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Abstract

This paper contains two novelties. First, a unified framework for testing and evaluating
the adequacy of an estimated autoregressive conditional duration (ACD) model is presented.
Second, two new classes of ACD models, the smooth transition ACD model and the time-
varying ACD model, are introduced and their properties discussed.

A number of new misspecification tests for the ACD class of models are introduced. They
are Lagrange multiplier and Lagrange multiplier type tests against general forms of additive
and multiplicative misspecification of the conditional mean function. These forms include
tests against higher-order models, tests of no remaining ACD in the standardized durations,
as well as tests of linearity and parameter constancy. In addition to its generality, the
advantage of this testing approach is its ease of application, since all the resulting asymptotic
null distributions are standard. The finite sample properties of the tests are investigated by
simulation. A general observation is that the tests are well-sized and have good power.
Versions of the test statistics robust to deviations from distributional assumptions other
than those being explicitly tested are also given.

The smooth transition and time-varying ACD models are introduced, their main prop-
erties are examined, and they serve as alternatives in the tests of linearity and parameter
constancy. Finally, the tests are applied to ACD models of the IBM stock traded at the New
York Stock Exchange.
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1 Introduction

High-frequency financial time series have become widely available during the past decade or
so. Records of all transactions and quoted prices, so-called “ultra-high-frequency” data; Engle
(2000), are available from many stock exchanges. An inherent feature is that such data are
irregularly spaced in time. There are several approaches to tackling this feature of the data.
In this paper we follow the line of work originated by Engle and Russell (1998), where the
durations between events (trades, quotes, price changes etc.) are the quantities being modeled.
These authors proposed a class of models called the Autoregressive Conditional Duration, or
ACD, models, where conditional expected durations are modeled in a fashion similar to the
way conditional variances are modeled using ARCH and GARCH models of Engle (1982) and
Bollerslev (1986).

Following the GARCH literature, a number of extensions to the original linear ACD model
by Engle and Russell (1998) have been suggested. These include the logarithmic ACD model of
Bauwens and Giot (2000), and the threshold ACD model of Zhang, Russell, and Tsay (2001).
The distribution associated with the conditional durations has also been suggested to have
several different shapes. Examples include the the exponential and Weibull distributions as
in Engle and Russell (1998), and the Burr and generalized gamma distributions suggested by
Grammig and Maurer (2000) and Lunde (1999), respectively.

Despite the surge of different models for financial durations the issue of model evaluation
using misspecification tests has not yet received as much attention as it should deserve. In
time series econometrics, estimated models of the conditional mean, and more recently, ones of
conditional variance, are typically subjected to a variety of evaluation tests to determine the
adequacy of the specification. For models of conditional duration, some misspecification tests
have also been proposed in the literature. These can be divided into two categories: tests of
misspecification in the distribution of the error term, and of misspecification in the functional
form of the conditional mean duration. Fernandes and Grammig (in press) as well as Bauwens,
Giot, Grammig, and Veredas (2004) have suggested tests of the first type, and Hautsch (2002)
proposed tests of the second type. Li and Yu (2003) derived a portmanteau test that can be used
to evaluate the adequacy of an estimated ACD model. Finally, Hong and Lee (2003) considered
a general diagnostic test which can be used as a misspecification test for ACD models.

In this paper, we present a framework for evaluating models of conditional duration based on
Lagrange multiplier misspecification tests of the functional form of the conditional mean dura-
tion. Our goal is to derive easily applicable tests that can reveal various types of misspecification.
We present our results in a general form, from which misspecification tests against specific al-
ternatives are derived in a straightforward fashion. Our tests include ones against higher-order
models and remaining ACD effects in the standardized durations, as well as tests of linearity
and parameter constancy. In the process of deriving linearity and parameter constancy tests,
we propose two new ACD specifications, namely the smooth transition ACD (STACD) model,
and the time-varying ACD (TVACD) model.

This paper has similarities with the one by Lundbergh and Teräsvirta (2002) who derived
misspecification tests for GARCH models. The two papers share the same goal: to derive easily
applicable evaluation tools based on Lagrange multiplier test statistics. The types of model
misspecification considered in these papers are similar. Derivations of the test statistics differ
in that the error distributions of the ACD and GARCH models are not the same. Furthermore,
the present paper contains a discussion of nonlinear alternatives to the standard ACD model.

The rest of the paper is organized as follows. In Section 2 we briefly review previous work on
misspecification testing in ACD models and present the general results that form the basis of our
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misspecification tests. In Section 3 we derive tests against higher-order models and remaining
ACD in the standardized durations. Section 4 presents the smooth transition ACD model and
deduces a test of linearity, and Section 5 presents the time-varying ACD model and the test of
parameter constancy. Section 6 contains the results of a simulation experiment. In Section 7
we estimate and evaluate ACD models using data from the New York Stock Exchange. Finally,
Section 8 concludes.

2 Testing ACD models against general additive and
multiplicative alternatives

2.1 Previous work on misspecification testing of ACD models

Evaluation of estimated ACD models by misspecification tests has not been commonplace in
empirical work. Often the only diagnostic test applied for the purpose has been the Ljung-
Box Q–statistic applied to the standardized or squared standardized durations. In the latter
case the test is commonly called the McLeod-Li test (McLeod and Li, 1983). Nevertheless,
as already mentioned, there are some papers proposing misspecification tests for ACD models.
Bauwens, Giot, Grammig, and Veredas (2004) as well as Fernandes and Grammig (in press)
discussed the testing for distributional misspecification. The former authors evaluated duration
models using density forecast evaluation methods of Diebold, Gunther, and Tay (1998). Their
method relied on the fact that the sequence of probability integral transforms of the one-step-
ahead forecasts of the conditional densities of durations will be distributed as independent and
identically distributed uniform (0,1) random variables when the one-step-ahead forecasts of the
conditional densities of the durations coincide with the true densities. This is the null hypothesis
to be tested. It may be rejected either because the error distribution of the model is misspecified
or because the conditional mean is misspecified. The latter alternative is due to the fact that
the choice of the conditional mean function affects the one-step-ahead forecasts. Fernandes
and Grammig (in press) tested the distribution of the error term by comparing parametric
and nonparametric estimates of the density of the standardized durations. Their test explicitly
assumes that the conditional mean is correctly specified but again a rejection may also be a
consequence of a misspecified conditional mean. In order to obtain more information about the
situation, complementing tests of the distributional assumption by tests of the conditional mean
specification is quite important.

The question of testing the functional form of the conditional mean of an ACD model was
addressed in Hautsch (2002). He mentioned Lagrange multiplier, conditional moment, and
integrated conditional moment (ICM) tests as potential tools for detecting misspecification and
focuses on the latter two methods. Conditional moment tests (see e.g. Newey (1985)) are
based on the fact that correct specification implies the validity of certain moment conditions.
These tests are, however, known to be heavily dependent on the choice of weighting of the
moment conditions. They do not require a well-specified alternative and are thus rather general
misspecification tests. But then, they are based on a finite number of moment restrictions and
cannot therefore be consistent against all possible alternatives. The ICM test (see e.g. Bierens
(1990) or de Jong (1996)) employs an infinite amount of moment conditions and is consistent
against every deviation from the null hypothesis. A consequence of this property is that the test
is not very powerful against any particular alternative, which may be considered a disadvantage.
Another drawback of the ICM test is that application requires approximating the asymptotic null
distribution of the test statistic by simulation. This makes the use of the test computationally
burdensome in the ACD case where the time series in applications can be quite long.
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Recently, Li and Yu (2003) derived a portmanteau test for ACD models.1 Their test is based
on the residual autocorrelations of an estimated ACD model in the spirit of the Ljung-Box test.
More generally, Hong and Lee (2003) proposed the generalized spectrum based test of Hong
(1999) as a general diagnostic test for ACD and many other models. When applied to the
standardized durations resulting from the estimation of an ACD model, this test is consistent
against any type of pairwise serial dependence left in the standardized durations. We provide a
description of this test in Appendix C, and use it as benchmark test in our power simulations
in Section 6.

The purpose of this paper is to present a unified framework for evaluating ACD models us-
ing Lagrange multiplier (LM) tests. Using LM tests makes misspecification testing easy without
sacrificing power. Since the model is only estimated under the null hypothesis, the need for,
say, nonlinear ACD models can be investigated without the often burdensome task of actually
estimating such a model. We derive general results from which tests against specific alterna-
tives are easily derived. Such alternatives include higher-order models, remaining ACD in the
standardized durations, as well as nonlinearity and parameter nonconstancy.

2.2 General theory

Let ti be the time at which the ith event (trade, quote, price change etc.) occurs and denote
by xi = ti − ti−1 the duration between two consecutive events. Let Fi−1 be the information set
consisting of all information up to and including time ti−1. Following Engle and Russell (1998),
the class of exponential autoregressive conditional duration (ACD) models is defined as follows:

xi = ψiεi (1)

ψi = ψi (xi−1, . . . , x1; θ1) (2)

εi ∼ i.i.d. exp(1) (3)

where ψi = ψi (xi−1, . . . , x1; θ1) is the duration conditional on Fi−1.
The types of misspecification of this structure can be divided into two broad categories: the

conditional duration is either additively or multiplicatively misspecified. This means that the
true process is governed either by

xi = (ψi + ϕi) εi (4)

(additive misspecification) or
xi = ψiϕiεi (5)

(multiplicative misspecification). Both in (4) and (5) the additional component of the conditional
duration,

ϕi = ϕi (xi−1, . . . , x1; θ1, θ2) (6)

is assumed to be an Fi−1–measurable function that depends on additional parameters θ2.
Let

ai (θ1) =
1

ψi (θ1)

∂ψi (θ1)

∂θ1

bi (θ1, θ2) =
1

ψi (θ1)

∂ϕi (θ1, θ2)

∂θ2

ci (θ1) =
xi

ψi (θ1)
− 1.

1We thank a referee for bringing this paper into our attention.
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Furthermore, let the superscript ‘0’ denote values evaluated at the true (under the null hypoth-
esis) parameter values, and the hat ‘ˆ’ values evaluated at the maximum value of the likelihood
under the null hypothesis. The following theorem defines the test against a general additive
alternative.

