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Abstract

In this paper we derive a unit root test against a Panel Logistic Smooth Tran-
sition Autoregressive (PLSTAR) model. The analysis is concentrated on the case
where the time dimension is �xed and the cross section dimension tends to in�nity.
Under the null hypothesis of a unit root, we show that the LSDV estimator of the
autoregressive parameter in the linear component of the model is inconsistent due to
the inclusion of �xed e¤ects. The test statistic, adjusted for the inconsistency, has
an asymptotic normal distribution whose �rst two moments are calculated analyt-
ically. To complete the analysis, �nite sample properties of the test are examined.
We highlight scenarios under which the traditional panel unit root tests by Harris
and Tzavalis have inferior or reasonable power compared to our test.
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1 Introduction

One can expect the traditional panel data unit root tests by Quah (1994), Harris and
Tzavalis (1999), and Im, Pesaran, and Shin (2003), to have low power if the time series
for the cross sections exhibit structural shifts in levels and/or trends. One explanation
to this is that the authors quoted above base their unit root tests on panels where each
cross section is modelled as a linear autoregressive process considered in e.g. Dickey
and Fuller (1979), Phillips (1987), and Phillips and Perron (1988). As such, it has
been pointed out by Perron (1990) that the classical univariate unit root tests are
biased towards nonrejection in time series with structural changes, and "adding" up the
nonlinearities in single time series into a panel framework will most likely lead to a bias
towards nonrejection for the traditional panel unit root tests as well. Considering this
fact in addition to that evidence of nonlinearities (such as structural breaks) in many
single, say, macroeconomic time series are found, it seems that the traditional panel
data unit root tests in such cases are based on too restrictive panels. In particular, this
will have serious implications for applied work because the shocks to each cross section
will be treated as if they have a permanent e¤ect.

Panel data unit root tests allowing for structural breaks can for instance be found
in Im and Lee (1999), Silvestre, Barrio-Castro, and Lopez-Bazo (2001), Tzavalis (2002),
and Bai and Silvestre (2003). They derive unit root tests in a panel where each cross
section has an abrupt structural shift in the level and/or the time trend. However, in
many cases a gradual or more smooth change between two regimes seems preferable, see
e.g. Ripatti and Saikkonen (2001). In this paper we generalize the idea with an instant
shift in levels by introducing a nonlinear dynamic panel accommodating a smooth cross
section speci�c change in levels and a homogeneous smooth shift in dynamics, in which
we test the null hypothesis of a common unit root.

Our test of a common unit root is based on the normalized LSDV estimator of the
autoregressive coe¢ cient in an auxiliary regression equation. The time dimension is
�xed and the cross section dimension tends to in�nity. The analytical limiting distri-
bution of the test is the standard normal where the two �rst moments are calculated
analytically. Our approach is similar to the one in Harris and Tzavalis (1999) whose
results are obtained as special cases of ours. We choose therefore to compare the power
of our test to the power of their tests. This gives the opportunity to demonstrate when
the tests in Harris and Tzavalis (1999) actually have substantial power when in fact a
nonlinear panel is considered, as well as scenarios when the traditional tests are heavily
biased towards nonrejection.

The rest of the paper is organized as follows. In Section 2 we present the nonlinear
dynamic panel. In Section 3 we present the procedure for testing a unit root and derive
the test statistic. Section 4 contains simulation experiments to examine the �nite-
sample properties of the test. Concluding remarks are given in Section 5. Thereafter
an Appendix follows where proofs can be found.
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2 The model

Consider a �rst-order panel smooth transition autoregressive (PSTAR(1)) model,

yit = �i;10 + �11yi;t�1 + (�i;20 + �21yi;t�1)F (t; 
; c) + uit; i = 1; :::; n; t = 1; :::T; (1)

where the index i represents the i�th cross sectional unit, t indexes time series observa-
tions, and uit is the error term. In (1), F (t; 
; c) is a transition function satisfying the
conditions: (i) F (t; 
; c) is a bounded and continuous function for all t, 
, and c. (ii)
F (t; 0; c) = 0. (iii) In an open interval (�"; ") ; for " > 0, @F (t; 
; c)=@
 is non-zero and
@2F (t; 
; c)=@
2 exists. (iv) For �xed 
 and c, F (t; 
; c) is monotonic in t. A suitable
choice of a transition function in (1) that meets the conditions in (i)-(iv) is the logistic
cumulative distribution function (after a downward shift)

