rather than a random walk.

In this paper, the recent work in Eklund (2003) is extended. Two tests are constructed
for the joint linearity and unit root hypothesis against the second-order logistic STAR
model. Compared to the earlier work in Eklund (2003), the alternative STAR model in
this paper allows for regime shifts in intercept, growth rate and in level. The nonlinear
model considered allow the adjustment towards long-run equilibrium to be sudden as well
as smooth.

The paper is outlined as follows. In Section 2 the model is specified. Limit results
and critical values are found in Section 3, while Section 4 includes a Monte Carlo study
of the size and the power properties. Section 5 includes a small introduction to the so
called purchasing power parity problem, and an empirical application on real exchange
rates. Concluding remarks are given in Section 6, and mathematical proofs are presented
in the appendix.

2 Model and joint unit root and linearity hypothesis

Consider the univariate smooth transition autoregressive (STAR) model

∆yt = θ0 + θ1∆yt−1 + ψ1yt−1 + (ϕ0 + ϕ1∆yt−1 + ψ2yt−1)F (γ, c1, c2,4yt−1) + εt, (1)

where ∆yt, and errors, εt, are assumed to be stationary, satisfying Eεt = 0, E |εt|6+r <∞
for some r > 0, and t = 1, . . . , T . The nonlinearity is introduced via the transition function
F (·) which is a bounded continuous function such that F (·) ∈ [− 1

2
, 1

2
]. This allows the

dynamic behavior of ∆yt to change smoothly and nonlinearly with the transition variable
4yt−1 between the two regimes, F (·) = − 1

2
and F (·) = 1/2. Several possibilities exists

for the choice of the function F (·), see Granger and Teräsvirta (1993) and Teräsvirta
(1998) for a detailed presentation and discussion. This paper will focus on (1) with a
second-order logistic function

F (γ, c1, c2,4yt−1) = (1 + exp [−γ (4yt−1 − c1) (4yt−1 − c2)])
−1 − 1

2
, (2)

where the parameters c1 and c2 are the threshold parameters and γ is the speed of transi-
tion between the regimes, γ > 0 for identification reasons. Note that the function F (·) is
constant for γ = 0, in which case model (1) is linear. This fact can be used when testing
linearity. However, testing the hypothesis H0 : γ = 0 in model (1) cannot be performed di-
rectly, since this restriction involves an identification problem, see Luukkonen, Saikkonen
and Teräsvirta (1988), Teräsvirta (1994a,b), Lin and Teräsvirta (1994) for details.

Applying the idea by Luukkonen et al. (1988), the identification problem can be cir-
cumvented by a first-order Taylor approximation of F (γ, c1, c2,4yt−1) around γ = 0.
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Inserting the approximation in (1) results in the following auxiliary model:

∆yt = θ0 + θ1∆yt−1 + ψ1yt−1

+ (ϕ0 + ϕ1∆yt−1 + ψ2yt−1)
γ

4
(4yt−1 − c1) (4yt−1 − c2) + ε∗t

=

(
θ1 −

ϕ0γ (c1 + c2)

4
+
ϕ1γc1c2

4

)
∆yt−1 +

ϕ0γ − ϕ1γ (c1 + c2)

4
(4yt−1)

2 +

+
ϕ1γ

4
(4yt−1)

3 − ψ2γ (c1 + c2)

4
yt−1 4 yt−1 +

ψ2γ

4
yt−1 (4yt−1)

2 +

+
(
θ0 +

ϕ0γc1c2
4

)
+

(
ψ1 +

ψ2γc1c2
4

)
yt−1 + ε∗t

= δ1∆yt−1 + δ2 (∆yt−1)
2 + δ3 (∆yt−1)

3 + φ1yt−1∆yt−1+ (3)

+ φ2yt−1 (∆yt−1)
2 + α+ ζyt−1 + ε∗t .

where ε∗t = εt + (ϕ0 + ϕ1∆yt−1 + ψ2yt−1)R1 (γ,∆yt−1), and R1 is the remainder. Moving
yt−1 from the left-hand to the right-hand side in (3) yields the form

yt = δ1∆yt−1 + δ2 (∆yt−1)
2 + δ3 (∆yt−1)

3 + φ1yt−1∆yt−1+ (4)

+ φ2yt−1 (∆yt−1)
2 + α + ρyt−1 + ε∗t ,

where the original linearity condition, γ = 0, now corresponds to δ2 = δ3 = φ1 = φ2 = 0.
Note that ε∗t = εt under the linearity hypothesis, since R1 = 0 when γ = 0. As the
regression model for the Augmented Dickey-Fuller (ADF) test, with a constant and one
lag of ∆yt, is nested in this auxiliary model, a joint test of the linearity and the unit root
hypothesis amounts to testing the hypothesis H01 : δ2 = δ3 = φ1 = φ2 = α = 0, ρ = 1 in
(4). Under this hypothesis equation (4) becomes

yt = δ1∆yt−1 + yt−1 + εt. (5)