Theorem 1 Consider the model (4), (2), (3), (6), and, in addition to assuming that standard
regularity conditions (see Theorem 1 of Engle (2000)) apply, assume that under the null hypoth-
esis H0 : θ2 = θ0

2, the function ϕi satisfies ϕi
(

xi−1, . . . , x1; θ1, θ
0
2

)

≡ 0. Then, under the null
hypothesis H0 : θ2 = θ0

2, the LM statistic

LM =

{

n
∑

i=1

ĉib̂
′
i

}







n
∑

i=1

b̂ib̂
′
i −
(

n
∑

i=1

b̂iâ
′
i

)(

n
∑

i=1

âiâ
′
i

)−1( n
∑

i=1

âib̂
′
i

)







−1{
n
∑

i=1

ĉib̂i

}

(7)

has an asymptotic χ2 distribution with dim θ2 degrees of freedom.

Proof. See Appendix A.

Under the null hypothesis H0 : θ2 = θ0
2, model (4) reduces to (1)–(3). In practice the LM test

in Theorem 1 is most easily carried out using an auxiliary least squares regression on particular
transformed variables. This can be done as follows (see for example Engle (1984)):

Procedure 2

(i) Obtain the quasi maximum likelihood estimate of θ1 under the null hypothesis, and compute

â′
i = 1

ψi(θ̂1)
∂ψi(θ̂1)
∂θ′

1

, b̂′
i = 1

ψi(θ̂1)
∂ϕi(θ̂1,θ02)

∂θ′
2

, ĉi = xi

ψi(θ̂1)
− 1, i = 1, . . . , n, and SSR0 =

∑n
i=1 ĉ

2
i .

(ii) Regress ĉi on â′
i and b̂′

i, i = 1, . . . , n, and compute SSR1.

Then, under the null hypothesis, the test statistic LM = n (SSR0 − SSR1) /SSR0 has an asymp-
totic χ2 distribution with dim θ2 degrees of freedom.

There is considerable empirical evidence in the ACD literature against exponentially dis-
tributed errors. Engle and Russell (1998) already considered the Weibull distribution, Grammig
and Maurer (2000) suggested the Burr distribution, and Lunde (1999) used the generalized
gamma distribution. Therefore one might consider basing the QML estimation and the deriva-
tion of the asymptotic distributions of the test statistics on these distributions. There is, how-
ever, a drawback in this approach. As Gouriéroux, Monfort, and Trognon (1984) originally
showed, the QML parameter estimators of a correctly specified conditional mean model are con-
sistent if, and only if, the quasi-maximum likelihood is based on a distribution belonging to the
linear exponential family, regardless of what the true density is. For a discussion of this, see for
example White (1994, pp. 62–70). The exponential distribution does belong to the linear expo-
nential family, while the Weibull, Burr, and generalized gamma distributions do not (except for
special cases). Therefore, the QML approach based on the exponential distribution will produce
consistent estimators regardless of the true error distribution, while QML based on these other
distributions will not unless the distribution used is the true density.

Drost and Werker (2004) pointed out that the use of QML based on the ordinary gamma
distribution produces consistent estimators. Furthermore, the score vectors of the gamma dis-
tribution (suitably normalized) and the exponential distribution are proportional to each other.
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Hence the estimators for the parameters of the conditional mean based on these two error dis-
tributions are identical.

While the QML approach based on the exponential distribution yields consistent estimators,
misspecification of the conditional distribution of the durations may still affect the properties of
our LM test statistics. This is because applying the test statistics involves implicit assumptions
about this conditional distribution. In particular, it is tacitly assumed that the conditional
variance of the durations is correctly specified under the null hypothesis. As our interest lies
in the specification of the conditional mean, we do not wish other properties of the conditional
distribution to affect the properties of our test statistics. The results of Wooldridge (1991) are
helpful here. Since we are using consistent estimators based on QML, his results allow us to
derive ‘robust’ versions of the test statistics such that their asymptotic behaviour is unaffected by
possible misspecification of the conditional distribution beyond the conditional mean. Applying
these results leads to the procedure given below. They cannot be used, however, when the
QML estimators are obtained assuming Weibull, Burr, or generalized gamma distributed errors,
because a key requirement in Wooldridge (1991) is the consistency of the estimators.

Procedure 3

(i) Obtain the quasi maximum likelihood estimate of θ1 under the null hypothesis, and compute

â′
i = 1

ψi(θ̂1)
∂ψi(θ̂1)
∂θ′

1

, b̂′
i = 1

ψi(θ̂1)
∂ϕi(θ̂1,θ02)

∂θ′
2

and ĉi = xi

ψi(θ̂1)
− 1, i = 1, . . . , n.

(ii) Regress b̂′
i on â′

i, i = 1, . . . , n, and save the (dim θ2 × 1) residual vectors r̂i.

(iii) Regress 1 on ĉir̂i, i = 1, . . . , n, and compute the sum of squared residuals, SSR, from this
regression.

Then, under the null hypothesis, the test statistic nR2 = n− SSR has an asymptotic χ2 distri-
bution with dim θ2 degrees of freedom.

For the general multiplicative alternative the asymptotic distribution theory has the following
form:

Theorem 4 Consider the model (5), (2), (3), (6), and, in addition to assuming that standard
regularity conditions (see Theorem 1 of Engle (2000)) apply, assume that under the null hypoth-
esis H0 : θ2 = θ0

2, the function ϕi satisfies ϕi
(

xi−1, . . . , x1; θ1, θ
0
2

)

≡ 1. Then, under the null
hypothesis H0 : θ2 = θ0

2, the LM statistic

LM =

{

n
∑

i=1

ψ̂iĉib̂
′
i

}







n
∑

i=1

ψ̂2
i b̂ib̂

′
i −
(

n
∑

i=1

ψ̂ib̂iâ
′
i

)(

n
∑

i=1

âiâ
′
i

)−1( n
∑

i=1

ψ̂iâib̂
′
i

)







−1
{

n
∑

i=1

ψ̂iĉib̂i

}

(8)
has an asymptotic χ2 distribution with dim θ2 degrees of freedom.

Under the null hypothesis H0 : θ2 = θ0
2, model (5) reduces to (1)–(3). The procedures for the

practical application of the test are almost identical to the ones given in Procedures 2 and 3.
The only modification needed is to replace b̂i by ψ̂ib̂i throughout.

It may be mentioned that there is a close connection between the LM tests presented here
and the conditional moment tests discussed in Hautsch (2002) in the sense that our tests can
be interpreted as particular conditional moment tests. By choosing appropriate moment con-
ditions and weighting functions when deriving a conditional moment test one obtains a test
that is asymptotically equivalent to our LM test, the only difference being a different consistent
estimator of the information matrix.
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3 Applications of the theory

In this section we present three misspecification tests that are applications of our general theory.
The first two are tests of the original ACD model of Engle and Russell (1998) and the LOGACD
model of Bauwens and Giot (2000) against higher-order alternatives. The third one is a test for
remaining ACD in the standardized durations. We shall present the precise alternative under
consideration, state the distributional results corresponding to Theorem 1 or 4, and give explicit
formulas for the quantities âi and b̂i needed for applying the testing procedures.

3.1 Testing ACD(m,q) against higher-order alternatives

Engle and Russell (1998) defined their original ACD(m,q) model by parameterizing the condi-
tional duration (2) as

ψi = ω +

m
∑

j=1

αjxi−j +

q
∑

j=1

βjψi−j. (9)

A natural benchmark and starting point for modeling durations is a low-order ACD(m,q) model,
but then, too low an order is an obvious source of misspecification. An estimated ACD(m,q)
model is tested against higher-order alternatives in the same way as Bollerslev (1986) tested a
GARCH(p,q) model against higher-order alternatives. Consequently, either

xi = (ψi + ϕi) εi (10)

ψi + ϕi = ω +

m+r
∑

j=1

αjxi−j +

q
∑

j=1

βj (ψi−j + ϕi−j) (11)

ϕi =

m+r
∑

j=m+1

αjxi−j +

q
∑

j=1

βjϕi−j (12)

εi ∼ i.i.d. exp(1) (13)

or

xi = (ψi + ϕi) εi (14)

ψi + ϕi = ω +

m
∑

j=1

αjxi−j +

q+r
∑

j=1

βj (ψi−j + ϕi−j) (15)

ϕi =

q+r
∑

j=q+1

βj (ψi−j + ϕi−j) +

q
∑

j=1

βjϕi−j (16)

εi ∼ i.i.d. exp(1). (17)

The null hypothesis equals H0 : ϕi ≡ 0, i.e. αm+1 = · · · = αm+r = 0 in the former and
βq+1 = · · · = βq+r = 0 in the latter case. Under the alternative the first model is an ACD(m+r,q)
model and the second model is an ACD(m,q + r) model, while under the null both models
collapse to an ACD(m,q) model. The ACD(m,q) model cannot be tested directly against an
ACD(m + r,q + s) model, r, s > 0, using standard techniques because of the identification
problem already discussed in Bollerslev (1986).

These higher-order alternatives belong to the additive class of alternatives mentioned above.
The following two corollaries of Theorem 1 define the test statistics. The tests are most easily
carried out using the auxiliary regression procedures given in the previous section.
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Corollary 5 Consider the model (10)–(13) with θ1 = (ω,α1, . . . , αm, β1, . . . , βq)
′ and θ2 =

(αm+1, . . . , αm+r)
′. Under the null hypothesis H0 : θ2 = 0, the statistic (7), where

âi =
1

ψ̂i

∂ψ̂i
∂θ1

= ψ̂−1
i

(

1, xi−1, . . . , xi−m, ψ̂i−1, . . . , ψ̂i−q

)′

+ ψ̂−1
i

q
∑

j=1

β̂j
∂ψ̂i−j
∂θ1

b̂i =
1

ψ̂i

∂ϕ̂i
∂θ2

= ψ̂−1
i (xi−m−1, . . . , xi−m−r)

′ + ψ̂−1
i

q
∑

j=1

β̂j
∂ϕ̂i−j
∂θ2

has an asymptotic χ2 distribution with r degrees of freedom.

Corollary 6 Consider the model (14)–(17) with θ1 = (ω,α1, . . . , αm, β1, . . . , βq)
′ and θ2 =

(βq+1, . . . , βq+r)
′. Under the null hypothesis H0 : θ2 = 0, the statistic (7), where

âi =
1

ψ̂i

∂ψ̂i
∂θ1

= ψ̂−1
i

(

1, xi−1, . . . , xi−m, ψ̂i−1, . . . , ψ̂i−q

)′

+ ψ̂−1
i

q
∑

j=1

β̂j
∂ψ̂i−j
∂θ1

b̂i =
1

ψ̂i

∂ϕ̂i
∂θ2

= ψ̂−1
i

(

ψ̂i−q−1, . . . , ψ̂i−q−r

)′

+ ψ̂−1
i

q
∑

j=1

β̂j
∂ϕ̂i−j
∂θ2

has an asymptotic χ2 distribution with r degrees of freedom.