F (t; 
; c) =
1

1 + expf�
(t� c)g �
1

2
: (2)

In (2), 
 > 0 is a slope parameter indicating how rapid the transition is, and c 2
(0; T ) is a location parameter around which the transition (symmetrically) takes place.
Restriction 
 > 0 is an identifying restriction, and implies that F (t) is increasing in t.
Model (1) with (2) de�nes the panel logistic smooth transition autoregressive model of
order one, called the PLSTAR(1) model for short. For convenience we only consider a
�rst-order polynomial of t in (2). For a discussion about higher-order polynomials in t,
see e.g. Lin and Teräsvirta (1994), or Teräsvirta (1998).

The PLSTAR(1) model contains nonlinear heterogeneous �xed e¤ects, nonlinear
homogeneous autoregressive coe¢ cients, and homogeneous slope and location parame-
ters.1 For each individual equation i, the function F (t; 
; c) in (2) allows for a smooth
change between regimes in intercepts and dynamics.

It is evident that the PLSTAR(1) model speci�cation nests many panel models
studied in the literature. In particular, when 
 ! 1, F (t; 
; c) in (2) becomes an
indicator function, i.e. F (t;1; c) = �0:5 if t 2 [0; c) and F (t;1; c) = 0:5 if t 2 [c; T ],
and the PLSTAR(1) model displays a panel threshold AR(1) (PTAR(1)) model with a
single structural break at t = c. At the other end, by letting 
 = 0 in (2) the PLSTAR(1)
model collapses into a linear panel AR(1) (PAR(1)) model. It may be mentioned that
González, Teräsvirta, and van Dijk (2004) recently introduced a di¤erent panel STAR
model by generalizing the panel threshold model of Hansen (1999). In their model,
yi;t�1, is replaced by a vector of exogenous variables xit so the model is not dynamic
and unit roots are not an issue. Furthermore, the transition variable in the transition
function (2) is a stochastic variable which can be an element of xit. Even there, when

 ! 0 in (2), the model becomes a linear homogeneous panel model with exogenous
variables.

1The homogeneity assumption imposed on �i;10 and �i;10 is needed for the coming testing procedure.
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3 Test statistic

We now consider a test statistic for testing the hypothesis of a panel unit root in the
PLSTAR(1) model. Under this hypothesis, H0 : �i;10 2 R for all i, �11 = 1, and 
 = 0,
in (1) and (2).2 It is tested against a stable PLSTAR(1) model with 
 > 0. The
stability conditions are given by �11 � 0:5�21 2 (�1; 1) and �11 + 0:5�21 2 (�1; 1) to
rule out non-stationary or explosive trajectories. Note, however, that the PLSTAR(1)
model also becomes linear by for any i setting �i;20 = �21 = 0 in (1). This shows that
there is an identi�cation problem in the PLSTAR(1) model under the null hypothesis

 = 0 because then the parameters �i;20, �21, and c are not identi�ed. We circumvent
this di¢ culty by an approximation of F (t; 
; c), as suggested by Luukkonen, Saikkonen,
and Teräsvirta (1988). An obvious candidate is the �rst-order Taylor expansion of
F (t; 
; c) around 
 = 0. Applying this approximation to (2) and merging terms and
reparameterizing, we obtain the following version of the PLSTAR(1) model

yit = �i + �yi;t�1 + �it+ �tyi;t�1 + u
�
it; (3)

where u�it is an adjusted error term such that u�it = uit holds under the null hypothesis,
i.e. the distributional properties of the error process are preserved under the null hy-
pothesis and are not a¤ected by the Taylor approximation. The parameters �i; �; � and
� are all functions of the originally de�ned parameters such that the originally stated
null hypothesis is transformed into

Haux
0 : �i 2 R for all i; � = 1; �i = 0; � = 0: (4)

Note that the linear models in Harris and Tzavalis (1999) are nested in the auxiliary
regression (3), and we thereby �nd two plausible competing tests in their Theorems 2
and 3, which will be referred to as the HT2 and HT3 tests respectively. This will also give
the opportunity to examine the expectation that traditional panel data unit root test
are biased towards nonrejection under models with a shift in levels. Furthermore, the
HT2 and HT3 tests are based on models letting (�i; �) = (0; 0) and � = 0, respectively,
in (3). To proceed we impose the following assumptions on the PLSTAR(1) model.