In reduced form equation (5) equals

∆yt =
εt

1 − δ1L
=

∞∑

i=0

ωiεt−i = ω (L) εt = ut, (6)

where L is the lag operator, i.e. Lyt = yt−1. Under H01, {yt} is thus a unit root process
without drift. Note that if H01 is rejected and the alternative is accepted as a basis for
further modelling, the parameters θ0 and ψ1 should be included in the alternative model.
This follows from the fact that testing α = 0 also implies a test of θ0 = 0 in equation (3)
under the original linearity condition γ = 0. The same reason holds for ψ1. Excluding
α = 0 from H01 results in another null hypothesis H02 that allows for a unit root with a
drift component. Assuming that ∆yt is stationary implies that δ1 is restricted to |δ1| < 1
in equation (5). For δ1 = 1, ∆yt is I (1) so that yt is I (2). Furthermore, when δ1 = −1, yt

has a negative unit root, and values |δ1| > 1 implies a nonstationary ∆yt process. Thus,
as a consequence, problems can arise in practice if the value of δ1 is near −1 or 1, as such
values may distort the size of the tests.
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3 Limit results and critical values

In this section, the necessary results for the asymptotic theory for testing H01 and H02

is derived. The least squares estimator bT =
(
δ̂1, δ̂2, δ̂3, φ̂1, φ̂2, α̂, ρ̂

)′
of the parameters in

the auxiliary model (4) has the form

bT − β =

(
T∑

t=1

xtx
′
t

)−1 T∑

t=1

xtεt, (7)

where xt =
(
∆yt−1, (∆yt−1)

2 , (∆yt−1)
3 , yt−1∆yt−1, yt−1 (∆yt−1)

2 , 1, yt−1

)′
. In order to de-

rive the asymptotic limit distributions for the elements of (7) not previously considered
in the literature, the following assumption, see Hansen (1992), is assumed to be satisfied.

Assumption 1 For some q > η > 2, {υt} is a zero mean, strong mixing sequence with
mixing coefficients of size −qη/(q − η), and sup

t≥1

‖υt‖ = C <∞. In addition,

T−1E (VTV
′
T ) −→ Ω <∞ as T −→ ∞, where VT =

T∑

t=1

υt.

Allowing for weakly dependent heterogeneous data, this assumption and the theorems
by Hansen (1992) are applicable to a number of different processes that typically arise
in econometric applications. Assumption 1 will be used in the following theorem that
contains a set of new convergence results needed in this work.

Theorem 1 Let ut, defined in (6), satisfy Assumption 1, and let {εt} be an i.i.d. sequence
with mean zero, variance σ2, and E |εt|6+r <∞ for some r > 0. Define

γj = E (utut−j) = σ2
∞∑

s=0

ωsωs+j , j = 0, 1, . . .

µj = Euj
t , j = 3, 4, . . .

λ = σ
∞∑

j=0

ωj = σω (1)

ξt =
t∑

i=0

ui , t = 1, 2, . . . , T,

with ξ0 = 0. Then the following sums converge jointly

(a) T−1/2
T∑

t=1

u2
t−1εt ⇒ σ

√
µ4W (1)

(b) T−1/2
T∑

t=1

u3
t−1εt ⇒ σ

√
µ6W (1)

(c) T−1
T∑

t=1

ξt−1u
2
t−1εt ⇒ σ

√
µ4λ

1∫
0

W (r) dB (r)
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(d) T−3/2
T∑

t=1

ξtu
4
t ⇒ µ4λ

1∫
0

W (r) dr

(e) T−3/2
T∑

t=1

ξtu
5
t ⇒ µ5λ

1∫
0

W (r) dr

(f) T−2
T∑

t=1

ξ2
t u

3
t ⇒ µ3λ

2
1∫
0

W 2 (r) dr

(g) T−2
T∑

t=1

ξ2
t u

4
t ⇒ µ4λ

2
1∫
0

W 2 (r) dr

where W (r) and B (r) are two independent standard Brownian motions defined for
r ∈ [0, 1].

Proof See the appendix.

