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Abstract

In the present work, I adopt the cognitive hierarchy approach to analyze the cen-
tipede game. To this end, I present and study an extensive-form version of Camerer
et al.’s (2004) original normal-form model. The resulting predictions are evaluated
empirically using laboratory data borrowed from a previously published experiment.
The paper features two main contributions. First, it presents a parsimonious model
that can, in principle, be generalized to any two-person extensive-form game of per-
fect information. Secondly, it demonstrates that in the centipede game the cognitive
hierarchy approach leads to predictions which are not fully backwardly inductive
and that can help to explain some key feature of the experimental data.
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1 Introduction

There is by now ample evidence demonstrating that when individuals are presented with
game theoretic interactions they frequently opt for behaviors different from the equilibrium
predictions, especially during the first rounds of play (see for instance Costa-Gomes and
Crawford, 2006, and references therein). This empirical anomaly motivates the ongoing
search for new, non-equilibrium, models, with the goal of explaining the behavior of actual
players as observed in laboratory or field experiments. Among the many contributions
in this literature, the Level k model (Nagel, 1995; Stahl and Wilson, 1994, 1995) and its
generalization, the cognitive hierarchy model (Camerer et al., 2004), stand out for their
success in predicting and explaining actual behavior in a number of normal-form games,
relying only on a parsimonious set of assumptions’. How these models perform when
applied to extensive-form games is, however, still an open question. Here I address this
issue by suggesting and testing a possible extension of the cognitive hierarchy model that
is directly applicable to two-player extensive-form games of perfect information. Within
this class of games, I focus on the well-known centipede game (Rosenthal, 1982).

The centipede game represents an interactive situation involving two players that play
sequentially and non-cooperatively for a limited number of rounds. The players take
turns in deciding whether to terminate the game or to continue it, thereby passing this
decision on to the opponent. Continuing increases the value of the joint payoffs, the pot,
but it is not individually profitable if the game is terminated immediately thereafter. If
that is the case, the player who passed receives a payoff lower than what he could have
secured himself by terminating at the preceding round. If players seek to maximize their
monetary gains, the centipede game features a unique (subgame perfect) equilibrium, in
which the player who moves first terminates the game. Such a sharp theoretical prediction
is at odds with the behavior of actual players, who typically continue for some rounds
and occasionally until the end. No, or very few, participants have been observed taking
the pot at the first round (see for instance Fey et al., 1996; McKelvey and Palfrey, 1992;
Nagel and Tang, 1998; Rapoport at al., 2003).

This divergence between the equilibrium predictions and the experimental evidence
appears analogous to that successfully addressed by the non-equilibrium models in normal-
form games. For instance, the Level k£ model was first envisioned to explain why players’
behavior in the n-person guessing game differed substantially from the equilibrium pre-
scriptions (Nagel, 1993). This seminal contribution was soon generalized, extended and
profitably applied to a large number of other games (Stahl and Wilson 1994, 1995; Costa-

1See for instance Costa-Gomes et al. (2009) for various normal-form game applications of the Level k
and cognitive hierarchy model based on laboratory data. Crawford and Iriberri (2007a) and Brocas et al.
(2009) study games with private information using the Level k& model. Ostling et al. (2009) and Brown
et al. (2009) test the Level k models using field data. Ellingsen and Ostling, (2006) have studied several
games with pre-play communication, where the communication phase and the actual play of the game
can be thought of as two separate rounds of an extensive-form game.



Gomez et al., 2001; Costa-Gomez and Crawford, 2006; Ho et al., 1998; Nagel, 1995).

The main novelty of the Level k£ model is to assume that players’ behavior can be
described by their (behavioral) type which they draw at the beginning of the game from
a hierarchy of possible types. At the bottom of this hierarchy lies a non-strategic type 0,
who uniformly randomizes among his actions. Next, there is type 1, who believes that the
opponent will act as a type 0, and plays a best response to this conjecture. Higher types
adjust their beliefs via recursive thought experiments: type 2 best responds to type 1,
type 3 to type 2 etcetera. This assumption is advantageous because it grants rationality
to players of all types but type 0, simultaneously allowing them to adopt non-equilibrium
behaviors, which follow from the simplified belief structure described by the hierarchy.

Camerer et al.’s (2004) cognitive hierarchy model of games was presented as a gener-
alization of the Level k approach. In particular, it allows type k players, £k > 0, to have
more complex beliefs on the type of the opponent by envisioning the possibility of him
being any of the lower types, from k—1 to 0. Thus, a type k£ not only best responds to type
k — 1, but to a mixture of lower-level types. The types’ frequencies may be either treated
as a parametrized distribution, usually Poisson, or as an unconstrained type distribution.
These richer assumptions, that nest the Level k, have been successfully employed to ex-
plain players’ behavior in a number of two-person finite dominance-solvable games, such
as guessing games (Costa-Gomez and Crawford, 2006), zero-sum hide-and-seek games
(Crawford and Iriberri, 2007b) or even the normal-form centipede games (Kawagoe and
Takizawa, 2010).

In this paper, I present a version of the cognitive hierarchy model that is directly
applicable to extensive-form two-person games of perfect information, focussing on the
six-step centipede protocol studied by McKelvey and Palfrey (1992). I call this model the
EF-CH model, where the acronym stands for extensive-form cognitive hierarchy. Possibly,
the FF-CH is the most faithful transposition of Camerer’s model to extensive-form games.
The choice to apply the model to McKelvey and Palfrey’s six-step centipede game is
functional to produce predictions that are readily testable, thanks to the experimental
data collected and made available by the authors. The model, however, can easily be
generalized to any finite extensive-form game.

The EF-CH model rests on four assumptions. First, players can be of one of three
types, 0, 1 and 2. Second, type 0 players randomize between actions with a constant
probability, while type 1 and 2 ones use backward induction. Third, players of type 1
and 2 think that the opponent is of any of the type below their own, and they share the
same belief on type 0s’ randomization probability. Note that type 1s and type 2s do not
envision the possibility of types equal or higher than their own. The fourth assumption
is methodological, players maximize their monetary payoffs. Together, these hypotheses
allow me to derive the payoff-maximizing behavior, in expectation, for each type and thus
make verifiable predictions on the play of the game and the frequency of types in the
experimental population.



In addition, I also study two extensions of such a model. First, I allow type 1 and
type 2 players to have different beliefs on the behavior of type 0s. This special case, which
I call heterogenous EF-CH (HEF-CH), features a more ”sophisticated” type 2, that not
only forms his own belief on the behavior of type 0s, but also holds a (second order) belief
on type 1s’ beliefs on type 0. This novel assumption departs from the original spirit of
the cognitive hierarchy model, undermining the tight recursive structure of the hierarchy;,
but it allows for a more flexible structure that can better accommodate a larger variety
of situations. For instance, imagine that players in a population can be divided in three
groups. Players in the first group randomize, while those in the second group expect,
erroneously, to meet altruistic opponents and best respond to that belief. Players in the
third group instead realize the possibility to meet players from both the previous groups,
and correctly anticipate and best respond to their behavior. For a practical example, it is
possible to think of situations involving different sets of social norms that come to coexist.
This and similar situations can be captured by the HEF-CH specification. Applied to the
previous example, the model would let type 1 players believe that type Os are altruists,
and allow type 2 players to correctly recognize type 1s’ mistake.

The second extension I consider is to allow Bayesian updating in the players’ decision
process. There is evidence that when playing repeatedly in the same interaction players
revise their prior beliefs on the opponent using Bayes’ Law, although this topic is still
open to debate (Cosmides and Tooby (1996), Fudenberg and Levine (1998) and references
therein). Updating, in fact, is a cognitively advanced task, which requires the use of
cognitive resources to improve upon the priors. For this reason, and to be consistent with
the spirit of the cognitive hierarchy, I allow only type 2 players to update their belief on
the type of the opponent.

The EF-CH model produces a large number of theoretical results. In particular, it
shows, for any belief the players may have, the behaviors that maximize their expected
payoff. Among these, there is the backward induction result that to terminate at the first
round, but it is far from being the only one. Other beliefs are such it is payoff maximizing
for type 1 and type 2 players to continue to the last node of the centipede. Bayesian
updating does not have any observable effect on the predictions of the model, neither by
introducing new payoff-maximizing behaviors nor eliminating existing ones. However, it
alters the set of beliefs for which the prescribed behaviors are payoff-maximizing. Using
the assumptions of the HEF-CH case, instead, I can characterize new payoff-maximizing
behaviors, including type 2 players terminating at the central round. Using data from
McKelvey and Palfrey’s (1992) experiment, I test whether these predictions can actually
explain the experimental behavior. I find that the EF-CH model predicts the experimental
behavior to a good extent. However, the heterogenous extension outperforms the EF-CH
model in terms of the empirical fit. In general, all the different theoretical predictions fall
short of fully fitting the data, failing to predict enough terminations at the central nodes
of the game. I attribute this shortcoming to the assumption of constant randomization



from part of type Os, and discuss it further in section 6.