Assumption 1 (A1) Let fuitgi;t2N be an i.i.d. sequence of random variables such that
E(uit) = 0 and E(u2it) = �

2
u hold for all i and t. (A2) The individual e¤ect �i equals 0

for all i. (A3) E(u4it) = �4 <1 for all i and t.

3.1 Bias estimator

The panel unit root test statistic is constructed from the normalized coe¢ cient statistic
based directly on the LSDV estimator of the coe¢ cients of the auxiliary �xed e¤ect
model (3). Under the null hypothesis (4), the deviation form of the LSDV estimator of

2That is, a joint test of parameter constancy (linearity) and a unit root.
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� in the model (3) is given by

b�� 1 =
��

nP
i=1
Wi;2t

��
nP
i=1
Wi;4t

�
�
�

nP
i=1
Wi;3t

��
nP
i=1
Wi;5t

��
"�

nP
i=1
Wi;1t

��
nP
i=1
Wi;2t

�
�
�

nP
i=1
Wi;3t

�2# : (5)

In (5), Wi;1t = y
0
i;�1QTyi;�1, Wi;2t = y

0
i;�1DT QTDTyi;�1, Wi;3t = y

0
i;�1QT DTyi;�1,

Wi;4t = y0i;�1QTui, Wi;5t = y0i;�1DTQTui with vectors yi;�1 = (yi0; :::; yi;T�1)
0, ui =

(ui1; :::; uiT )
0. Furthermore, QT is the (T �T ) within transformation matrix de�ned by

QT = IT �MT where MT = XT (X
0
TXT )

�1X0T with XT = (�T ; �T ) and �T is the unit
column vector of length T , �T = (1; 2; :::; T )0, and DT = diagf1; 2; :::; Tg. Under the
null hypothesis (4) the LSDV estimator in (5) is inconsistent for �xed T as n ! 1.
This result is stated in the following theorem.

Theorem 1 Consider model (3) when (4) and (A1)-(A3) in Assumption 1 hold. Then,
for any �xed T > 2, the LSDV estimator (b�� 1) in (5) satis�es

plim
n!1

(b�� 1) = B1(T ); (6)

where

B1(T ) � �
1

4

23T 2 � 21T � 74
(T 2 � 2)(T + 2) :

Proof. See Appendix A.
Theorem 1 states that when n tends in�nity and T is �xed, the LSDV estimatorb� in (3) is inconsistent under the null hypothesis (4). The degree of inconsistency

only depends upon T , and it is order equals O(T�1). Thus, T ! 1 is required for
plimn;T!1b� = 1 to hold. The inconsistency arises because of the elimination of the
�xed e¤ects �i and the time trend �i by the QT matrix from each observation of the
panel, see Nickell (1981). This makes the explanatory variables correlated with the error
term as Hsiao (1986) pointed out. An interesting feature is that the bias is negative. To
see this note that under (4), yi;�1 = yi0�T+CTui holds where CT is the strictly lower
triangular (T � T ) matrix

CT =

266664
0 0 � � � 0

1 0 � � � 0
...
. . . . . .

...
1 � � � 1 0

377775 ; (7)

which implies that the inequalities

E
�
y0i;�1QTui

�
= �E

�
u0iC

0
TMTui

�
< 0

and
E
�
y0i;�1DTQTui

�
= �E

�
u0iC

0
TDTMTui

�
< 0
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hold. By these inequalities it follows that induced correlations between the explanatory
variables and the error disturbances are always negative. This feature plays a key role
in yielding the negative value of B1(T ). Furthermore, the biases for the HT2 and HT3
test statistics are obtainable by using (5), and equal

plim
n!1

(b�� 1) = BHT2(T ) � �3(T + 1)�1; (8)

plim
n!1

(b�� 1) = BHT3(T ) � �
15

2
(T + 2)�1: (9)

For T > 3, one can show that jBHT2(T )j < jB1(T )j < jBHT3(T )j. In fact, for small T ,
jB1(T )j � jBHT3(T )j could be rather substantial. This is illustrated in Figure 1.

