Friberg, Richard; Ganslandt, Mattias

Working Paper
Reciprocal dumping with Bertrand competition

Provided in Cooperation with:
EFI - The Economic Research Institute, Stockholm School of Economics

This Version is available at:
http://hdl.handle.net/10419/56263

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Supplement (Friberg and Ganslandt, 2005)

Cournot duopoly

A representative consumer in the home market has the following utility function

\[U(q_H, q_F) = a(q_H + q_F) - \frac{1}{2} b(q_H^2 + 2q_Hq_F + q_F^2) + m. \] (1)

Utility maximization subject to the budget constraint gives the following inverse demand functions for variety H and F:

\[p_H = a - bq_H - \theta bq_F \] (2)
\[p_F = a - bq_F - \theta bq_H \] (3)

Firms simultaneously solve the first order conditions

\[\frac{d}{dq_H} ((p_H - c)q_H) = 0 \] (4)
\[\frac{d}{dq_F} ((p_F - c - t)q_F) = 0. \] (5)

The unique solution is

\[q_H = \frac{(2 - \theta)(a - c) + \theta t}{b(2 - \theta)(2 + \theta)} \] (6)
\[q_F = \frac{(2 - \theta)(a - c) - 2t}{b(2 - \theta)(2 + \theta)}. \] (7)

The prohibitive trade cost is given by \(q_F(t) \equiv 0\)

\[t = \frac{(a - c)(2 - \theta)}{2}. \] (8)

In autarchy \(q_F = 0\) and

\[q_H = \frac{a - c}{2b}. \] (9)

Welfare is

\[W = a(q_H + q_F) - \frac{1}{2} b(q_H^2 + 2\theta q_Hq_F + q_F^2) - c(q_H + q_F) - t q_F. \] (10)

In the trade equilibrium:
\[W = \frac{4\theta^2ac + 32a\theta c + 2\theta^2at - 2\theta^2ct + 16a\theta t - 16\theta tc - 4\theta^3ac - 2\theta^3at + 2\theta^3ct}{2b(\theta - 2)^2(2 + \theta)^2} \]
\[+ \frac{24a^2 - 16\theta a^2 - 48ac - 2\theta^2 a^2 - 2\theta^2 c^2 - 16\theta c^2 - \theta^2 t^2}{2b(\theta - 2)^2(2 + \theta)^2} \]
\[+ \frac{24c^2 - 24at + 24ct + 2\theta^3 a^2 + 2\theta^3 c^2 + 12t^2}{2b(\theta - 2)^2(2 + \theta)^2}. \] (11)

The derivative is
\[\frac{dW}{dt} = \frac{(a - c)(\theta^2 + 8\theta - \theta^3 - 12) - (\theta^2 - 12)t}{b(2 - \theta)^2(2 + \theta)^2}. \] (12)

Welfare is convex in \(t \). The second order derivative is
\[\frac{d^2W}{dt^2} = \frac{12 - \theta^2}{b(2 - \theta)^2(2 + \theta)^2} > 0. \] (13)

The minimum is an interior trade equilibrium since the minimum is at a trade cost strictly lower than the prohibitive level. The minimum can be found by setting \(\frac{dW}{dt} = 0 \), with a unique solution
\[t = \frac{(a - c)(3 + \theta)(2 - \theta)^2}{12 - \theta^2}. \] (14)

Welfare at this trade cost is
\[W_{\text{min}} = \frac{(a - c)^2 (9 - \theta^2)}{2b(12 - \theta^2)}. \] (15)

Trade can reduce welfare for any degree of product differentiation. At the prohibitive trade cost the derivative is
\[\frac{dW}{dt} = \frac{(a - c)(\theta)}{2b(2 - \theta)(2 + \theta)} > 0 \] (16)

This is confirmed by a comparison of welfare at the minimum and in autarchy. Using the autarchy quantity we obtain welfare in autarchy
\[W^M = \frac{3(a - c)^2}{8b}. \] (17)

The quote between the minimum welfare with trade and welfare under autarchy is
\[\frac{W_{\text{min}}}{W^M} = \frac{4}{3} \left(\frac{9 - \theta^2}{12 - \theta^2} \right) < 1. \] (18)
Bertrand duopoly

Re-arrange inverse demand equations to obtain the demand functions for H and F:

\[q_H = \frac{a - p_H + \theta p_F - a\theta}{b (1 - \theta^2)} \quad (19) \]
\[q_F = \frac{a - p_F + \theta p_H - a\theta}{b (1 - \theta^2)} \quad (20) \]

