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Does Opponents’ Experience Matter?

Experimental Evidence from a Quantity

Precommitment Game
∗

Chloé Le Coq† Jon Thor Sturluson‡
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Abstract

This paper investigates why subjects in laboratory experiments on quan-

tity precommitment games consistently choose capacities above the Cournot

level - the subgame-perfect equilibrium. We argue that this puzzling regular-

ity may be attributed to players’ perceptions of their opponents’ skill or level

of rationality. We first show theoretically that it is the case by modelling

a two-stage game of capacity investment and pricing with bounded rational

players. We then design an experiment in which we use the level of experi-

ence as a proxy for the level of rationality and match subjects with different

levels of experience. We find significant differences in behavior depending on

opponents’ experience; moreover, players facing inexperienced players tend

to choose higher capacities than they would otherwise.

JEL classification: C92; L11; L13.
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1 Introduction

One of the most prominent solutions to the Bertrand paradox, that price com-
petition results in the competitive outcome even when only two firms compete,
is to account for capacity constraints when studying price competition. Kreps
and Scheinkman (1983), henceforth KS, study a game where firms simultaneously
commit to a capacity level before they compete in prices, à la Bertrand. Their
seminal result is that the unique subgame-perfect equilibrium implies capacities
equal to the Nash equilibrium output in the equivalent Cournot game. A puzzling
empirical regularity has been identified in several experiments focusing on the KS
model. A large majority of subjects consistently choose capacities that exceed the
Cournot equilibrium level (Davis, 1999). This is the case even when subjects are
experienced in the game (Muren, 2000) or subjects are given time to understand
the implication of capacity choice, in the first stage, for price choice in the second
stage(Anderhub et al., 2003). Hence, it seems that incomplete understanding of
the game cannot be the only explanation for choosing capacity higher than the
predicted Cournot level.

It is well recognized that departure from equilibrium may be expected if at
least one player is not perfectly rational (see Crawford et al., 2010, for a recent
review). In particular, convergence on subgame-perfect equilibrium might be chal-
lenging/difficult in a sequential game with players with different levels of bounded
rationality. 1

This paper explores the perception of other players’ bounded rationality as an
explanation for choosing capacities above the Cournot outcome in the KS frame-
work. Applying the Quantal Response Equilibrium (QRE) approach (McKelvey
and Palfrey, 1995) to the KS model reveals that bounded rationality among players
can explain this outcome. In particular we find that the rationality of opponents
matters, with the effect that, all else equal, a player offers higher capacity the lower
the rationality of her opponent is. The experiment reported here is designed to
test if players’ perceptions of their opponents’ rationality have a systematic effect
on behavior. While unable to directly control for players’ beliefs about opponent’s

1See for example experimental evidence testing backward induction in the centipede game in
Palacios-Huerta and Volij (2009)
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rationality, we manipulate subjects’ expectation about opponent’s cognitive level.
We use the number of periods played as a proxy for rationality and we match
subjects with different levels of experience. The experience of players is common
knowledge. The implicit assumption is that experienced players (who have played
the game before) can be expected to play more rationally (make fewer mistakes)
than inexperienced ones (who are just starting to play). This is in line with the
QRE literature where the precision with which decisions are made is increasing
with experience (McKelvey and Palfrey, 1995).

We find that players’ perception of their opponent’s skill, or level of rational-
ity, has a systematic effect on behavior. First, in line with our theoretical predic-
tions, behavior varies with the opponent’s experience: subjects choose significantly
higher capacities when playing against inexperienced subjects than when playing
against experienced ones. One possible explanation for this is that inexperienced
subjects are less price responsive than experienced players. If a subject is facing
an inexperienced competitor, expanding its capacity in the first stage might be
profitable since inexperienced players are likely not to reduce their price enough in
the second stage to sell their full capacity. Second, we estimate player’s response
precision within the QRE framework. We find that the level of precision is not
only positively correlated with own experience but also increasing with opponent’s
level of experience. This may be due to a learning effects or that subjects put
more effort into playing the game with more experienced opponents similar to the
Yerkes-Dodson Law (Yerkes and Dodson, 1908).

It is quite common to mix experienced and inexperienced subjects in experi-
ments, but only a few recent papers focus on the issue of heterogeneity in expe-
rience levels specifically. So far these studies (e.g., Johnson et al., 2002, with a
bargaining game and Dufwenberg et al., 2005, on the formation of bubbles) have
primarily looked at how the proportion of experienced players relative to inex-
perienced players matters for the outcome. This paper focuses on the effect of
opponent’s experience on individual behavior, like Slonim (2005) and Palacios-
Huerta and Volij (2009) who investigate a similar hypothesis in a beauty contest
game and a centipede game respectively. In contrast, this paper considers a quan-
tity precommitment game and offers a formal analysis of the effect of opponent’s
experience on individual behavior. To our knowledge this work is the first to apply
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a AQRE approach to the Kreps and Scheinkman’s model, showing that bounded
rationality among players may lead to capacity above the predicted Cournot level.
It also offers detailed results on the evolution of the level of precision when oppo-
nent’s experience varies.

This paper also contributes to the growing literature on bounded rationality
in industrial organization (see Ellison, 2006 and Armstrong and Huck, 2010), if
observed capacity above the predicted Cournot level is viewed as a form of excess
capacity. Excess capacity is observed in many markets, especially those where
substantial initial investments are required (e.g., Gilbert and Lieberman, 1987;
Kadiyali, 1996; or Goolsbee and Syverson, 2008). The theoretical literature of-
ten explains excess capacity as a result of strategic attempts to deter entry or to
limit new entrants’ market share (e.g., Dixit, 1979; Spence, 1977; and Milgrom
and Roberts, 1982). The empirical evidence on these explanations is mixed how-
ever (Martin, 2001, p. 64). This paper might offer bounded rationality as an
additional explanation for excess capacity. Our results suggest that the perfor-
mance in oligopolies depends not only on the market participants but also on their
competitor’s experience. Interestingly, (Lieberman, 1987) found in the chemical
industry that incumbents increase their rate of investment when facing new en-
trants, but reduce it when facing incumbents. Our main result could explain this
pattern if entrants, who usually are less familiar with the market, are viewed as
inexperienced players by the (experienced) incumbents.

