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Abstract
This study investigates in a two-stage two-player model how the de-

cision to make an ultimatum and how much to demand depends on the
impatience of the agents and the pie uncertainty. First, players simultane-
ously decide on their ultimatums. If the ultimatum(s) are compatible then
the player(s) receive his (their) demand(s) in the second period and the
eventually remaining player becomes residual claimant. If no ultimatums
are made then there is a Rubinstein-Ståhl bargaining. Relative impatience
induces ultimatums but does not affect the demanded amount. In a discrete
(continuous) setting there exist no equilibrium without an ultimatum (with
mutual ultimatums).

1. Introduction

Bargaining is the standard tool to divide a surplus among the concerned economic
agents (henceforth players). One important factor determining the outcome is the
∗The author gratefully acknowledge the financial support from The Swedish Council for

Research in Humanities and Social Sciences (HSFR, F0357/97).
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patience of the players. The amount a player receives is typically increasing in
his patience. A relatively impatient player may therefore be tempted to make an
ultimatum prior to the bargaining in order to avoid the unfavorable bargaining
situation. By making an irrevocable ultimatum he may increase his share of the
surplus. When the surplus is uncertain this increase is at the expense of a possible
break down in negotiations if the surplus is not large enough to satisfy the demand.
The decision to make an ultimatum and, if so, how much to demand should reflect
this trade off. This study investigates how the decision to make an ultimatum and
how much to demand depends on the impatience of the agents and the uncertainty
of the surplus.
The model is a two-stage game. In the first stage the players simultaneously

decides on their ultimatums. The size of the pie is unknown to the players but its
distribution and the discount factors of the players are common knowledge. In the
second stage the size of the pie is reviled and if no ultimatums have been made
it is divided through a Rubinstein&Ståhl bargaining. If only one player has made
an ultimatum and the pie exceeds the ultimatum then the player receives the
demanded amount and the other player takes what is left. When two ultimatums
have been made and the pie exceeds the sum of the ultimatums then both players
receives their demanded amounts. Negotiations break down if the ultimatum(s)
cannot be met and both players receive nothing. Two specific settings of this
general model are investigated; one where the pie is discretely distributed over two
outcomes and one where it is exponentially distributed. The main results are that
the decision to make an ultimatum or not depend on the relative impatience of the
players while the size of the ultimatum(s) does not depend on the impatience of the
players. Moreover, if one player has made an ultimatum then it is never a strictly
best response for the other player to make an ultimatum as well. The intuition
is that ultimatums do not change the point in time at which payoffs are realized.
The maximization problems are thus unaffected of the discount factors and the
ultimatum that maximizes the expected payoff of an impatient player will also
maximize that of a patient player. The future payoff from an ultimatum is thus
the same for all types of player. The relative impatience of a player does affect
the expected outcome of a bargaining and the relatively impatient player may
therefore gain from making an ultimatum. If one player has made an ultimatum
then the other player becomes residual claimant given that he does not make an
ultimatum himself. In this situation making an ultimatum is weakly dominated
by not making an ultimatum. In the discrete setting it is shown that ultimatums
are always made in equilibrium and a condition for the existence of equilibria



in which both players make ultimatums is derived. In the exponential setting
there exist no equilibrium with mutual ultimatums and depending on the relative
impatience of the players there exist equilibria in which no or one ultimatum is
made. That there exist no equilibrium with mutual ultimatums is also shown to
true in the general continuous case.
The two-stage model relates to the Nash demand game. Nash [7] considered a

strategic model of bargaining that has come to play an important role in economic
theory. Two players simultaneously make demands on a pie of known size. If the
demands are compatible then the players receive the amount they demanded and
otherwise disagreement occurs and the players receive nothing. The extension
made in this study is to make the size of the pie uncertain and to make it possible
for the players to refrain from making ultimatums and then to study whether it is
in the interest of the players to do so or not. A similar approach is made by Güth
and Ritzberger [3] but in their model players may differ in the concavity of their
utility functions and there is no explicit bargaining procedure in the second stage.
The pie is exponentially distributed. They show that commitment is a dominant
strategy for favorable (low variance) distribution while the reversed is true for
unfavorable distributions. There also exists a mixed equilibrium and equilibria in
which one player commits. Young [10] show that players with high risk tolerance
make higher demands than less risk-loving players.
Muthoo [5][6] studies partial commitment in a bargaining model where the size