3.2 Testing LOGACD(m,q) against higher-order alternatives

Bauwens and Giot (2000) advocate the use of a logarithmic version of the ACD model instead
of the linear one. In their LOGACD(m,q) model (2) is parameterized as

lnψi = ω +

m
∑

j=1

αj lnxi−j +

q
∑

j=1

βj lnψi−j .

Also in this case the starting point for modeling would be a low-order model, which is then
evaluated. Testing the logarithmic model against higher-order alternatives is done in a similar
fashion than in the linear case. We consider either

xi = ψiϕiεi (18)

ln (ψiϕi) = ω +

m+r
∑

j=1

αj lnxi−j +

q
∑

j=1

βj ln (ψi−jϕi−j) (19)

lnϕi =

m+r
∑

j=m+1

αj lnxi−j +

q
∑

j=1

βj lnϕi−j (20)

εi ∼ i.i.d. exp(1) (21)

or

xi = ψiϕiεi (22)

ln (ψiϕi) = ω +
m
∑

j=1

αj lnxi−j +

q+r
∑

j=1

βj ln (ψi−jϕi−j) (23)

lnϕi =

q+r
∑

j=q+1

βj ln (ψi−jϕi−j) +

q
∑

j=1

βj lnϕi−j (24)

εi ∼ i.i.d. exp(1). (25)
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Under the null hypothesis H0 : ϕi ≡ 1, i.e. αm+1 = · · · = αm+r = 0 in the former and
βq+1 = · · · = βq+r = 0 in the latter case, the models reduce to the LOGACD(m,q) model.
Under the alternative the models are the LOGACD(m+ r,q) model and the LOGACD(m,q+ r)
model, respectively. The alternatives belong to the multiplicative class of alternatives mentioned
above. Corollaries 7 and 8 define the tests.

Corollary 7 Consider the model (18)–(21) with θ1 = (ω,α1, . . . , αm, β1, . . . , βq)
′ and θ2 =

(αm+1, . . . , αm+r)
′. Under the null hypothesis H0 : θ2 = 0, the statistic (8), where

âi =
1

ψ̂i

∂ψ̂i
∂θ1

=
(

1, ln xi−1, . . . , ln xi−m, ln ψ̂i−1, . . . , ln ψ̂i−q

)′

+

q
∑

j=1

β̂j
∂ ln ψ̂i−j
∂θ1

b̂i =
1

ψ̂i

∂ϕ̂i
∂θ2

= ψ̂−1
i (lnxi−m−1, . . . , lnxi−m−r)

′ + ψ̂−1
i

q
∑

j=1

β̂j
∂ϕ̂i−j
∂θ2

has an asymptotic χ2 distribution with r degrees of freedom.

Corollary 8 Consider the model (22)–(25) with θ1 = (ω,α1, . . . , αm, β1, . . . , βq)
′ and θ2 =

(βq+1, . . . , βq+r)
′. Under the null hypothesis H0 : θ2 = 0, the statistic (8), where

âi =
1

ψ̂i

∂ψ̂i
∂θ1

=
(

1, ln xi−1, . . . , ln xi−m, ln ψ̂i−1, . . . , ln ψ̂i−q

)′

+

q
∑

j=1

β̂j
∂ ln ψ̂i−j
∂θ1

b̂i =
1

ψ̂i

∂ϕ̂i
∂θ2

= ψ̂−1
i

(

ln ψ̂i−q−1, . . . , ln ψ̂i−q−r

)′

+ ψ̂−1
i

q
∑

j=1

β̂j
∂ ln ϕ̂i−j
∂θ2

has an asymptotic χ2 distribution with r degrees of freedom.

3.3 Testing the hypothesis of no remaining ACD

After estimating an ACD model one may also ask whether the estimated disturbances still
contain some structure. One possibility is that all the ACD effects are not captured by the
estimated model but that some are still present in the disturbances. In the ACD literature it is
common to evaluate the properties of standardized durations resulting from the estimation of an
ACD model using Ljung-Box or McLeod-Li tests (see Ljung and Box (1978) and McLeod and
Li (1983), respectively). As was shown by Li and Mak (1994) in the context of GARCH models,
this is somewhat misleading. The reason is that these test statistics do not have the usual
asymptotic χ2 distribution under the null hypothesis when they are applied to standardized
residuals from an estimated GARCH model. Li and Mak (1994) proposed a corrected statistic
and Lundbergh and Teräsvirta (2002) presented a Lagrange multiplier statistic asymptotically
equivalent to it. A similar test statistic for the ACD(m,q) model is presented next.

To this end, let

xi = ψiϕiεi (26)

ψi = ω +

m
∑

j=1

αjxi−j +

q
∑

j=1

βjψi−j (27)

ϕi = 1 +
m∗
∑

j=1

α∗
j

xi−j
ψi−j

(28)

εi ∼ i.i.d. exp(1). (29)

9



The null hypothesis equals H0 : ϕi ≡ 1, i.e., α∗
1 = . . . = α∗

m∗ = 0. The test will be based on the
following corollary to Theorem 4.

Corollary 9 Consider the model (26)–(29) with θ1 = (ω,α1, . . . , αm, β1, . . . , βq)
′ and θ2 =

(α∗
1, . . . , α

∗
m∗)′. Under the null hypothesis H0 : θ2 = 0, the statistic (8), where

âi =
1

ψ̂i

∂ψ̂i
∂θ1

= ψ̂−1
i

(

1, xi−1, . . . , xi−m, ψ̂i−1, . . . , ψ̂i−q

)′

+ ψ̂−1
i

q
∑

j=1

β̂j
∂ψ̂i−j
∂θ1

b̂i =
1

ψ̂i

∂ϕ̂i
∂θ2

= ψ̂−1
i (xi−1ψ̂

−1
i−1, . . . , xi−m∗ ψ̂−1

i−m∗)
′

has an asymptotic χ2 distribution with m∗ degrees of freedom.

As xi−1/ψi−1 are standardized durations, the test is one of the standardized durations being
iid against the alternative that they follow an ACD process. When m = q = 0 it collapses to a
test of no ACD effects in the original series. Tests of no remaining ACD effects after estimating
other ACD type models are obtained by redefining âi in Corollary 9.

Recently, Li and Yu (2003) derived a portmanteau test of testing the null hypothesis that the
exponentially distributed errors are independent. It turns out that their test is asymptotically
equivalent to the statistic given in Corollary 9. For a proof, see Appendix B.

4 Smooth transition ACD models

Engle and Russell (1998) report that their linear ACD model generates expected durations
that are on the average too long after the shortest and the longest durations. This suggests
that a nonlinear specification for the conditional duration would be more appropriate than the
standard linear one. Alternatives in the literature include the LOGACD model of Bauwens and
Giot (2000), the Box-Cox and Exponential ACD models of Dufour and Engle (2000), and the
threshold ACD model of Zhang, Russell, and Tsay (2001). A smooth transition version of the
ACD model also appears to be a possibility and is considered here.

The inspiration for smooth transition ACD models comes from the GARCH literature.
Smooth transition GARCH models are treated in Hagerud (1996), González-Rivera (1998) and
Anderson, Nam, and Vahid (1999); see also Lundbergh and Teräsvirta (2002). In the present
work, the smooth transition ACD(m,q) model is defined as follows:

ψi = ω +

m
∑

j=1

αjxi−j +

m
∑

j=1

(

ω∗
j + α∗

jxi−j
)

G (xi−j; γ, c) +

q
∑

j=1

βjψi−j

= ω +

m
∑

j=1

ω∗
jG (xi−j ; γ, c) +

m
∑

j=1

(

αj + α∗
jG (xi−j ; γ, c)

)

xi−j +

q
∑

j=1

βjψi−j

whereG (xi−j ; γ, c) is a suitably chosen bounded and non-negative transition function. A natural
candidate for the transition function could at first sight be the logistic function. A disadvantage
of this transition function is, however, that the logistic function is defined on the whole real
axis, whereas in the present case the potential transition variable xi−j only takes positive values.
Another candidate for the transition function would be a cumulative distribution function of a
random variable with a positive support. The shortcoming of this alternative is that in this case
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the transition function would inevitably be a non-decreasing function, which will not produce
nonlinearities of the type we are interested in.

As the logarithmic transformation is a common and often convenient way of transforming
positive-valued objects to ones defined on the whole real axis, we retain the logistic function but
use lnxi−j as the transition variable. This leads to the following smooth transition ACD(m,q)
(STACD) specification

ψi = ω +
m
∑

j=1

αjxi−j +
m
∑

j=1

(

ω∗
j + α∗

jxi−j
)

G (lnxi−j; γ, c) +

q
∑

j=1

βjψi−j

= ω +

m
∑

j=1

ω∗
jG (lnxi−j ; γ, c) +

m
∑

j=1

(

αj + α∗
jG (lnxi−j ; γ, c)

)

xi−j +

q
∑

j=1

βjψi−j (30)

where

G (lnxi−j ; γ, c) =

(

1 + exp

{

−γ
K
∏

k=1

(lnxi−j − ck)

})−1

, c1 ≤ · · · ≤ cK , γ > 0 (31)

and where the order K ∈ Z+ determines the general shape of the transition function. We also
propose the smooth transition LOGACD(m,q) specification

lnψi = ω +
m
∑

j=1

αj lnxi−j +
m
∑

j=1

(

ω∗
j + α∗

j lnxi−j
)

G (lnxi−j ; γ, c) +

q
∑

j=1

βj lnψi−j

= ω +

m
∑

j=1

ω∗
jG (lnxi−j; γ, c) +

m
∑

j=1

(

αj + α∗
jG (lnxi−j; γ, c)

)

lnxi−j +

q
∑

j=1

βj lnψi−j.

