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Abstract

In this paper two simple tests to distinguish between unit root processes and station-
ary nonlinear processes are proposed. New limit distribution results are provided,
together with two F type test statistics for the joint unit root and linearity hypoth-
esis against a specific nonlinear alternative. Nonlinearity is defined through the
smooth transition autoregressive model. Due to occasional size distortion in small
samples, a simple bootstrap method is proposed for estimating the p-values of the
tests. Power simulations show that the two tests, F},4 and F, have at least the same
or higher power than the corresponding Dickey-Fuller tests. Finally, as an example,
the tests are applied on the seasonally adjusted U.S. monthly unemployment rate.
The linear unit root hypothesis is strongly rejected, showing considerable evidence
that the series is better described by a stationary smooth transition autoregressive
process than a random walk.
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1 Introduction

The research and development of unit root tests have been considerable for the past twenty
years. A main motivation has been to analyze and explain the allegedly poor properties
of the standard unit root tests and to propose alternative tests, often in an attempt to
increase the applicability and power of the tests. As Nelson and Plosser (1982) showed,
standard Dickey-Fuller tests are unable to reject the hypothesis of a unit root in several
macroeconomic and financial time series. The poor size and power properties of the
standard tests when the time series contain structural changes, shifts in mean or growth
rate, or nonlinear behavior, have been noticed in several studies. Pippenger and Goering
(1993) showed how the power of the standard Dickey-Fuller tests falls considerably when
the true alternative is a threshold autoregressive (TAR) model. They pointed out that
in the presence of transaction costs or hysteresis thresholds the usefulness of standard
unit root tests in examining long-run economic relationships is suspect. Diebold and
Rudebusch (1990) showed similar loss in power when the true alternative is a fractionally
integrated process. Perron (1989) argued that the low power against structural breaks in
level and growth rate can result in overstating the evidence in favor of unit roots. The
converse problem does, however, also exist, that standard unit root tests reject too often
when there is a single structural break in trend or variance under the null hypothesis,
as demonstrated by Leybourne, Mills and Newbold (1998), and Hamori and Tokihisa
(1997). Nelson, Piger and Zivot (2001) showed similar results of size distortion when
the true null model contains Markov regime switching in trend growth rate. They also
showed low power testing the unit root hypothesis against an alternative process with
Markov-switching trend.

Since the main focus of these studies was on analyzing the linear model, any possible
nonlinear properties or features of the time series were ignored. On the other hand, there
exists empirical evidence indicating that many features of macroeconomic and financial
time series cannot be adequately described and analyzed using linear techniques. As a
result, nonlinear models have become an active area of research in econometrics. Among
other things, interest has been devoted to the problem of testing the joint hypothesis of
linearity and unit root of a time series against specific nonlinear and stationary alterna-
tives. The literature in this area has been growing rapidly.

An example of a recent study of this kind is Enders and Granger (1998). The authors
analyzed and provided a test of the unit root hypothesis against the threshold autoregres-
sive (TAR) model. They found that movements toward long-run equilibrium relationship
of an interest rate are best estimated as an asymmetric process. Berben and van Dijk
(1999), who applied a modified version of the Enders and Granger (1998) test, found
asymmetric adjustments in several forward premium series. Caner and Hansen (2001),
who also considered the TAR model as an alternative to the unit root hypothesis, pro-
posed a bootstrap procedure to approximate the sampling distribution of the test statistic
under the null. They reported strong evidence that U.S. male unemployment is better
described by a stationary TAR process than a unit root process. Further examples are
Kapetanios and Shin (2000), who developed and analyzed a test against the self-exciting
threshold autoregressive (SETAR) model. Their test was more powerful than the Dickey-
Fuller test that ignores the threshold nature under the alternative. Kapetanios, Shin and
Snell (2003) considered a simple exponential smooth transition autoregressive model, only
allowing for a regime shift in the slope parameter, as the alternative to the joint linearity
and unit root hypothesis. As an illustration they provided an application to real interest



rates, and rejected the null hypothesis for several interest rates considered, whereas the
standard Augmented Dickey-Fuller tests failed to do that.

This paper will consider testing the joint linearity and unit root hypothesis against
a smooth transition autoregressive (STAR) model. Standard STAR models has two ex-
treme regimes, and the transition between them is smooth; see Terésvirta (1994) for more
discussion. Furthermore, the two-regime TAR model is included in the STAR model as a
special case.

The paper will be organized as follows. Section 2 contains the model specification.
Asymptotic results, limiting distributions for the two resulting test statistics and critical
values are provided in section 3. Section 4 describes the bootstrap method to estimate
p-values, and reports results of Monte Carlo simulations of the small sample properties,
size and power, of the proposed tests. Section 5 contains an empirical application, and
Section 6 concludes. The appendix includes proofs of the two theorems.