Consulting the rates of convergence in Theorem 1, some recent limit results from
Eklund (2003), and other known results one can define the following scaling matrix

ΥT = diag
(
T 1/2, T 1/2, T 1/2, T, T, T 1/2, T

)
. (8)

Pre-multiplying both sides of (7) by the scaling matrix ΥT , finite limits to the rescaled
ordinary least squares estimates are given by

ΥT (bT − β) =

{
Υ−1

T

(
T∑

t=1

xtx
′
t

)
Υ−1

T

}−1{
Υ−1

T

(
T∑

t=1

xtεt

)}
. (9)

Now write H01 : Rβ = r, where R =
[

0 I6
]
, 0 is a (6 × 1) column vector, β =

(δ1, δ2, δ3, φ1, φ2, α, ρ)
′, and r =

(
0 0 0 0 0 1

)′
. An F test statistic can then be

defined in the usual way as

F = (bT − β)′ (RΥT )′



s

2

TRΥT

(
T∑

t=1

xtx
′
t

)−1

ΥTR
′





−1

RΥT (bT − β) /k, (10)

where k = 6 equals the number of restrictions, and s2
T is a consistent estimator of the

residual variance in (4). The test statistic for hypothesis H02 that allows for the presence
of a drift component can be defined similarly setting k = 5 and excluding row 5 of R and
r. The two resulting test statistics will be called Fnd and Fd, where nd and d corresponds
to ’no drift ’ and ’drift ’ respectively. Clearly, from Theorem 1, these test statistics do not
have standard asymptotic distributions, as would be the case for stationary processes.

As the analytical limit expressions to the F test in (10) only can be computed with
considerably difficulty, explicit expressions for Fnd and Fd are not given. The main reason
for this difficulty is the problem of first obtaining and then simplifying the expressions of
the inverses of the relatively large matrices that appear in equation (10): their dimensions
are (5 × 5), (6 × 6) and (7 × 7).

Critical values for Fnd and Fn can, however, easily be obtained by a Monte Carlo
simulation. Generating data from the null model (5) for δ1 = 0, Table 1 contains the
critical values based on 1000000 replications for these statistics corresponding to sample
sizes T = 25, 50, 100, 250, 500, 5000. Since the explicit limit expressions of the statistics
are not known, critical values cannot be calculated for the asymptotic null distributions.
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Table 1. Critical values for the test statistics Fnd and Fd, when δ1 = 0.
Fnd Fd

T 0.10 0.05 0.025 0.01 0.001 0.10 0.05 0.025 0.01 0.001
25 2.49 3.06 3.65 4.49 7.00 2.70 3.36 4.05 5.02 7.85
50 2.28 2.71 3.12 3.68 5.18 2.50 3.00 3.50 4.15 5.84

100 2.22 2.60 2.97 3.43 4.59 2.45 2.90 3.33 3.90 5.28
250 2.20 2.56 2.90 3.34 4.37 2.44 2.86 3.27 3.78 5.05
500 2.20 2.55 2.89 3.31 4.33 2.44 2.86 3.27 3.77 4.99

5000 2.20 2.55 2.88 3.30 4.29 2.44 2.86 3.27 3.77 4.96

4 Small sample properties of the tests

In this section the size and the power of Fnd, Fd and the two corresponding ADF tests
are compared. The latter are called ADFnd and ADFd respectively. A simple method to
estimate p-values of the tests is also proposed in order to adjust for size distortion that
is present in the tests for values of δ close to −1 or 1.

4.1 Size simulations

In order to consider the size of the tests, data are generated from model (5) under the
null hypothesis, assuming {εt} ∼ nid (0, 1). Using Monte Carlo simulations with 1000000
replications and critical values from Table 1, the rejection frequencies are calculated for
the sample sizes T = 25, 50, 100, 250, 500, 1000. The nominal size for each test equals 5%.
Since the null model depends on the parameter δ1 in small samples, the size have been
calculated for a number of different values of δ1 ranging from −1 to 1. In the ADF tests,
the correct number of lags (one) is assumed known. Figures 1 to 4 shows the estimated
sizes of Fnd and Fd and the corresponding ADF tests for different sample sizes. The
deviation from the nominal 5% size level decrease with the increasing sample size.

It is clear from the figures that the size of the tests is distorted when the value of
δ1 is close to −1 or 1. The reason is that the stationarity assumption of 4yt is violated
for |δ1| ≥ 1. All four tests have poor size characteristics for values of δ1 close to 1.
Furthermore, Fnd and Fd are also oversized, albeit less strongly, when δ1 is close to −1.
On the other hand, the ADF tests are not affected by small values of δ1 in the same way.
It is also worth noting that the two ADF tests are less distorted than their corresponding
F tests, and that the two tests with a drift term, Fd and ADFd, are not distorted as much
as Fnd and ADFnd. Furthermore, as may be expected, the deviation from the nominal
5% size level decreases with an increasing sample size. As the critical values in Table 1
are estimated for δ1 = 0, it is obvious that special attention is needed in practice if the
sample size is small and the value of δ1 is believed to be close to either −1 or 1.