To my knowledge, this work is the first that applies and tests the cognitive hierarchy
framework directly to the extensive-form centipede game. Camerer (2003) mentions that
Level k could explain the experimental evidence relative to this game, but he does not
provide a formal analysis. Ho et al. (2008) study a normal-form centipede game assuming
a cognitive hierarchy structure that allows for learning. Similarly, Nagel and Tang (1998)
look at a normal-form centipede game to investigate different learning models. Kawagoe
and Takizawa (2010) compare the empirical fit of Level k£ model, the Agent quantal
response model? (Fey et al., 1996; McKelvey and Palfrey, 1998) and the Agent quantal
response model with altruistic types (McKelvey and Palfrey, 1992, 1998) when applied to
the reduced normal-form? of the centipede game. The results of their analysis show that
the Level k£ model outperforms the other two models considered. Compared to that of
Kawagoe and Takizawa, my work deals with the cognitive hierarchy model and aims at
evaluating its reach when applied directly to the extensive-form of the centipede game.
This approach has the side advantage of allowing me to consider directly the possibility
of Bayesian updating.

Palacios-Huerta and Volij (2009) have recently presented interesting experimental re-
sults on the centipede game (for a discussion, see also List et al., 2010). The authors have
documented that chess players rarely fail to terminate at the first round of the game (the
subgame perfect equilibrium) when playing with other chess players, while they typically
continue to later rounds when playing with college students. In line of principle, this
result could be given a cognitive hierarchy interpretation. It is possible that chess players
have beliefs on the behavior of other chess players and college students such that it is
payoff maximizing, in expectation, to terminate as soon as possible with the first ones
and to continue for a while with the latter ones?. Finally, in a recent paper (2010), Ger-
ber and Wichardt investigate the efficacy of bonuses and insurance as deferring devices to
postpone termination in the play of the centipede game®. In explaining the experimental
results, the authors discuss a model that has a flavour of non-equilibrium thinking, how-
ever they are careful in stating that they are not concerned with investigating the reach
of Level k in the centipede game. My work and that of Gerber and Wichardt can benefit
from one another, however they address two different questions. I am here concerned with
the issue of how to apply the cognitive hierarchy model to the centipede game.

The remainder of the paper is organized as follows. Section 2 discusses the centipede

2The agent quantal response model assumes that each player treats his future self as an independent
player with a known probability distribution over actions.

3To corroborate this assumption, the authors present the result of an experiment showing that players
do not behave differently when the same game is presented to them in extensive or normal form.

4Interestingly, also college students are documented to terminate ealier when playing with chess players
rather than with other students.

5The authors are motivated by the fact that, in the standard centipede game, longer interactions
result in increased aggregate welfare for both players.



game and the relevant literature in ampler detail. Section 3 introduces the assumptions
of the model and section 4 analyzes the results. Section 5 presents the empirical analysis.
Section 6 discusses the results and section 7 concludes.

2 The centipede game

In game theory, the centipede is a finite and sequential game of perfect information with
two player roles, here labelled A and B. Following McKelvey and Palfrey (1992), in this
work I consider the 6-node version of the centipede game that is displayed in Figure 1.
At each node j, the player who has to move can choose either to continue to play (c;)
or to terminate the game (¢;). Upon the decision to terminate the game at a node j,
the players receive the payoffs appearing at the end of branch ¢;, where the first amount
pertains to player (role) A. At the first node, the total pot sums up to $0.5, thereafter,
each time it is passed on its total value increases exponentially by a factor of two, until
it reaches a total of $32 in the last node.

25.6,6.4
t, t, t, t, t t

0.4,0.1 0.2,0.8 16,04 0.8,3.2 6.4,1.6 3.2,12.8

Fig. 1. The Centipede game

Since the game is sequential and there is perfect information about the history of play,
a new subgame begins at each node, for a total of six (proper) subgames. Subgames
are important in the search for the equilibrium because a strategy profile such that the
players do not want to deviate at any subgame is also a subgame perfect strategy profile
(Selten, 1965). As it is standard in game theory, it is assumed that the players are rational
and have Von Normamm Morgenstern utility functions. Kuhn (1950, 1953) demonstrated
that subgame perfect equilibria can be found working backwardly from the end of the tree,
replacing the starting node of each subgame by the vector of payoffs that corresponds to
the optimal choice at the subsequent nodes.

Applied to the game in Figure 1, this procedure begins with considering player B’s
choice at node 6, the last subgame of the game. There, player B’s optimal choice is tg,
because, being rational, he chooses the action delivering him the higher payoff. Then,
the players can replace the subgame with the payoff vector corresponding to the choice
t¢, obtaining a new, artificial centipede. Applying the same reasoning inductively, it is
possible to establish that player A, being rational, will choose t5 at node 5, and so on. The



collection of these choices, one for each personal decision node of the game tree, defines
the unique® subgame perfect equilibrium of the game: to terminate as soon as the player
gets the move.

Despite being straightforward, the backward induction result is uncomfortable, for it
clashes with several laboratory observations and, admittedly, with the results of intro-
spection. To improve on this front, the game theoretic literature has proposed several
equilibrium refinements. In particular, the suggested models deal with the issue of what
should players believe after observing a deviation from the equilibrium strategy. The
backward induction procedure, in fact, rests on the assumption that both players know
that both will keep the pot if given it, rather than pass it on, and both know that both
know this fact, and so on. Modifying this assumption may allow to obtain other equilibria
(see, for instance, Asheim and Dufwenberg, 2003; Ben-Porath, 1997; Kreps and Wilson,
1982; Kreps et al., 1982; Reny, 1998; Selten, 1975). In general, the refinements support
the backward induction outcome, although allowing for different outcomes to be realized
as well.

In this paper, I depart from equilibrium analysis, and only assume that players are
rational, and that they hold mutual and subjective conjectures on the play of the oppo-
nent. To describe how these payoff-maximizing players play the game it is sufficient to
know which conjecture they have about the opponent (a conjecture is here the node where
the opponent is believed to terminate). In the next section, I will show that these simple
requirements go a long way to explaining the laboratory evidence on the centipede.

As mentioned in the Introduction, the reason for choosing to focus on the game in
Figure 1 is that it is part of a series” of experiments conducted by McKelvey and Palfrey
(1992). Thanks to the availability of their laboratory data, it will be possible to directly
test the model’s predictions. The experiment consists of three® sessions, labeled 5, 6 and
7, two with twenty participants each, and one with eighteen, none of whom had played the
game before. At the beginning of each session, participants were divided in two groups
of ten (or nine in the case of session 6), and randomly allocated to role A or B. Each
subject was then matched with an individual from the other group to play the game,
for a total of ten games, or nine in the eighteen-player session. It was made common
knowledge at the beginning of each session that no individual was going to be matched
with the same opponent twice. In this sense, there is no learning, and matching can be
treated as random.

The laboratory data that was collected in this experiment uncovered two main features
that characterize the subjects’ behavior, which I will discuss shortly. Table 1 shows the

8Thanks to the following proposition: every finite, generic, extensive form game of perfect information
has a unique subgame perfect equilibrium.

"In the same paper, the authors consider also two four-step games, one with a ”high payoff” treatment.

8Session 1, 2 and 3 involved other types of treatment. Specifically, these consisted of a shorher (4-step)
centipede game, and a ”high payoff” condition, with stakes substantially higher than those considered
here.



frequency, f;, of plays terminating at node j. The backward induction outcome, which
would require f; = 1, never occurs in the data. What instead appears is that terminations
occur mostly after the third node, and are concentrated around nodes 3 to 5. Few plays
continue without interruption to the end of the centipede.

Table 1: Frequency of Observations at each Terminal Node
Sessiom N fi  fo fs  fo s fo [fr
5 100 .02 .09 39 28 .20 .01 .01
6 81 00 .02 .04 46 35 .11 .02
7 100 .00 .07 .14 43 23 12 .01
Total 5-7 281 .007 .064 .199 .384 .253 .078 .014

It is possible to use the f;s to back out the implied probability p; of terminating at any
given node j, conditional to the event that node j is reached, p; = f;/ (f; + ... + f7).
These are shown in Table 2.

Table 2: Implied Take Probabilities
Session  p1 p2  p3 pa D5 De

) 0.02 0.09 044 0.56 091 0.50
6 0.00 0.02 0.04 0.49 0.72 0.82
7 0.00 0.07 0.15 0.54 0.64 0.92

Total 5-7 0.01 0.06 0.21 0.53 0.73 0.85

For instance, in Session 5, if a play reaches node 5, the ex ante probability it will end
there is ps = f5/ (fs + fe+ f7) = 0.2/ (0.2+0.01+0.01) = 0.91. The backward induction
outcome would imply p; = 1, but it is never documented in the data. The most evident
and consistent empirical pattern is that the probability of taking increases as the play
approaches the last nodes®.