A few words on the notation. All limits are taken as T' — oo, and weak convergence
is denoted as =-.

2 Model, null hypothesis and auxiliary regression
Consider the following univariate smooth transition autoregressive (STAR) model
Ay =00 + 1Ay 1 + Yy 1 + (w0 + 91Ay-1) F (7, ¢, 1) + &, (1)

where t = 1,...,T, and the dependent variable, y;, is included in the model both as
differences, Ay;, and levels, y;, but in the function F' (-) only in levels. The differences, Ay,
and errors, ¢;, are assumed to be stationary, and the errors satisfy Ee; = 0. Furthermore,

the transition function F'(-) is a bounded continuous function, F' (-) € [—3, 3]. This allows

the dynamic behavior of the model to change between two regimes corresponding to the
cases when F' () = —3 and F (-) = 3, smoothly with the transition variable y; 1. A

number of different possibilities exist for the choice of the function F'(-), see Granger
and Terdsvirta (1993) or Terdsvirta (1998) for a presentation and discussion of the most
common functional forms. This paper will focus on the logistic function

F e, get) = (14 exp(— (g1 — ) ' — = 2)

2’
where the parameter c is the transition midpoint parameter, and ~ the speed of transition
from one extreme regime to the other. Note that as v — oo the function F (-) approaches
a step function, so the model ultimately becomes a threshold autoregressive (TAR) model,
see Tong (1983). On the other hand, when v = 0 the function F'(-) is constant for all
values of y; 1, implying that model (1) is linear. The linearity hypothesis can thus be
defined as v = 0.

Testing Hy : v = 0 in (1) and (2) is not straightforward, however. The reason for
this is the identification problem as (1) is only identified for v > 0 but not for v = 0, see
Luukkonen, Saikkonen and Terdsvirta (1988), Terdisvirta (1994a,b), Lin and Terisvirta
(1994) for details. Following the idea in Luukkonen et al. (1988), this problem can be
circumvented by a first-order Taylor approximation around v = 0 in F (v, ¢,y 1). This



results in the following approximate model:

Ay = 0y + O Ay—1 + Yy—1 + (900 + 901Ayt—1) i (yt_l — C) + &}

4
c c
= (91 _ Al ) Ay 1 + wytflAytfl + (90 _ 2 )
4 4 4
+ (¢ + %) Y1+ €}
=0AY 1+ ¢y 1Ay 1 + o+ (Y + €5, (3)

where £f = g, + Ry (7, y—1) (o + p1Ay:_1), Ry being the remainder. In equation (3), the
linearity hypothesis now corresponds to ¢ = 0. Also note that under the null hypothesis
e; = & since the remainder R; = 0. Moving y; 1 to the right hand side results in the
following model:

Yo = 0Dy 1+ Oy 1Ay 1+ a+ pys 1+ &y, (4)

where p = ( + 1. When the additional term 1, 1Ay; 1 is excluded, this auxiliary autore-
gression is the model used in the Augmented Dickey-Fuller (ADF) test with a constant
and one lag of Ay, as regressors. As a consequence, if ¢; = 0 in the STAR model (1),
the resulting auxiliary and ADF models are indistinguishable from each other, even for
vo # 0. No additional power, compared to the ADF tests, can therefore be expected
of the two tests to be proposed below if there is a regime shift only in the intercept. A
remedy to this problem would be to base the tests on a third-order Taylor approximation
to (2), as in Teréisvirta (1994a,b). This case will not, however, be considered any further
here.

In Kapetanios et al. (2003), the corresponding auxiliary autoregression had the form

Ay, = 0y} + &, (5)

indicating that they have a random walk without drift or time trend under their null
hypothesis, 6 = 0. This was also implied by their alternative model, but by using de-
meaned and de-trended variables in a two-step procedure they were able to allow for a
random walk with drift and a random walk with time-trend under the null.

Since model (4) nests the ADF model, this specification makes it possible to set up a
joint test of the unit root and linearity hypotheses, allowing 1; to follow a stationary non-
linear process under the alternative. A joint test of the unit root and linearity hypotheses
against nonlinearity amounts to testing the hypothesis Hp; : ¢ = a =0, p=11in (4). Tt
is easily seen that y; in fact has a unit root under this null hypothesis, since model (4)
then equals:

Y = 0AY; 1+ Y1 + & (6)

Equation (6) can also be written as
Ay, = 0Ay, 1 + &y, (7)

or, equivalently, as an infinite-order moving average model
Ayt = (]_ — (5L)_1 &t = Zwiet_i = w (L) Et = Uy, (8)
=0

where L is the lag operator, that is, Ly; = vy 1. Thus, under Hyy, {y:} is a random
walk without drift. Under the maintained hypothesis of a unit root under the null, the
hypothesis Hyy : ¢ = 0, p = 1 corresponds to the case of a random walk with drift.
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From equation (3) it is seen that testing the hypothesis & = 0 implies a test of fy = 0
in the STAR model (1) under the original linearity condition v = 0. Also, by the same
token, restriction p = 1 implies a test of ¢» = 0. Thus, when the null hypothesis Hy; is
rejected, parameters 6y and 1 must be included in the alternative model.