In order to investigate how robust the tests are against non-normal errors, the empirical
size of Fnd and Fd have been reestimated for errors drawn from the t (6) and the χ2 (1)−1
distribution. The simulation results indicate that both Fnd and Fd are affected by the
non-normal errors. For t (6)-distributed errors both Fnd and Fd show, for T = 25, about
1 to 2 percentage points higher size distortion at all values of δ1 than the normal case.
As the sample size increases the difference in size between the non-normal and normal
size decreases. The size distortion is considerably larger for χ2 (1)− 1 errors than it is for
the t (6)-case. When T = 25, Fnd has at all values of δ1 about 5 to 6 percentage points
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Figure 1 Size of statistic Fnd for T = 25, 50, 100, 250, 500, 1000. The deviations from the
nominal 5% size level, decrease with the sample size.

higher estimated size than it has for normal errors. At the same time Fd shows a slightly
smaller increase in size, about 3 to 4 percentage points. This diference diminishes with
increasing sample size and becomes negligible when T = 500.

4.2 Bootstrapping the p-values

As the size is distorted for values of δ1 close to 1 for all four tests, and also close to −1
for Fnd and Fd, an appropriate method of adjusting the size would be desirable. One way
to prevent size distortion is to calculate new critical values for some particular value of
δ1, call it δ̂1. Another method would be to base the inference on bootstrap distributions
of the tests. Size distortion can be diminished by obtaining the p-values by a bootstrap.
Small sample properties of the tests are then considerably improved; see the survey by
Li and Maddala (1996) for more information and details on bootstrapping time series,
and Caner and Hansen (2001) who, when testing the unit root against the TAR model,
based the inference on a bootstrap approximation to the asymptotic null distribution of
the test statistic. The same bootstrap method was also used by Eklund (2003) when
testing the unit root hypothesis against the STAR model. Using the bootstrap method
to estimate p-values in stationary models requires that the test statistic is pivotal. Since
the analytical limit expressions of Fnd and Fd are not given, it is not clear whether or not
the test statistics are pivotal. However, results by Li and Maddala (1996) indicate that
considering pivotal statistics may not be as important in the context of unit root models
as it is in stationary models.
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Figure 2 Size of statistic ADFnd for T = 25, 50, 100, 250, 500, 1000. The deviations from
the nominal 5% size level, decrease with the sample size.

From Figures 1 and 3 it has already been possible to see how δ1 influences the size
of Fnd and Fd in small samples. Under H01, the auxiliary model (4) simplifies to yt =
δ1∆yt−1 + yt−1 + εt. Under H02, the null model has the form yt = δ1∆yt−1 +α+ yt−1 + εt.
The necessary p-values can then be obtained by a model-based bootstrap. This is also
the case for the ADF tests. Consider first the resampling procedure for Fnd. Let δ̂1 and
D̂ be the estimates of δ1 and the distribution D of the error εt. Generate the bootstrap
time series

yb
t = δ̂1∆y

b
t−1 + yb

t−1 + εb
t , t = 1, . . . , T , (11)

where εb
t is a random draw from D̂, and the time series yb

t , t = 1, . . . , T , is the resampled
bootstrap series. Initial values needed for resampling can be set to sample values of the
demeaned series yt. The distribution of yb

t is called the bootstrap distribution of the data.
The value F b

nd of Fnd is now obtained from the resampled series yb
t . Repeating this B

times yields B values of Fnd that constitute a realization from the distribution of Fnd,
completely determined by δ̂1 and D̂. Defined by pT = P

(
F b

nd > Fnd

)
, the p-value pT is

in practice approximated by the frequency of the obtained F b
nd that exceeds the observed

value Fnd.
The resampling scheme can easily be modified to fit Fd. Including the estimate of the

parameter α in the resampling model (11):

yb
t = δ̂1∆y

b
t−1 + α̂ + yb

t−1 + εb
t , t = 1, . . . , T . (12)

The corresponding bootstrap distribution and the p-value pT are then obtained in the
same way as before.
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Figure 3 Size of statistic Fd for T = 25, 50, 100, 250, 500, 1000. The deviations from the
nominal 5% size level, decrease with the sample size.

Figure 4 Size of statistic ADFd for T = 25, 50, 100, 250, 500, 1000. The deviations from
the nominal 5% size level, decrease with the sample size.
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4.3 Power simulations

In order to investigate the power properties of the tests, data is generated from the STAR
model (1), i.e. the stationary alternative model. The fact that no analytical results
are available for determining the parameter combinations yielding a stationary model
constitutes a problem in a simulation study. By setting the transition function F to 0 or
1, some simple guidelines can be reached about stationarity, but no general conclusions
can be drawn. Therefore, an approximative method is applied to determine when the
model is nonstationary. By simulation, the model is taken to be nonstationary for a
specific choice of parameters, if a realization exceeds a preset boundary with t. In this
study, a realization of the alternative model, yt, is said to originate from a nonstationary
process if |yt| > σt for t > 1000000 where σ equals the standard error of the errors εt in
(1). This is of course just a rough indication on nonstationarity. For parameter choices
on, or close to, the boundary between the stationary and the nonstationary regions, the
approximation work less well, but probably good enough as a mean to compare the Fnd

and Fd tests with the ADF tests.
In the data generating process (1), θ0 = 0, ϕ0 = 0, and the parameters in the nonlinear

function F (·) are γ = 10, c1 = 1 and c2 = −0.5. For simplicity, θ1 = −ϕ1, and in the
same way, ψ1 = −ψ2. The alternative model then equals