Summing up, there are two important empirical features that a theory aiming at ex-
plaining the centipede game should replicate. The first is the distribution of terminations
concentrated around the mean, and the second is the pattern of the conditional take
probability, which is increasing in the length of the centipede. The following three sec-
tions present, analyze and empirically evaluate the extent to which the cognitive hierarchy
approach succeeds in explaining the centipede game.

9In Session 5, the figure at the last move (0.50) is based on two observations only.



3 The EF-CH model

As suggested by the analysis of players’ behavior in several experiments, I assume that
players can be one of three types, 0, 1 and 2, which are recursively defined as follows.
Players of type 0 are at the bottom of the types’ hierarchy, and behave as non-strategic
randomizers. At the beginning of the game, they observe a realization ¢ of the random
variable ¢, and continue at each node with that probability. Let ¢ be distributed with
density f over the support [0,1]. Note that there is no heterogeneity among type Os, in
the sense that they all randomize in the same way. Also note that when ¢ is equal to %
we have the uniform randomization case. The next type defined in the hierarchy is type
1. Players of this type are Savage rational decision-makers that maximize their expected
monetary payoff through reasoning by backward induction. In doing so, they assume that
all the other players are of type 0, and they assign a point belief A to q. The belief X is the
realization of a random variable \ defined on the same support as g, which is observed by
all type 1 players at the beginning of the game. This implies that, as was the case for type
0s, all players of type 1 are homogeneous in their beliefs (and hence in their behavior).
The players of type 2 are at the top of the type hierarchy. They are similar to type 1s
in three respects. First, they are Savage rational maximizers that reason by backward
induction. Secondly, they observe the same realization A and use it as point belief on ¢.
Thirdly, they do not consider the possibility that other players may be of the same type
as their own. However, differently from type 1s, they can guess correctly that a fraction
so of the opponents is of type 0 and a fraction s; is of type 1. Since the two fractions
do not sum up to one'®, type 2s normalize to og = 80‘1)81 and to oy =1—0g = 50‘1151 the
probability to be playing with a type 0 and a type 1 respectively.

I will extend this model in two ways. First, I will assume that type 2 players observe
A, and thus are able to correctly predict the behavior of type 1 players, but assign to
¢ a point belief x, which is the realization of a random variable i different from A'!. I
call this case HEF-CH, which stands for heterogenous EF-CH, because type 1 and type
2 players have heterogeneous beliefs. The second extension that I consider is to allow
for Bayesian updating during the play of the centipede game. In particular, I study
an extension of the model above where I allow type 2 players to engage in Bayesian
updating on the prior oy, after having observed the opponent’s move. Given that type
2s know the node at which type 1 players terminate, they update on oy making use of
the fact that before that node only players of type 0 drop off the game. Upon observing a
continuation decision before the type 1s’ expected terminal node, type 2 players re-assess
downward the probability of being playing with a type 0. After observing the first pass

from the opponent, the type 2 player can revise the prior to ot = %, where the

10T follow here Camerer at al. (2004), despite type 2 players know the true proportions of C0 and C'1
in the population, they normalize them dividing by the sum, since C2s do not envision the possibility of
players of their own or higher type.

"But defined on the same support [0, 1].



superscript R1 stands for first revision. The updated probability of being playing with

a type 1 becomes of! = 1 — ot = ﬁ. If the opponent chooses to pass a second
2
time, such a belief can be updated again, this time to o{? = %.
2

Given the length of the centipede game in Figure 1, players revise only twice (at nodes

3 and 5 for player role A and nodes 2 and 4 otherwise!?). However, the updating process
can be generalized to any number n of revisions: ol = %.
2

revised belief goes to 0 as the number of revisions goes to infinity

As expected, the

. 00p3
lim o = 2

— -0
nooo ! 1 —og(1 - ph)

Similarly, o goes to 1, lim " = =% __ — 1,
Y; 01 8 v | 1-00(1-p3)

The assumptions just described can be applied to any two-person extensive-form finite
game of perfect information. The model will result, in general, in a series of outcomes,
where by outcome I mean a collection of terminal nodes and beliefs for type 1 and 2, such
that, given the beliefs, it is payoff maximizing to stop at the prescribed nodes. Note that
ex ante players’ beliefs can fall anywhere on the support, so that the model is descriptive of
a variety of behaviors. To increase the precision of its predictions, it is possible to specify
more accurate hypotheses on the players’ beliefs. Alternatively, if one wants, or has to,
remain agnostic about the players’ beliefs, an ”empirical approach” can be adopted. This
consists in taking all the outcomes to the data and judge empirically which one fits the
evidence better. In this paper, I will follow the latter approach. First, however, the next
section presents the outcomes of the model.

4 Analyzing the model

In this section, I begin by studying the FF-CH’s predictions, then I consider in turn the
Bayesian case, in which type 2 players undertake Bayesian updating, and the HEF-CH
case, which allows type 2 players to form a belief 1 on ¢ that is different from \. In general,
the assumptions lead to a partition of the belief-space §2 in a number of non-overlapping

components o such that UQ = ). Each component o, which I call outcome, is associated
o€

with a set of strategies (r%,r}) for type 1s and (t%,t3;) for type 2s, such that if a player’s
belief(s) fall in that outcome it is payoff maximizing for him to follow r* or ¢*. For each
outcome, or, alternatively, for each belief the players may have, it is possible to derive the
probability g,, n = 1,2,...,7, that a randomly drawn pair of players terminates at node
n. The probability g, is a function of the shares of the players types in the population,
S0, S1 and so, and of ¢, the type 0’s randomization probability, and, as we will see in the
next section, will serve as the basis for the maximum likelihood analysis.

12Revision at node 6 is possible but useless, given that the game terminates there.



Let us begin with the EF-CH model, and assume that type 1s and type 2s have
observed a realization A\ of the belief on ¢q. Consider a type 1 individual in role A that
maximizes the expected payoff £ [r(-)] of his actions. At the last node he compares the
expected value of ¢5, Em(c;) = A (cg) + (1 — A) 7 (ts), and that of ¢5, w(¢5), and plays the
action with highest expected value. Then, he takes one step back and proceeds the same
way at node 3 and 1. Reasoning is a similar way for the other player role, the expected
payoff maximizing strategies for a type 1 are

% C1C3Cs if A Z %
ra= : (1)
titsts otherwise
T* i CQC4t6 if A 2 %
B\ totyts  otherwise

By assumption, type 2 players assign to ¢ the same A as type 1, hence they can anticipate
the behavior in equation 1. Assigning belief oy to the event that the opponent is of type
0, type 2 players reason backwardly to find their payoff maximizing behavior. After some
computations, it turns out that the payoft maximizing strategies t%, ¢} are

ciescs if og > /:\ and A >
th =< caests ifog < Aand A >
t1tsts otherwise

t* . CQC4t6 if )\ Z %
B\ totuts  otherwise

ENTEEENTTe

(2)

where \ = %' Interpreting the prescription in equation 2 is intuitive. Type 28’

strategy depends both on A, which is the parameter describing the behavior of type Os
and type 1s, and on the belief oy, on the shares of type Os in the population. As long as
the type 0 players are believed to randomize with a probability that is high, A > %, it is
optimal for the type 2s to terminate at the last round. In particular, if type 2s believe
that there are many type Os that continue with a high probability, then it is payoff-
maximizing, in expectation, to pass even at node 5. Note however that the rationality
assumption makes sure that, when playing in position B, type 2s always take at node 6.
When \ < %, instead, both type 1s and type 2s terminate at the first node.

To sum up, the EF-CH assumptions can give rise to three outcomes, only one of
which prescribes the backward induction behavior. The outcomes can be represented on
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the (A, 0g) plane, as shown in Figure 2.
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Fig. 2. Outcomes of the EF-CH model

Outcome 7 consists of those beliefs such that both types 1 and 2 continue to the end of the
game. The beliefs that form outcome 77, instead, are such that it is payoff-maximizing for
type 2 players to terminate at the last round, while for type 1s to continue to the end of
the game. Finally, the beliefs in outcomes iz are such that both types stay out at the first
round. Note that it is possible to read the behavior of type 1 players in correspondence
of oy = 1'3. Figure 2 also portrays the uniform randomization hypothesis, A = % In this
case, type 1 players play until the last round, while type 2 players may either continue
to the last round or terminate at node 5 depending on their belief oy. The termination
probabilities are reported in Appendix B.