of the pie is known. The equilibrium ultimatum is increasing in the cost of revok-
ing. Crawford [2] lets the cost of revoking be uncertain. Kambe [4] investigates
imperfect commitment and reputation effects. Osborne and Rubinstein [8] and
Bolt and Houba [1] investigate models where the players can undertake actions
that affect the disagreement point. Schelling [9] discusses the role of ultimatums
in his insightful book.
The general model is presented in Section 2, the discrete case in Section 3 and

the exponential in Section 4. The discussion is in Section 5 and Section 6 contains
a few examples. Proofs are in the Appendix.

2. The Model

The model consists of a two-stage game with the following structure.

1. Nature chooses the size of the pie. Without being informed about natures
move player 1 and 2 simultaneously decide whether to make an ultimatum



or not. If a player decides to make an ultimatum he also decides upon how
much to demand. The players may differ in their patience and their types
is assumed to be common knowledge.

2. The size of the pie and the ultimatums become common knowledge. If no
ultimatum has been made the players bargain over the pie a’ la Rubin-
stein&Ståhl. If only one ultimatum has been made and the size of the pie
exceeds the ultimatum then the player who made the ultimatum receives
the demanded amount and the other player gets the remaining part. If they
both make ultimatums that can be simultaneously satisfied then each player
receives the demanded amount. If the ultimatum or the sum of the ultima-
tums exceeds the size of the pie then the bargaining breakes down and the
players get zero.

In the next two sections the two stages are described in detail. The second
stage is presented first and thereafter the first stage.

2.1. The Second Stage

The second stage begins with the players being informed about the size of the
pie, denoted X, and the ultimatum made by the other player. Let x1 ≥ 0 and
x2 ≥ 0 denote the ultimatum of player 1 and 2, respectively. If x1 = 0 then player
1 made no ultimatum in the first stage and if he did then his demand is described
by x1 > 0. Let x1 (x2) denote the amount of money received by player 1 (2). His
objective is to maximize the amount of money and his discount factor is δ1, i.e.
her utility from x1 one period from now is δ1x1. When no ultimatums has been
made (x1 = x2 = 0) then the two players bargain a’ la Rubinstein-Stahl over the
pie. There is no reason to give the first move to one of the players so a fair coin
is tossed before the bargaining starts. Each player has with probability 1/2 the
privilege of making the first move and player 1 thus expects to get

x1 =

µ
1− δ2
1− δ1δ2

+

µ
1− 1− δ1

1− δ1δ2

¶¶
X

2

=

µ
1

2
+

δ1 − δ2
2 (1− δ1δ2)

¶
X

= b (δ)X (1)

where δ = (δ1, δ2). Hence, when no ultimatums has been made in the first stage
then player 2’s expected share of the pie is 1 − b (δ). Notice that if the players



have identical discount factors then each of them expects to receive half of the
pie. A player who is alone of making an ultimatum gets what he demanded if the
pie exceeds the ultimatum. Otherwise both players get zero. When both players
make ultimatums then they receive their demands if the pie exceeds the sum of
the demands and zero otherwise. The expected payoff for player 11 is summarized
below.

x1 =


b (δ)X if x1 = x2 = 0
X − x2 if x1 = 0 and 0 < x2 < X
x1 if x1 > 0 and x1 + x2 ≤ X
0 if x1 + x2 > X

If one player makes an ultimatum it will not be in the interest of the other player
to make one since, if he does not, he will be the residual claimant. Making an
ultimatum cannot increase his expected payoff. The assumption that a player
only receives his demand if the pie exceeds the sum of the demands may therefore
seem restrictive. However, notice that the alternative assumption, that the players
divide remaining part of the pie according to some rule, does not change this. The
assumption above is made for the reason of simplicity even though it may lead to
inefficiencies.