Since the Ay, process is assumed to be stationary, equation (7) implies that the para-
meter |0] < 1. Note that if 6 = 1, Ay, has a unit root so that y, is an I(2) process. On
the other hand, if § = —1, y; has a negative unit root. From this follows that problems
can arise in practice if ¢ is close to —1 or 1. This problem will be analyzed and discussed
in section 4.

3 Limit results and the asymptotic tests

A~ o~ !
Let by = (5, 0, Q, ﬁ) be the ordinary least squares estimator of 3 = (8, ¢, o, p)’ in (4), so

that

T
bT — 6 = (Z ZL'pré) Z TtE+¢, (9)
t=1 t=1

where z; = (Ayi—1, Ys—1Ay:—1, 1, 9:—1)". The convergence rates and limit distributions for
most of the elements in the matrix and vector in equation (9) are known from previous
studies. However, probability limits to some of the terms have not been considered before
and are given in Theorem 1. First, the following assumption, employed by Hansen (1992),
is assumed to be satisfied.

Assumption 1 For some q¢ > n > 2, {v;} is a zero mean, strong mixing sequence with
mizing coefficients of size —qn/(q —n), and sup ||v|| = C' < co. In addition,
t>1

T
T'E(VpV}) — Q < 00 as T — oo, where Vi = th. (10)

t=1

This assumption allows for a wide variety of different mixing processes, and in par-
ticular processes with weakly dependent heterogeneous observations that are common in
econometric applications. The following result can now be stated:

Theorem 1 Assume that {u;} in equation (8) satisfies Assumption 1, and let {e;} be an
i.i.d. sequence with mean zero, variance o*, and a finite fourth moment. Define

% =F (ututfg) - 02 Z wsw8+J ] = 07 17
s=0
A=0)Y wj=o0w(l)
=0
ft:ZUz' 7t:]-a27 an
=0



with & = 0. Then the following expressions converge jointly:

T 1
(a) T*3/2t;§tuf = %/\ofW(r) dr

(b) T*3/Qi§tu§ = E(ud)\ Ole(r)dr

N

() T723 &u? :>fy)\2fW2 ) dr

t=1

lgtflutflgt = U\/’%AIW(T)dB(T)
0

N

(d) T

™

t

=

(e) T72 3 &ur=0,(1)

ir
I

where W (r) and B (r) are two independent standard Brownian motions defined for r €

[0, 1].
Proof. See the Appendix.

Observing the rates of convergence in Theorem 1 and other known limit results allows
one to define the scaling matrix

Yo =diag ( T2, T, TY?, T). (11)

Then, pre-multiplying by — § in equation (9) by Y7, finite limits to the ordinary least
squares estimates are given by

Y (b _{ (Z) }{T (Z)} (12

The null hypothesis, Hy; : ¢ = a = 0, p = 1, has the alternative representation Hy; : R =
r, where R = [ 03 I3 }, 03 = (0,0,0), 3= (6,0,a,p)" as before, and r = ( 0 01 )I.
The F' test statistic is then defined in the usual way as

-1

T ~1
F = (by —B) (RYr) { s2RYp (Z a:tx;> YR » RYrp(byr—pB) /K, (13)
t=1
where
1 r ~ ~ R 2
T_1 Z (yt — 0AY 1 — QY 1Ay — Q — Pyt—l) (14)
t=1

is a consistent estimator of o2, and k equals the number of restrictions. In the present

case, k = 3. The corresponding statistic for testing the hypothesis Hy, that allows a drift
term is obtained by setting
0100 0
R_{OO()l}’T_[l} (15)

and k = 2. The test statistics will be called F},; and Fy, where nd and d stand for 'no drift’
and ’drift’, respectively. Obviously, they do not have standard asymptotic distributions as
is the case in testing linearity in stationary STAR processes. Their asymptotic distribution
theory under the two null hypotheses is given in the following theorem:

5



Theorem 2 Let Assumption 1 and the results of Theorem 1 hold. Then the test statistics,
Foq and Fj, will have the following asymptotic distributions under the two null hypotheses;

(i) Under Hy:¢p=a=0, p=1,

W (r)dr — jW (r)dB (r))
Fog= -W?(1) + = . (16)

jwmmr-(}wmdr)z

0

H
—
VR
=
=
o

(1)  Under Hypz : ¢ =0,

Proof. See the appendix.