Figure 1: The �nite sample bias of the LSDV estimator in Theorem 1 (solid line), and
the corresponding biases HT2 (dash-dotted line) and HT3 (dotted line) in Harris and
Tzavalis (1999).

3.2 Asymptotic distribution

Because the bias of (b�� 1) is known, it is possible to derive the limiting distribution
for the bias corrected normalized statistic for the model (3) under the null hypothesis
(4). The result is given in the following theorem.
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Theorem 2 Consider model (3) when (4) and (A1)-(A3) in Assumption 1 hold. Then,
for any �xed T > 2, the limiting distribution of the LSDV estimator (b�� 1) in (5),
adjusted by B1(T ) in (6), is given by

p
n(b�� 1�B1(T )) d! N

�
0; �2b�(T; �4)

�
; (10)

where

�2b�(T; �4) � 5�4n1(T )n2(T )
+
n3(T )

n4(T )
;

with

n1(T ) = 8428 767T 11 � 13 614 689T 10 � 120 059 496T 9

+186 771 124T 8 + 721 928 310T 7 � 948 544 018T 6

�2393 879 224T 5 + 2116 570 904T 4 + 5166 454 483T 3

+615 163 035T 2 � 1914 301 704T � 461 936 628;

n2(T ) = 512 512
�
T 2 � 2

�4
(T + 2)3

�
T 2 � 1

�
(T � 2)T (T � 3)�1 ;

n3(T ) = 686 450 089T 13 � 2714 666 460T 12 + 5972 242 321T 11

+22 845 456 210T 10 � 149 532 661 418T 9 � 51 654 581 616T 8

+893 153 037 170T 7 � 96 760 187 484T 6 � 2612 622 746 635T 5

+322 041 658 116T 4 + 4127 083 405 469T 3 + 994 368 662 874T 2

�1478 687 733 396T � 374 168 668 680;

n4(T ) = 9225 216
�
T 2 � 2

�4
(T + 2)3 (T � 2) (T � 1) (T + 1)T;

and
�4 = �4=�

4
u:

Proof. See Appendix A.
Theorem 2 states that the test statistic de�ned in (10), corrected by B1(T ) in (6)

for the inconsistency of b� in (5), is normally distributed with mean zero and variance
�2b�(T; �4) as n ! 1. The asymptotic variance �2b�(T; �4) is a function of T and the
nuisance parameter �4. The dependence on �4 can be eliminated by imposing the
normality assumption on the disturbances fuitg, and the simpli�ed form of the variance
�2b�(T; �4) in (10) appears in the following corollary.
Corollary 3 Consider model (3) when (4) and (A1)-(A3) in Assumption 1 hold. Fur-
thermore, assume that uit are normally distributed. Then, for any �xed T > 2, the
limiting distribution of the LSDV estimator (b�� 1) in (5), adjusted by B1(T ) in (6), is
given by p

n(b�� 1�B1(T )) d! N(0; �2b�(T )); (11)
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where

�2b�(T ) � n5(T )

n6(T )
; (12)

with

n5(T ) = 52 803 853T 10 � 33 761 490T 9 � 295 736 530T 8

+78 337 770T 7 � 438 526 236T 6 � 538 473 642T 5

+3583 336 934T 4 + 1400 993 790T 3 � 4271 003 921T 2

+1598 065 812T + 4063 557 132;

and
n6(T ) = 709 632

�
T 2 � 2

�4
(T + 2)3 (T � 2) :