4.1 Introducing Bayesian updating

As mentioned in the Introduction and in section 3, one natural extension of the FF-CH
model is to allow for Bayesian updating. Here I assume that type 2 players update their
prior o on the share of type 0 players in the population. It turns out that if type 2 players
make use of the updated beliefs o', o/*? during the play of the game the outcomes of
the Bayesian model are behaviorally indistinguishable from the non-Bayesian ones. To
see why, consider first the case \ < % Regardless of the belief o, it is optimal for type 2s
to terminate at the first round. In this case, in fact, type 1s terminate at the first round
(see equation 1) and type Os are also believe to terminate with a high probability (X is
low). If A > %, instead, the type 2s’ payoff maximizing strategies remain the same as in
equation 2, with the difference that the set of belief for which they are optimal changes

slightly. In particular, X is replaced by A= 7/\3+>\2+1 The Bayesian outcomes Bi, Bii

13In fact, the assumptions of the model are such that it is ”as if” players of type 1 had a belief oy = 1
regarding the population composition.
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and Biii are represented on the (), 0g) plane in Figure 3.
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Fig. 3. Outcomes of the Bayesian EF-CH model

With respect to the non-Bayesian model we can note two changes. First, for player role A,
continuing at the last round is optimal for a smaller set of beliefs. This happens because
when node 5 is reached a player has to believe in a high oy to continue, becaue c; is
profitable only with a type 0 opponent. However, during the play of the game o he has
been steadily revised downwardly. Thus, it is payoff maximizing to play cs only for high
prior 0. It is also worth noting that when Bayesian updating is possible, playing in role
B gives a strategic advantage over playing in role A. Starting to play at node 2 means
in fact that the player can revise his prior before having to play the first time, simply
by observing the opponent’s move at node 1. While this does not presently affect the
outcomes, it indicates a strategic advantage of being playing in position B.

4.2 The HEF-CH case

In the HEF-CH case, I relax the assumption that type 2s and type 1s hold the same belief
on ¢. In particular, I assume that type 2 players assign a belief 1 and correctly guess
type 1s’” belief \. Thanks to this last assumption, we can consider separately the cases
when A > %, when type 1 players continue to the last round, and A < %, when type 1s
terminate at the first round (see equation 1). I begin with the case A > %, which I call
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HEF-CH™ case. Type 2s’ payoff maximizing strategies are given by

cieses if o9 > pand p > %
o c1c3ts if00<ﬂand,u2%0r,u<%and00§§
A citsts if % < 09 <0.93 and n < %

titsts otherwise

CoCate if,uZ%oru<%with00§§
t*B = Cotals if % < 09 <0.93 or n < %

taotatg  otherwise
where i = #‘fm. Compared with the EF-CH model, the HEF-CH™ case features one
main difference, that there are now beliefs such that it is optimal for type 2 players to
terminate at the central round. The reason for the appearance of a new outcome I1]
is the following: termination at the central round is payoff maximizing for type 2s when
A > %, uw < % and oq is high but not very high. If and only if these conditions are met,
it is in expectation payoff maximizing to terminate at nodes 3 and 4. Since by definition
in the EF-CH case A = pu, the conditions for outcome 111 to be payoff-maximizing are
never satisfied. Graphically, the four outcomes of the HEF-CH " can be represented as in
Figure 4.
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Fig. 4. Outcomes of the HEF-CH™ case

Recall that type 2s know that type 1s will continue to the last round. Outcome [ is
identical to outcome i in the FF-CH case. Outcome I 1 is behaviorally identical to outcome
11 for type 2 players, but note that it is here optimal for a larger set of beliefs. For instance,
even when type 2 have a low belief on ¢, p < %, they may continue to the last round,
if they believe that there are many type 1s in the population. As the share of type 1s

13



decreased, with p < %, type 2 players terminate increasingly early, at the central round,
outcome 11, or at the first round, outcome V.

The second case to consider, which I call HEF-CH~, arises when A < % Here type
1 players terminate at the first round, according to equation 1. Note that this means a
strategic advantage of being allocated to role B. Type 2 players in that role will get to
know, before taking the first decision, the opponent’s type. If the game is still on at node
2, then they are playing with type 0. It follows that type 2s’ payoff maximizing strategy
for position B, t%; , is the same as r}; (see equation 1). However, when playing in role A, a
type 2 player has no information on the type of his opponent. Thus, if he believes u < %
it is optimal for him to play ¢;, because even if there were only types 0 in the population,
such a o would be too low to make it profitable to play c,. If instead p > %, it turns out
that it is payoff maximizing to play

t* _ C1C3Csy if 0o Z /1 (3)
A titsts otherwise

e CaCyle ifﬂﬁ%
B\ totyts  otherwise

0.2

YTy As for the HEF-CH™ model, we can represent graphically the

where i =

possible outcomes on the (u, 0p) plane, holding A > % The outcomes are shown in Figure
5.
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Fig. 5. Outcomes of the HEF-CH™ model

Outcome I~ consists of those beliefs that make it optimal to terminate at the last round.
Outcome 11~ collects those beliefs such that t% = t1t3t5 and t}; = cacat. Finally, in
outcome I/]~, the payoff-maximizing strategies are t, = t1t3t5 and t}; = talsts. The
termination probabilities can be found in Appendix B.
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It is possible to allow for Bayesian updating also in the HEF-CH case. The compu-
tation are shown in Appendix A. This extension produces three outcomes, of which only
one, BIII, is behaviorally different from those already studied. According to BIII, type
1 players continue to the last round (terminal nodes ¢5 and tg). Type 2 players, instead,
terminate at the first node when in position A and at node 6 when in position B.

5 Taking the model to the data

In this section, I use the data collected by McKelvey and Palfrey in their experiment
(1992), to test the predictions of the EF-CH model and its extensions. In particular, I
will use data from the whole sample, 281 observations. These were obtained dividing the
58 participants into three groups, and further splitting each group in two halves, assigning
them to role A or B. Then, each player in a certain role played the game with all the
partecipants in his group that were allocated to the other position. To address potential
concerns of learning during these ten repetitions, I consider also a smaller sample with
only first response data.

Before taking the theoretical results to the data, there are two considerations to be
made. First, there are instances in which the behavior prescribed by different outcomes
is indistinguishable. For instance, outcomes ¢ and Bi prescribe to continue to the end of
the game. Outcomes 77 and Bii prescribe that type 2 players terminate at the last round,
and that type 1 players continue to the last round. Outcomes 72i and I11~ prescribe that
type 1s and 2s terminate at the first round. The impossibility to distinguish different
outcomes by looking at players’ behavior implies that I can not always infer the players’
beliefs. The second consideration is that, given that I did not make any assumption on
the players’ beliefs, ex ante all the outcomes are equally likely. For this reason, here I will
try to discriminate between (distinguishable) outcomes by searching empirically for the
one that predicts and describes the experimental evidence best. To this end, I first employ
a maximum likelihood analysis to find the parameter estimates of each outcome!®. Then,
I compare the different outcomes in two ways. First, I look at their information criteria
AIC and BIC to shed some light on which specification is preferable from an econometric
point of view. Secondly, I use the maximum likelihood estimated to derive each outcomes’
predicted frequencies of termination and the implied take probabilities to compare them
with the actual data. Finally, I estimate the model assuming that type 0 players actually
exist in the population. Unreasonably high estimated shares of type Os may suggest that
the model is not well specified. Moreover, the estimation of ¢ permits to gather more
information on the way players randomize in the game.

Suppose now that type 2 and type 1 players have observed beliefs A\ (and p in the
HEF-CH case) and oy according to the model’s hypotheses. Type 0 players follow the

14Tn the estimation, I will not allow for errors in actions. This mostly because McKelvey and Palfrey
(1992) do not find evidence for that when analyzing the same dataset.
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deterministic behavior described in section 3 and I make two further assumptions that

will facilitate the empirical analysis. First, I assume that type 2s’ beliefs on the popu-

lation composition are correct in expectation. Secondly, I assume that there is the same

distribution of types for each player role. In other words, regardless of whether a player

is drawn to play in role A or B, he is equally likely to be of a certain type. Then, each

repetition of the game can be looked at as an experiment with seven mutually exclusive
6

ways to terminate, ti,...,t7, which have probabilities ¢i,...,g7 = 1 — >_g;. These were
j=1

derived for each outcome in the previous section. Repeating the experiment n indepen-

dent times, and assuming that the g;s remain the same from trial to trial, the probability

6
of observing a random sample t = [1,...,7; = n — > T}] is distributed according to a

=1
multivariate binomial

n! Zt
flt)= — (i? 7 < Z%) (4)

The density function (4) depends on the parameters sg, s1, ¢, which are the population
shares of players of type 0 and 1 and the probability ¢ with which type Os continue at
each node. For any outcome, the likelihood function for a sample of N independent
observations is the product of N densities

N+1

807817 Hf t ;50,51,4 (5)

and the log-likelihood A = log [L(so, s1,¢q)] becomes

N+1 N+1 N+1 N+1
A= ZlnA+Ztllnq1+ +Ztllnq6+z<n—2t>ln <1—qu) (6)

n!

where A := . )
t1l...tg! n—j;ltj !

By substituting the g;s implied by each outcome into expression (6), and maximizing
it with respect to the parameters, I obtain the maximum likelihood estimates for the
population composition and ¢. This procedure will produce consistent estimates, since the
model is identified (there are no observationally equivalent!® parameters), the parameter

5Provided that we accept the indeterminacy between behaviorally equivalent outcomes.
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space (sg, 1, q) is compact and ) is continuous in (s, s1, ¢) for almost all ¢'.