Finally, our experimental design is similar to other experiments on capacity
precommitment games (Davis, 1999; Muren, 2000; and Anderhub et al., 2003)
but we match subjects with different levels of experience. Those earlier studies
find capacity above Cournot level even with similarly experienced subjects. One
potential explanation might be related to the subjects’ overconfidence observed in
many studies (see Benoit and Dubra, 2011, for an extensive review of the literature
on this topic). If subjects underestimate the ability of their opponents to play this
game even though they have played the game an identical number of times, they
may still choose capacity above Cournot level.

The remainder of this paper is structured as follows. The next section presents
the equilibrium predictions of the bounded rationality model applied to the capacity-
constrained game. Section 3 provides a general description of the experimental
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design and procedures. Section 4 presents the results of the experiment. Section
5 concludes.

2 Theoretical predictions

In this section we apply the quantal response equilibrium (QRE) concept to a
capacity commitment price game developed by Kreps and Scheinkman (henceforth
KS, 1983). In particular, the robustness of the predicted Cournot equilibrium
outcome when players are boundedly rational is discussed.

2.1 The benchmark model

We first consider a standard version of the KS model, with symmetric duopoly
and linear demand. The game consists of two stages. In the first stage, subjects
simultaneously choose their capacity levels ki from a set of actions Ak. The cost
of each unit of installed capacity is c. In the second stage, having learned the
capacity chosen by their opponent, subjects simultaneously choose a price pi from
a set of actions Ap. Production is costless but cannot exceed capacity. For a given
set of prices aggregate capacity can exceed demand, in which case the efficient
rationing rule applies. Assume, for now, that the action sets are continuous and
non-negative, Ak = Ap = R+. Player i’s payoff is given by:

πi (ki, kj, pi, pj) =






pi min (ki, d (pi))− cki if pi < pj,

pi min (ki,max (d (pi)− kj, d (pi) /2))− cki if pi = pj,

pi min (ki,max (d (pi)− kj, 0))− cki if pi > pj.

(1)

where i, j ∈ {1, 2} and i �= j, and where d (pi) = α− βpi.
Following from Proposition 2 in KS and using the same parameters as the ones

used in the experiment, α = 120, β = 1 and c = 30, it can be shown that the
subgame-perfect equilibrium is unique and is equal to the Cournot outcome in
terms of capacities, prices and profits:

k
∗
i = 30, p

∗
i = 60 and π

∗
i = 900 for i ∈ {1, 2} . (2)
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In comparison, a competitive market would yield an aggregate output equal to 90,
prices equal to the marginal cost, 30, and zero profits. In the following subsection
the quantal response equilibrium concept is applied to this game, where players
are assumed to be boundedly rational.

2.2 A Quantal Response Equilibrium analysis of the KS
game

The quantal response equilibrium framework relates to the notion of bounded ra-
tionality and games with imperfect implementation of optimal strategies. In par-
ticular, players are not expected to choose best responses with probability one, but
rather to use probabilistic decision rules. The probability of a particular strategy
being chosen is increasing in the expected payoff to that strategy. Since standard
QRE applies only to normal-form games, we used a logit-agent quantal response
equilibrium (logit-AQRE), where players are assumed to act as independent agents
at each information set (see McKelvey and Palfrey, 1995, 1998, for more details).

A logit-AQRE of the KS game can be defined as follows. Assume that pay-
offs are observed with error. Let b

∗ denote a complete strategy profile. π (ki, b∗)

describes the expected payoff when player i chooses the capacity level ki with
probability one while the opponent’s strategy and own price strategy follow b

∗.
Similarly, π (pi, b∗) is the expected payoff when the strategy profile b

∗ is played,
except that own price is pi with probability one. The expected payoff functions are
calculated from (1) assuming that the beliefs are consistent with the realizational
probabilities associated with b

∗.2

Subject i is assumed to employ a logistic choice function with precision param-
2The realizational probabilities derive from the selected strategy b. First let ρ (k|b) be the

probability of the particular capacity vector k = (k1, k2), given strategy profile b. Then let
ρ (p|k, b) be the conditional probability of the vector p when k has occurred and the strategy
profile b is selected. Finally ρ (k, p|b) = ρ (p|k, b) ρ (k|b) is the probability of an outcome which
involves k and p given strategy b. For a given strategy profile b the expected payoff to player i,
and all her agents at the first stage, is

πi (b) =
�

qi∈Aq

�

pi∈Ap

ρ (ki, pi|b)πi (k, p) ,

where πi (k, p) is defined in (1). The expected payoff at the second stage, when k is common
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eter λi ≥ 0, i.e. to choose ki with probability

b
∗
i,ki =

e
λiπ(ki,b∗)

�
ki∈Ak

eλiπ(ki,b∗)
, i ∈ {1, 2} (3)

and to choose pi with probability b
∗
i,pi|k, conditional on the aggregate capacity

k where

b
∗
i,pi|k =

e
λiπ(pi,b∗)

�
p�i∈Ap

e
λiπ(p�i,b∗)

, i ∈ {1, 2} . (4)

The parameter λi captures the decision maker’s response precision. When
λi = 0 the errors completely dominate any information about the payoff function,
and player i chooses all available strategies with equal probability. On the opposite
extreme, when λi → ∞ the errors become negligible, in which case player i chooses
her best response to b

∗ with probability one. In general, players act more rationally
the higher their λi parameter is.

The logit-AQRE is found by solving a system of equations (3) and (4) for all
information sets for particular levels of λi. It turns out to be extremely difficult,
if not impossible, to find a closed form solution to this problem, the main reason
being discontinuities in the payoff function (1). Nevertheless, the problem can be
solved numerically.

2.3 Simulation results

To solve the above model numerically we consider a discrete action space limited
to multiples of five: Ak = Ap = {10, 15, 20, ..., 80}. We parameterize the set of pos-
sible response functions b with the parameter λ.3 Note that if λi → ∞ ∀i ∈ {1, 2},

knowledge, is
πi (b|k) =

�

pi∈Ap

ρ (pi|k, b)πi (k, p) .

3While continuous space techniques exist for normal form games (Anderson et al., 1998) we are
unaware of similar tools for extensive form games. The results do not seem to be too sensitive to
the discrete approximation of the action space and we obtain a manageable number of nonlinear
equations. The program was solved using the GAMS/PATH mixed complimentarity problem
solver. The code can be obtained from the authors upon request.
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Figure 1: Mean capacity and price in logit-AQRE equilibrium

both players select the Cournot equilibrium (which is k
∗
i = 30, p∗i = 60). For all

values of λ, except those close to ∞, the equilibrium strategies are non-degenerate
distributions over the action space. This is not to say that each player is expected
to use mixed strategies, but rather that her expected behavior is best described by
a probability distribution, where the likelihood that she chooses particular strate-
gies is linked to the expected payoff from those strategies. Furthermore, each player
views her opponent’s behavior in probabilistic terms, and expectations about these
distributions are consistent with the equilibrium strategies.