∆yt = −ϕ1∆yt−1 − ψ2yt−1 + (ϕ1∆yt−1 + ψ2yt−1)F (10, 1,−0.5,4yt−1) + εt, (13)

where εt ∼ nid (0, 1). In (13), the magnitude of the regime shift is only determined by the
two parameters ϕ1 and ψ2. Using a Monte Carlo simulation, with 50 observations, 10000
replications, and 500 bootstrap replications for estimating the p-values, the power of the
tests is estimated for a number of combinations of ϕ1 and ψ2. Contour plots of the power
of Fnd and ADFnd are depicted in Figures 5 and 6. Figure 7 shows for each combination
of ϕ1 and ψ2 the difference in power between the tests, expressed as power of Fnd minus
power of ADFnd. Figures 8, 9, and 10 shows the power and difference for the two other
tests, Fd and ADFd, in the same way.

From Figures 5, 6, 8 and 9, it is seen that the STAR model is stationary in a vertical
band of combinations of ϕ1 and ψ2. The value of ψ2 range from about 0.5 to 2.7, whereas
ϕ1 does not seem to be restricted. It appears that it can take any value between −5
and 5. Outside this vertical band the model is nonstationary. All four tests have the
strongest power for values of ψ2 in the interval between about 1.6 and 2.6. But then,
the gain from using Fnd or Fd instead of their Dickey Fuller counterparts is smallest in
this specific interval, as seen in Figures 7 and 10. It is in fact negligible there and even
slightly negative for some values of ϕ1 > 4. Negative gain is also found for the Fd test for
values of ϕ1 < −4 observed in Figure 10. The strongest gains for both F tests are found
for values of ψ2 between 0.8 and 1.0. In this interval there are two separate regions with
relatively large gains in power. The single largest gain for Fnd compared to ADFnd is
18.9% percentage points more rejections of the true alternative hypothesis, the smallest is
−5.6% percentage points. The corresponding largest and smallest gain for Fd are 16.6%
and −6.4% percentage points. For about 10.6% of the combinations of ϕ1 and ψ2 the gain
is negative for Fnd. The same figure for Fd is 12.7%.
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Figure 5 Power of the Fnd statistic for T = 50 observations.

Figure 6 Power of the ADFnd statistic for T = 50 observations.
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Figure 7 Difference in power, Fnd − ADFnd.

Figure 8 Power of the Fd statistic for T = 50 observations.
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Figure 9 Power of the ADFd statistic for T = 50 observations.

The main explanation why the gain is negative at some of the parameter combinations,
is that the alternative STAR model is very close to the linear alternative model considered
in the ADF test for these parameters. The auxiliary model (4) is then very close to or
indistinguishable from the ADF model. This reduces the power of the tests compared to
the ADF test because of the four extra parameters to be tested. As the area with positive
gain dominates Figures 7 and 10 it appears safe to conclude that in general both Fnd and
Fd have similar or higher power than the corresponding standard ADF tests when the
alternative exhibit nonlinear behavior. Their use in situations where the STAR model is
indeed an appropriate alternative can therefore be recommended.

5 Empirical application

The STAR model (1) is capable to characterizing asymmetric behavior in time series, and
series with sudden upswings and downturns. When ∆yt−1 is close to c1 or c2 in (2), the
STAR model (1) behaves almost as if γ = 0, and possible as a unit root process depending
on the values of θ0 and ψ1. On the other hand, if the difference between ∆yt−1 and the
parameter c1, or c2, is large, the model is nonlinear and stationary, implying a mean
reverting behavior of the yt process. These features of the second-order logistic STAR
model make it attractive for modelling the real exchange rate for deviations above and
below the equilibrium level. Determining the presence, or the absence, of a unit root in
the real exchange rate is the main issue in testing the purchasing power parity (PPP)
hypothesis. Before turning to the empirical application in this section, a brief discussion
of the PPP literature will be given.
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Figure 10 Difference in power, Fd − ADFd.