2.2. The First Stage

In the beginning of the first stage nature decides on X, the size of the pie, which is
distributed over a subset ofR+ in accordance to the cumulative distribution F . Let
f denote the corresponding probability density function. Without being informed
about natures move the players simultaneously decide on what ultimatums to
make. The distribution F and their types δ1 and δ2 are common knowledge.
Player 1 holds a belief xe2 over player 2’s ultimatum and vice versa. Here, the
focus is on pure strategies and the beliefs xei are thus assumed to numbers, not
distributions over numbers. Player 1 aims at maximizing his expected utility
given his beliefs. His ultimatum will consequently be one of those solving his
maximization problem, i.e.

x1 ∈ argmax
y≥0

δ1E [x1 | y, xe2] .
1One should possibly consider the case where the two parties bargain over the remains when

x1, x2 > 0 and x1 + x2 < X, i.e. x1 = x1 + b1 (δ1, δ2) (X − x1 − x2). Otherwise is it by
construction not advantageous to make an ultimatum when one’s opponent has made one.



Notice that the solution to the maximization problem does not depend on the
discount factor of any of the players.

Proposition 1. Any ultimatum maximizing the expected payoff of any of the
players is independent of the discount factors.

Proof. See Appendix.

The intuition behind Proposition 1 is that an ultimatum does not change
the point in time where payoffs are realized. If an ultimatum maximizes the
payoff of an impatience player then it also maximizes that of a more patient
player. In equilibrium both players anticipate the ultimatum of the other player
correctly (rational expectations). An equilibrium is then a pair of ultimatums
simultaneously solving the two players maximization problems given xei = xi.
In this general setting it is difficult to show the existence of a pure equilibrium

and to derive equilibrium properties. The standard theorems does not apply; the
strategy spaces may not be compact, the expected payoffs may not be continuous
at xi = 0, the pie could be discretely distributed resulting in a game without a pure
equilibrium (rock-paper-scissors game). In order to simplify and to make results
more intuitive two special cases will be studied, each represented by a special
distribution F . The first case is a discrete distribution over only two outcomes
and the second case is the exponential distribution.

3. The Discrete Case

The pie is small and its value is low (X = xL ≥ 0) with probability p. With
probability (1− p) it is large and its value is high (X = xH > xL). If no one of
the players makes an ultimatum then the expected payoff of player 1 is

b (δ)
¡
pxL + (1− p) xH¢ (2)

Suppose player 1 but not player 2 makes an ultimatum x1 > 0. If his ultimatum
does not exceed xL then his expected payoff is

x1 (3)

and if the ultimatum exceeds xL then

(1− p) x1 (4)



The expressions 3 and 4 are maximized at x1 = xL and x1 = xH , respectively.
Hence, if p ≥ p ≡ ¡xH − xL¢ /xH then x1 = xL is the best non-zero ultimatum and
if p ≤ p then x1 = xH is the best non-zero ultimatum. Comparing 3 and 4 with 2
gives that x1 = x

L is his best reply to x2 = 0 if b (δ) ≤ xL/E [X] and p ≥ p. Simi-
larly is x1 = x

H a best reply against x2 = 0 if b (δ) ≤ xH (1− p) /E [X] and p ≤ p.
If the inequalities hold with equality or are violated then x1 = 0 is a best reply.
Consider a situation where both players make an ultimatum. If player 2’s demand
exceeds xL then player 1’s best alternatives are to demand xH − x2 or nothing
at all. Both alternatives yield the same expected payoff, (1− p) ¡xH − x2¢. In
the case where player 2 demands less than xL the best alternative for player 1
is to demand nothing and thereby become residual claimant. The alternative, to
demand xL−x2 or xH−x2, are both dominated by x1 = 0. The unique best reply
is thus to demand nothing. To summarize, player 1’s best reply correspondence is

xD1 (x2) =



©
xL
ª

if x2 = 0, p > p and b (δ) < x
L/E [X]©

0, xL
ª

if x2 = 0, p > p and b (δ) = x
L/E [X]©

xL, xH
ª

if x2 = 0, p = p and b (δ) < x
L/E [X]©

0, xL, xH
ª

if x2 = 0, p = p and b (δ) = x
L/E [X]©

xH
ª

if x2 = 0, p < p and b (δ) < x
H (1− p) /E [X]©

0, xH − x2
ª
if x2 ≥ xL

{0} otherwise
(5)

Player 2’ best-reply correspondence is defined analogously. The set of equilibria
is then the set of fixed points to the combined best-reply correspondence xD1 ×xD2 .
LetM =

©
(x1, x2) | x1 + x2 = xH , x1 ≥ xL, x2 ≥ xL

ª
be the possibly empty set of

non-zero ultimatums summing up to xH .