The means of capacities and prices generated by logit-AQRE under different
λi are shown in Figure 1. The graphs are drawn from player 1’s perspective, with
her precision level λ1 on the x-axis. Each curve shows the relationship between
player 1’s average capacity and her precision level, for a given player 2’s precision
level. A change in the opponent’s precision level, λ2, is represented by a shift of
curve.4

From the left hand graph in Figure 1, player 1’s average capacity decreases
in her own precision, and seems to converge toward the Cournot output level
(i.e., 30). This is especially true when the opponent’s experience level is high. In
other words, when both players observe their payoffs with high precision the logit-

4The numerical values of the λ’s are specific to the model and can only be compared in relative
terms. The model is not solvable for λ’s much larger than 2.
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AQRE converges to the unique subgame-perfect equilibrium. An increase in λ2

corresponds to a downward shift in the graph to the left, implying that player 1’s
average capacity is decreasing in λ2. In other words, the expected capacity chosen
by a player is both decreasing with respect to her own experience level (λ1), and
to the experience level of her opponent (λ2).

From the right hand graph in Figure 1, the expected prices increase with a
player’s own experience (λ1), and with her opponent’s experience (λ2). The simu-
lated price choices are more complicated to interpret however, as the price strate-
gies are conditional on the selected quantities. An inexperienced player will choose
quantities with mean close to the mean of the action space. As a result the market
clearing price will be lower on average than the Cournot outcome, at least when
the action space’s mean is larger than the Cournot outcome.5

The upwards bias in capacities (and downwards bias in prices) due to the
inexperience of opponents is caused by what we like to call imperfect price response.

Prices and capacities are not chosen independently. When capacities are close to
the Cournot level and players are rational, they will respond to increased aggregate
capacity by reducing prices according the the slope of the demand curve, which
in this case is −1. In the case of a less rational player her reponse will be less
predictable. In the extreme case of a perfectly clueless player, for instance, the
price response will be zero as she fails to take the increased capacity into account
when the chooses her price. Interestingly, this creates an incentive for her opponent
to increase her capacity.

Consider the following example where players can only choose among three
capacity levels ki ∈ {20, 30, 40} and three price levels pi ∈ {55, 60, 65}. Notice
that the feasible choices are symmetric around the Cournot outcome. Player 1 is
perfectly rational. She chooses a strategy that maximizes her expected payoff given
a consistent belief about player 2’s strategy. Player 2 is perfectly irrational and

5Note that the set of rationalizable strategies, available to subjects in the experiment and
used in our simulation, is highly asymmetric around the sub-game perfect equilibrium values.
Our findings are however robust with respect to the choice of action space, especially in the
case of capacities. The presence of a bias towards larger capacities and lower prices does not
seem to be caused by the choice of action space, although it is an important determinant of the
shape of the bias with respect to the level of players’ rationality and their perceptions about the
rationality of others. The case when the action space is symmetric around Cournot output is
depicted in Figure 7 in Appendix B.
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she choses all her actions with equal probability. If player 1 chooses the Cournot
output, 30, her optimal price strategy is6

p
∗
1



k1 = 30, k2 =




20

30

40







 =




65

60

55



 . (5)

and because player 2 chooses each available price level with probability 1
3 , player

1’s expected profit is

E (π1 | q1 = 30) =
1

3
× 30 (65 + 60 + 55)− 30× 30 = 900.

Notice that she manages to sell all of her capacity whatever player 2 does. If,
however, player 1 chooses q1 = 40, her optimal price strategy, depending on q2 is

p
∗
1



k1 = 40, k2 =




20

30

40







 =




60

55

55



 (6)

and her expected profit is

E (π1 | k1 = 40) =
1

3
× 60× 40 +

2

3
× 55×

�
2

3
× 40 +

1

3
× 65

2

�
− 30× 40 = 975.

Going from left to right, the right hand side is obtained as follows. Player 2 chooses
k2 = 20 with probability 1

3 , in which case player 1 chooses p1 = 60 and manages to
sell to capacity. her revenue is 60×40. But if player 2 chooses k2 = 30 or 40, player
1 should choose a low price p1 = 55. Then she is able to sell to capacity as long as
player 2 chooses a higher price (with probability 2

3) and receive 55×40 in revenue.
However, with probability 1

3 player 2 will match firm 1’s low price and demand is
6The optimal price strategy (5) comes straight from (1). Take for instance the case when

(q1, q2) = (30, 30). If player 1 selects p1 = 65 she will not be able to sell to full capacity. With
probability 2

3 , when p2 = 55 or 50, player 1 can only sell the residual demand 120 − 30 − 65 =
25 and with probability 1

3 , p2 = 65 the aggregate demand is split leaving 55
2 for player 1. Her

expected revenue is then 65 ×
�
2
3 × 25 + 1

3 × 55
2

�
= 1679.2. If she chooses p1 = 60, she will be

able to sell all her capacity, no matter what p2 is, giving her the expected revenue 60 × 30 =
1800. Clearly p1 = 55 is inferior as sales are already at the capacity level at p1 = 60.
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split equally between the two players resulting in the revenue 55× 65
2 for player 1.

Cost is independent of actual sales and is always 30 × 40. The expected profit is
975 compared with 900 when the capacity is equal to the Cournot output. Hence,
choosing a capacity level greater than the Cournot output is optimal under these
circumstances. Clearly this example is rather specific but suggests a more general
rule, that an opponent’s imperfect price response gives an incentive to increase
capacity. This pattern is clearly visible in the QRE simulation, as players with
a fixed level of rationality choose higher capacities against opponents with lower
levels of rationality. The magnitude of the effect is also affected by the player’s own
level of rationality. Naturally, a player cannot take advantage of her opponents
irrationality if she is completely irrational himself. To test whether the imperfect
price response was the key explanation for the bias, we repeated the simulations
with prices restricted to market clearing levels. In this replication of the original
Cournot model, limited rationality by opponents does not create an upwards bias
in capacity.

The following hypotheses summarize our findings.

Hypothesis 1 As a player’s experience increases, her capacity (price) decreases

(increases).