5.1 A short introduction to the PPP literature

In macroeconomic applications, and theory, the ability to be able to discriminate between
stationary and nonstationary time series is of major importance. An area where this
problem has received considerable attention is the one concerning the purchasing power
parity (PPP) hypothesis, see Froot and Rogoff (1995) and Sarno and Taylor (2002) for two
thorough surveys. The PPP corresponds to the idea that national price levels in different
countries should tend to equal one another when expressed in a common currency. Price
differences, or deviations from PPP, between two countries will be eliminated by arbitrage
forces. As a consequence, for PPP to hold in the long-run, real exchange rates must be
stationary. A theoretical insight into the deviations from the PPP, or long run equilibrium
level, was given by Dumas (1992), who analyzed the dynamic process of the real exchange
rate in spatially separated markets in the presence of proportional transactions costs.
Dumas showed that deviations from PPP follow a nonlinear process that is mean reverting,
and that the speed of adjustment varies directly on the magnitude of the deviation from
PPP. This implies that the exchange rate will become increasingly mean reverting with
the size of the deviation.

Stylized empirical findings indicate, on the other hand, high persistence in the devia-
tions from PPP. O’Connell (1998) argued that it appears as if large deviations from PPP
can be more persistent than small deviations, and that market frictions alone cannot ac-
count for the difficulty of detecting mean reversion in post-Bretton Woods real exchange
rates. Lothian and Taylor (1996) argued that the high persistence of deviations from PPP,
together with the low power of standard unit root tests, may account for the widespread
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failure of empirical tests to support long-run PPP. By considering observations over a
sample period of two centuries they where able to reject the unit root hypothesis in favor
of a mean reverting process for two real exchange rates, U.S. dollar-pound sterling and
French franc-pound sterling. Michael, Nobay and Peel (1997) rejected the linear frame-
work in favor of an exponential smooth transition autoregressive (ESTAR) process, thus
providing evidence of mean reverting behavior for PPP deviations. Taylor, Peel and Sarno
(2001) considered a multivariate linear unit root test and provided empirical evidence that
four major real bilateral dollar exchange rates are well characterized by nonlinear mean
reverting processes, based on the ESTAR model.

Sarno and Taylor (2002) concluded that, at the present time, the long-run PPP seem
to have some validity, at least for the major exchange rates, even though a number of
problems have to be analyzed and resolved.

5.2 Testing the PPP hypothesis in practice

The real exchange rate for country i versus country j is expressed in logarithmic form as

zt = pit − st − pjt, t = 1, . . . , T , (14)

where st is the logarithm of the nominal exchange rate between country i and j expressed
in country i’s currency per country j’s currency, and pit and pjt denote the logarithms of
the consumer price index (CPI) for country i and j, respectively. The series zt can then
be interpreted as a measure of the deviation from the long-run steady state or PPP.

The real exchange rates are constructed for sixteen countries from the CPI series and
the exchange rates defined as the price of US dollars in the currency of each home country.
The data, consumer price indices and nominal exchange rates, are obtained from EcoWin
and covers the following sixteen countries; Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland,
United Kingdom and USA. The sample consists of monthly observations from January
1960 to October 2002, except for five countries for which some early observations are
missing. The sample for Germany only includes observations from 1968:1 to 2002:10,
Japan from 1970:1 to 2002:10, the Netherlands from 1960:4 to 2002:10, Spain from 1961:1
to 2002:10, and, finally, Switzerland from 1974:1 to 2002:10. In total, 120 real exchange
rates are constructed. For pairs of countries that both joined the common currency in
January 1999, data only up to December 1998 is used. Otherwise the largest available
sample size is used for all pairs, which means that the length of the series varies between
344 and 512.

Tables 2 and 3 show the estimated p-values of Fnd and Fd based on 10000 replications.
P-values less than 0.05 are printed in boldface. The results in Table 2 indicate that
the random walk without drift can be rejected for 31 out of the 120 real exchange rates
considered. When including a drift term under the null, the number of rejections increase
to 44, as seen in Table 3. The corresponding number of rejections for ADFnd and ADFd

are 7 and 23, respectively. The exchange rates for which the unit root is rejected can thus
be considered stationary, giving support to the PPP hypothesis.

The test results both support and disagree with earlier work. Results in line with
earlier studies, as in Bec et al. (2002), show that the PPP hypothesis can be supported
for the real exchange rates BEL/GER, FIN/GER, FRA/GER, ITA/GER and UK/GER,

15



Table 2 Estimated p-values to the Fnd test. Bold values corresponds to a significant test at the 5% level.
vs BEL CAN DEN FIN FRA GER ITA JAP NL NOR SPA SWE SWI UK USA

AUS 0.23 0.091 0.054 0.34 0.60 0.0006 0.089 0.81 0.32 0.76 0.26 0.29 0.022 0.033 0.0021

BEL - 0.0034 0.040 0.44 0.51 0.020 0.13 0.76 0.34 0.63 0.20 0.69 0.0068 0.27 0.0018

CAN - 0.072 0.37 0.087 0.10 0.46 0.49 0.10 0.093 0.42 0.45 0.12 0.42 0.13
DEN - 0.23 0.70 0.048 0.19 0.63 0.051 0.0058 0.59 0.18 0.030 0.062 0.0001