As K = 1 the transition function is an increasing function of the lagged duration. In order to
capture the effects of very short and long durations we concentrate on the choice K = 2, which
allows these extreme durations to have an impact different from the one of the more average
durations. For illustration, Figure 1 contains the transition function (31) for K = 2 and a set of
values for γ, c1 and c2. Assuming that the durations are transformed to take diurnal variation
into account (see Section 7.1 for an explanation on how this is done) the average duration equals
one, and shorter and longer than expected durations (at that time of the day) will be represented
by durations less than and greater than one, respectively. For example, with the second steepest
transition function in Figure 1, durations between (approximately) 1/2 and 2 would belong
to the “normal” regime, whereas durations less than 1/3 and greater than 3 would belong to
the “extreme” regime (here a transformed duration of x represents a duration of x times the
expected duration at that time of the day).

The smooth transition ACD model is closely related to the threshold ACD model of Zhang,
Russell, and Tsay (2001). We restrict our comparison to the model they refer to as the
TACD(1,1) model. It is defined as follows:

xi = ψiε
(j)
i

ψi = ω(j) + α(j)xi−1 + β(j)ψi−1

whenever xi−1 ∈ [rj−1, rj), j = 1, 2, . . . , J , where J is the number of different regimes and
0 = r0 < r1 < · · · < rJ = ∞ are the threshold values. The parameter values ω(j), α(j) and β(j)

as well as the distribution of ε
(j)
i are allowed to vary depending on the regime. The two-regime

11



Figure 1: The logistic transition function G(ln x;γ, c) as a function of x for K = 2, c1 = −1, c2 = 1 and for

γ = 1 (the smoothest), 3, 5, 10 and 50 (the steepest).

 0

 0.5

 1
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TACD(1,1) model with the restrictions β(1) = β(2) and ε
(1)
i ∼ ε

(2)
i ∼ exp(1) is achieved as the

limiting case of the STACD(1,1) model with K = 1 as γ → ∞. Similarly, the three-regime

TACD(1,1) model with β(1) = β(2) = β(3), ω(1) = ω(3), α(1) = α(3) and ε
(j)
i ∼ exp(1), j = 1, 2, 3,

is the limiting case of the STACD(1,1) model with K = 2 as γ → ∞.

4.1 Testing ACD(m,q) against smooth transition ACD(m,q)

We now consider testing the ACD model against its smooth transition counterpart. It is seen
that model (30) is only identified under the alternative. For example, when γ = 0 (this is one
form of the null hypothesis), parameters ω∗

j and α∗
j , J = 1, . . . ,m, as well as c, are not identified.

Testing when some parameters are identified only under the alternative is discussed for example
in Hansen (1996). He studies the (non-standard) asymptotic distribution theory for such tests,
and develops a procedure to approximate these distibutions by simulation. As our goal is to
derive easily applicable misspecification tests, we do not follow Hansen’s approach, but instead
use the method suggested in Luukkonen, Saikkonen, and Teräsvirta (1988). In their approach
the identification problem is solved by approximating the transition function with its first-order
Taylor expansion around γ = 0. This will lead to an approximate alternative, which is free of
nuisance parameters under the null.

To this end, define

xi = ψiεi

ψi = ω +

m
∑

j=1

αjxi−j +

q
∑

j=1

βjψi−j

+
m
∑

j=1

(

ω∗
j + α∗

jxi−j
)

Ḡ (lnxi−j; γ, c) (32)

εi ∼ i.i.d. exp(1)

where Ḡ (lnxi−j; γ, c) = G (lnxi−j; γ, c) − 1
2 (subtracting 1

2 simplifies the derivation below but
does not affect the conclusions, because we can replace Ḡ byG with a simple reparameterization).
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Using Taylor’s theorem one obtains as

Ḡ (lnxi−j ; γ, c) = Ḡ (lnxi−j; 0, c) +
∂Ḡ (lnxi−j; 0, c)

∂γ
(γ − 0) + Ḡ (lnxi−j; γ̃, c)

=
1

4
γ

K
∏

k=1

(lnxi−j − ck) + Ḡ (lnxi−j; γ̃, c)

=

K
∑

l=0

γc̃l (lnxi−j)
l + Ḡ (lnxi−j ; γ̃, c) (33)

where γ̃ ∈ [0, γ]. Applying (33) to (32) yields

ψi = ω +

m
∑

j=1

αjxi−j +

q
∑

j=1

βjψi−j

+

m
∑

j=1

[

(

ω∗
j + α∗

jxi−j
)

K
∑

l=0

γc̃l (lnxi−j)
l

]

+

m
∑

j=1

(

ω∗
j + α∗

jxi−j
)

Ḡ (lnxi−j ; γ̃, c)

= ω +
m
∑

j=1

αjxi−j +

q
∑

j=1

βjψi−j +
m
∑

j=1

(

γω∗
j c̃0 + γα∗

j c̃0xi−j
)

+

m
∑

j=1

K
∑

l=1

[

γω∗
j c̃l (lnxi−j)

l + γα∗
j c̃lxi−j (lnxi−j)

l
]

+

m
∑

j=1

(

ω∗
j + α∗

jxi−j
)

Ḡ (lnxi−j ; γ̃, c)

=



ω +
m
∑

j=1

γω∗
j c̃0



+
m
∑

j=1

[

αj + γα∗
j c̃0
]

xi−j +

q
∑

j=1

βjψi−j

+

m
∑

j=1

K
∑

l=1

[

γω∗
j c̃l (lnxi−j)

l + γα∗
j c̃lxi−j (lnxi−j)

l
]

+
m
∑

j=1

(

ω∗
j + α∗

jxi−j
)

Ḡ (lnxi−j ; γ̃, c) . (34)

This form does not lead to an operational test statistic as γ̃ is unknown. If we instead use Tay-
lor’s theorem to approximate Ḡ (lnxi−j ; γ, c), we can drop the remainder term Ḡ (lnxi−j ; γ̃, c)
from the last expression in (34). Doing this and renaming parameters yields the following
approximation to the conditional mean of the alternative:

ψi ≈ w +
m
∑

j=1

ajxi−j +

q
∑

j=1

bjψi−j +
m
∑

j=1

K
∑

l=1

(

djl (lnxi−j)
l + ejlxi−j (lnxi−j)

l
)

.

Using this approximation we have transformed the original testing problem into testing the
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ACD(m,q) model against the approximate alternative

xi = (ψi + ϕi) εi (35)

ψi + ϕi = ω +

m
∑

j=1

αjxi−j +

q
∑

j=1

βj (ψi−j + ϕi−j)

+

m
∑

j=1

K
∑

l=1

(

djl (lnxi−j)
l + ejlxi−j (lnxi−j)

l
)

(36)

ϕi =

q
∑

j=1

βjϕi−j +
m
∑

j=1

K
∑

l=1

(

djl (lnxi−j)
l + ejlxi−j (lnxi−j)

l
)

(37)

εi ∼ i.i.d. exp(1). (38)

Model (35)–(38) reduces to the null model when djl = ejl = 0 for j = 1, . . . ,m and l = 1, . . . ,K,
and there are no unindentified parameters under the null. This enables us to use Theorem 1 to
derive the test, which is given in the following corollary.

Corollary 10 Consider the model (35)–(38) and denote θ1 = (ω,α1, . . . , αm, β1, . . . , βq)
′ and

θ2 = ((vecD)′ , (vecE)′)′, where D = [djl], E = [ejl], j = 1, . . . ,m, l = 1, . . . ,K, are (m×K)
matrices, and the vec-operator stacks the columns of the matrix. Furthermore, denote Xi,1 =
[

(lnxi−j)
l
]

and Xi,2 =
[

xi−j (lnxi−j)
l
]

, j = 1, . . . ,m, l = 1, . . . ,K. Under the null hypothesis

H0 : θ2 = 0 the statistic (7), where

âi =
1

ψ̂i

∂ψ̂i
∂θ1

= ψ̂−1
i

(

1, xi−1, . . . , xi−m, ψ̂i−1, . . . , ψ̂i−q

)′

+ ψ̂−1
i

q
∑

j=1

β̂j
∂ψ̂i−j
∂θ1

b̂i =
1

ψ̂i

∂ϕ̂i
∂θ2

= ψ̂−1
i ((vecXi,1)

′ , (vecXi,2)
′)′ + ψ̂−1

i

q
∑

j=1

β̂j
∂ϕ̂i−j
∂θ2

has an asymptotic χ2 distribution with 2mK degrees of freedom.

5 Time-varying ACD models

In standard econometric analysis of low-frequency time series the observation period easily spans
over several years or decades of data. In such a situation it may not be realistic to expect the
parameters of any model to remain constant over the whole period. For this reason testing
parameter constancy is important. When using ultra-high-frequency data a period of a few days
or weeks often yields a sufficient amount of observations. Thus it does not seem inappropriate
to assume that the parameters actually remain constant over the observation period. On the
other hand, certain events affecting the economic or institutional environment could cause the
structure of the trading process to change. In such a situation, fitting an ACD model with
constant parameters to the observed durations may yield unsatisfactory results. One remedy to
the problem is to split the sample into several periods and estimate separate models for each of
them. Identifying the number and location of the break-points becomes, however, a demanding
task, but see Zhang, Russell, and Tsay (2001) for an example. An alternative to abrupt changes
in the parameters would be a model where the parameters are allowed to change smoothly over
time. This can be achieved for example using the logistic transition functions (31) with time as
the transition variable.
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Even when the model builder does not want to fit ACD models with time-varying parameters
to data, they can be used as tools for detecting misspecification. For example, if an ACD model
is tested and rejected against a model with time-varying parameters, this might be seen as
evidence that the structure of the duration series changes during the period in question and
that a more careful analysis is required. On the other hand, if an ACD model is rejected against
a model with time-of-day-varying parameters, this could be an indication of the test that the
approach used for removing the diurnal pattern is not satisfactory.

Two definitions of time are considered for ACD models with time-varying parameters. The
first one is the total trading time (in seconds) from the beginning of the sample to the end, and
is called the (total) time. In our empirical application in Section 7, each one of the samples
consists of one week of data, and the time thus runs from the beginning of the first trading day
of the week till the end of the last day of the week. Hence the term intraweek time is also used.
The second definition, called the intraday time, is time measured in seconds from the beginning
of the trading day. Both measures are for convenience and numerical stability standardized to
obtain values between 0 and 1. As each financial event considered has a precise time-stamp
attached to it, these two time definitions are readily available.