Hypothesis 2 Given the level of experience, a player’s capacity (price) decreases

(increases) as her opponent’s experience increases.

Hypothesis 3 The price choices of inexperienced subjects are less responsive to

capacity than the price choices of experienced subjects.

The first hypothesis implies that there convergence towards Cournot Nash equi-
librium can be expected as players gain experience. But only when both players
are fully rational (λi → ∞ ∀i ∈ {1, 2}) should the Cournot outcomes be expected.7

The second hypothesis predicts the effect of opponent’s experience on the player’s
decision. As far as we know, such an effect has not been emphasized in the pre-
vious literature on market experiments. The third hypothesis predicts that lack

7This is in line with experimental literature on learning in quantity competition game (Cox
and Walker, 1998; Huck et al., 1999; Rassenti et al., 2000). It is shown that subjects converge
to the Cournot outcome when they gain experience.
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of experience produces an imperfect price response, which is a key driving force
behind the the second hypothesis.

3 Experimental Design and procedures

The key design feature of our experiment is that we match subjects with varying
levels of experience, and describe the procedure to them. We use experience as a
proxy for the level of rationality. In this way, we can vary players beliefs’ about
their opponent’s level of rationality, thereby emphasizing the effects of opponent’s
limited rationality. In each period, the subjects play a capacity commitment game
(described in Section 2.2) where they choose sequentially a capacity and a price.8

Two groups of subjects (A, B), played the roles of firms in a duopoly market
in four sessions. 96 subjects played the game for 20 periods (or two phases of
10 periods).9 All subjects could practice playing the game for two periods before
starting each phase, so that in total the players had four trial periods. The ex-
perimental sessions were run in the following way. Group A started out. In their
first phase, subjects in group A played against each other. Inexperienced subjects
played against other inexperienced subjects. Then group B was introduced to
the session. For ten periods subjects in group A played against subjects in group
B. That is, experienced subjects played against inexperienced subjects. In their
second phase, subjects in group B played against each other. In other words,
experienced subjects played against other similarly experienced subjects. In the
following exposition we refer to different phases using the subscripts 1 and 2. The
label A1 for instance refers to group A in their first phase, when they are inex-

perienced, while A2 is group A in their second phase when they are experienced.
Note that this method of labeling also has a transparent reference to opponent’s
experience, as subjects in group A always play against inexperienced players while

8The payoff function was not described to the subjects in algebraic form, but using words.
See the complete instructions in Appendix A.

9One subject had to leave the experiment, but was replaced by an assistant. All observations
from that subject are omitted in the following analysis, before and after the substitution. This
should have no impact on other players’ actions, however, since this subject played against other
subjects in a different room. Her opponents were not informed about the switch, and had no
means of learning about it.
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Figure 2: Experimental procedure for sessions A and B

subjects in group B always face experienced subjects. Subjects were matched
so that they never played against the same opponent more than once (random
matching). All players were carefully and truthfully informed about the matching
procedure, with particular emphasis on the level of their opponent’s experience.
To summarize, we have three treatments : A1A1 (A1 plays against A1), A2B1 (A2

plays against B1), B2B2 (B2 plays against B2). Recall that the composition of the
group was common knowledge among subjects.

The experiment was conducted at the Stockholm School of Economics and
Reykjavik University. Subjects were all business majors. A full session lasted
about an hour and a half, including the time spent reading the instructions. Sub-
jects were paid according to their total profits earned during a sessions plus show-
up fee in SEK and ISK. We used an artificial laboratory currency, “experimental
dollars” (e$) where 1 US$ equals ca. e$ 750. The participants earned, on average
roughly US$ 45, with a minimum of US$ 16 and a maximum of US$ 55.

The experiment was programmed and conducted using z-tree (Fischbacher,
2007). In each period, subjects went through three steps. In the capacity choice
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step each subject entered a capacity of her choice in the interval 0 to 90 with a
maximum of two decimals. In the price choice step her previously chosen capacity
level and current opponent’s capacity level were displayed. She then entered a price
level between 0 and 120 with up to two decimals. In the result step all choices
made by the subject and her opponent and the resulting profits were displayed.
The capacity choice and price choice screens both featured a profit calculator,
where subjects could insert different hypothetical values for their own and their
opponent’s capacity and prices and compare the resulting profits.

4 Experimental results

4.1 Descriptive Statistics

Figure 3 displays the average of capacity and price for each group of subjects.
There is a steady decline in capacities and an increase in prices, on average, as
subjects gain experience. Recall that players are considered as inexperienced when
they play during the first ten periods out of twenty (phase 1) and are labelled A1

and B1 respectively. Players are considered as experienced when they play during
the last ten periods (phase 2) and are labelled A2 and B2 respectively. Given our
experimental design, group A (A1 or A2) always faces relatively less experienced
opponents than group B (B1 or B2) does.

Phase 1. Capacity and price choices of the inexperienced players A1 and B1

are shown in Panels a and c in Figure 3. In the first five periods, average capacity
is close to half of the aggregate competitive output level (or 45) for B1 and even
higher levels (or 52) for A1. The per-period capacity averages rapidly decline in
periods 6 to 10. Prices tend to increase, on average, in both groups, except in the
first few periods. Subjects A1 tend to choose lower prices than subjects B1 do.

Phase 2. Capacity and price choices of experienced players A2 and B2 are
shown in Panels b and d in Figure 3. In group A2, where players have inexperienced
opponents, the capacity choices continue to decrease but at a slower rate than in
phase 1. In group B2, where the opponents are experienced, the average capacity
levels off at around 36.5. The average capacity is higher in group A2 than in
group B2 in all periods. The difference in capacity choice between groups appears
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even more clearly when we look at the distribution of capacity choices shown in
Figures 8 and 9 in Appendix C. In particular, capacity choices slowly converge to
a bimodal distribution, with modes at 30 (i.e. the Cournot output) and 40. The
frequency of capacity levels around 40 is about twice as high for subjects A2 (facing
inexperienced opponents) as it is for subjects B2 (facing experienced opponents).
Hence, players facing inexperienced opponents (like subjects A2) tend to choose
higher capacities than similarly experienced players facing experienced opponents
(like subject B2) do. Prices tend to increase, on average, in both groups except in
the last few periods of phase 2, when they seem to stabilize. Subjects A2 choose
lower prices than subjects B2 on average.