FIN - 0.59 0.069 0.43 0.31 0.41 0.15 0.013 0.48 0.012 0.0058 0.49
FRA - 0.044 0.30 0.48 0.48 0.38 0.39 0.96 0.0001 0.41 0.13
GER - 0.039 0.88 0.091 0.33 0.038 0.52 0.0056 0.033 0.0046

ITA - 0.26 0.11 0.24 0.15 0.16 0.0004 0.10 0.63
JAP - 0.85 0.69 0.23 0.17 0.77 0.41 0.70
NL - 0.074 0.44 0.39 0.0065 0.043 0.0018

NOR - 0.30 0.38 0.15 0.052 0.0014

SPA - 0.017 0.0089 0.10 0.52
SWE - 0.10 0.24 0.24
SWI - 0.012 0.15
UK - 0.23
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Table 3 Estimated p-values to the Fd test. Bold values corresponds to a significant test at the 5% level.
vs BEL CAN DEN FIN FRA GER ITA JAP NL NOR SPA SWE SWI UK USA

AUS 0.12 0.036 0.015 0.21 0.89 0.0003 0.037 0.72 0.17 0.81 0.31 0.17 0.0051 0.0050 0.0004

BEL - 0.0012 0.027 0.32 0.46 0.011 0.065 0.74 0.25 0.50 0.11 0.87 0.0004 0.12 0.0011

CAN - 0.045 0.30 0.066 0.031 0.35 0.41 0.064 0.063 0.31 0.36 0.036 0.32 0.058
DEN - 0.14 0.65 0.014 0.069 0.61 0.035 0.0031 0.83 0.096 0.0028 0.011 0.0002

FIN - 0.49 0.028 0.25 0.17 0.30 0.077 0.0084 0.38 0.0052 0.0043 0.40
FRA - 0.023 0.15 0.43 0.38 0.27 0.27 0.93 0.0000 0.31 0.084
GER - 0.033 0.73 0.020 0.18 0.027 0.85 0.0019 0.0023 0.0004

ITA - 0.20 0.036 0.11 0.12 0.064 0.0001 0.059 0.78
JAP - 0.87 0.68 0.13 0.073 0.65 0.32 0.71
NL - 0.059 0.50 0.28 0.0004 0.0086 0.0010

NOR - 0.19 0.24 0.059 0.0092 0.0007

SPA - 0.014 0.0046 0.062 0.54
SWE - 0.030 0.17 0.16
SWI - 0.0005 0.067
UK - 0.12
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and as in Taylor et al. (2001), for USA/GER. On the other hand, Bec et al. (2002)
rejected the unit root hypothesis for another six exchange rates, Taylor et al. (2001) for
another three. Conversely, for five of the significant real exchange rates considered in
this paper, Bec et al. (2002) were unable to reject the unit root: CAN/BEL, USA/BEL,
UK/FIN, USA/GER, and GER/CAN. They consider a smaller sample size, only from
1973:9 to 2000:9, which could explain some of the differences with this paper. Otherwise,
as a whole, the proportion of rejected exchange rates is almost the same in this paper as
in Bec et al. (2002).

The results in this paper can be viewed as a complement to earlier studies. Under
the assumption that the PPP hypothesis holds, the two tests presented here, Fnd and
Fd, have low power discriminating a random walk from a stationary nonlinear process at
sample sizes available for the tests. The same fact holds for most univariate unit root
tests. However, Taylor et al. (2001) noted that, somewhat paradoxically, the failure to
reject a unit root may indicate that the real exchange rate has, on average, been relatively
close to equilibrium, rather than implying that no such long-run equilibrium exists. In
their estimated ESTAR model, the real exchange rate will be closer to a unit root process
the closer it is to its long-run equilibrium.

6 Conclusions

In this paper, two F -type tests are proposed for the joint unit root and linearity hypothesis
against a second-order logistic smooth transition autoregressive (STAR) model. The
tests allows one to discriminate between nonstationary and stationary time series. This
is important in statistical analysis and empirical applications. Some new limit results,
extending earlier work, and critical values for the F -tests are presented. As the alternative
model is well suited for modelling real exchange rates, the two tests are applied to a number
of real exchange rates as an illustration. The test results complement earlier studies.
Support to the purchasing power parity (PPP) hypothesis is at any rate provided for 44
out of 120 real exchange rates considered in this work.
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Appendix A

Proof of Theorem 1

(a) Let ut, defined in (6), satisfy Assumption 1 and let
∞∑

j=0

|ωj| < ∞. Set Xt = u2
t−1εt.