Asymptotic critical values for the F,; and Fj statistics have been generated by simu-
lation. This has been done by estimating the two F-type test statistics from observations
generated from the null model (6) with § = 0 at sample sizes T' = 25, 50, 100, 250, 500
with 1000000 replications. These values can be found in Table 1 where quantiles for the
asymptotic distributions of the tests, (16) and (17), are also included. They have been
estimated using the same number of replications as before with 1" = 10000 observations.

Table 1. Critical values for the test statistics F,4 and Fy, 6 = 0.
Fra Fy
T 1010 0.05 0.025 0.01 0.001|0.10 0.05 0.025 0.01 0.001
251324 404 487 6.02 934 | 423 538 658 825 12.99
50 | 3.09 3.76 4.43 533 7.72 |4.08 5.06 6.05 7.36 10.81
100 | 3.04 3.66 4.27 507 7.05 |4.04 496 585 7.03 10.01
250 | 3.02 3.62 420 495 6.79 |4.03 492 578 6.90 9.63
500 | 3.02 3.61 4.18 491 6.72 |4.03 492 577 686 9.55
oo | 3.00 358 4.14 486 6.62 |4.03 490 574 6.83 943

Note that even if the limit distributions do not depend on any nuisance parameters, the
critical values for small sample sizes do. Under the null hypothesis, y; is a function of ¢,
as is seen from equation (6). Thus, under perfect conditions, with ¢ known, critical values
can be easily estimated. This is of course not normally the case in practice. As noted
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above, special attention is needed for values of ¢ close to —1 or 1. The time series Ay, is
then close to having a unit root or becoming nonstationary. In these situations the test
may reject the null hypothesis too often. This property of the tests will be investigated
in detail in the next section.

4 Small sample properties of the tests

In this section both the size and the power properties of these statistics are examined.
For comparison, this is also done for the corresponding ADF' tests, here called ADF,
and ADF},. Furthermore, a bootstrap method for adjusting the size of the tests in small
samples is proposed.

4.1 Size simulations

To investigate the size properties the rejection probabilities of the true null hypothesis are
computed, using Monte Carlo simulations and corresponding critical values from Table
1, for sample sizes T' = 25, 50, 100, 250, 500, 1000. The nominal size considered for each
test is 5%, and the number of replications equals 1000000. The data are generated from
the null model (6) assuming {e,;} ~ nid (0,1). Since the empirical size in small samples
is affected by 0, it has been computed for a number of different values of ¢ ranging from
minus one to one. Figures 1 to 4 display the estimated sizes of the F,,q, ADF, 4, Fy and
ADF} test statistics as functions of ¢ for the different sample sizes. In the two ADF tests,
the regression equation contains the first lag of Ay;.

The test statistics whose empirical sizes are shown in Figures 1 to 4 all share the char-
acteristic that their size properties become poor for values of  close to one. Furthermore,
the test statistics F,4 and Fjy are oversized for values of 4 near —1 as well. As noted
above, {y;} is I(2) for 06 = 1, which manifests itself in high rejection frequencies of the
true null hypothesis when ¢ is near unity. For 0| = 1 the stationarity assumption of
Ay, is violated, which, as can be expected, results in more frequent rejections of the null
hypothesis than the asymptotic theory prescribes. In the figures, the smaller the sample
size, the larger the deviation from the nominal 5% size level. The size tends towards the
nominal 5% when the sample size is increased. Another notable fact is that the deviations
from the nominal size for the two tests allowing for a drift term, F; and ADFy, are not as
large as the ones for the F,,; and ADF,,. As the critical values in Table 1 are estimated
for 6 = 0, calculating new critical values or using bootstrapped p-values in the tests is
recommended whenever ¢ is suspected to be close to —1 or 1 and the sample size is small.

The empirical size of F,,; and Fy have also been estimated for two cases of non-normal
errors. Considering errors drawn from ¢ (6) and y? (1) — 1 the Monte Carlo simulation
setup is repeated. The simulation results indicate that the F}; is robust against both types
of non-normal errors. No difference in estimated size can be detected between the two
non-normal cases and the normal case. The same result holds for F,,; when considering
t (6)-distributed errors. On the other hand, errors from the y? (1) —1 distribution result in
slightly higher rejection frequencies compared to the normal case at values of § between
—1 and about 0.6. The difference is the largest for the three smallest sample sizes,
T = 25,50,100. For T' = 25, the estimated size distortion is up to 3 percentage points
higher, highest for values of 0 close to —1. When 7" = 100 the size is only up to 1
percentage points higher. At other sample sizes, and for all sample sizes at values of 0



close to 1, no effect on the size can be detected compared to the normal case.

0.20
0.15|
0.10|
0.00L
0.6 0.2 0.2 0.6 1.0
O

Figure 1. Size of the F,4 statistic for T = 25, 50, 100, 250, 500, 1000. The
deviations from the nominal 5% size level, decrease with the sample size.