5.1 Estimation results for the FF-CH model

Table 3 presents the parameter values that maximize the log-likelihood function (6) for
each possible outcome of the EF-CH model. The estimates show the maximum likelihood
estimates of the shares of type 0, so, and type 1, s;. In the same Table it is also possible
to read the estimated continuation probability q.

Table 3: Maximum Likelihood Estimation
i/ Bi i/ Bii iii |/ Biii

LogL 555.82 620.15 490.06
S0 0.747%  0.361% 0.852"
(0.004)  (0.015) (0.014)

s1 — 0.360™ -

(0.015)

g  0.936* 0.597 0.283**
(0.029)  (0.022) (0.004)

Obs. 281 281 281

Std. errors in par. ;* sign. 5%; ** sign. at 1%

The estimated fraction of type Os in the population is very high in outcomes i / Bi and
iti / Biii, while it is around thirty per cent in outcome ii / Bii. Note also that the
estimates of ¢ vary substantially across outcomes, but in outcome ii / Bii they are close
to the uniform randomization value. This last result is suggestive of the presence of a
truly randomizing type 0 in the population.

In general, the results in Table 3 suggest that all the outcomes can be estimated using
the data. However, these estimates are not informative as regards which of the outcomes
is preferable in the sense of being the correct model of behavior and in terms of parsimony
of parameters. Regarding this last point, note that outcome #i / Bii needs two parameters
to describe the population, sy and s;, while the other two use only so. This follows from
the fact that in these last two outcomes type 1s and type 2s behave in the same way, and
hence they are estimated to be the remaining 1 — sy share of the population. To address
the issue of which model is preferable, the simplest way is to look at the informational
criteria, AIC and BIC, computed for each outcome as shown in Table 4. The information
criteria help identifying the correct, most parsimonious model specification. The two
criteria are very similar, with the difference that the BIC penalize additional parameters

16Since the observations are not i.i.d, the convergence in probability of the average log-likelihood to
the objective function is guaranteed because the sequence of the average log-likelihood is stochastically
equicontinuous.
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more severely. In general, for both criteria, the lower the value, the more preferable the
model is, in term of parsimony of parameters and explanatory power.

Table 4: Information Criteria for Outcomes’ Comparisons
Outcome Obs. LogL(null) LogL(model) dg. freedom  AIC BIC

i/ Bi 281 . —555.82 2 1115.64 1122.91
it | Bii 281 . —620.15 3 1246.30 1257.22
iti / Biii 281 . —490.06 2 984.13  991.41

The lowest value if the criteria is scored by outcome éii / Biii. However, this result may
be driven by the fact that the log-likelihood function of outcome #ii / Biii is much simpler
than those for the other outcomes (see Appendix B). This calls for further investigation,
because the information criteria allow for model comparison only and do not provide any
diagnostic on the fit of the model. To get a rough measure of how well the outcomes fit the
data, I use the maximum likelihood estimates to predict the frequency of termination f;
and the implied take probability p; for each outcome. First, however, I re-run the analysis
considering only first-response data, to gather some more information on the reliability
of the estimates.

5.1.1 First-response data

The estimates in Table 3 are obtained by using the full sample of observations. To address
possible concerns regardig learning during the game, I here restrict here the analysis to
the first response data only, in order to verify if this leads to different results. Table 5
shows the maximum likelihood estimates for the EF-CH model

Table 5: Maximum Likelihood Estimation
EF-CH model, first response data

i/ Bi i/ Bii i/ Biii

LogL 50.82 5851 56.06
so  0.890"* 0.317* 0.756™*
(0.128)  (0.052) (0.014)

S1 —  0.291* -

(0.049)

g  0.759* 0.586" 0.313"
(0.032)  (0.099) (0.005)

Obs. 29 29 29

Std. errors in par. * sign. 5%; ** sign. 1%

The estimates do not change substantially with respect to those in Table 3, suggesting
that the data from the full sample can be treated as independent. For the outcomes that
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appear in Table 5, is possible to compute the AIC and the BIC, as shown in Table 6

Table 6: Information Criteria for Outcomes’ Comparisons
Outcome Obs. LogL(null) LogL(model) dg. freedom  AIC BIC

i/ Bi 29 . —50.82 2 105.65  108.39
ii | Bii 29 . —58.51 3 123.03 127.13
iti / Biii 29 . —56.06 2 116.13  118.87

Now outcome i / Bi is the one that scores the lowest on both criteria. Such a change in the
ranking of the three outcomes seems to confirm the suspicion that the low values scored
by outcome #ii / Biii were an artifact of its extremely simple log-likelihood function.

5.1.2 Fit

I can obtain the distribution of termination as predicted by the outcomes of the FF-
CH model by substituting the parameters sy, s; and ¢ into each outcome’s §, using the
estimates in Table 3. The result of this exercise can be found in Table 7, in which the
actual f;s are reported as well.

Table 7: Proportion of Observations at each Terminal Node
Empirical and Predicted Distributions

Session N f; fa /3 fa s e I

5 100 .02 .09 .39 28 .20 .01 .01
6 81 .00 .02 .04 .46 .35 11 .02
7 100 .00 .07 .14 43 .23 12 .01
Total 5-7 281 .007 .064 .199 .384 .253 .078 .014
Outcome S fa /3 fa /s 6 f7
7 / B1 — .045 .043 .040 .039 .036 .253 .H44
21 / B1 — 144 123 074 .066 .255 .303 .035
297 / Buir — 762 181 .04 .011 .003 .002 .001

It is easy to see that the predicted terminations occur very early or very late in the game.
Outcome ii / Biii, which is the one with the lowest informational criteria, predicts an
unreasonably high share of terminations the first node. In contrast to that, outcome i /
Bi predicts too many terminations at the last two nodes. Outcome ii / Bii seems to fit
the empirical termination frequencies reasonably well.

The results in Table 7 can be plotted using an histogram as shown in Figure 6.
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Empirical and predicted distributions of termination

experimental average Session 5

1 2 f 4 s s 7 1 2 f s s s
temina node terminal node

Session 6 Session 7

temina node tarmina nade

outcome i / Bi outcome ii / Bii

1 2 3 a s s 7 1 2 a 4 s 3 7
tamina node tarmina nade

outcome iii / Biii

trmina node

The first four panels present the average empirical distribution of termination, together
with those of sessions 5, 6 and 7 separately. The laboratory data show a marked tendency
to terminate at nodes 3, 4 and 5. The average distribution is almost normal around the
games’s mean, while the individual sessions show slightly different patterns. Terminations,
however, very rarely occur before node 2. The remaining three panels show the predicted
terminations’ distributions according to the outcomes of the FF-CH. Clearly, the outcomes
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differ substantially in their predictions. Outcome i / Bi puts too much weight on late
terminations with respect to the sample data. Equally far from replicating the empirical
pattern, outcome #ii / Biii predicts that the largest share of termination takes place
at node 1. This leaves us with outcome ii / Bii, which, despite having the highest
information criteria among the three, predicts that terminations may take place at all
nodes, although largest share of terminations is predicted at nodes 5 and 6.

To investigate further the predictive power of the EFF-CH outcomes, we can use the
data in Table 7 to derive the predicted implied take probability. As discussed in Section
2, empirically such a probability, p;, increases in the length of the game.This implies that
participants are more likely to take the pot at the later nodes, when reached, than earlier
in the game. Table 8 presents these figures.

Table 8: Implied take probabilities
Empirical and Predicted Distributions

Session Y4 P2 P3 yz DPs Pe
5 0.02 0.09 044 0.56 0.91 0.50
6 0.00 0.02 0.04 049 0.72 0.82
7 0.00 0.07 0.15 0.54 0.64 0.92
Total 5-7 0.01 0.06 0.21 0.53 0.73 0.85

P P2 Ps Pa D5 Pe
outcome ¢ / Bi 0.05 0.32 0.04 0.05 0.04 0.31
outcome i7 / Bii  0.14 0.14 0.10 0.10 0.43 0.89
outcome iz / Biii  0.76 0.76 0.70 0.65 0.50 0.66

Again, outcome 7i / Bii is the one that follows the empirical data the closest, which is not
surprising given that we used the estimated f;s to derive the empirical take probabilities.