This leads to the following time-varying ACD (TVACD) specification

ψi = ω +
m
∑

j=1

αjxi−j +

q
∑

j=1

βjψi−j +



ω∗ +
m
∑

j=1

α∗
jxi−j +

q
∑

j=1

β∗jψi−j



 Ḡ (ti−1; γ, c)

=
(

ω + ω∗Ḡ (ti−1; γ, c)
)

+

m
∑

j=1

(

αj + α∗
j Ḡ (ti−1; γ, c)

)

xi−j +

q
∑

j=1

(

βj + β∗j Ḡ (ti−1; γ, c)
)

ψi−j

where Ḡ (ti−1; γ, c) = G (ti−1; γ, c) − 1
2 and G is the transition function given in (31) except

that the transition variable used now is ti−1, which can correspond to either one of the two time
definitions. If we consider parameter constancy or structural breaks in the process, then the
total time is the one to be used. If the issue is how well the diurnal pattern has been removed
then the intraday time is the appropriate measure. Analogous definitions are available for the
LOGACD model.

5.1 Testing parameter constancy

We now consider testing an estimated ACD model against these time-varying alternatives. The
identification problem already discussed is present in the current situation as well. Therefore it
is necessary to test for the presence of time-varying parameters before estimating any TVACD
model. The identification problem is again solved using a Taylor series approximation of the
transition function. Arguments similar to the ones in Section 4.1 lead to the following approxi-
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mation to the TVACD(m,q) model:

xi = (ψi + ϕi) εi (39)

ψi + ϕi = ω +

m
∑

j=1

αjxi−j +

q
∑

j=1

βj (ψi−j + ϕi−j)

+
K
∑

l=1

dlt
l
i−1 +

m
∑

j=1

K
∑

l=1

ejlxi−jt
l
i−1 +

q
∑

j=1

K
∑

l=1

fjlψi−jt
l
i−1 (40)

ϕi =

q
∑

j=1

βjϕi−j +

K
∑

l=1

dlt
l
i−1 +

m
∑

j=1

K
∑

l=1

ejlxi−jt
l
i−1 +

q
∑

j=1

K
∑

l=1

fjlψi−jt
l
i−1 (41)

εi ∼ i.i.d. exp(1). (42)

The model reduces to the null model when dl = 0 (l = 1, . . . ,K), ejl = 0 (j = 1, . . . ,m and
l = 1, . . . ,K) and fjl = 0 (j = 1, . . . , q and l = 1, . . . ,K). This enables us to use Theorem 1 to
derive the test, which is given in the following corollary. The total time can be replaced with
the intraday time without affecting the validity of the result.

Corollary 11 Consider the model (39)–(42) and denote θ1 = (ω,α1, . . . , αm, β1, . . . , βq)
′ and

θ2 = (d1, . . . , dK , (vecE)′ , (vecF )′)′, where E = [ejl] (j = 1, . . . ,m, l = 1, . . . ,K) is a (m×K)
matrix and F = [fjl] (j = 1, . . . , q, l = 1, . . . ,K) is a (q ×K) matrix, and the vec-operator stacks
the columns of the matrix. Furthermore, denote Xi,1 =

[

xi−jt
l
i−1

]

(j = 1, . . . ,m, l = 1, . . . ,K)

and Xi,2 =
[

ψ̂i−jt
l
i−1

]

(j = 1, . . . , q, l = 1, . . . ,K). Under the null hypothesis H0 : θ2 = 0 the

statistic (7), where

âi =
1

ψ̂i

∂ψ̂i
∂θ1

= ψ̂−1
i

(

1, xi−1, . . . , xi−m, ψ̂i−1, . . . , ψ̂i−q

)′

+ ψ̂−1
i

q
∑

j=1

β̂j
∂ψ̂i−j
∂θ1

b̂i =
1

ψ̂i

∂ϕ̂i
∂θ2

= ψ̂−1
i (ti−1, . . . , t

K
i−1, (vecXi,1)

′ , (vecXi,2)
′)′ + ψ̂−1

i

q
∑

j=1

β̂j
∂ϕ̂i−j
∂θ2

has an asymptotic χ2 distribution with (1 +m+ q)K degrees of freedom.

6 Simulation experiment

6.1 Size simulations

We investigate the finite sample properties of the test statistics by simulation and begin with
size simulations. The data generating process we use has the form

xi = ψiεi

ψi = 0.15 + 0.10xi−1 + 0.80ψi−1 (43)

εi ∼ i.i.d. exp(1).

The parameters in (43) have been chosen such that the model is representative for the estimated
ACD(1,1) models reported in the literature. We use sample sizes n = 1000, 5000, and 10000.
The smallest size is extremely small in the context of ACD models, and the largest one is still
considerably smaller than the sample sizes in our empirical example. To avoid initialization
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effects we discard 1000 observations from the beginning of each generated series. The number of
replications is 10000. In each replication, an ACD(1,1) model is estimated and then evaluated
using five different tests. These are the tests against ACD(2,1) and ACD(1,2) models, test
of no remaining ACD (of order one) in the standardized durations, and linearity tests against
smooth transition ACD of orders one and two. For each test both the ordinary version using
the auxiliary regression and the robust version are computed.

Results of the experiment are presented graphically in Figure 2. For each test we calculate
the actual rejection frequencies for the nominal significance levels 0.1%, 0.2%, . . . , 5.0%. The
graphs show the discrepancies in size, i.e. the difference between the actual and the nominal
size. In each subgraph we present the results for one of the tests using all the three sample sizes.

As can be seen, all the tests are rather well-sized for n = 5000 and 10000. The distortions
are not very severe for the smallest sample size either. It can be concluded that the asymptotic
null distributions of the test statistics are reasonably good approximations to the unknown
finite-sample distributions for n ≥ 5000. Such sample sizes are standard in the analysis of
ultra-high-frequency data.

In order to complete the experiment, we also investigated the effect of having more persistence
in the data generating process. The design of the experiment was the same as before except
that the parameter values in (43) were changed to ψi = 0.05 + 0.09xi−1 + 0.90ψi−1. The results
were similar to those reported in Figure 2 and are not presented here (they are available at
http://swopec.hhs.se/hastef/abs/hastef0557.htm). The only notable change was a slight increase
in the empirical size of the test against the ACD(1,2) alternative.

To explore the effects of misspecification of the error distribution (and hence of the con-
ditional distribution of the durations) on the finite-sample properties of our test statistics, we
repeated the simulations with different error distributions. They were the Weibull distribution
with shape parameter values 0.8 and 0.9, and the generalized gamma distribution with shape
parameter values 8 and 0.3 as well as 10 and 0.5; see for example Lunde (1999) for definitions
of density functions of these distributions. The distributions were scaled to have an expected
value of one. With the chosen parameter values the Weibull distribution has a monotonically
decreasing hazard function, whereas for the generalized gamma distribution the hazard function
is inverted U–shaped. As the results from these simulations were similar to the ones already
reported, we do not show them here. Our general conclusion is that both the non-robust and
the robust versions of the tests remain well-sized for sample sizes over 5000. It appears that if
the conditional distribution of the durations is only mildly misspecified and if the sample size is
sufficiently large, even the non-robust versions of the tests have satisfactory size properties.

6.2 Power simulations

To evaluate the performance of our test statistics we perform a power comparison to a benchmark
test. As the test to compare with we choose the generalized spectral density based test introduced
in Hong (1999). This test has been proposed as a general diagnostic test for a wide class of time
series models, including ACD models, by Hong and Lee (2003). In the context of ACD models,
it is a test of the standardized durations being iid against an unspecified alternative. As such
it is an omnibus test against any kind of pairwise dependence structure in the standardized
durations, and the simulation study in Hong and Lee (2003) suggests that the test has good
power against a wide variety of alternatives. Users of this test have to make some parameter
choices, and we both describe the test and discuss our choices in Appendix C.

We begin by repeating the size simulation experiment of the previous subsection for the
generalized spectral test. The design of the experiment is exactly the same as earlier, except
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Figure 2: Results from size simulations of the LM tests. In the figures the size discrepancy (i.e. the actual

size less the nominal size) is plotted against the nominal size. Both of them are measured in percentage points.

Performed tests are the tests against ACD(2,1) and ACD(1,2) models, tests of no remaining ACD (of order one)

in the standardized durations, and tests of no smooth transition ACD of orders one and two. Both the ordinary

and robust versions of the tests are used. The three lines in each subfigure correspond to sample sizes 1000 (+),

5000 (×) and 10000 (∗).
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Figure 3: Results from size simulations of the generalized spectral tests. In the figures the size discrepancy (i.e.

the actual size less the nominal size) is plotted against the nominal size. Both of them are measured in percentage

points. Performed tests are the generalized spectral tests for preliminary bandwidths p̄ = 25, 50, 75, and 100.

The two lines in each subfigure correspond to sample sizes 1000 (+) and 5000 (×).
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that we consider only sample sizes of 1000 and 5000, and perform only 1000 replications. This
parsimony is due to the fact that the generalized spectral test is computationally much more
burdensome than our tests. As explained in Appendix C, performing the test also involves
the choice of a preliminary bandwidth, p̄. We use the values 25, 50, 75, and 100. The size
discrepancies of the test are presented in Figure 3 (note the different scale on the y-axes compared
to Figure 2). The tests seem to be slightly undersized for all choices of the preliminary bandwidth
when the nominal significance level approaches 5%. Note, however, that the size distortion
diminishes with increasing p̄.

In the power simulations the restricted model to be estimated is always an ACD(1,1) model.
We consider two alternative data generating processes. The first one of these is an ACD(2,1)
specification given by

xi = ψiεi (44)

ψi = 0.15 + 0.10xi−1 + 0.05xi−2 + 0.80ψi−1 (45)

εi ∼ i.i.d. exp(1). (46)

Because of relatively large sample sizes, the coefficient of xi−2 is chosen to be close to zero. This
is an alternative against which our test against higher-order models is expected to have very
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good power. As the second alternative model we consider a three-regime threshold ACD(1,1)
model given by

xi = ψiεi (47)

ψi =







0.05 + 0.20xi−1 + 0.85ψi−1 for 0 < xi−1 < 0.25
0.10 + 0.05xi−1 + 0.90ψi−1 for 0.25 ≤ xi−1 < 1.5
0.20 + 0.03xi−1 + 0.80ψi−1 for 1.5 ≤ xi−1 <∞

(48)

εi ∼ i.i.d. exp(1). (49)

The parameter values in this model are chosen such that it resembles the threshold ACD models
estimated in Zhang, Russell, and Tsay (2001). This model is not a special case of our STACD
model. The first regime (for the smallest values of xi−1) is an explosive one. The other two
regimes are stable, the middle one being more persistent than the third one.