0.20

0.15] |

0.05|

0.00L

~0.6 ~0.2 0.2 0.6 1.0
0

Figure 2. Size of the ADF,,, statistic for T = 25, 50, 100, 250, 500, 1000. The
deviations from the nominal 5% size level, decrease with the sample size.
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Figure 3. Size of the Fy statistic for T = 25, 50, 100, 250, 500, 1000. The
deviations from the nominal 5% size level, decrease with the sample size.
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Figure 4. Size of the ADF, statistic for T' = 25, 50, 100, 250, 500, 1000. The
deviations from the nominal 5% size level, decrease with the sample size.



4.2 Bootstrapping the critical values

In this section, a simple bootstrap method is suggested in order to correct the size dis-
tortion affecting the tests. Basing inference on a bootstrap distribution can substantially
improve the finite sample properties of various test statistics, since the bootstrap p-value
converges to the true p-value of the test as the number of bootstrap replications increases.
In practice, the bootstrap p-value is estimated by simulation. For a survey on bootstrap-
ping time series see Li and Maddala (1996). Caner and Hansen (2001) suggested, when
testing the unit root hypothesis against the TAR model, basing the inference on a boot-
strap approximation of the limit distribution of the test statistic under the null.

As is seen from the previous results, the small sample distributions of the two F tests,
F,q and Fy, depend on the parameter 9. Since the model simplifies to y; = 0Ay;_1+y:_1+¢¢
under Hyy, and to y; = 0Ay:—1 + a + ys—1 + & under Hps, a model-based bogtstrapAcan
be used for estimating p-values for both tests. Consider first statistic F},q4, let 0 and D kA)e
estimates of ¢ and the distribution D of the errors ¢;. Let € be a random draw from D,
and generate the bootstrap time series

yllf) = 5Ayf,1 + yll;fl + 5?’ = L s 7T' (18)

Initial values for the resampling can be set to sample values of the demeaned series. The
distribution of the series 3? is called the bootstrap distribution of the data. The test
statistic, now called F?,, is calculated from the resampled series 3¢ in the usual way.
Repeating this resampling operation B times yields the empirical distribution of FZ,,
which is the bootstrap distribution of F},;, completely determined by 5 and D. For a large
number of independent F?, tests, estimated from the B resampled series, the bootstrap
p-value, defined by pr = P (Ffzd > Fnd), can then be approximated by the frequency of
simulated F?, that exceeds the observed value of F,.

The resampling scheme is easily modified to fit statistic F;. In order to obtain the
bootstrap distribution of Fy, model (18) is augmented as follows:

y=00y} + Ayl el t=1....T, (19)

where @ is the least squares estimator of a. The corresponding bootstrap distribution
and the p-value are obtained as before.

4.3 Power simulations

The power study involves generating data from a stationary STAR model under the al-
ternative hypothesis. However, there is no analytical answer to the question of which
parameter combinations correspond to a stationary model under the alternative hypoth-
esis. Only a guideline can be accomplished by setting the transition function F' = 0
or 1, in order to obtain reasonable boundaries to the model parameters. On the other
hand, simulations can show where the model is nonstationary, at least in the sense that
a realization of {y;} cross a predetermined boundary. Such a crossing is taken to mean
that the model is nonstationary for that specific choice of parameters. Using this idea
in the Monte Carlo setup, the time series y; is said to be nonstationary if |y;| > ot for
t > 1000000, where o equals the standard error of the errors ¢, in (1). This is of course
just a rough indication on nonstationarity, especially for parameter choices very close to
the boundary between the stationary and nonstationary regions.

10



Data is generated from the STAR model (1) using 7" = 50, assuming {&,} ~ nid (0, 1).
Since no extra power, compared to the ADF tests, can be expected if a regime shift only
involves the intercept, the two constants 6y and ¢, are set to zero. The size of the regime
shift is then determined by the parameters 6; and ¢;. Let 6; = —p; for simplicity, and
let the parameters in the logistic function be v = 10 and ¢ = 0. The model is then
determined by only two unknown parameters, p; and .

5 ‘ _
? |

: 2 7

5| : ]

ot | ]

Figure 5. Power of the F),4 statistic for 7' = 50 observations.

Figures 5, 6, 8 and 9 shows contour plots of the power to the four tests, F,q, ADF,q4,
F; and ADF}, for a grid of ¢ and 1 values. The difference in power between F,; and
ADF, 4, expressed as power of F,,; minus power of ADF,,, can be found in Figure 7. The
difference in power between F; and ADF}, expressed in the similar fashion, is shown in
Figure 10. Due to substantial computational costs, the number of replications only equals
10 000, and 500 bootstrap replications are used to estimate the p-values.