In general, the empirical analysis has shown that the EF-CH model outperforms the
backward induction results, but falls short in replicating the high number of terminations
at the central nodes of the game. Among the possible outcomes, outcome i / Bii has
been found to be the one that better replicates the empirical evidence. In other words,
if we assume a population of players composed by the three types in equal shares, and
if we assume that the type 0 players randomize with a probability of sixty percent on
the choice of continuation, while type 1s and 2s continue to last round (with type 2s
terminating there), we can represent fairly well the experimental data. If anything, the
cognitive hierarchy approach misses a mechanism to generate terminations at the two
central nodes. I will discuss the implication of such a result in section 7.
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5.2 Estimation results for the HEF-CH case

In what follows, I present the estimation results for the HEF-CH outcomes. Note that
outcome [ and I[ are behaviorally indistinguishable from outcome i and outcome ii
respectively; the same holds for outcome 171~ and outcome #ii. Of the Bayesian extension
of the HEF-CH case (see Appendix A), only outcome BIII prescribes a new behavior.
To avoid repetitions, I do not present the estimates for the outcomes that are behaviorally
indistinguishable from the ones already discussed. The maximum likelihood estimates are
shown in Table 9.

Table 9 : Maximum Likelihood Estimation

I v BIIT I~ 17~
-LogL.  576.65 650.29 589.81 635.61 654.22
S0 0.181* 0.077* 0.128" 0.447  0.479*

(0.036) (0.012) (0.007) (0.000) (0.000)
$1 0.569** 0.975  0.516 0.004* 0.000

(0.053)  (0.000) (0.003) (0.000) (0.000)
q 0.792* 0.742" 0.354* 0.370" 0.343**

(0.016) (0.028) (0.003) (0.001) (0.000)
Obs. 281 281 281 281 281

Std. errors in parentheses;* sign. 5%; ** sign. at 1%

Recall that in outcomes /1 and IV type 1 players continue to the last round, while type
2 players terminate at the central and the first node, respectively. In outcomes I~ and
11~ type 1 players terminate at the first round, while type 2 players continue to the last
round in the former and in the latter terminate at the first node if playing in position
A and at the last one if in position B. This stark difference in the behavior of type 2
players persists in outcome BIII, with the difference that type 1 players continue to the
last round. With respect to the FF-CH case, it is possible to note that the estimates
point at more realistic a population composition. On average type 0 players constitute
one third of the population. As for ¢, this varies between thirty and eighty per cent.
All the estimates, besides those for outcome I1~ are significant. Table 10 presents the
information criteria for these outcomes.

Table 10: Information Criteria for Outcomes’ Comparisons
Outcome Obs. LogL(null) LogL(model) dg. freedom  AIC BIC

117 281 . —563.21 3 1159.30 1170.21
1V 281 . —650.29 3 1304.59 1311.87
BIII 281 . —589.81 3 1185.63 1196.54
I~ 281 . —635.61 2 1275.22  1282.50
171~ 281 . —638.09 2 1314.45 1325.37
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Outcomes I11 and IV score the lowest information criteria, noticeably lower than those
computed for outcome i and outcome 7:. Before looking at how well these outcomes fit
the experimental evidence, I run the same analysis on first-response data only, to check
if the results are consistent with the ones just discussed.

5.2.1 First response data

As for the FF-CH model, it is possible to use first response data to carry out the maximum
likelihood estimation. The results appear in Table 11.

Table 11: Maximum Likelihood Estimation
HEF-CH model, first response data

111 % BITI
LogL 6458  69.60 63.51
so  0.166" 0.935* 0.447
(0.030)  (0.028) (0.000)
s1 0.723*  0.098** 0.370%
(0.071)  (0.024) (0.000)
¢  0.776" 0.769* 0.169**
(0.043)  (0.040) (0.000)
Obs. 29 29 29

Std. errors in par. ;* sign. 5%; ** sign. at 1%

The estimates for outcomes 111, IV and BIII do not differ substantially from those in
Table 9, obtained by using the full sample. However, the estimation was impossible to
carry out for outcome I~ and /™, which may be suggestive of a problem either with the
outcomes or with the data. Neither of these explanations is troublesome, for two reasons.
First, the first response sample consists of 29 observations, which is a small sample to
perform maximum likelihood with. Secondly, outcome I~ and I/~ are those that in the
full sample scored the lowest informational criteria, which already then suggested that
they were not performing well in explaining the data. For the outcomes in Table 11 we
can look at the information criteria.

Table 12: Information Criteria for Outcomes’ Comparisons
Outcome Obs. LogL(null) LogL(model) dg. freedom  AIC BIC

171 29 . —64.58 3 135.16  139.26
v 29 . —69.60 3 145.21  149.31
BIIT 29 . —63.51 2 131.03  133.77

The AIC and the BIC for outcomes /11 and BIII are approximately the same as in the
full sample, and outcome IV continues to be the least preferable among the alternatives.
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This confirms the results obtained above that point at outcome II[ as the preferable
among the alternative ones.

5.2.2 Fit
Using the estimates in Table 9, I can obtain the outcomes’ predicted distribution of
termination. The results of this exercise are presented in Table 13.
Table 13: Proportion of Observations at each Terminal Node
Predicted Distributions
Outcome f1  fo f3  fa f5 Je f7

171 120 .105 .303 185 .041 117 .129
BIII 760 .150 .010 .070 .000 .010 .000
v 234 180 132 102 .077 .106 .169
I~ 280 .200 .080 .060 .020 .330 .030
17~ 830 .050 .070 .000 .020 .010 .020

Looking at Table 13 is easy to see that the problem of the EF-CH model largely persists.
In fact, the outcomes fail to predict the large number of terminations at the central
round. However, the HEF-CH outcomes fare somewhat better that than those of the
EF-CH model. To better understand how, I plot the predicted frequency of termination
in a histogram, as can be seen in Figure 7.

The distributions in Figure 7 emonstrate more diverse patterns of terminations than
those in Figure 6. In particular, outcome I/1, outcome IV and outcome [~ are doing
reasonably well. As before, we can use the predicted frequency of termination to back out
the predicted implied take probabilities, which are shown in Table 14.

Table 14: Implied take probabilities
Predicted Distributions
P D2 Pz Pa D5 De
outcome 171 0.12 0.12 0.39 0.39 0.14 048
outcome BIII 0.76 0.63 0.11 0.88 0.00 1.00
outcome IV 0.83 0.33 0.58 0.00 0.40 0.33
outcome [~ 0.28 0.28 0.15 0.14 0.05 0.92
outcome [~ 0.83 0.29 0.58 0.00 0.40 0.33

The number of Table 14 are closer to the actual values than those in Table 6, for the
EF-CH model. In particular, outcome I71 is the closest to the average empirical data,
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with a major difference to it only at node 5.

Predicted distributions of termination

outcome Il outcome IV

outcome I outcome II”

03

02

o1

o
1 2 3 4 s B 7

terminal node

outcome BIll

nnnnnnnnnn

Summing up, the empirical analysis of the HEF-CH models suggest that, among the
alternatives, outcome III is the outcome that best explains the subjects’ behavior when
playing the game. Outcome /11 describes a situation in which type 1 players continue to
last round, assigning a high probability to the event of the opponent passing the pot back
(A > %) Type 2 players, instead, assign to such an event a probability u strictly lower
than that of type 1, and believe that the population consists mostly of type 0 players.
Note that, according to the estimates in Table 9, type 2 players have a correct belief on
the population composition, but they are mistaken in assigning such a low continuation
probablity. Since the actual ¢ is estimated at 0.79, instead, it is type 1 players that have
the correct belief on g.
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6 Discussion

The EF-CH model described in section 3 has brought about a variety of findings that
merit discussion. Most importantly, the extensive-form cognitive hierarchy assumptions
prescribe optimal behaviors that differ from the backward induction equilibrium. In par-
ticular, the HEF-CH case is such that it is possible for type 2 players to terminate at any
node of the game. This result can be interpreted as an interesting way out of the back-
ward induction paradox, as defined by the discrepancy between equilibrium predictions
and laboratory behavior. By simply relaxing the equilibrium requirements on players’ be-
liefs it is possible to generate payoff maximizing behaviors that are, in theory, consistent
with the experimental data.

However, when brought to the data, the model partially fails the empirical test. While
it succeeds in consistently replicating the pattern of the implied take probabilities, it falls
short of predicting the almost normal distribution of the frequency of terminations, by
assigning a too high probability to the event that the play reaches the final round. There
are at least two natural ways to remedy this shortcoming. One possibility is to increase
the number of types in the population: higher types, in fact, tend typically'” to terminate
earlier. Alternatively, the mismatch between the predicted and empirical distribution of
terminations could be addressed by relaxing the assumption of constant randomization
from part of type 0 players. The experimental evidence seems to suggest that the central
round features some aspects that make it different from the initial and the last one.
probably this follows from some behavioral consideration. Regret, risk aversion, loss
aversion most likely come into play and prompt the decision to terminate more at the
middle nodes than at the earlier ones.

Both solutions have already been explored, albeit outside the context of the cogni-
tive hierarchy approach, and both have successfully contributed to shed light on players’
behavior in the centipede game. McKelvey and Palfrey (1992) introduced altruism as
a possible explanatory factor. In particular, they offered a model of incomplete infor-
mation in which there is the possibility to be matched with an altruistic opponent that
always chooses to pass. Allowing for both errors in actions and in beliefs, they show that
in equilibrium players adopt mixed strategies that prescribe them to terminate with a
probability that increases in the length of the play. According to their estimates, about
five per cent of the players are altruists. Compared to this model, the FF-CH has the
advantage that it does not require the players to be able to derive an equilibrium in mixed
strategy. Moreover, it can accommodate the belief of playing with an altruist. However,
this come at the cost of much less sharp predictions.