Our sample sizes are 1000 and 5000, and we perform 1000 replications. As before, we discard
1000 observations from the beginning of each series. An ACD(1,1) model is fitted to each series.
The diagnostic tests performed are the tests against ACD(2,1) and ACD(1,2) models, the test of
no remaining ACD (of order one) in standardized durations, and tests of no smooth transition
ACD of orders one and two. We also apply the generalized spectral test using preliminary
bandwidths 25, 50, 75, and 100. We compute both the ordinary and the robustified versions of
the LM tests.

Results of the power simulations are presented in Figures 4a and 4b. In order to conserve
space we do not present all of the results, but they are available upon request. These figures
show the rejection frequencies of the tests for both sample sizes at the nominal significance levels
of 0.1%, 0.2%, . . . , 5.0%. Since our size simulations indicated that all the tests in question are
well-sized, the power results are not size-adjusted.

Figure 4a reports the powers of the tests when the alternative data generating process is the
ACD(2,1) model given in equations (44)–(46). The upper panel presents the power levels for the
non-robustified versions of the test against an ACD(2,1) model and the test of no remaining ACD
in the standardized durations. Both of these tests have rather good power for n = 5000, whereas
the power is still low when n = 1000. Without presenting the results we note that the test against
an ACD(1,2) model has almost equally good power, whereas the tests against smooth transition
ACD have no power at all against this alternative. Furthermore, the robustified versions of the
tests have power very close to the non-robust ones.

In the lower panel we show the power of the generalized spectral test using preliminary
bandwidths 25 and 100. Both of these tests have moderate power, the one with p̄ = 25 being
somewhat more powerful. The powers of the tests with p̄ = 50 and 75 (not shown) are very
similar to the ones shown. Our tests against higher-order ACD thus have clearly higher power
than the benchmark. This is natural because these tests are designed to have power against this
particular alternative. If they had been only slightly more powerful or even less powerful than
the generalized spectral density based tests, that would have warned us that the small-sample
properties of our test would leave much to desire.

Power results for the threshold ACD(1,1) model of equations (47)–(49) can be found in
Figure 4b. The non-robustified versions of the linearity tests against smooth transition of orders
one and two both have very good power for n = 5000, and low power for n = 1000 (upper
panel). Without presenting the results we note that the tests against higher-order models and
of no remaining ACD have no power at all, and that the power of the robustified versions of the
tests again have power very close to the non-robust ones. The generalized spectral test using
preliminary bandwidths 25 and 100 has rather low power against this alternative (the powers
for the tests with p̄ = 50 and 75 are very similar).
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Figure 4a: Results from power simulations of the tests using the ACD(2,1) model given in equations (44)–(46)

as the alternative data generating process. In the figures the power (rejection frequency) is plotted against the

nominal size. Both of them are measured in percentage points. Performed tests are the test against a higher-order

ACD(2,1) model, test of no remaining ACD, and the generalized spectral tests for preliminary bandwidths p̄ = 25

and 100. The two lines in each subfigure correspond to sample sizes 1000 (+) and 5000 (×).
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6.3 Performance of the Ljung-Box and McLeod-Li tests

As mentioned in Section 3.3, it is common in the ACD literature to evaluate the properties
of estimated standardized durations using Ljung-Box or McLeod-Li tests. This practice can,
however, result in misleading conclusions, because these test statistics do not have the usual
asymptotic χ2 distribution under the null hypothesis when they are applied to standardized
durations from an estimated ACD model. In order to take a closer look at this possibility, we
shall investigate the properties of these test statistics when they are applied to standardized
durations from an estimated ACD model.

We perform exactly the same simulation experiments as in the previous subsection, except
that we also use the sample size 10000. The tests applied to the standardized durations from
the estimated ACD(1,1) models are the Ljung-Box and McLeod-Li tests with lag lengths 1, 5,
10, 15, and 20. The rejection frequencies in both the size and power simulations are based on
the (incorrect) asymptotic χ2 distribution with degrees of freedom equal to the lag length used.

The size discrepancies of the tests with lag length 15 are presented in Figure 5a (results with
the other lag lengths are similar and thus omitted). The Ljung-Box test seems to be somewhat
undersized. On the other hand, the McLeod-Li test is oversized: quite strongly for n = 1000
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Figure 4b: Results from power simulations of the tests using the threshold ACD(1,1) model given in equations

(47)–(49) as the alternative data generating process. In the figures the power (rejection frequency) is plotted

against the nominal size. Both of them are measured in percentage points. Performed tests are the tests of no

smooth transition ACD of orders 1 and 2, and the generalized spectral tests for preliminary bandwidths p̄ = 25

and 100. The two lines in each subfigure correspond to sample sizes 1000 (+) and 5000 (×).
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and less so for the two larger sample sizes.
In Figure 5b we present the power of the tests against the ACD(2,1) (the two upper figures)

and threshold ACD(1,1) (the two lower figures) alternatives given in equations (44)–(46) and
(47)–(49), respectively. Again, we only present the results with lag length 15. It can be seen
that the Ljung-Box test has moderate power against the ACD(2,1) alternative. A comparison
with the results in Figure 4a indicates that the test is less powerful than the tests considered
there. This is not surprising because the size simulations showed that the Ljung-Box test is
conservative. The McLeod-Li test has almost no power at all against this alternative, which
may not be unexpected either. This is because one cannot expect to discover a misspecified lag
length using a test based on squared standardized durations. Finally, neither of the tests has
any notable power against the threshold ACD model.
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Figure 5a: Results from size simulations of the Ljung-Box and McLeod-Li tests. In the figures the size discrepancy

(i.e. the actual size less the nominal size) is plotted against the nominal size. Both of them are measured in

percentage points. Performed tests are the Ljung-Box (left) and McLeod-Li (right) tests with lag length 15. The

three lines in each subfigure correspond to sample sizes 1000 (+), 5000 (×) and 10000 (∗).
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7 Application to Trades and Quotes series

7.1 Description of the data

In this section we apply our evaluation tests to ACD models fitted to Trades and Quotes (TAQ)
data available from the New York Stock Exchange (NYSE). We use a period of six months from
the beginning of July 2002 to the end of December 2002 and concentrate on intertrade durations
between transactions of IBM shares.

Before using the data we remove the trades which are uncorrected and irregular. This can be
done using the correction indicator attached to each trade. We also remove all trades occuring
before 9:30 am. and after 4:00 pm. The NYSE was entirely closed on July 4 (Independence Day),
September 2 (Labor Day), November 28 (Thanksgiving Day) and December 25 (Christmas Day),
and partly closed on July 5, September 11, November 29 and December 24. For this reason all
these days have been removed from the sample. Furthermore, we only consider unique trading
times and hence simultaneously recorded trades are regarded as a single trade. Finally, the
trades are treated consecutively from day to day, ignoring the overnight duration.

Owing to the enormous amount of trades, nearly half a million during the period in question
prior to removals, we consider every week in the sample separately and perform the estimation
and tests only on complete five-day weeks. This leaves us with 21 weeks with approximately
15000–20000 trades in each. The exact dates, numbers of trades and some summary statistics of
durations can be found in Table 1. We note that the consecutive treating of the trades implies,
in particular, that over each of the 21 weeks, estimation is not re-initialized at the beginning of
every day. This practice differs from the approach of Engle and Russell (1998) but is applied by
Bauwens and Giot (2000).

As is well documented in the literature, there is a strong diurnal component in the duration
series. The durations tend to be shorter around the beginning and the end of a trading day,
when traders open and close their positions, respectively, and longer around lunchtime. This
results in an inverted U–shape pattern in the moving average of durations over the day. A
common practice in the literature is to first “diurnally adjust” the series by approximating
the average durations using a cubic spline and then removing this diurnal component from the
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Figure 5b: Results from power simulations of the tests using the ACD(2,1) model given in equations (44)–(46)

and the threshold ACD(1,1) model given in equations (47)–(49) as the alternative data generating process (two

upper and two lower figures, respectively). In the figures the power (rejection frequency) is plotted against the

nominal size. Both of them are measured in percentage points. Performed tests are the Ljung-Box (left) and

McLeod-Li (right) tests with lag length 15. The three lines in each subfigure correspond to sample sizes 1000 (+),

5000 (×) and 10000 (∗).
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durations. Such a procedure was used for example by Bauwens and Giot (2000). We do this by
first averaging the durations over 30–minute periods (9:30–10:00, 10:00–10:30, etc.), setting the
average durations of the midpoints of these intervals (9:45, 10:15, etc.) to the resulting averaged
values, and then fitting a cubic spline over the course of the day using these midpoints as fixed.
The original durations series is then diurnally adjusted by dividing it with the estimated diurnal
component. This is done separately for each day of the sample, since the time-of-day component
varies depending on the day of the week.

We illustrate the diurnal components in Figure 6 that contains the estimated diurnal com-
ponents averaged over the 21 weeks, for each day of the week separately.2 It can be seen that
the durations are longest around the midday, typically somewhat shorter before midday, and
shortest near the closing. It should be pointed out, however, that the graphs in Figure 6 are
merely for illustrating a general pattern, and that the diurnal patterns differ quite strongly from
day to day and from week to week. This, however, is a casual observation not based on any
statistical inference. Nevertheless, the individual diurnal pattern for any particular day obtained

2The averaging is performed to produce a single graph for each day of the week and is made for illustrational
purposes only.
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Figure 6: Graphs of the averaged estimated diurnal components. The diurnal component is estimated separately

for each day of the sample. The resulting diurnal components are then averaged over the 21 weeks, for each day of

the week separately. Therefore the subfigures represent the (averaged) mean duration (in seconds) at a particular

time of the day versus the time of the day (in hours).
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by the cubic spline technique can be very different from the average one for the corresponding
day of the week in Figure 6. This raises the question of how a diurnal component of this type
should be interpreted: is it that even other events than the time of the day affect its structure?
Should the diurnal pattern in fact be estimated jointly with the parameters? This problem is
left for further research.

7.2 Estimation and evaluation of ACD(1,1) models

We fit an ACD(1,1) model to each of the 21 diurnally adjusted duration series assuming expo-
nentially distributed errors. The estimation as well as all the other computations are carried out
using Ox version 3.30 (see Doornik (2002)). Maximum likelihood estimation of the ACD(1,1)
model is performed using the sequential quadratic programming algorithm of Lawrence and Tits
(2001) with analytical first derivatives. The parameter estimates that can be found in Table 2
are significant in all of the 21 cases.