First order conditions (reaction functions):

\[\frac{d}{dp_H} ((p_H - c) q_H) = 0 \quad (21) \]
\[\frac{d}{dp_F} ((p_F - c - t) q_F) = 0 \quad (22) \]

The unique Bertrand equilibrium is:

\[p_H = \frac{2a - a\theta - a\theta^2 + 2c + c\theta + t\theta}{4 - \theta^2} \quad (23) \]
\[p_F = \frac{2a - a\theta - a\theta^2 + 2c + c\theta + 2t}{4 - \theta^2} \quad (24) \]

and we insert the equilibrium prices in demand functions to obtain the equilibrium quantities.

\[q_H = \frac{(2 - \theta^2 - \theta) (a - c) + \theta t}{b (4 - \theta^2) (1 - \theta^2)} \quad (25) \]
\[q_F = \frac{(2 - \theta^2 - \theta) (a - c) - 2t + \theta^2 t}{b (4 - \theta^2) (1 - \theta^2)} \quad (26) \]

Welfare in a trade equilibrium is

\[W = \frac{36ac\theta^2 - 16\theta tc - 12a\theta^3 c - 6a\theta^3 t - 8a\theta^4 c + 18a\theta^2 t - 18c\theta^2 t + 6\theta^3 tc}{2b (1 - \theta^2) (4 - \theta^2)^2} \]
\[+ \frac{32ac\theta + 16a\theta t - 4a\theta^4 t + 4c\theta^4 t + 24a^2 - 18a^2 \theta^2 - 16a^2 \theta - 48ac + 4a^2 \theta^4}{2b (1 - \theta^2) (4 - \theta^2)^2} \]
\[+ \frac{6a^2 \theta^3 - 18c^2 \theta^2 - 16c^2 \theta + 6c^2 \theta^3 - 9\theta^2 t^2}{2b (1 - \theta^2) (4 - \theta^2)^2} \]
\[+ \frac{24c^2 + 4c^2 \theta^4 - 24at + 24ct + 2\theta^4 t^2 + 12t^2}{2b (1 - \theta^2) (4 - \theta^2)^2} \quad (27) \]
Welfare has a unique minimum \(\frac{dW}{dt} = 0 \) at
\[
t = \frac{(3 - 2\theta)(a - c)(1 - \theta)(2 + \theta)^2}{2\theta^4 - 9\theta^2 + 12}
\] (28)
Welfare is strictly convex in \(t \). The second order derivative is
\[
\frac{d^2W}{dt^2} = \frac{12 + 2\theta^4 - 9\theta^2}{b(1 - \theta^2)(4 - \theta^2)^2} > 0
\]
The corresponding welfare at minimum is
\[
W_{\text{min}} = \frac{(9 - 4\theta^2)(a - c)^2}{2b(12 + 2\theta^4 - 9\theta^2)}
\] (29)
The prohibitive trade cost is given by \(q^*_F(t) \equiv 0 \), i.e.
\[
t = \frac{(a - c)(2 - \theta - \theta^2)}{2 - \theta^2}.
\] (30)
Welfare at the prohibitive level is
\[
W|_{t=\tilde{t}} = \frac{ac - a^2}{b\theta^2 - 2b} + \frac{ac - c^2}{b\theta^2 - 2b} + \frac{2ac - a^2 - c^2}{8b - 8b\theta^2 + 2b\theta^4}.
\] (31)
The interior minimum is a strict minimum. The derivative at the prohibitive level shows that a higher trade barrier and less trade can increase welfare at the margin:
\[
\left. \frac{dW}{dt} \right|_{t=\tilde{t}^+} = \frac{(a - c)\theta}{(2 - \theta^2)(2 - \theta)(2 + \theta)b} > 0
\] (32)
Nevertheless, welfare in autarchy is
\[
W^{\text{M}} = \frac{3}{8} \frac{(a - c)^2}{b}.
\] (33)
The quote between the minimum and autarchy welfare is
\[
\frac{W_{\text{min}}}{W^{\text{M}}} = \frac{4(3 - 2\theta)(2\theta + 3)}{3(12 + 2\theta^4 - 9\theta^2)} > 1.
\] (34)