Proposition 2. In the discrete case the set of Nash equilibria is

M ∪


©¡
xH , 0

¢ª
if b (δ) < E[X]−(1−p)xH

E[X]©¡
xH , 0

¢
,
¡
0, xH

¢ª
if E[X]−(1−p)xH

E[X]
≤ b (δ) ≤ (1−p)xH

E[X]©¡
0, xH

¢ª
if b (δ) > (1−p)xH

E[X]



if p < p,

M ∪


©¡
xL, 0

¢
,
¡
xH , 0

¢ª
if b (δ) < E[X]−(1−p)xH

E[X]©¡
xL, 0

¢
,
¡
xH , 0

¢
,
¡
0, xL

¢
,
¡
0, xH

¢ª
if E[X]−(1−p)xH

E[X]
≤ b (δ) ≤ (1−p)xH

E[X]©¡
0, xL

¢
,
¡
0, xH

¢ª
if b (δ) > (1−p)xH

E[X]

if p = p, and

M ∪


©¡
xL, 0

¢ª
if b (δ) < E[X]−xL

E[X]©¡
xL, 0

¢
,
¡
0, xL

¢ª
if E[X]−xL

E[X]
≤ b (δ) ≤ xL

E[X]©¡
0, xL

¢ª
if b (δ) > xL

E[X]

if p > p.

Proof. See Appendix.

Corollary 3. In the discrete setting:
(i) An ultimatum is always made in equilibrium, i.e. x1 = x2 = 0 is not a Nash
equilibrium.
(ii) There always exist an equilibrium where only one of the players makes an
ultimatum. The ultimatum is not always made by the most impatient player.
(iii) If xH ≥ 2xL then there always exist an equilibrium in which both players
make ultimatums.
(iv) If both players make ultimatums in equilibrium then the ultimatums are pie
efficient with respect to the high outcome, i.e. x1 + x2 = x

H .

Proof. Follows from Proposition 2.

4. The Exponential Case

Let the size of the pie be exponentially distributed, f (X) = λe−λX and F (X) =
1 − e−λX for all x > 0 and λ > 0. The expected value of the pie is 1/λ and the
variance is 1/λ2.
Suppose player 1 wants to make a non-zero ultimatum and expects player 2

to make the ultimatum xe2 ≥ 0. The best non-zero ultimatum is the solution to

max
x1>0

δ1x1e
−λ(x1+xe2). (6)



It turns out that the best non-zero ultimatum is constant with respect to δ1, δ2,
and xe2.

Lemma 4. In the exponential setting the best non-zero ultimatum is 1/λ.

Proof. See Appendix.

The expected payoff for player 1 when no ultimatum has been made is b1 (δ) /λ
and when making the ultimatum 1/λ it is 1/λe.When player 2 made the ultima-
tum x2 > 0 player 1’s expected payoff from not making an ultimatum is x2/e

λx2 .
Making the ultimatum 1/λ yields 1/λeλ(x2+1/λ). Comparing the payoffs above
gives the best-reply correspondence for player 1

xC1 (x2) =

 1/λ if x2 = 0 and b (δ) < 1/e or x2 ∈ (0, 1/λe)
{0, 1/λ} if x2 = 0 and b (δ) < 1/e or x2 = 1/λe
0 otherwise

The best-reply correspondence for player 2 is defined analogously. Using the best-
reply correspondences gives the set of equilibria.

Proposition 5. In the continuous case with exponential distribution the set of
equilibria is 

{(1/λ, 0)} if b (δ) < 1/e
{(0, 0) , (1/λ, 0)} if b (δ) = 1/e

{(0, 0)} if b (δ) ∈ (1/e, (1− e) /e)
{(0, 0) , (0, 1/λ)} if b (δ) = (e− 1) /e
{(0, 1/λ)} if b (δ) > (e− 1) /e.

Proof. Follows from the best-reply correspondences.

Corollary 6. There exists no equilibrium in which both players make an ulti-
matum. If an ultimatum is made in equilibrium then it is made by the most
impatience player.

Proof. Follows from 5.