The simulations show that the parameter combinations (p1,1)) in the area outside
the contour lines result in processes whose realizations grow without a bound with the
number of observations. The largest gain in power from using F' instead of AD Foccurs at
parameter combinations of ¢; and ¢ such that —1 < 1) < 0. Other combinations indicate
negligible or small differences in power between the two pairs of tests. The single largest
gain for the F},; test is as much as 56.7 percentage points whereas the smallest one equals
—6.1 percentage points. The number of pairs (¢1, ) with a negative gain corresponds to
about 2.2% of the total number of pairs. The single largest and smallest gain for the F}
test are 52.2 and —6.9 percentage points, respectively. The gain is even here negative for
about 2.2% of the pairs.

The negative gain for some of the parameter combinations can not be explained by
sampling error alone. The main explanation is that the alternative STAR model at these

11
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Figure 6. Power of the ADF,,; statistic for T' = 50 observations.
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Figure 7. Difference in power, F,,q — ADF, .
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Figure 9. Power of the ADFj statistic for 7" = 50 observations.
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parameter combinations is very close to the linear alternative model considered in the
ADF test. The auxiliary model (4) is then very close to or indistinguishable from the
ADF model, and the power of the tests is reduced because of the extra parameter to be
tested. As a whole, the simulation results show, however, that the F,,; and Fj tests have
about the same or considerable higher power than the corresponding standard ADF tests
when the alternative exhibit nonlinear behavior.

@1

Figure 10. Difference in power, Iy — ADF.
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5 Application

In order to demonstrate the use of the tests in practice they are applied to the seasonally
adjusted monthly U.S. unemployment rate, from January 1961 to February 2000, obtained
from SourceOECD. The sample period contains 468 observations of the differenced series.
A plot of the time series can be found in Figure 11. A typical feature of the series is
that there are periods of rapid increase of unemployment. An interesting feature is the
asymmetry around the peaks, that is, the increase in unemployment is indeed more rapid
than in the subsequent decrease. Such asymmetric behavior cannot be described properly
with a linear model. Whether or not this unemployment rate can be assumed stationary is
not quite clear from the figure, although a visual inspection may suggest mean reversion.
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Figure 11. Seasonally adjusted unemployment for U.S.A. in %.

Carrying out the tests, using ordinary least squares, the auxiliary model (4) is esti-
mated under the two null hypotheses Hy; and Hyy, and under the alternative hypothesis.
The estimated equations and sums of squared residuals are as follows:

Under Hyy : 9 =a =0, p=1,
Yy = 01380Ayt_1 + Yi—1 + é\t, SSROl =13.49

Under H02 . ¢ = 0, P = 1,
g = 0.1370Ay,_1 — 0.0051 + 14—, + &, SSRp = 13.48

Under the alternative hypothesis,
Y = —05301Ayt,1 + 0~0999yt71Ayt71
+0.0302 4 0.9938y;_1 + &y, SSR =13.09

Table 2 contains the observed values of the four test statistics F,q, ADF,4, F; and
ADF,. The p-value for each test statistic has been estimated using the model-based
bootstrap method with B = 10 000.
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Table 2. Estimated test statistics and p-value.
Fna ADF,, Fy ADFy
statistic | 4.7554 0.9209 | 6.9160 1.4181
p-value | 0.0174 0.8294 | 0.0095 0.6332

Since the p-values of F,; and F, are about 1.7% and 0.9%, the null hypotheses can
be rejected at the 5% significance level. For 468 observations, the corresponding critical
values from Table 1 are about 3.6 and 4.9 for the 5% level tests. The null hypotheses
are thus also rejected when the inference is based on the critical values in Table 1. Using
these critical values appears justified because of the negligible size distortion for values
of ¢ close to the consistently estimated parameter 6 = 0.1380. The actual size for 0 is
very close to 5% as seen in Figures 1 and 3. These rejections support the conclusion that
the U.S. seasonally adjusted monthly unemployment rate can be better characterized
by a stationary nonlinear model than by a random walk. The use of the two ADF
tests, however, leads to a different conclusion as the null hypothesis of a unit root is not
rejected at any customary level of significance. The p-values are large, 83% and 63%, and
corresponding critical values are 4.7 and 8.3 for ADF,; and ADF} respectively. As for
the F tests, the actual size is very close to 5%, see Figures 2 and 4, and basing the ADF
tests on the critical values in Table 1 would result in no or negligible size distortions.

6 Conclusions

This paper contains statistical theory for testing the unit root hypothesis against the
smooth transition autoregressive (STAR) model. Some new limit results, two F-type test
statistics and critical values for them are presented. The joint hypothesis of unit root and
linearity allows one to distinguish between random walk processes, with or without drift,
and stationary nonlinear processes of the smooth transition autoregressive type. This
is important in applications because steps taken in modelling the series are likely to be
drastically different depending on whether or not the unit root hypothesis is rejected. For
illustration, the tests are applied to the seasonally adjusted U.S. monthly unemployment
rate. The unit root hypothesis is strongly rejected, indicating that the unemployment
series is better described by a STAR model rather than a random walk. The test result is
of interest when the possible presence of hysteresis in the U.S. unemployment is considered.
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Appendix A

Proof of Theorem 1

Let = denote weak convergence.