Kawagoe and Takizawa (2010) instead allow for types higher than type 2 in the context

"Higher types, in fact, have by definition increasingly sophisticated beliefs about the opponent’s be-
havior. As these beliefs approach the common knowledge assumption, the resulting payoff-maximizing
behavior tends to the Nash equilibrium, which, in the context of the Centipede game, is to terminate at
the first round.
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of the Level £ model. When applied to the same game as in Figure 1, they estimate
a population composed mostly of type 1s, roughly seventy per cent, and type 2 (the
authors assume that type Os only exist in the minds of type 1s). This is fairly close to
the estimates obtained when looking at outcome /117, where the type 1 players are 57 per
cent of the population, type Os 18 per cent and type 2s are 25 per cent. Such a similarity
is encouraging, suggesting that it is reasonable to assume that players’ behavior can be
explained, in the case of a six-step centipede game, by assuming three types of players
only. However, the authors show that for other centipede games the fraction of type
2s and 3s may be sizeable. While it is certainly feasible to try out different population
compositions to match the data, I argue that such a fine-tuning fails the spirit of the
original research question, namely how far would a realistic model of players’ behavior
lead us into explaining the centipede game. Admitting type 3 players means to assume
that in the experimental population some individuals are prepared to undertake very high
cognitive costs to decide how to play. The expensiveness of type 3 reasoning, together
with the empirical finding that players’ behavior in most games can be described assuming
types 0, 1 and 2, speak against the idea of allowing higher types of players.

When compared with other models that address the backward induction paradox,
my approach appears substantially different from those put forward in the behavioral
literature, which typically invokes factors like altruism, fairness or similar concepts. While
the behavioral approach most certainly has some explanatory power over the experimental
results that document late termination in the game, it fails to explain the mechanism
driving the paradox. This is embed in the payoff structure, that simultaneously makes it
attractive to be at the later nodes in the game, where payoffs are higher, and unattractive
to reach them, since for every two subsequent nodes the first mover prefers to terminate
rather than continue. Altruism, fairness or reciprocity are channels that may explain the
preferences to terminate at later stages of the game, where both players are better off,
rather than terminate at the beginning of it. Yet, at the last node, reciprocity cannot
be enforced, since there are no more moves, and fairness is impossible, since the division
of the pot is bound to be uneven by the payoff structure. Altruism is also problematic,
since a player, to be altruist, would have to forego at least half of his payoff at the last
node. The behavioral solutions appear corollary to the explanation of the paradox, but
fail to directly address it. On the contrary, the cognitive hierarchy assumptions offer a
mechanism that may reconcile rational play with the continuation patterns found in the
data, thus avoiding the paradox and allowing for behavioral refinements.

Finally, the ancillary finding that Bayesian updating does not improve the fit of the
model may be relevant to the literature discussing the extent to which Bayesian reasoning
really is an appropriate description of human behavior (see, for instance, Cosmides and
Tooby, 1996). However, the most likely explanation of this result is the much simplified
model of type 1s’ beliefs about types 0. As it stands now, the constant randomization
assumption clashes with the exponential increase in payoff across nodes, and feels artificial
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even granted that it is in the spirit of the model to keep simple type 1s’ beliefs about the
opponent. A model that allows type 1s to undertake some Bayesian updating might very
well fare better than the FF-CH specification: to improve the model in this respect is
surely another important extension.

7 Conclusions

In this paper, I have extended the cognitive hierarchy model (Camerer et al., 2004) to
the class of two-person extensive-form finite games of perfect information. I assumed
three types of players: a non-strategic randomizer, type 0, and types 1 and 2, that reason
by backward induction according to their beliefs. These were structured according to
the conventional cognitive hierarchy hypotheses that type k assumes that the opponent
belongs to a mixture of lower-level types, and that type k players, k # 0, assign the same
belief on the behavior of type 0s. Besides studying this model, which I called EF-CH, 1
also studied two extensions. The first allowed type 2s to undertake Bayesian updating on
their prior about the opponent’s type, and the second, which I called HEF-CH, relaxed
the assumption that type 1s and 2s have the same belief on the behavior of type Os.

In both cases, the assumptions have lead to outcomes that improve upon the back-
ward induction result, prescribing, to a different extent, terminations at nodes later than
the first. To discriminate which of the possible specifications explains the data best, I
estimated and compared them using standard maximum likelihood tools. The empirical
analysis produced several results. First, the outcomes of the FF-CH model predict ter-
minations either too early or too late in the game to match the data. The best fit is
obtained assuming a population composition where the three types are present in even
shares, and such that type Os are more likely to continue than to terminate, while type
1s and 2s continue to the last round. This result can be improved by one of the HEF-CH
outcomes, assuming a population composed mostly by type 1 players and only in minor
part by type 0 players that continue with a high probability. Despite that the fit of this
outcome is closer to the data, it still falls short of predicting the large share of termi-
nations that occur during the experiment at nodes 3 and 4. Interestingly, allowing for
Bayesian updating does not seem to have any noticeable effect on the model’s predictions
or empirical performance.

Concluding, the extensive-form cognitive hierarchy model has proven to be reasonably
effective and parsimonious in explaining the backward induction paradox. However, the
empirical analysis suggests that there is more to the plays of the centipede game than
different cognitive levels among the players. Most likely, the experimental behavior is
the result of the combined actions of players of different cognitive types and the effect of
relevant behavioral factors such as altruism and fairness concerns.
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8 Appendix A: Bayesian updating

Equation A.1 shows the payoff-maximizing strategies for type 2 players in the Bayesian
EF-CH model:

cicscs if 0p > A and A\ >
tA = cicsts if og < Aand A >
titsts otherwise

x 6204t6 if A Z %
| totsts otherwise

(A1)

I ES (I

where \ = m

We can now look at the effect of allowing for Bayesian updating in the HEF-CH model.
An informal argument may illustrate how Bayesian updating would affect the outcomes
in the game. Consider a player 7 of type 2 at the beginning of the game. Suppose his
beliefs fall in outcome III, meaning that at the beginnig of the game it is optimal for ¢
to terminate at node 3 (or 4 if he plays in role B). With Bayesian updating, however,
once reached the second round of play, ¢ may decide to continue futher. This happens
because ¢ knows that only type Os terminate before the last round, since by assumption
he knows A. Thus, upon receiving the pot back, 7 revises downward the probability of
being playing with a type 0. In particular, player ¢ may revise oy downward enough to
decide to continue rather than stop at node 3 (or 4). Looking at Figure 2, this would
correspond to a drop in oy from outcome III to outcome II.

As before, I will consider separately the two cases A > % and A < %, and start with the
former. The behavior of type 1 players’ remains the same as that described in equation
1, while the payoff maximizing strategies for type 2s do not. t* can still be derived by
backward induction, now making use at each node of the updated beliefs:

- 1
cicses i og > T2
0 0

(A.2)

ty = ciests if og < W
titsts  if o9 > 0.93 and po < %

Zf*B = C C4t6

A type 2 player in role B has only one payoff maximizing strategy, continuing to the
last node: the fact that the opponent passes at node one conveys enough information to
make it optimal for the type 2 players to continue the game to the last node. Figure Al
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illustrates the (t%,t5) strategies in the (1o; 0¢) plane.

Outcome BI11 % * %_ K ' Outcome Bl
t,*=tl tg*=t6 / i b | t*=c5 tg*=t6
ra*=c5rg*=t6 o7y —_— rp\*=c5rg*=t6

OutcomeBI
{ IR AL N

ra*=cSrg*=t6 01T
00

00 01 02 03 04 05 06 07 08 09 1[‘?0
2

Fig. Al. Outcomes of the HEF-CH Bayesian case

Outcome BI is defined by the beliefs that make it payoff maximizing to play t% = cicscs
and t; = cocqts. In outcome BII it is t% = cicsts t = cacate and in outcome BIII
1 = titsts and t5; = cocyts. The termination probabilities are given in Appendix B.

This case presents two main differences with respect to the non-Bayesian FF-CH. First,
the behavior t% = cytsts, t;; = cotats is no more payoff maximizing (in expectation) for
any beliefs. In fact, a player starting off with the beliefs that made it payoff maximizing to
stop at node 3 (outcome IIT), once at node 3 revises oy downward enough to keep playing
at least one more node. Secondly, continuation at node 5 is now payoff maximizing for a
smaller set of beliefs than for the FF-CH case. When node 5 is reached, two opposing
considerations come into play. On the one hand, a player at node 5 has to believe in
a high og to choose to continue, because c; is profitable only with a type 0 opponent.
On the other, however, the likelihood of being playing with a type 0 has been revised
downwardly, given that the game has not been interrupted. The beliefs for which it is
optimal to play cs, then, shrink with respect to the FF-CH model.