4.1. The General Continuous Case

Consider the general continuous case where F is defined over R+. One important
result obtained in the exponential setting carries over to this more general case.
There exists no equilibrium in which both players make ultimatums.

Proposition 7. If xi > 0 for i = 1, 2 then (x1, x2) is not an equilibrium in the
general continuous setting.

Proof. See Appendix.

The intuition is that refraining frommaking an ultimatum increases the chances
of receiving a payoff and results in a higher payoff in those cases a positive de-
mand would have been satisfied. Making no ultimatummakes the player a residual
claimant.

5. Discussion

In a simple two-stage two-player game it has been shown that only the choice
whether to make an ultimatum or not depend on the relative impatience of the
player. If an ultimatum is made then its magnitude is independent of the rela-
tive impatience of the demanding player. The set of equilibria for two specific
setting was derived showing how sensitive the equilibrium set is of the assumed
distribution.
Ultimatums are here in absolute terms and not in relative terms (e.g. 60% of

X). The interpretation of this is that the size of the pie is unobservable to outside
observers while the received amount is. A player that makes a relative demand
can consequently not show that his demand has been met. This undermines the
commitment effect of an ultimatum, e.g. a union leader who cannot show whether
he has been tough or soft in wage negotiations is not credibly committed to an
earlier demand. An ultimatum made in absolute terms enables him to show this
and thereby to gain commitment. Ultimatums are assumed to be irrevocable
and, hence, commitment to be complete. Complete commitment does not require
irrevocable ultimatums, only that the cost of revoking is sufficiently high. The
union leader may revoke from his ultimatum but if this is likely to cost him his
leadership then he will never choose to do so.



6. Examples

Reconsider the bivariate case and let p = 1/2, xL = 1 and xH = 2. Then
E [X] = 3/2, p = p and M = 1. The set of equilibria is

{(1, 1)} ∪
 {(1, 0) , (2, 0)} if b (δ) < 1

3{(1, 0) , (2, 0) , (0, 1) , (0, 2)} if 1
3
≤ b (δ) ≤ 2

3{(0, 1) , (0, 2)} if b (δ) > 2
3

and it is illustrated in Figure ??. For comparison, the case of p = 3/4 is illustrated
in Figure ??
In the exponential case, let λ = 1. Then E [X] = σ2 = 1. The set of equilibria

is 
{(1, 0)} if b (δ) < 0.368

{(0, 0) , (1, 0)} if b (δ) = 0.368
{(0, 0)} if 0.368 < b (δ) < 0.632

{(0, 0) , (0, 1)} if b (δ) = 0.632
{(0, 1)} if b (δ) > 0.632

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1
δ1

δ2

{(1,0),(1,1),(2,0)}

{(0,1),(1,1),(0,2)}

{(1,0),(2,0)(1,1),(0,1),(0,2)}

b(δ)=1/3

b(δ)=2/3

The set of equilibria for the discrete example.
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The set of equilibria in the exponential example. At the bounderies between two
sets the set of equilibria is the union of the two smaller sets.



7. Appendix

Proof 1. Maximizing δ1E [x1 | x1, xe2] over x1 is equivalent to maximizingE [x1 | x1, xe2]
over x1. ¥

Proof 2. The outline is as follows: First it is shown that (0, 0) cannot be an
equilibrium. Thereafter is the set of equilibria where only one player makes
a non-zero ultimatum derived. Finally is the set of equilibria where both
players make non-zero ultimatums derived.
(i) Here it is shown that x1 = x2 = 0 is not an equilibrium. First, suppose
xL = 0. Then x1 = xH is always the best non-zero ultimatum against
x2 = 0. For x1 = x2 = 0 to be an equilibrium xi = 0 must yield a higher
expected payoff than xi = x

H for i = 1, 2, i.e.

b (δ) (1− p) xH ≥ (1− p)xH

and
(1− b (δ)) (1− p)xH ≥ (1− p) xH .

Equilibrium thus requires b (δ) ≥ 1 and b (δ) ≤ 0. Hence, x1 = x2 = 0
cannot be an equilibrium. Next, suppose xL > 0 and x2 = 0. Then x1 = x

H

is the best non-zero ultimatum if p ≥ p ≡ ¡xH − xL¢ /xH and x1 = xH if
p ≤ p. Suppose p ≥ p. x1 = x2 = 0 to be an equilibrium requires

xL

E [X]
≤ b (δ) ≤ (1− p)

¡
xH − xL¢

E [X]
.