These descriptive statistics confirm the first hypothesis that average capacity
(prices) is decreasing (increasing) with own experience and we observe a stronger
convergence in the direction of the Cournot Nash equilibrium when both players
are experienced (when subjects B2 play against B2). To assess whether these
qualitative results are statistically significant and to learn more about the effect of
the opponent’s experience, we carry out a more formal analysis in the rest of this
section.

4.2 Statistical analysis

4.2.1 Capacity choice

First we shall consider the choice of capacity alone. Analysis of pricing follows.
To test our hypotheses about differences in group behavior while allowing for
individual effects, we estimate a time-weighted regression model on the whole
dataset, following Noussair et al. (1995) and Davis (1999):

kit = βi
1

t
Di + βA

t− 1

t
DA + βB

t− 1

t
DB + εit (7)

where kit is observed capacity of subject i, Di is a subject dummy variable and DA

and DB are group dummies. The index t refers to the period of play. The weights
to the subject dummy variables, 1

t , are larger for observations in early periods than
in later periods. The weights on the group dummies ( t−1

t ) are lower in early periods
and higher in later periods. The key feature of the regression model is that it puts

16



Table 1: Regression results on capacity choice
Model I Model II Model III

Parameter Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2
βA 47.03 41.47 46.61 41.29 46.77 40.50

(1.12) (0.99) (1.09) (0.99) (1.06) (0.83)

βB 40.32 36.50 40.34 36.49 39.53 35.45
(0.72) (0.42) (0.72) (0.42) (0.68) (0.41)

βke 0.27 0.14
(0.06) (0.08)

βki 0.34 0.61
(0.05) (0.08)

R
2 0.37 0.38 0.39 0.38 0.42 0.49
n 1070 1070 1070 1070 1070 1070

CournotA
∗ 15.25 11.58 15.17 11.33 15.87 12.72

CournotB
∗ 14.39 15.65 15.60 14.39 14.04 13.37

Avs.B
† 5.05 4.97 4.75 4.45 5.69 5.23

Standard errors, in parentheses, are corrected for heteroscedasticity (White’s method).
∗ t-statistic (df=959) of the two-sided test of βA/B = 30.
† t-statistic (df=960) of the two-sided test of βA = βB .

The cutoff point for the 1% significance level is 2.58 in both cases.

relatively more weight on individual behavior in early periods but more weight on
group behavior in later periods. This allows us to control for individual-specific
effects while using the full dataset to estimate the group effects.10 The parameters
βA and βB are estimates of the converging capacity levels in groups A and B

respectively. Table 1 lists the main parameter estimates and test statistics.
The descriptive analysis supports hypothesis 1, that capacity decreases with

experience. Still, we reach a similar conclusion as earlier studies.

Result 1 Capacities fail to converge to the Cournot value (30) irrespective of own

experience and the experience of opponents.

As shown in Table 1 t-tests for the converging levels of capacity, βA and βB,
to be equal to 30 are strongly rejected, even at the 1% level of significance. This

10Noussair et al. (1995)were the first to use this econometric model to capture the convergence
process observed in experimental markets. See their discussion about the underlying assumptions
of such an econometric approach.
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is consistent with earlier experimental results that aggregate market output con-
verges to a capacity significantly above the Cournot level, both in triopoly markets
(Davis, 1999; Muren, 2000) and duopolies (Anderhub et al., 2003).11

To test whether subjects’ behavior depends on opponents’ experience we com-
pare capacity choices of subjects with similar experience facing opponents with
varying degrees of experience.

Result 2 Subjects choose significantly higher capacities when playing against in-

experienced subjects than they do when playing against experienced subjects.

Recall that for a given period subject A’s opponent is less experienced than
subject B’s opponent. To check whether opponents’ experience affects the capacity
choice we test the following hypotheses using model (7):

H0 : βA = βB. H1 : βA �= βB.

The resulting t-statistics are reported in Table 1 (see Avs.B).12 Irrespective of
subject’s own experience (Phase 1 or Phase 2), H0 is rejected at the 1% level of
significance.

To assess the importance of the opponent’s experience, we consider simple
forms of adaptive learning as potential explanations for the observed results. We
consider two learning models that have been tested in experimental studies focusing
on Cournot games (e.g., Huck et al., 1999; Rassenti et al., 2000). Under fictitious
play (Model II in Table 1) each subject chooses a capacity which is a best response
to a weighted average of previously observed capacity choices made by previous
opponents. More precisely, the expected opponent capacity is ke

t = 0.5kt−1+0.5ke
t−1

for t ∈ {1, 10}.13 The variable used in the regression is the per-group deviation
11This experiments differs from earlier ones in that subjects are randomly matched in each

period. To be able to compare our results to earlier results we ran one session with fixed pairs
throughout the session (20 periods). Capacity converges to a slightly lower level (compared with
random matching sessions) but still is significantly different from the Cournot level at 1% level
of significance.

12Almost identical results were produced using a two-factor fixed-effects panel regression. Such
a model has more general individual and time effects but the tests are less intuitive. Nonpara-
metric tests for equal medians in each period are less conclusive, due to the small number of
observations in each period, but suggest similar results.

13In period 1 we use values from the second round of the practice period.
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from mean quantities or k
e
t − k̄i where i ∈ {A,B}. This is done, simply for

the purpose of maintaining the levels of the other parameters but does not affect
any of the tests. Similar time weights are applied as in the case of the group
dummy variables in equation (7). The Expected opponents capacity parameter
in model II turns out to be quite significant and positive in Phase 1 but only
marginally significant in Phase 2 (p-value of 0.07). More impartantly, the sign of
the parameter estimate is inconsistent with fictitious play, as the best response to
increasing expected capacity by an opponent is to reduce capacity.

In model III we introduce imitation of best performance as a potential deter-
minant of capacity choice. Recall that players observe their opponent’s capacity
choice and payoff at the end of each period. The variable k

i
t is defined as the

observed capacity (including their own previous capacity choices) in any previous
period from 1 to t − 1 that has yielded the highest payoff. As in model II this
variable enters the regression equation as deviations from group averages and with
time weights. The imitation capacity parameter in model III turns out to be highly
significant and positive in both phases.14

The converging values of group A is still significant higher than for group B (in
both phases) in models II and III suggesting that opponents experience is a strong
explanatory factor even when we control for basic adaptive learning behavior. Still
we find evidence that suggests that imitations also plays a significant part in the
subjects’ decision making.

4.2.2 Price choice

If we repeat the above analysis using prices as the dependent variable we get similar
results as predicted by the analysis of Section 2.2. Prices are significantly higher
at the same level of own experience when opponents are inexperienced.