Cournot oligopoly (duopoly in H and duopoly in F)
Inverse demand functions with four firms are
\[
p_1 = a - bq_1 - \theta bq_2 - \theta bq_3 - \theta bq_4
\] (35)
\[
p_2 = a - \theta bq_1 - bq_2 - \theta bq_3 - \theta bq_4
\] (36)
\[
p_3 = a - \theta bq_1 - \theta bq_2 - bq_3 - \theta bq_4
\] (37)
\[
p_4 = a - \theta bq_1 - \theta bq_2 - \theta bq_3 - bq_4
\] (38)
Firms simultaneously solve

\[
\frac{d}{dq_1} ((p_1 - c) q_1) = 0 \quad (39)
\]
\[
\frac{d}{dq_2} ((p_2 - c) q_2) = 0 \quad (40)
\]
\[
\frac{d}{dq_3} ((p_3 - c - t) q_3) = 0 \quad (41)
\]
\[
\frac{d}{dq_4} ((p_4 - c - t) q_4) = 0 \quad (42)
\]

The equilibrium is

\[
q_1 = q_2 = \frac{(a - c)(2 - \theta) + 2\theta t}{b(3\theta + 2)(2 - \theta)} \quad (43)
\]
\[
q_3 = q_4 = \frac{(a - c)(2 - \theta) - (2 + \theta) t}{b(3\theta + 2)(2 - \theta)} \quad (44)
\]

Welfare is

\[
W = \left((a - c)(q_1 + q_2 + q_3 + q_4) - \frac{1}{2} b(q_1^2 + q_2^2 + q_3^2 + q_4^2) \right) - \theta b(q_1 q_2 + q_1 q_3 + q_1 q_4 + q_2 q_3 + q_2 q_4 + q_3 q_4) - t(q_3 + q_4) \quad (45)
\]

Explicitly

\[
W = \frac{6\theta t c - 12a\theta^3 c - 6\theta^3 t a - 3\theta^3 t^2 + 24a^2 - 48ac + 18\theta^2 t a}{b(3\theta + 2)^2 (\theta - 2)^2} + \frac{3\theta^2 t^2 - 24at + 12t^2 + 24ct + 16\theta t^2 - 18a^2 \theta^2 - 18c^2 \theta^2}{b(3\theta + 2)^2 (\theta - 2)^2} + \frac{24c^2 + 6c^2 \theta^3 + 6a^2 \theta^3 + 36a\theta^2 c - 18\theta^2 t c}{b(3\theta + 2)^2 (\theta - 2)^2} \quad (46)
\]

The derivative is

\[
\frac{dW}{dt} = -\frac{2}{b} \frac{12a - 12c - 12t - 9a\theta^2 + 3a\theta^3 + 9c\theta^2 + 3\theta^3 t - 3c\theta^3 - 16\theta t - 3\theta^2 t}{(3\theta + 2)^2 (\theta - 2)^2} \quad (47)
\]

Welfare is a strictly convex function in \(t \). The second order derivative is

\[
\frac{d^2 W}{dt^2} = \frac{2}{b(3\theta + 2)^2 (2 - \theta)^2} > 0 \quad (48)
\]
Welfare has a unique minimum, $\frac{dW}{dt} = 0$, at

$$t = \frac{3(a - c)(1 + \theta)(2 - \theta)^2}{12 + 16\theta + 3\theta^2 - 3\theta^3} \quad (49)$$

Welfare at this point is

$$W_{\text{min}} = \frac{3 \left(3 - \theta^2 + 2\theta\right)(a - c)^2}{b \left(12 + 16\theta + 3\theta^2 - 3\theta^3\right)} \quad (50)$$

The prohibitive trade cost, $q_3(t) = q_4(t) = 0$, is

$$t = \frac{(2 - \theta)(a - c)}{(2 + \theta)} \quad (51)$$

Autarchy is

$$q_1 = q_2 = \frac{a - c}{b(2 + \theta)} \quad (52)$$
$$q_3 = q_4 = 0 \quad (53)$$

Welfare under autarchy is

$$W^{\text{D}} = \frac{(3 + \theta)(a - c)^2}{b(\theta + 2)^2} \quad (54)$$

The quote between the minimum welfare with trade and welfare under autarchy is

$$\frac{W_{\text{min}}}{W^{\text{D}}} = \frac{3(\theta + 1)(3 - \theta)(\theta + 2)^2}{(12 + 16\theta + 3\theta^2 - 3\theta^3)(\theta + 3)} < 1$$

Bertrand oligopoly (duopoly in H and duopoly in F)