We now subject our estimated models to a battery of evaluation tests. We perform tests
against ACD(2,1) and ACD(1,2) models, remaining ACD in the standardized durations, STACD(1,1)
models of order one and two, and TVACD(1,1) models of order one and two. In the TVACD
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case, both the intraday time and the intraweek time are used. The p–values of the tests are
given in Tables 3 and 4. The values less than 0.01 are shown in boldface.

As to the order of the model, the ACD(1,1) model is rejected in favour of the ACD(2,1)
and/or the ACD(1,2) model in seven cases out of 21. As may be expected, in these cases the
hypothesis of no remaining ACD in the standardized durations is also (typically) rejected.

The ACD(1,1) model is almost always rejected against the STACD(1,1) model of orders 1 and
2. Perhaps surprisingly, given the findings of Engle and Russell (1998) mentioned in Section 4,
rejections using tests based on assuming K = 2 (nonmonotonic change) are not systematically
stronger than the ones obtained by assuming K = 1. More research is needed to find out what
kind of nonlinear ACD model would fit the data best. Nevertheless, the results indicate that
the linear ACD model does not capture the dynamics of the duration process in a satisfactory
fashion and that a nonlinear model should be considered. In addition to the family of STACD
models, the TACD model of Zhang, Russell, and Tsay (2001) could be a viable alternative.

Of the tests against time-varying ACD models, we first consider the ones based on intraday
time. Almost all of the 21 models pass the test against the first-order TVACD model, but about
one third of them are rejected against the second-order one. This rejection may be interpreted
as showing that the removal of the diurnal component has not been successful, since there still
is an identifiable parameter change in the process within the trading day. If this is a valid
interpretation, there seems to be room for improvement in methods for diurnal adjustment of
the durations. It is also possible that an erroneous linearity assumption causes these rejections.

When the time is measured as intraweek time all the 21 models pass the tests against time-
varying ACD models of orders 1 and 2. It can be concluded that the structure of the duration
process does not seem to change within the week in any of the cases. We have also attempted to
make the diurnal adjustment using the same time-of-day-curve for all the days of the week. The
results from this evaluation test (not shown) are different from the previous ones: the ACD(1,1)
model is rejected or nearly rejected at the 1% level in favour of a TVACD model of order 1
and/or 2 in about two thirds of the cases. This suggests that the diurnal pattern is not the same
for all days of the week. A tentative conclusion is that conditioning the diurnal adjustment on
the day of the week may be of importance.

8 Conclusions

In this paper we present a general framework for evaluating ACD models using Lagrange multi-
plier or Lagrange multiplier type tests. We derive several misspecification tests of the functional
form of the conditional mean of an ACD model. The alternatives considered are parametric,
and hence, in case of rejection, they may suggest a direction in which to extend the model.
Clearly, the test battery may also be viewed as a set of misspecification indicators that convey
information about the fit instead of prompting a particular action to extend the model.

Our tests are simple to use, since the model only has to be estimated under the null hypoth-
esis, and computation of any of the test statistics simply requires one or two additional ordinary
linear regressions. Versions of the test statistics robust to deviations from distributional assump-
tions other than those being explicitly tested are also presented but it appears that robustifying
the tests is not as important in practice as it is in some other time series applications. All the
tests are found to have good size properties.

Results of the application to Trades and Quotes data clearly point out the need for nonlinear
ACD models. This issue will be taken up in future work. Diurnal adjustment of durations
appears to be another topic worth further consideration.
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Week Dates Number of Original durations Transformed durations
observations min mean max min mean max

1 Jul 8–12 18025 1 6.4814 217 0.0654 0.9992 26.8210
2 Jul 15–19 18179 1 6.4278 118 0.0763 0.9982 14.9018
3 Jul 22–26 18240 1 6.4078 92 0.1024 0.9994 11.7863

4 Jul 29 – Aug 2 17088 1 6.8295 69 0.0996 1.0004 9.8779
5 Aug 5–9 18585 1 6.2917 89 0.1001 1.0015 11.6193
6 Aug 12–16 17544 1 6.6656 126 0.1043 1.0007 17.0263

7 Aug 19–23 16900 1 6.9173 79 0.0972 1.0009 14.0726
8 Aug 26–30 15172 1 7.7050 118 0.0727 1.0008 15.3554
9 Sep 16–20 17388 1 6.7126 76 0.0949 0.9985 9.8126

10 Sep 23–27 16273 1 7.1859 117 0.1000 0.9994 14.3419
11 Sep 30 – Oct 4 17732 1 6.5917 238 0.0831 1.0001 22.4224
12 Oct 7–11 17077 1 6.8220 183 0.0993 0.9987 24.1145

13 Oct 14–18 17129 1 6.8193 90 0.0930 0.9990 12.1304
14 Oct 21–25 18500 1 6.3204 106 0.1090 1.0000 14.9705
15 Oct 28 – Nov 1 18702 1 6.2453 80 0.1207 0.9997 10.9473

16 Nov 4–8 19464 1 6.0036 83 0.1113 0.9985 13.6595
17 Nov 11–15 17383 1 6.7255 151 0.0888 0.9998 20.0673
18 Nov 18–22 20317 1 5.7546 93 0.1164 1.0005 17.5540

19 Dec 2–6 20811 1 5.6180 142 0.1253 1.0003 21.4300
20 Dec 9–13 19248 1 6.0743 81 0.1135 1.0004 13.1855
21 Dec 16–20 18818 1 6.2150 82 0.0951 0.9999 12.1802

Table 1: Statistics of the durations. “Transformed durations” refers to the diurnally adjusted durations.
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Week Omega Alpha Beta Value of the
estimate (stdev) estimate (stdev) estimate (stdev) log-likelihood

1 0.2526 (0.0304) 0.1681 (0.0130) 0.5811 (0.0396) -17573.1365
2 0.1652 (0.0162) 0.1119 (0.0076) 0.7230 (0.0207) -17888.7339
3 0.1333 (0.0143) 0.1112 (0.0073) 0.7557 (0.0194) -17945.3494

4 0.1573 (0.0183) 0.0743 (0.0064) 0.7686 (0.0220) -16992.9188
5 0.1800 (0.0210) 0.0767 (0.0065) 0.7436 (0.0248) -18495.7041
6 0.1396 (0.0166) 0.0774 (0.0064) 0.7832 (0.0205) -17415.2212

7 0.1415 (0.0153) 0.0807 (0.0064) 0.7780 (0.0187) -16783.2353
8 0.1662 (0.0220) 0.0679 (0.0067) 0.7661 (0.0254) -15098.1953
9 0.1327 (0.0229) 0.0741 (0.0077) 0.7931 (0.0288) -17222.3036

10 0.1235 (0.0152) 0.0889 (0.0071) 0.7878 (0.0197) -16059.7855
11 0.1060 (0.0137) 0.0858 (0.0072) 0.8085 (0.0187) -17509.7025
12 0.1610 (0.0154) 0.1026 (0.0073) 0.7367 (0.0193) -16847.6630

13 0.1337 (0.0147) 0.0823 (0.0065) 0.7841 (0.0182) -16957.2471
14 0.1476 (0.0161) 0.0974 (0.0073) 0.7553 (0.0209) -18287.0412
15 0.1634 (0.0211) 0.0929 (0.0076) 0.7439 (0.0264) -18534.1774

16 0.1528 (0.0221) 0.0741 (0.0068) 0.7730 (0.0269) -19295.7451
17 0.1898 (0.0246) 0.0977 (0.0086) 0.7130 (0.0299) -17162.8802
18 0.1918 (0.0245) 0.0851 (0.0075) 0.7234 (0.0295) -20199.7797

19 0.2095 (0.0229) 0.0865 (0.0073) 0.7042 (0.0271) -20673.7455
20 0.1289 (0.0251) 0.0640 (0.0074) 0.8071 (0.0311) -19128.6345
21 0.1612 (0.0278) 0.0781 (0.0080) 0.7608 (0.0339) -18669.6529

Table 2: Results from the maximum likelihood estimation of the ACD(1,1) models with exp(1) errors.

28



Week ACD(1,1) vs ACD(2,1) ACD(1,1) vs ACD(1,2) No remaining ACD No STACD K=1 No STACD K=2
(ordinary) (robust) (ordinary) (robust) (ordinary) (robust) (ordinary) (robust) (ordinary) (robust)

1 0.0749 0.0932 0.0928 0.1136 0.2982 0.2949 1 × 10−5 6 × 10−8 3 × 10−6 2 × 10−9

2 0.6507 0.6474 0.6047 0.5996 0.1590 0.1332 3 × 10−6 3 × 10−6 8 × 10−7 4 × 10−7

3 0.1920 0.1997 0.2304 0.2374 0.2152 0.2049 0.0065 0.0040 0.0276 0.0158

4 0.0037 0.0050 0.0013 0.0026 0.0057 0.0075 8 × 10−5 4 × 10−5 0.0007 0.0003
5 0.0108 0.0127 0.0099 0.0112 0.0117 0.0109 5 × 10−5 9 × 10−6 0.0004 3 × 10−5

6 0.1177 0.1125 0.1647 0.1544 0.1675 0.1525 0.0002 0.0001 0.0020 0.0007

7 0.0055 0.0046 0.0018 0.0016 0.0086 0.0065 0.0033 0.0030 0.0124 0.0126
8 0.0138 0.0139 0.0189 0.0167 0.0286 0.0303 0.1217 0.1202 0.0895 0.1004
9 0.3133 0.3003 0.3014 0.2834 0.3392 0.3198 0.0009 0.0005 0.0070 0.0039

10 0.4766 0.4804 0.4709 0.4758 0.2667 0.2699 1 × 10−5 2 × 10−6 4 × 10−6 3 × 10−6

11 0.0765 0.0965 0.0949 0.1152 0.0578 0.0956 0.0002 0.0012 0.0005 0.0009
12 0.0028 0.0028 0.0019 0.0018 0.0013 0.0007 0.0009 0.0002 0.0038 0.0012

13 0.0003 0.0004 0.0003 0.0003 8 × 10−5 0.0001 2 × 10−6 3 × 10−7 3 × 10−5 5 × 10−6