In case A < %, the Bayesian updating takes place only in the first round and only for
those type 2s that are playing in position B, since those in the other role terminate at
node 1, as shown in equation ?7. Knowing that all type 1s go out after the first round,
those type 2s that receive the pot at node 2 revise oy to ot = 1. This revision affects
type 2s’ behavior differently for different pg. If po > %, then type 2s terminate at the last
round, otherwise they take the pot immediately.
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9 Appendix B: termination probabilities g,
Remark 1 Procedure to find the payoff maximizing strategies in the case py = py = %

Consider a type 1 player in role A. If p; = 1, at the last node E7(cs) = 17 (cg) +
im(te) = 144 and 7(t5) = 6.4, meaning that his optimal choice is ¢5. Reasoning
backwardly, one step ahead, the expected value of playing c3 is En(c3) = %W (cq) +
7 (ts) = 7.6, greater than 7 (f3) = 1.6. At the initial node, again it is the case that
En(c1) = 3m(co) + 5m(t2) = 4 > 04 = w(t1). Then, type 1’s optimal strategy is
% = c1c3c5. When in role B, a type 1 plays tg at the last node. At the fourth, EFn(cq) =
i (cs)+ 37 (ts) = 7.2 > 3.2 = E(t4). At node two, the value of terminating is 7 (t5) = 0.8
and that of continuing is Em(cy) = 37 (c3) + 37 (f3) = 3.8. Summing up, the payoff
maximizing strategies for a type 1 type are: 7% = cicscs and 75 = cacyts. Reasoning in
the same way for a type 2 player, we have that t% = cicsts and t}; = cacats, which is the
best reply to(r%,75).

Termination probabilities outcomes i / I / BI

¢ =5s0(1—q)

G =55 q(1 —q) + (50— s3)(1 — q)

3 = s5¢°(1 — q) + (s0 — s5)q(1 — q)

@ = s5q>(1 — q) + soq — sgq — Soq* + s5q°

3 = s3q* (1 — q) + s0q® — s0q® — $3¢* + s3¢°
i

T = 559°(1 — q) + s0q° — s3q° + 1 — 250 +
7r = s3¢° + s0q® — s3¢°

Termination probabilities outcomes ii / IT / BII

q@1 = so0(1 —q)

@2 = so(1 —q) — (1 — q)*s

33 = s3q° — s34° + soq — s0q® — s5q + $5¢°

G1 = s3¢° — s3q* + soq — soq® — s5q + s§¢°

T = s55q" — s50° + s0q® — 504> — 53¢° + s5¢° + (1 — 59 — s1)(s0¢° + 1 — s0)
Ts = 550° — s5a° + s0q® — s50° + s051¢*(1 — q) + 51— sos1

G = 504°(s0q” + 51)

Termination probabilities outcomes iii / IIT*

G1=1—s0q

3@ = S0q — S§ ¢
3= s50°(1—q)
@ = s5¢°(1 —q)
3 = sgq* (1 —q)
3 = 559°(1 = q)
a7 = s3q°
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Termination probabilities outcome 111

71 = so(1 —q)

G2 = 53(J(1 —q) + (50— s3)(1 —q)

3G = s5¢*(1 — q) + (so — s3)q(1 — q) + (1 — so — s1)S0q + (1 — so — 51)(1 — o)
@ = 550°(1 — q) + 50¢° — $§6° — 5051G° + S051q — 5051¢° + 51 — 57 — 5150
a5 = 80q4(1 —q) + 51504 — 8150(13
Js = soq °(1—q) + 5180q° + 82

G = 53¢° + s1504°

Termination probabilities outcome IV
C]1=SO(1—C])+1—51—30

o = 30 q(l —q) + So(1 — 81— 80)q + S051(1 — q) + (1 — 89 — s1)81
3= soq (1 —q) + sos19(1 —q)

4s = s3q°(1 — q) + 5081(1(1 —q)

35 = soq4(1 —q)+ s0514” ’(1- q)

T = sgq °(1-q) + 5051¢° + 57

G = 53¢° + 51504

Termination probabilities outcome BIII

G = 50(1 —q)+ s

7@ = 80 C](l —q) + 50519 + s0(1 — 80 — 51)(1 = q) + 51(1 — 50 — 51)
@ = 550°(1 = q) + so(1 = so — s1)q(1 — q)

3s = 556> (1 — q) + so(1 — s0 — s1)q(1 — q)

T = 30q4<1 —q) + s0(1 — 50— s1)¢*(1 — q)

06 = soq 5(1—q) + so(1— 50— s1)*(1 — q) + s0(1 — so — s1)¢* + (1 — so — 51)?

qr = s3¢° + so(1 — so — s1)¢°

Termination probabilities outcome I*

@1 = 81 + 50(1 —q)

G2 = 50 Q(l —q) + 50519 + s0(1 — 50 — 51)(1 — q) + 51(1 — 50 — 51)

3 = 556> (1 — q) + so(1 — so — s1)q(1 — q)

3s = 55¢°(1 — q) + so(1 — s0 — s1)q(1 — q)

3 = 30q4(1 —q) +s0(1 =50 — s1)¢*(1 — q)

06 = soq >(1—q) + s0(1 =80 —51)@ + so(1 — s — 51)*(1 — q) + (1 — s — 51)?

qr = s3¢° + s0(1 — 59— s1)¢°

Termination probabilities outcome IT*

g1 =1—5s0q
T = s5 q(1 —q) + s0s1q
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3 = 550°(1 — q) + so(1 — 50 — s1)q(1 — q)
qs = qu3(1 - Q)

G5 = s5q* (1 — q) + so(1 — 5o — 51)¢°(1 — q)
s = s§q2(1 - Q) + 50(1 — S0 — 31)q3

q7 = Spq

Termination probabilities outcome 4s-1

@1 =g (1 =) + (50— 56)(1 = q)

@2 = s (1 —q) + (50 — s3)(1 — q)

@3 = s5 q°(1 — q) + (so — s3)a(1 — q)

@ = 550°(1 = q) + (s0 — s3)a* + (s0 — s3)q(1 — q) + s1
+81(1 — S0 — 81) + (1 — S0 — 81)2 + (]_ — S0 — 81)81

& = 534" + (s — s3)¢?

Termination probabilities outcome 4s-11

0= sy (L=q)+ (so—s)(L —q)

G2 =82 q(1 —q) + s051(1 — q) + s0(1 — 59 — s1)(1 — q)

73 =52 (1 —q) + (s — s3)q(1 — q) + s0q(1 — so — s1) + (1 — 89 — s1)(1 — s0)
Gs = 55¢°(1 — q) + (s0 — 55)¢* + s0s19(1 — q) + 57 + 51(1 — 50 — 51)

3 = 55q" + 505147

Termination probabilities outcome 4s-II1

@ = sy (1—q)+ (50— s5)(1 —q) + (1 — s1 — s0)

B =55 q(1 —q) + s051(1 — q)

s = s5 ¢*(1 = q) + (so — s5)a(l — q)

Gs = 55¢° (1 — q) + (s0 — 55)@* + s0s19(1 — q) + 57 + 51(1 — 50 — 51)
3 = 55q" + 505147

Termination probabilities outcome 4s-I1V

@ = sy (1—q)+ (50— s5)(1 —q) + (1 — s1 — s0)

G2 = 82 q(1 — q) + s0q(1 — so — s1) + s051(1 — q) + s51(1 — 59 — 1)
3 = 55 ¢°(1 — q) + sos1q(1 — q)

@ = s55¢°(1 — q) + s0514° + 53 + sos19(1 — q)

35 = 554" + s0814°

Termination probabilities outcome 4s-1"

fi= 53 (1) + (50— 2)(1 ~ ) + 5

T = 52 q(1 — q) + s051q + So(1 — s — s1)(1 — q) + s1(1 — 59 — 1)

@3 = 55 q°(1 — q) + s0(1 — so — s1)q(1 — q)

4s = 556> (1 — q) + s0(1 — s0 = 51)¢° + s0(1 — 80 — 51)q(1 — ¢) + (1 — 59 — 51)
3 = s5q" + s0q*(1 — 50 — 51)
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Termination probabilities outcome 4s-I1"
G =55 (1—q)+ (50— 55)(1 — ) + 1= s

3@ = sy q(1 — q) + s0519

@3 = s ¢*(1 = q) + s0(1 — so — s1)q(1 — q)

4s = 55¢°(1 — q) + so(1 — 5o — 51)¢°

3 = s34

Termination probabilities outcome 4s-I11~
G=s1-q+(s0—s3)(1—q)+1-s9

3@ = 55 ¢(1—q) + (50 — 53)q

3 =55 *(1—q)

3= 550> (1 —q)

35 = sgq*
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