(a) Consider first

T
Ty Gup =1T" th — Bul) +T" thEut (A.1)
t=1

Now, since & = &_1 — uy, the first sum on the right-hand side equals

T
- th (Uf - Eut =7 Z 1 ( Eut +7 Z Uy E’u?) (A.2)
t=1 t=1

where the last term is O, (1), or o, (1) if Fu} = 0 as in the Gaussian case. Now let

t
vy = (ug,u? — Eu?)', V; = S v; and Vg = 0. Then, from Hansen (1992), Theorem

i=1

T
4.1, it is known that the sum 71 Y V,_ v} converges weakly to a stochastic integral.
=1

Thus 7! th 1 (uf — Eu?) = O, (1) and

t=

T T

1
TN " Guy = T2 g Buf + 0, (1) = 70\ / W (r (A.3)
0

t=1 t=1

(b) Using the same idea as in (a),

T
Ty Guf =T th — Bu}) + T thEut (A.4)
t=1 t=1

The first sum on the right-hand side then equals

T T
- th (U? - Eut = Z &t 1 Eut + 7T Z Uy Eut) (A.5)
t=1 t=1
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14
where the last term is O, (1). Let v; = (ug, v} — Eud)', Vi = 3> v; and Vy = 0. Then,

=1

T
again from Hansen (1992), Theorem 4.1, the sum 7! > V; ;0] converges weakly to
i=1

a stochastic integral. We have 7! Z &1 (v} — Eud) = O, (1) and

T T
T-3/2 Z gud =T 3B Z &+ op (1) = Bul) / W (r (A.6)
t=1 t=1
(¢) As a starting-point, consider the sum

T T
T2y & uf =T Zét L (uf = Buf) + T2 Y €8 Buj (A7)
t=1 t=1

and let vy, V;, and V{ be as in (a). Let Assumption 1 hold with n = 3. It then follows

T
from Hansen (1992), Theorem 4.2, that the sum 77323 (V,_; ® V;_,) v| converges
=1
weakly to a stochastic integral. This implies that

T3 th 1 Eut) =0, (1) (A.8)
so that
T T L
T2 Z@?AU? =72 ZﬁfﬁlE’u? + 0, (1) = Yp)\? / W2 (r)dr. (A.9)
t=1 t=1 2
It remains to be shown that
T
-2 Zﬁt ut =T" Z@?AU? as T — oo. (A.10)
=1

Since & = &1 + wy,

T

th“t —Z &i- 1+Ut th 1Ug +2th LUy ‘*‘ZW (A.11)
t=1

It follows directly from (A.11) that

Z (ft & 1 = 22& 1 + Zuta (A.12)

where the two sums on the right-hand side are O, (T% ?) and O, (T)) respectively.
The difference is thus o, (T?), implying that (A.9) holds.
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t
(d) Let vy = (ug, us16¢), V; = 3 vy and Vy = 0. Then, since T~/2Vp = (AW (1), 0/3W (1)),,
i=1
from Hansen (1992), Theorem 4.1, it follows that the elements of the sum

T §i1
SDSETECED o) FEUR [Py
—1 - 1—1C1

WM%
II

§t—1ut gtflutflgt

= = A3
Uy Z U;j—1€; Up—1E&¢ Z Ui—18&; ( )
i=1 i=1

]~

=71

t=1

converge weakly to some stochastic integrals. In particular,

. 1
71 th,ﬂj/tflgt = 0\/%)\/1/1/ (r)dB (r) + A1 (A.14)
=1 0

where A 5 is element (1,2) in the matrix

A= Th—r>noo?z Z |: Ui—1E;4 :| |: Ui im1es }

= 1j i+1
Ui UiUi_1E5
S gm kS S p[ e s ]
T Ui 1Es Ui 1EEs
—0 i1 it g i—1¢<q —1Wj—1c5¢q

Then, since u;u;_1 and ¢; are independent for all j > 7+ 1,

A12 = ErleZ Z uluj 1€j _Thi{loofz Z uzuj 1 (e’:“j) =0.

=1 j=i+1 =1 j=i+1
(A.16)
Thus the two Brownian motions W (r) and B (r) are independent, and the result
follows.