When we look at the relationship between prices and capacities we find strong
support for Hypothesis 3.

Result 3 The price choices of inexperienced subjects are less responsive to capac-

ity than the price choices of experienced subjects.

14We do not find a significant difference between groups if models II and III are re-estimated
with separate fictitious play and imitations parameters for each group.
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Table 2: Analysis of the relationship between price and capacity
Group A B

Phase 1 2 1 2

β0 75.00∗∗ 94.58∗∗ 86.07∗∗ 106.39∗∗
(2.55) (2.27) (2.14) (2.13)

βki -0.41∗∗ -0.52∗∗ -0.51 -0.71∗∗
(0.03) (0.03) (0.04) (0.04)

βkj -0.30∗∗ -0.69∗∗ -0.49∗∗ -0.86∗∗
(0.03) (0.03) (0.03) (0.04)

R2 0.47 0.73 0.62 0.73
n 470 470 480 480

Standard errors shown in parentheses.
* (**) Significantly different at the 5% (1%) level.

Consider the following regression for each group and phase in turn:

pit = βi
1

t
Di + β0

t− 1

t
+ βki

t− 1

t
ki + βkj

t− 1

t
kj + εit (8)

where the dependent variable is price chosen by subject i in period t. As in equa-
tion (7), Di are subject dummies with time dependent weights. β0 is a common
converging constant. In addition we have two separate explanatory variables re-
lated to capacity: own capacity, ki, and opponents capacity kj. These last three
variables have time weights emphasizing the observations in later periods.

The results are shown in Table 2. The βk parameters are clearly more negative,
and closer to -1 in the in the second phase relative to the first one and more negative
in group B than A. This suggests that not only do the subjects become more price
responsive when the experience of their opponents increases but also as their own
experience increases. Note that if we use separate parameters to estimate response
to own capacity and opponents’ capacity we find an interesting and significant
pattern. In early periods when subjects are relatively inexperienced they respond
more strongly to their own capacity choices than their opponents’ capacity choices.
In later periods when they have gained more experience the opposite is true as the
response to opponents capacity choices is stronger.
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Figure 4: Profits and capacity choice by experienced subjects, scatter plot with
kernel fit (Epanechikov, bw=9.0)

4.2.3 Payoffs

It is also interesting to consider whether increased incentives to choose capacities
above the Cournot level when opponents are inexperienced are observed ex post.

Result 4 Choosing capacity moderately higher then the Cournot level does not

significantly reduce the payoff when playing against inexperienced subjects. When

opponents are experienced increased capacity has a significant negative effect on

payoff.

Figure 4 plots actual profits made in the experiment against capacity for the last
five periods of the experiment in group A and B separately. The left panel displays
group A2, experienced players facing inexperienced opponents while the right panel
represents group B2, experienced players facing inexperienced opponents. Profits
tend to decrease as capacity increased, as can be expected in general. Interestingly,
the negative relationship between profit and capacity is much weaker in for group
A2 at least in the neighborhood of the Cournot output level. A Kernel fit, also
shown in Figure 4, illustrates this even better.
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Figure 5: Estimated λ and 95% confidence intervals

4.3 Estimation of the AQRE model using experimental data

To test how well QRE predicts behavior we use the data from the experiment and
estimate the logit-AQRE model described in Section on page 6. We estimate the
precision parameters (λi), maximizing the following likelihood function,

lnLAQRE =
�

yit (ki, kj, pi)× ln
�
bki (λ1,λ2) + bpi|k (λ1,λ2)

�
. (9)

The summation applies to subjects, periods and all possible combinations of ki,
kj ∈ Ak and pi ∈ Ap. The index variable yit(ki, kj, pi) takes the value of 1 if subject
i selects capacity ki and price pi in period t while her current opponent chooses
kj, otherwise the value is zero.15 The b functions are the equilibrium response
functions as defined in (3) and (4). Each treatment is broken down into five
experience levels, each including data from two consecutive periods.

Figure 5 depicts the precisions parameters λA and λB over time. First in
treatment A1A1 where group A plays internally, then in treatment A2B1 where

15Selected quantities and prices are rounded up or down to the nearest point in the discrete
action space.
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group A in their second phase plays against and then group B in their first phase.
Finally we have treatment B2B2 where group B plays internally. The estimates
for λA and λB generally increase with the number of periods played, reflecting
the tendency of subjects to choose optimal strategies with more precision as they
become more experienced in playing the game.

Interestingly λB is always higher than λA for any given experience level. We
can think of at least two reasons for this. First, subjects in group B might learn to
play the game more quickly through imitation when, in their first phase, they are
matched with the more experienced subjects of group A. We have already found
suggestive evidence pointing to that hypothesis. This is however not the only effect
since λB > λA right from the first period.16 A second cause for this phenomenon
might be that inexperienced subjects in group B put more effort into finding their
best strategy, compared with similarly experienced A players because they expect
to face tougher competition. Agranov et al. (2011) find that in the context of
a guessing game, that subjects’ cognitive levels observed by the researchers are
a “reflection of the full cognitive subject’s abilities and their beliefs on others’
abilities”. If this also applies to our setup, then inexperienced players would exhibit
higher cognitive level when playing against experienced subjects (treatment A2B1)
than when playing against similarly inexperienced players (treatment A1A1).

The parameter estimates together with the log-likelihood values (lnLAQRE) are
reported in Table 4 (Appendix C). For comparison the log likelihood of the random
model (i.e., when λA = λB = 0).

In Table 5 (first two columns), we compare the predictions based on the es-
timated logit-AQRE model for each experience level, and the actual choice (ad-
justed for the discrete action space). It is clear that, even though the model
provides fairly good qualitative predictions, it systematically “under-predicts” ca-
pacities and “over-predicts” prices. The predicted standard deviations are close
to the actual levels. This suggests that the logit-AQRE model is unable to com-
pletely capture the underlying causes of the observed behavior. That does not
necessarily undermine our thesis of opponent’s bounded rationality as a rationale
for capacities above the Cournot level, but it does imply that a more complete

16This is also the case if we look at the first practice period, when subjects had no past history
to imitate. Even in this case group B chose lower capacity than group A on average.
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model of behavior is needed to capture actual behavior in more detail. We discuss
this issue further in the concluding section.