Demand functions are

$$q_1 = \frac{a + \theta p_2 - \theta a + p_4\theta + p_3\theta - 2\theta p_1 - p_1}{(1 - \theta)(3\theta + 1)b} \quad (55)$$
$$q_2 = \frac{a + \theta p_1 - \theta a - 2\theta p_2 + p_4\theta + p_3\theta - p_2}{(1 - \theta)(3\theta + 1)b} \quad (56)$$
$$q_3 = \frac{a + \theta p_2 - \theta a + p_3\theta - 2p_3\theta + \theta p_1 - p_3}{(1 - \theta)(3\theta + 1)b} \quad (57)$$
$$q_4 = \frac{a + \theta p_2 - \theta a + p_3\theta - 2p_4\theta + \theta p_1 - p_4}{(1 - \theta)(3\theta + 1)b} \quad (58)$$

Firms simultaneously solve
\[
\frac{d}{dp_1} (q_1 (p_1 - c)) = 0 \quad (59)
\]
\[
\frac{d}{dp_2} (q_2 (p_2 - c)) = 0 \quad (60)
\]
\[
\frac{d}{dp_3} (q_3 (p_3 - c - t)) = 0 \quad (61)
\]
\[
\frac{d}{dp_4} (q_4 (p_4 - c - t)) = 0 \quad (62)
\]

The unique trade equilibrium is

\[
p_1 = p_2 = \frac{(5\theta + 2) (a + 2c\theta - a\theta + c) + 4\theta^2 t + 2\theta t}{(5\theta + 2) (2 + \theta)} \quad (63)
\]
\[
p_3 = p_4 = \frac{(5\theta + 2) (a + 2c\theta - a\theta + c) + 6\theta^2 t + 7\theta t + 2t}{(5\theta + 2) (2 + \theta)} \quad (64)
\]

Welfare is

\[
W = \frac{1}{b (3\theta + 1) (1 - \theta) (2 + \theta)^3 (5\theta + 2)^2} \left[-90\theta^3 tc + 180a\theta^3 c + 90\theta^3 ta + 201\theta^3 t^2 + 24a^2 - 48ac \\
+144a^2\theta - 222a^2 ta + 219\theta^2 t^2 - 24at + 12t^2 + 24ct \\
+88\theta t^2 + 222a^2 \theta^2 + 222c^2 \theta^2 + 24c^2 + 144c^2 \theta - 300a^2 \theta^4 \\
-90c^2 \theta^3 - 90a^2 \theta^3 - 444a^2 c - 144\theta ta + 144\theta tc - 288ac\theta \\
+222a^2 t c + 50a^4 t^2 + 24\theta^5 t^2 - 300c\theta^4 t - 300c^2 \theta^4 + 600a\theta^4 c + 300a \theta t^3 \right] \\
\]

The derivative is

\[
\frac{dW}{dt} = 2 \frac{b (3\theta + 1) (1 - \theta) (2 + \theta)^2 (5\theta + 2)^2}{[24\theta^5 t - 150c\theta^4 + 50\theta^4 t + 150a\theta^4 - 45c\theta^3 + 201\theta^3 t + 45a\theta^3 \\
+219\theta^2 t - 111a\theta^2 + 111c\theta^2 - 72a\theta + 72c\theta + 88\theta t - 12a + 12c \theta t^3]} \\
\]

Welfare is strictly convex in \(t \). The second order derivative is

\[
\frac{d^2W}{dt^2} = 2 \frac{24\theta^5 + 50\theta^4 + 201\theta^3 + 219\theta^2 + 88\theta + 12}{b (3\theta + 1) (1 - \theta) (2 + \theta)^2 (5\theta + 2)^2} > 0 \quad (67)
\]

There is a unique minimum, \(\frac{dW}{dt} = 0 \), at

\[
t = \frac{3 (5\theta + 2)^2 (1 - \theta) (a - c)}{12\theta^4 + 19\theta^3 + 91\theta^2 + 64\theta + 12} \quad (68)
\]
Welfare at this point is

\[
W_{\text{min}} = \frac{3 \, 16a^2\theta^2 - 32a\theta^2c + 16c^2\theta^2 - 28ac\theta + 14a^2\theta + 14c^2\theta - 6ac + 3c^2 + 3a^2}{12\theta^4 + 19\theta^3 + 91\theta^2 + 64\theta + 12}
\]
(69)

Welfare in autarchy, \(q_3 = q_4 = 0\), is

\[
W^{D} = \frac{(a - c)^2 (3 - 2\theta)}{b (\theta + 1) (\theta - 2)^2}
\]
(70)

The quote between the minimum welfare with trade and welfare under autarchy is

\[
\frac{W_{\text{min}}}{W^{D}} = \frac{3 (2 - \theta)^2 (\theta + 1) (16\theta^2 + 14\theta + 3)}{(3 - 2\theta) (12\theta^3 + 19\theta^2 + 91\theta^2 + 64\theta + 12)}
\]
(71)