T
(e) As a starting-point, consider the sum T-%/2 3" ¢2 4, and suppose that Assumption
=1

t
1 holds for n = 3. Now let v; = u;, V; = > v; and Vj = 0. It follows from Hansen
i=1

T

(1992), Theorem 4.2, that T—3/2 3" (V,_; ® V;_;) v; converges weakly to a stochastic
=1

integral. Thus

T
TN u = N / W2 (r)dW (r) 4+ 2AA / W (r)dr (A.17)
t=1
T o T
where A = hm % 72 2. Euu;. The difference between the sum 3} £ Juy and
i=1j5=1+1 t=1

T
S° &2uy is given by
=1

Z( — &) QZ& LUy Zut (A.18)

t=1
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where the two sums on the right hand side are O, (T*?) and O, (T)) respectively.
This implies that

T
> &Gup =0, (T%?) = 0, (T?), (A.19)
=1

which proves (e) and completes the proof of Theorem 1. [ |

Proof of Theorem 2

(¢) Since u; = Ay, under the null hypothesis, the elements in the matrix equation (12)
are

T
1! (Z :L‘ta:;> T, = (A.20)
=1

T T T T
1 2 —3/2 2 1 —3/9
T Z Uy g T3/ Z Ye—1Up_q T Z Ug—1 T3 Z Ye—1U—1
t=1 t=1 t=1 t=1

T T T T
—3/2 2 ) 2 .2 —3/2 ) 2
T3 Z Yrauz_y T Z Yiquig T / Z Yrugr T Z Y Ut—1
=1 =1 =1 =1

T T T
Ty u g T3 3 gy gy 1 T2 %y
t=1 t=1 t=1
T T T T
T2 ygauey T2yt quy T2y T2yt
L t=1 t=1 t=1 t=1 .

and

(i (£4)) - o

T T T T
= { T2 e TV yequaee T2 e T e } .
=1 =1 =1 =1

Given the limit distributions in Theorem 1 and other known limit results, the ordinary
least squares estimator, (12), converges weakly as follows

o {oz (e} 1) oo (See)} am
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0| =

Yo 70)\le(?”) dr 0 0
VOA}W(T) dr VoAszQ (r)dr 0 0
N 0 0 )
0 0 1 AW (r)dr
0 0 )\jW(?”)d?” A2jW2(r)dr
a\{%W(l)
0\/%)\OfW(r) dB (r)
oW (1)
LoA (W2 (1)~ 1}
701()le2 (r) dr — (VOA)_IJW(T) dr 0 0
G WOd ) 0 0
0 0 jWQ (rydr — —X71 j W (r)dr
0 0 —A_lfIW (r) dr A2
0\/1170W (1)
a\/%)\ofW(?") dB (r)
oW (1)

so MW (1) - 13
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1
where ¥ = f W2(r)dr — ( JW(r) dr) . It then follows that, for the hypothesis
0

Hy:RB=r Where R= [ 0 I3 ], the F, 4 test statistic defined by (13), equals
-1

Fog = (byp — B) (RY7) {S%RTT (zT: m;) TTR'} RYr (by — B) /3 (A.23)

t=1

oy {UWW(U OJ%AfW(r) dB(r) oW (1) loA{W2(1) -1}
<Ole )2 — (10A)” fW 0 0
— () 1f1W (r) (70A2) " 0 0
(;) 0 JW2(rydr =X [W (r)dr
0 0 AL W (r)dr A2

avenls (1)

" a\/%)\ofW(?") dB (r)

oW (1)
oA {W? (1) — 1}

:3% W2 (1) (]W(r)dr)22W(1)/1W(r)dr/1W(r)dB(r)+ (/1W(7°)d/9(?"))2

0 0

+W? (1)/W2 (r) dr — W(l)/W(r) dr {W?(1) =1} + % {(w2(1) - 1}2]
:%vv2(1)+3iE (W(l)/W(r)dr/W(r)dB(r))

iz (W(l)/W(r)dr;{WQ(l)l})

which ends the proof of (7).

(17) Hypothesis Hys has the alternative representation Hy, : RS = r where R = { 8 (1) 8 (1) }

and r = [ 01 } . The F test statistic, defined by (13), equals
~1

F; = (by — B) (RY7) {SQTRTT (f: xtg;;> TTR’} RYr (by — B) /2 (A.24)

t=1

and converges weakly as follows:
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P :> [ o/ oW (1 0\/%)\fW (r) oW (1) %0/\ {(W2(1) -1}
Wt (fwoa) - fw 0 0
)W ) 0 0
0 0 (LJW(T) dr) —x\lole(r) dr
0 0 —/\_IjW(r) dr A2
a\/l%W(l)
y 0\/%)\2{1/1/(7“) dB (r)
oW (1)
Lo {W2(1) -1}

<2W2 (/W ) —2W 1)/1W(r)dr/1W(r)dB(T)
+ (/W(r)dB(r)) W(l)/IW(r)dr{WQ(l)1}+i{w2(1)1}2)
( /W W—/ dm>2
+21E(W(1)/W(r)dr;{w2(1)1}

) 2

where ¥ = f W2(r)dr — ( JW(r) dr) as in (7). This completes the proof of (i7) and
0

Theorem 2. |
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