5 Conclusion

This paper explores how bounded rationality can affect the market outcome in a
capacity choice game. We consider a two-stage model of capacity investment and
pricing, using the a logit-agent quantal response equilibrium framework. With fully
rational players, a Cournot outcome is the unique equilibrium (as in Kreps and
Scheinkman, 1983). However, when players are facing bounded rational opponents,
choosing capacity above the Cournot level is predicted. This result is confirmed by
our experiment, where we use the level of experience (the number of periods played)
as a proxy for the level of rationality, and match subjects with different levels of
experience. We find that capacities are relatively high when opponent’s level of
experience is relatively low, and that prices are relatively low when opponents lack
experience. The observed deviations are much larger than predicted by the model
however, thereby indicating that the current model specification is too restrictive.

At least two extensions seem worthy for further research. First, we find consid-
erable heterogeneity of capacity choices within each group. Allowing for different
levels of rationality within each group as in models of strategic thinking (Crawford
et al., 2010). would capture this, and possibly increase the level of the predicted
bias.

Second, extending the AQRE model to allow for inconsistent response functions
is another interesting alternative. Weizsacker’s (2003) extension of the normal form
QRE allows for response functions that depend on the perceived opponent’s choice
distributions, which need not be consistent with the opponent’s actual equilibrium
strategy. Analysis of experimental data suggests that perceptions are quite fre-
quently biased in the direction of underestimating the rationality of other players
(e.g., Camerer and Lovallo, 1999). In the logit quantal response framework, this
amounts to a downward bias in player’s perception of their opponent’s precision
level. If the same bias were to appear in the KS model the predictions of such a
model would probably be closer to the actual outcome, as the average capacities
should increase, given that beliefs about the opponent’s precision level decrease.
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A Instructions

{}: group A, []: for group B

Welcome to this experiment in the economics of decision making, which should
take approximately 90 minutes. You will be paid a minimum of SEK 100 for your
participation, but you can earn much more if you make good decisions. At the
end of the session you will be paid, in private and in cash, an amount that will
depend on your decisions. Please read the instructions carefully. If you have any
questions please raise your hand, and you will be helped privately.

General Rules

This experimental session will consist of several periods. In each period you
play the role of a firm which produces a good and sells it in a market.

{One other firm, represented by a randomly selected participant, sells his prod-
uct in the same market in each period. For the first 10 periods you will play against
other participants sitting in this room. You will never face the same participant
more than once. After period 10 the experiment will restart, but now you will
play against a different group of participants located elsewhere. Unlike you, these

participants have no prior experience of this experiment. As before, you will only
play against each of the new participants once.}

[One other firm, represented by a randomly selected participant, sells his prod-
uct in the same market in each period. For the first 10 periods you will play against
a different group of participants located elsewhere. Unlike you, these participants

have experience of this experiment, they have played the game before. You will
never face the same participant more than once. After period 10 the experiment
will restart, but now you will play against other participants sitting in this room.
As before, you will only play against each of the new participants once.]

By making good decisions you can earn profits in experimental dollars (e-
dollars). At the end of the session you will be paid SEK 100 plus the e-dollars you
have earned at the exchange rate of 1 SEK for every 50 e-dollars. Simply put, the
more experimental dollars you earn the more cash you will receive at the end of
the session.

In each period you make two separate decisions for your firm. First you decide

28



how much you would like to produce (Q1) and then, after you have observed the
production level of your competitor (Q2), you choose your price (P1).

Production stage

At the beginning of each period you decide how many units of the good to
produce (Q1). You make your decision by entering a number in the box on the
left hand side of the screen and then press OK. Any positive number between

0 and 90, with up to 2 decimals is acceptable. (Example: 10, 20.6, and 33.33
are valid but -12, 50.123 are not). Please use a dot (.) as the decimal separator.

The amount you produce has consequences for your profit in that period, since
you have to pay a production cost of 30 e-dollars for each unit; regardless of how
much you sell. Note that no inventories can be carried to future periods.

Before you enter your quantity you should think carefully about your choice.
You can use the calculator displayed on the right hand side of the computer screen.
There you can enter hypothetical production quantities and prices for your firm
and its competing firm, press CALCULATE and observe the results in the Table
on the lower right hand side. Table 3 explains the columns.

Table 3: Calculator table legend
Q1 Your production
Q2 Competitor’s production
X1 Your sold quantity
X2 Competitor’s sold quantity
P1 Your price
P2 Competitor’s price

Price stage

When all participants have entered their production levels you will automat-
ically go to the price stage. On the left hand side you can see your own chosen
production level as well as your competing firm’s production level. You enter a
price of your choice in the box below this information and press OK when you are
ready. Any positive number between 0 and 120, with up to 2 decimals

is acceptable. (Example: 10, 20.6, and 33.33 are valid but -12, 50.123 are not).
Please use a dot (.) as a decimal separator. You may want to do some more
calculations before you set your price. You still have the calculator on your right
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Figure 6: The demand function (solid line) and the unit cost function (dotted line)

hand side, but this time you can only alter the prices (P1 and P2). The previously
chosen quantities (Q1 and Q2) are fixed at this stage.

How much you sell is determined by your price (P1) and its relation to your
competitor’s price (P2). Consumer demand is calculated by a computer program
and follows a simple equation

D = 120− P.

where D is demand and P is a price. This means for instance that at the price 0
consumers are willing to purchase 120 units of the product. At the price of 25.5
consumers are willing to purchase 94.5 units. There is no demand for the product
at price levels equal to or greater than 120. Figure 6 illustrates demand and unit
cost.

Consumers strictly prefer buying from the firm offering the lower price. Hence,
the firm with the lower price will sell all its production up to the demand level at
that price. The firm with the higher price can only sell the product to consumers
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who are not supplied by the lower pricing firm, and never more than the demand
level at its price, or its produced quantity. If both firms choose the same price,
demand will be split equally between them up to the quantity limits (the respective
production levels).

Example 1: Say that Q1 = 35, Q2 = 45, P1 = 45 and P2 = 55. Since demand
at the lower price level is 75, you (firm 1) can sell all your produced quantity. Your
revenue is 45 × 35 = 1575 and your total cost is 30 × 35 = 1050. Your profit is
1575 − 1050 = 525. Your opponent (firm 2) can only sell 30 units. The demand
for his product equals 120− 55 = 65, by the demand equation. From that we have
to subtract what is already supplied by your firm, or 35 units. Hence, she sells
65− 35 = 30 units at the price of 55. His revenue is 55× 30 = 1650, his total cost
is 45× 30 = 1350 and she makes a 300 e-dollar profit.