Proof. See Appendix A.
From Corollary 3 we see that the asymptotic normality of

p
n(b�� 1�B1(T )) yields

a test statistic which depends only on the estimated parameter b� and known values of
n and T: Hence,

p
n(b�� 1�B1(T ))=�b�(T ) can be readily used for statistical inference,

and the critical values of the standard normal distribution apply. Moreover, by similar
manipulations we also �nd the results

p
n(b�� 1�BHT2(T )) d! N(0; �2b�HT2(T )); (13)

p
n(b�� 1�BHT3(T )) d! N(0; �2b�HT3(T )); (14)

where

�2b�HT2(T ) � 3

5

�
17T 2 � 20T + 17

�
(T � 1) (T + 1)3

;

and

�2b�HT3(T ) � 15

112

(193T 2 � 728T + 1147)
(T � 2)(T + 2)3 ;

are the variances Harris and Tzavalis (1999) obtained under the normality assumption.
Note that although jBHT2(T )j < jB1(T )j < jBHT3(T )j for T > 3, one can show that
�2b�(T ) > �2b�HT3(T ) > �2b�HT2(T ) holds for T > 4. The situation is illustrated in the
left-hand panel of Figure 2 where it is seen that �2b�(T ) is a decreasing function in T
for T � 4. In addition we note that maxT2(2;1)f�2b�(T )g = 2:29 occurs at T = 4. The
reason for the ordering between the variances is that under the auxiliary null hypothesis
(4), the LSDV estimators b� and b� are correlated.

Note that the result in Corollary 3 is speci�c to the case that �i = 0 for all i. If (A2)
in Assumption 1 is relaxed the limiting distribution of Corollary 3 is no longer invariant
with respect to �i and �2u. By including cross section speci�c trends in the regression
model (1c) in Harris and Tzavalis (1999) it is shown that their limiting distribution of
the test statistic in (14) is invariant with respect to �i and �2u without assuming �i = 0.
Although our regression in (3) contains a time trend, the limiting distribution in (11)
requires that �i = 0 for any i due to the nonlinear feature of (3).
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Letting both n and T tend to in�nity in (11) results in a degenerate limiting distri-
bution Because �2b�(T ) in (12) is O(T�2). For this reason it is necessary to re-scale the
test statistic (11) in Corollary 3. We have the following result.

Corollary 4 Suppose that the conditions in Corollary 3 hold for model (3). Then, as
T !1 and n!1

p
nT (b�� 1) + 23

4

p
n

d! N

�
0;
52 803 853

709632

�
: (15)

Proof. The proof of (15) follows immediately from Corollary 3.
As noted by Levin, Lin, and Chu (2002), in contrast to the case of stationary panel

data, the presence of a unit root causes the �xed e¤ects to in�uence the asymptotic dis-
tribution of the panel autoregressive estimator by factor 23

p
n=4, even as both n and T

become large. Also, Corollary 4 implies that b� in (5) converges at the ratepnT , which is
higher than the convergence rate of the LSDV estimator in the stationary case. Compar-
ing the test statistic (15) with (11), we see that the term adjusting for inconsistency ofb� in Corollary 4 when T !1 is greater than

p
n jB1(T )j in Corollary 3 when T is �xed.

Furthermore, the asymptotic variance limT!1T
2�2b�(T ) = 52 803 853=709632 � 74:41 is

always greater than T 2�2b�(T ) for any �xed T , see the right-hand panel of Figure 2.

Figure 2: The �nite sample variance �2b�(T ) and the scaled �nite sample variance T 2�2b�(T )
(solid lines), and the corresponding variances for HT2 (dash-dotted lines) and HT3
(dotted lines) in Harris and Tzavalis (1999).
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The results in Corollaries 3 and 4 may be applied to consider the consequences, as
suggested by Harris and Tzavalis (1999), of assuming that T is asymptotic rather than
�xed. In detail, Corollary 4 implies that we would use

T
p
n(b�� 1)p
74:41

+
23

4

p
np

74:41

d!
n;T!1

N (0; 1) , (16)

for inference when T; n!1, whereas the true distribution for T <1 and n!1 is
p
nT (b�� 1)p
74:41