14 0.0060 0.0066 0.0038 0.0046 0.0023 0.0032 0.0001 2 × 10−5 0.0008 7 × 10−5

15 0.1585 0.1481 0.0797 0.0772 0.1814 0.1760 6 × 10−7 4 × 10−8 7 × 10−6 6 × 10−7

16 0.1036 0.0962 0.1012 0.0926 0.0687 0.0577 0.0024 0.0018 0.0020 0.0013
17 0.6923 0.6942 0.7378 0.7384 0.8032 0.7945 0.0007 0.0002 0.0019 0.0004
18 0.0084 0.0120 0.0055 0.0084 0.0096 0.0146 3 × 10−5 2 × 10−5 6 × 10−6 7 × 10−6

19 0.0407 0.0397 0.0231 0.0235 0.0379 0.0479 6 × 10−5 0.0002 4 × 10−5 5 × 10−5

20 0.9678 0.9679 0.8619 0.8607 0.7678 0.7661 4 × 10−5 5 × 10−6 0.0002 5 × 10−5

21 0.8595 0.8587 0.6393 0.6392 0.8243 0.8280 0.0041 0.0033 0.0033 0.0026

Table 3: p–values of the tests of ACD(1,1) models. The tests are the ones against ACD(2,1) and ACD(1,2) models, remaining ACD in
the standardized durations, and STACD(1,1) model of orders 1 and 2. Two versions of each test are performed: the ordinary refers to
the test done using the auxiliary regression, and the robust is the robustified version. The p–values less than 0.01 are shown in boldface.
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Week Tests using intraday time Tests using intraweek time
No TVACD K=1 No TVACD K=2 No TVACD K=1 No TVACD K=2

(ordinary) (robust) (ordinary) (robust) (ordinary) (robust) (ordinary) (robust)

1 0.9077 0.8900 0.0037 0.0009 0.0883 0.1180 0.3286 0.3951
2 0.2452 0.2713 0.5399 0.5758 0.7698 0.7435 0.8239 0.8043
3 0.9014 0.8994 0.8765 0.8805 0.1810 0.1168 0.0496 0.0398

4 0.7490 0.7258 0.4092 0.3564 0.9691 0.9670 0.9811 0.9735
5 0.7167 0.7058 0.5430 0.5800 0.3774 0.3463 0.7864 0.7600
6 0.4052 0.3715 0.0059 0.0054 0.2823 0.3279 0.4972 0.6410

7 0.6626 0.6475 0.1771 0.1148 0.5990 0.5840 0.9243 0.9096
8 0.9419 0.9414 0.3068 0.3283 0.3701 0.3699 0.5281 0.5192
9 0.9435 0.9381 0.3428 0.2993 0.2480 0.2510 0.1611 0.1409

10 0.5326 0.5702 0.0296 0.0103 0.0169 0.0165 0.0877 0.0825
11 0.8669 0.8753 0.0574 0.0610 0.2726 0.2357 0.6489 0.5912
12 0.8500 0.8437 0.8431 0.8195 0.2056 0.1657 0.4842 0.4175

13 0.9243 0.9092 0.0328 0.0133 0.9671 0.9650 0.9878 0.9851
14 0.5777 0.5600 0.0002 0.0001 0.5353 0.5337 0.4324 0.4131
15 0.0578 0.0576 0.0052 0.0070 0.1779 0.2016 0.2514 0.2346

16 0.4290 0.4047 0.0077 0.0033 0.4569 0.3988 0.7721 0.7155
17 0.0325 0.0169 0.0563 0.0448 0.4896 0.5390 0.4291 0.5608
18 0.2992 0.2149 0.6958 0.5817 0.7600 0.7932 0.8832 0.9088

19 0.0002 4 × 10−5 5 × 10−7 1 × 10−7 0.4018 0.3797 0.6769 0.6237
20 0.2875 0.2413 0.2091 0.1262 0.5438 0.5316 0.5325 0.4821
21 0.0083 0.0025 8 × 10−5 1 × 10−5 0.2991 0.3125 0.3797 0.4107

Table 4: p–values of the tests of ACD(1,1) models (continued). The tests are the ones against TVACD(1,1) models of orders 1 and 2.
Time is defined either as intraday time or as intraweek time. Two versions of each test are performed: the ordinary refers to the test done
using the auxiliary regression, and the robust is the robustified version. The p–values less than 0.01 are shown in boldface.
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Appendix A

In this appendix we prove Theorem 1. The proof of Theorem 4 is almost identical and is omitted.

Proof of Theorem 1. Let θ = (θ′1, θ
′
2)

′ be the parameter vector and define the conditional
quasi log-likelihood function for observation xi as

li(θ) = − xi
ψi + ϕi

− ln (ψi + ϕi) . (50)

The partial derivatives of (50) with respect to θ1 and θ2 are

∂li(θ)

∂θ1
= 1

ψi+ϕi

(

∂ψi
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+ ∂ϕi
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)(

xi

ψi+ϕi
− 1
)
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= 1

ψi+ϕi

∂ϕi

∂θ2

(

xi

ψi+ϕi
− 1
)

.

Letting θ0 = (θ0′
1 , θ

0′
2 )′ be the true (under the null hypothesis) parameter vector, the score for

observation xi evaluated at the true parameter values equals

∂li(θ
0)
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.

Furthermore, let θ̂ = (θ̂′1, θ
0′
2 )′ be the vector of maximum likelihood estimates, estimated under

the null. Then the score evaluated at the ML estimates is (note that the upper block of the
score is now just a vector of zeros)
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Under condition (v) of Theorem 1 in Engle (2000)

n−1/2 ∂l(θ
0)

∂θ
= n−1/2

n
∑

i=1

∂li(θ
0)

∂θ

d→ N

(

0, n−1
n
∑

i=1

E

[

∂li(θ
0)

∂θ

∂li(θ
0)

∂θ′

]

)

.

The expectation in this expression can be written as
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− 1 = εi − 1 is independent of the other terms, which are measurable with

respect to Fi−1. Furthermore, E
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This implies that the quadratic form
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has an asymptotic χ2 distribution with dim θ2 degrees of freedom.
Since θ̂ is a consistent estimator of θ0 (Theorem 1, Engle (2000)) and
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(since the expressions are functions of θ̂ and θ0, respectively), the LM statistic
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′
i b̂ib̂

′
i

]

}−1{

n−1/2∂l(θ̂)

∂θ

}

=

[

0
∑n

i=1 ĉib̂i

]′{[ ∑n
i=1 âiâ

′
i

∑n
i=1 âib̂
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also has an asymptotic χ2 distribution with dim θ2 degrees of freedom under the null hypothesis.
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Appendix B

Here we show that the test statistic of Li and Yu (2003) is asymptotically equivalent to the
one given in Corollary 9. Li and Yu (2003) only consider the case where the estimated model
is an ACD(m,0) model, and for ease of exposition they restrict the derivations to the case
m = 1. In this case âi in Corollary 9 reduces to âi = ψ̂−1

i (1, xi−1)
′. As usual, b̂i =

ψ̂−1
i

(

xi−1ψ̂
−1
i−1, . . . , xi−m∗ ψ̂−1

i−m∗

)′

and ĉi = xiψ̂
−1
i − 1. The statistic of Li and Yu (2003) is

Q = nr̂′
(

Im∗ − X̂Ĝ−1X̂ ′
)−1

r̂ (51)

where Im∗ is the m∗ ×m∗ identity matrix, and r̂ is the following m∗ × 1 vector:
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Furthermore, the m∗ × 2 matrix X̂ is given by
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where 1m∗ is an m∗ × 1 vector of ones, and
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Now, (52), (53), and (54) converge in probability to the same quantities as n−1
∑

ĉiψ̂ib̂i,
n−1

∑

ψ̂ib̂iâ
′
i, and n−2

∑

âiâ
′
i, respectively, as n → ∞. Furthermore, n−1

∑

ψ̂2
i b̂ib̂

′
i converges

in probability to Im∗ . It follows that the statistic (51) and the one given in Corollary 9 are
asymptotically equivalent.
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Appendix C

In this appendix we provide a description of the generalized spectral test introduced in Hong
(1999) and suggested as a misspecification test for ACD models in Hong and Lee (2003). We
present the test in the context of using it as a misspecification test for the estimated standardized
durations of an ACD model. Denoting the standardized duration series by εi, consider the
covariance between the empirical characteristic functions of εi and εi−j,

σj(u, v) = cov (eıuεi , eıvεi−j ) (55)

where ı =
√
−1 and j = 0,±1, . . .. Hong (1999) calls the Fourier transform of (55) (it exists

under some regularity conditions)

f(ω, u, v) =
1

2π

∞
∑

j=−∞

σj(u, v)e
−ıjω

the generalized spectral density function of {εi}. This is estimated using the following kernel
estimator:

f̂(ω, u, v) =
1

2π

n−1
∑

j=1−n

(1 − |j|/n)1/2k(j/p)σ̂j(u, v)e
−ıjω (56)

where k(·) is a kernel function, p is a bandwidth, n is the sample size, and σ̂j(·, ·) is a consis-
tent estimator for the covariance of the two empirical characteristic functions. The generalized
spectral test is defined as the (suitably weighted and standardized) L2 norm of the difference
of the estimate of f and the estimate of f under the null hypothesis of serial independence of
the standardized duration series. For an exact formulation of the test statistic we refer to Hong
(1999) or Hong and Lee (2003).

Using the generalized spectral test involves, among other things, the choice of the bandwidth
p and the kernel function k(·). For the bandwidth p, Hong (1999) discusses a data-driven method
for choosing an optimal bandwidth (in the sense of an integrated mean squared error criterion
for the estimator f̂ in equation (56)) given a preliminary bandwidth p̄. The choice of p̄ remains
somewhat arbitrary, but the simulation studies of Hong (1999) and Hong and Lee (2003) suggest
that the test statistic is quite robust to the choice of p̄. We choose the values 25, 50, 75, and
100 for the preliminary bandwidth.

For the kernel function, Hong (1999) shows that the Daniell kernel is optimal in the sense
that it maximizes the asymptotic power of the test over a class of kernel functions. The fact that
the Daniell kernel has an unbounded support implies that when using the estimator (56), the
covariance σ̂j(u, v) has to be computed for all j between 1 and n− 1. For ultra-high-frequency
data, where sample sizes are quite large, this becomes computationally demanding. For this
reason we choose to use the Parzen kernel that has a bounded support. This considerably
reduces the time needed for computing the value of the statistic. According to the simulation
results of Hong (1999) this should only have a minor effect on the power of the test.
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