In equilibrium xL ≤ (1− p) ¡xH − xL¢ and this is most easily satisfied for
p = p which gives

xL ≤ xL

xH
¡
xH − xL¢⇐⇒ 0 ≤ −xL.

Since xL > 0 by assumption this is not true and x1 = x2 = 0 is not an
equilibrium. Next, suppose p ≤ p. Then x1 = x2 = 0 in equilibrium
requires

(1− p) xH
E [X]

≤ b (δ) ≤ pxL

E [X]
.

Hence, (1− p) xH ≤ pxL which then must hold for p = p which is the most
favorable case

xL

xH
xH ≤ x

H − xL
xH

xL ⇐⇒ 0 ≤ −xLxL.



This inequality cannot hold since xL > 0 by assumption and x1 = x2 = 0 is
not an equilibrium.
Suppose x = xL and x2 = 0. x2 = 0 is a best reply to x1 = x

L. Equilibrium
thus requires that p ≥ p and

b (δ) ≤ xL

E [X]
(7)

which makes x1 = x
L a best reply against x1 = 0. Analogously is

¡
0, xL

¢
an

equilibrium if

1− b (δ) ≤ xL

E [X]
⇐⇒ b (δ) ≥ E [X]− x

L

E [X]
. (8)

By assumption is p ≥ p which makes 2xL ≥ E [X]. This implies that either
7 or 8, or both, holds. Hence, either

¡
xL, 0

¢
,
¡
0, xL

¢
or both are equilibria.

What if p ≤ p? Then x2 = 0 is a best reply against x1 = xH and x1 = xH
is a best reply against x2 = 0 if

b (δ) ≤ (1− p) x
H

E [X]
. (9)

Similarly,
¡
0, xH

¢
is an equilibrium if

1− b (δ) ≤ (1− p)x
H

E [X]
⇐⇒ b (δ) ≥ E [X]− (1− p) x

H

E [X]
. (10)

Since p ≤ p is 2 (1− p)xH ≥ E [X] and either 9 or 10, or both, holds. Hence,¡
xH , 0

¢
,
¡
0, xH

¢
, or both are equilibria. Notice that 7 coincides with 9 at

p = p just as 8 and 10.
From the best-reply correspondence it follows that if x1, x2 > 0 in equi-
librium, then x1, x2 ≥ xL. Otherwise one of the players would have an
incentive to deviate by not making an ultimatum. Hence, if xH < 2xL then
there exist no such equilibrium. Suppose xH ≥ 2xL, x1 ≥ xL, x2 ≥ xL and
x1 + x2 = x

H . Then x2 = x
H − x1 is a best reply against x1 and vice versa.

Hence, the set of equilibria in which both players make non-zero ultimatums
is
©
(x1, x2) | x1 + x2 = xH , x1 ≥ xL, x2 ≥ xL

ª
.

Proof 4. The FONC to 6 is
∂

∂x1
E [x1 | x1, xe2] = δ1e

−λ(x1+xe2) (1− x1λ) = 0



which has the unique solution x∗1 = 1/λ. The SONC evaluated at x
∗
1 is

∂

∂x1

¯̄
x1=x

∗
1
E
£
x1 | x∗1, xe2

¤
= −λe−λ(x∗1+xe2) < 0

showing that x∗1 gives the global maximum. Furthermore, x
∗
1 does not de-

pend on δ1, δ2 or xe2. ¥

Proof 7 Suppose (x∗1, x2) is an equilibrium where x∗1, x2 > 0. Then

E [x1 | x∗1, x2] ≥ E [x1 | 0, x2] .
Rewriting gives

x∗1

Z ∞

x∗1+x2

f (t) dt >

Z ∞

x2

(t− x2) f (t) dt

=

Z x∗1+x2

x2

(t− x2) f (t) dt+
Z ∞

x∗1+x2

(t− x2) f (t) dt

and simplifying

0 >

Z x∗1+x2

x2

(t− x2) f (t) dt+
Z ∞

x∗1+x2

(t− x∗1 − x2) f (t) dt.

Both terms on the right-hand side is positive and (x∗1, x2) cannot be an
equilibrium. ¥
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