Example 2: Say that Q1 = Q2 = 15 and P1 = P2 = 55. Demand at this price
is greater than the sum of the production levels but you can only sell what you
produce. Your profit is 55× 15− 30× 15 = 375.

Result display

When all participants have entered their prices the result display will appear.
You can then see a summary for that period, for yourself and your competitor.
Press continue when you have studied the results.

Periods

To help you familiarize yourself with the computer interface and the calcula-
tions, you get to practice for two periods. The result of these periods will not affect

your payoff.

{Then, you will play for 10 periods, once with each of the participants in
your room. Then, after a short break, the experiment restarts, and now you play
against inexperienced participants. Again you go through two practice periods
(for the others) and then 10 periods, where you can earn money, against each of
the inexperienced participants.}

[The result of these pratice periods will not affect your payoff. Then you will
play for 10 periods, once with each of the experienced participants in the other
room. Then, after a short break, the experiment restarts and now you play for
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10 periods against participants sitting in your room, who have the same level of
experience as you do]

Before you leave, we ask you to fill out a short questionnaire about the exper-
iment. We will use the time while you complete it to calculate your earnings.

Everything described here is not only valid for you, but also for all other par-
ticipants in this experiment.

Now you should be ready to start the experiment. Please raise your hand if
you have any questions. We prefer to answer your questions privately. Good luck!
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B Predictions with Symmetric Action Space

If players randomize completely, the average capacity is determined by the mean of
the action space. In most conceivable configurations of the KS model, the average
of all feasible capacity levels is higher than the Cournot output, while the opposite
is true for prices. This might affect the prediction of the logit-AQRE model. It is
therefore interesting to compare the predictions in section 2.2 to the case where
the action space is symmetric around the Cournot outcomes, Ak = {0, 5, ..., 60}
and Ap = {30, 35...90}. In this setup the expected capacity and price chosen by
a totally clueless player (with λ = 0) is simply the Cournot outcome. Figure 7
illustrates average capacity and price choices in the logit-AQRE equilibrium profile.
With a symmetric action space, average capacity is no longer uniformly decreasing
in own precision level (λ1). For positive levels of λ2 (opponent’s precision level)
it first increases and then decreases. Furthermore, capacity only converges to the
Cournot output level when both λ1 and λ2 increase simultaneously. The case of
prices is more complicated, as the average price is not monotonic with respect to
λ2 either. The comparison of these two configurations is helpful. It suggests that
the presence of a bias towards larger capacities and lower prices does not seem to
be caused by the choice of action space, although it is an important determinant
of the shape of the bias with respect to the level of players’ rationality and their
perceptions about the rationality of others.
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Figure 7: Mean capacities and prices in logit-AQRE equilibrium - Action space
symmetric around Cournot outcome

C More experimental results
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Figure 8: Distribution of capacity choices in group A in the first two sessions, each graph

indicates a particular experience level (two periods)

Figure 9: Distribution of capacity choices in group B in the first two sessions, each graph

indicates a particular experience level (two periods)

35



Table 4: Maximum likelihood estimation of the logit-AQRE model
Periods λA λB lnLAQRE lnL

a) Group A1

1-2 0.19 -205.9 -249.1
(0.03)

3-4 0.26 -201.2 -249.1
(0.04)

5-6 0.29 -187.5 -249.1
(0.04)

7-8 0.34 -196.9 -249.1
(0.04)

9-10 0.54 -171.5 -249.1
(0.05)

b) Group A2 vs.B1
1-2 0.73 0.40 -345.2 -509.1

(0.10)
3-4 0.75 0.48 -341.1 -509.1

(0.09)
5-6 0.86 0.65 -310.1 -509.1

(0.10)
7-8 0.81 0.69 -315.2 -509.1

(0.10)
9-10 0.81 0.69 -321.9 -509.1

(0.10)

c) Group B2
1-2 0.86 -154.3 -260.0

(0.11)
3-4 0.82 -157.8 -260.0

(0.09)
5-6 1.01 -144.8 -260.0

(0.12)
7-8 1.02 -144.0 -260.0

(0.11)
9-10 1.141 -133.0 -260.0

(0.12)
Standard errors in parantheses, estimated by the BHHH method.
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Table 5: Actual vs. predicted quantities and prices
kA kB pA pB

Actual Pred. Actual Pred. Actual Pred. Actual Pred.

a) Group A1vs.A1

1-2 53.9 38.0 40.7 48.5
(18.5) (18.2) (11.5) (17.5)

3-4 50.5 36.1 37.5 50.3
(16.2) (16.3) (8.6) (16.4)

5-6 48.9 35.3 37.5 51.2
(16.4) (15.3) (10.1) (15.8)

7-8 44.5 34.5 40.3 52.2
(14.0) (14.3) (12.2) (15.2)

9-10 38.4 32.3 47.5 55.8
(13.1) (10.6) (13.7) (12.4)

b) Group A2 vs.B1
1-2 37.7 31.5 45.8 33.3 44.1 56.5 42.9 54.7

(9.2) (9.0) (16.6) (12.6) (9.7) (12.2) (10.0) (13.2)
3-4 37.1 31.4 43.3 32.6 44.7 56.9 44.5 55.6

(8.4) (8.8) (15.9) (11.4) (10.2) (11.7) (11.2) (12.3)
5-6 37.0 31.1 41.7 31.6 46.1 57.9 46.4 57.3

(8.6) (8.0) (16.5) (9.5) (10.2) (10.5) (10.3) (10.8)
7-8 37.2 31.2 38.9 31.5 47.0 57.8 46.5 57.4

(7.4) (8.3) (14.6) (9.1) (8.8) (10.6) (8.8) (10.7)
9-10 36.7 31.2 39.6 31.5 46.6 57.8 46.7 57.4

(8.0) (8.3) (12.7) (9.1) (8.3) (10.6) (8.6) (10.7)

c) Group B2 vs. B2
1-2 37.4 31.0 46.8 58.2

(11.5) (8.0) (7.5) (9.9)
3-4 37.1 31.1 47.3 58.1

(11.6) (8.2) (7.8) (10.1)
5-6 36.5 30.7 48.2 58.8

(11.8) (7.3) (8.0) (9.2)
7-8 35.3 30.7 49.5 58.8

(11.5) (7.2) (7.7) (9.1)
9-10 35.2 30.5 51.1 59.1

(11.7) (6.8) (8.4) (8.7)
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