Xt is then a martingale difference sequence. Furthermore,

EX2

t = σ2Eu4

t (A.1)

E |Xt|2+r = E
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t−1εt

∣∣2+r
= E |ut|4+2r E |εt|2+r <∞.

so that {Xt} is a uniformly integrable sequence. Now,
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Set Zt = u4
t−1 (ε2

t − σ2). It follows that {Zt} is a martingale difference sequence.
Furthermore,

E |Zt|1+r = E
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(
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implies that
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Also,
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which gives the result
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(b) Let ut and εt be as in (a). Set Xt = u3
t−1εt. Then {Xt} is a martingale difference

sequence. Furthermore,
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t = σ2Eu6

t (A.7)
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Set Zt = u6
t−1 (ε2

t − σ2). Then {Zt} is a martingale difference sequence. For r > 0,
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which implies
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Furthermore,
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which gives the desired result
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(c) Let υt =
(
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, Hansen (1992), Theorem 4.1, states that the elements
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will converge weakly to some stochastic integrals. In particular,
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where Λ1,2 is element (1, 2) in the matrix
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This implies that the two Brownian motions W (r) and B (r) are independent, and
the result follows.
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Now, since ξt = ξt−1 − ut, the first sum on the right-hand side of (A.17) equals
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where the last term is Op (1). Now let υt = (ut, u
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Now, since ξt = ξt−1 − ut, the first sum on the right-hand side of (A.20) equals
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where the last term is Op (1) as before. Now let υt = (ut, u
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(f) As a starting-point, consider the sum
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and let υt = (ut, u
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, Vt and V0 be as before. Let Assumption 1 hold with

η = 3. It then follows from Hansen (1992), Theorem 4.2, that the sum
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(Vt−1 ⊗ Vt−1) υ
′
t converges weakly to a stochastic integral. This implies that

T−3/2

T∑

t=1

ξ2

t−1

(
u3

t − Eu3

t

)
= Op (1) (A.24)

and

T−2

T∑

t=1

ξ2

t−1u
3

t = T−2

T∑

t=1

ξ2

t−1Eu
3

t + op (1) ⇒ E
(
u3

t

)
λ2

1∫

0

W 2 (r) dr. (A.25)

What remains to show is that plim
T−→∞

T−2
T∑

t=1

ξ2
t u

3
t = plim

T−→∞

T−2
T∑

t=1

ξ2
t−1u

3
t . It is easily

shown that
ξ2

t − ξ2

t−1 = 2ξt−1ut + u2

t . (A.26)

The difference between the two sums in (A.25) is given by

T∑

t=1

ξ2

t u
3

t −
T∑

t=1

ξ2

t−1u
3

t =
T∑

t=1

(
ξ2

t − ξ2

t−1

)
u3

t = 2
T∑

t=1

ξt−1u
4

t +
T∑

t=1

u5

t , (A.27)

where the first sum on the right-hand side is Op

(
T 3/2

)
from (d) above, and the

second sum is Op (T ). This implies that T−2
T∑

t=1

(
ξ2
t − ξ2

t−1

)
u3

t = op (T 2), and

T−2

T∑

t=1

ξ2

t u
3

t ⇒ E
(
u3

t

)
λ2

1∫

0

W 2 (r) dr (A.28)

as desired.
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(g) Begin by considering the sum

T−3/2

T∑

t=1

ξ2

t−1u
4

t = T−3/2

T∑

t=1

ξ2

t−1

(
u4

t − Eu4

t

)
+ T−3/2

T∑

t=1

ξ2

t−1Eu
4

t (A.29)

and let υt = (ut, u
4
t − Eu4

t )
′
, Vt and V0 be as before. Let Assumption 1 hold

with η = 3. It then follows from Hansen (1992), Theorem 4.2, that the sum

T−3/2
T∑

t=1

(Vt−1 ⊗ Vt−1) υ
′
t converges weakly to a stochastic integral. This implies that

T−3/2

T∑

t=1

ξ2

t−1

(
u4

t − Eu4

t

)
= Op (1) (A.30)

and

T−2

T∑

t=1

ξ2

t−1u
4

t = T−2

T∑

t=1

ξ2

t−1Eu
4

t + op (1) ⇒ Eu4

tλ
2

1∫

0

W 2 (r) dr. (A.31)

Using the same idea as in the proof of (f),

T∑

t=1

(
ξ2

t − ξ2

t−1

)
u4

t = 2
T∑

t=1

ξt−1u
5

t +
T∑

t=1

u6

t , (A.32)

where the first sum on the right-hand side is Op

(
T 3/2

)
from (e) above, and the

second one is Op (T ). The result then follows since

T−2

T∑

t=1

ξ2

t u
4

t = T−2

T∑

t=1

ξ2

t−1u
4

t + op (T ) ⇒ Eu4

tλ
2

1∫

0

W 2 (r) dr. (A.33)

This concludes the proof of Theorem 1. �
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