+
23

4

p
np

74:41
C1(T )

d!
n!1

N(0; C2(T )), (17)

where C1(T ) = �TB1(T )=(23=4) and C2(T ) = T 2�2b�(T )=74:41 such that C1(T ), C2(T ) 2
(0; 1) holds for 4 < T < 1, and limT!1C1(T ) = limT!1C2(T ) = 1. From (17) it is
clear that we have two possible e¤ects if we erroneously use (16) in �nite-samples. The
�rst e¤ect is the mean shift e¤ect, C1 < 1 and therefore the asymptotic distribution
in (16) is located to the right of the �nite-sample distribution in (17). This implies
an increase in the size over the nominal level. The second e¤ect is the variance e¤ect,
C2 < 1, which implies that the asymptotic variance in (16) is too large so the tails of
the asymptotic distribution contain excess probability mass. This leads to a decrease
in the size of the standardized test statistic over the nominal level. As a conclusion, if
the mean shift e¤ect dominates the variance e¤ect, the test will be oversized and the
power is increased. The relative importance of these e¤ects are investigated in the next
section using Monte Carlo simulations.

3.3 Heterogeneous errors

The errors uit in Assumption 1 are assumed to be i.i.d. such that E(uit) = 0 and
E(u2it) = �2u hold for all i and t, but this is easily relaxed to allow for heterogeneous
errors.

Assumption 2 (B1) Let fuitgi;t2N be a sequence of independently distributed random
variables for all i and t with E(uit) = 0 and E(u2it) = �

2
i <1, and limn!1 n�1

Pn
i=1 �

2
i =

�2u <1. (B2) The individual e¤ect �i equals 0 for all i. (B3) E juitj
4+� <1 holds for

� > 0, and limn!1 n�1
Pn
i=1 �4i = �4 <1 where Eu4it = �4i.

Assumption 2 allows us to derive the same results as in Theorems 1 and 2 and
Corollaries 3 and 4 by applying the Markov Law of Large Numbers (LLN) and the
Liapounov Central Limit Theorem (CLT).

4 Simulation experiments

In this section we conduct several Monte Carlo experiments to explore �nite-sample and
asymptotic properties of our test statistics de�ned in Corollaries 3 and 4, denoted T1
and T2, respectively. In addition, the properties of the HT2 and HT3 tests by Harris
and Tzavalis (1999) will be investigated as well.
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4.1 Size simulations

The aim of the �rst experiment is to assess the size properties of the test in Corollary
3. The DGP under the null hypothesis is given by

yit = yi;t�1 + uit; i = 1; :::; n; t = 1; :::T , (18)

where uit � nid(0; 1) for all i and t. The empirical size and its �nite-sample accuracy
are reported in Table 1.

As can be seen from this table, the empirical distribution of the test statistic in
Corollary 3 approximates fairly well the standard normal distribution for almost all
n and T . When n is small relatively to T , there is a slight size distortion because
the time dimension dominates the cross section dimension. In this case we expect
the �nite-sample distribution to be a less satisfactory approximation to the asymptotic
distribution. However, increasing n to match the time dimensions, we see that the size
discrepancy vanishes. For comparison, the bottom line in Table 1 reports the quantiles
for the standard normal distribution.

4.2 Power simulations

4.2.1 A homogeneous nonlinear panel

We examine the empirical power under a modi�ed PLSTAR(1) model because the tran-
sition function in (2) is replaced with ~F (t; 
; c) = F (t; 
; c) + 0:5. It is clear that
~F (t) : R+ ! [0; 1]. Furthermore, the error term is assumed to be the same as in (18).
The parameters in the modi�ed PLSTAR model are assigned the following values

�i;10 = 0 8i; �11 = 0:4; �i;20 = 1 8i;

�21 2 f0:4; 0:5; 0:55g; 
 2 f0:01; 1; 100g; c = T=2:

which generates a completely homogeneous panel. We �rst examine the power proper-
ties under an almost linear PLSTAR(1) model with 
 = 0:01. Second, the power when
the speed of transition in the PLSTAR(1) model may be characterized as intermediate
with 
 = 1:00 is investigated. Finally, we study the power when the transition takes
place almost instantaneously with 
 = 100, so the model practically contains a single
structural break. Furthermore, within these three experiments the change in the in-
tercept is set modest and equals 1, and the stationary root increases from 0:4 to 0:95
(assuming that a complete transition takes place). The design of this experiment im-
plies panels with clear shift in levels and dynamics as long as 
 � 1, see Figure 4 The
results are presented in Tables 2-4.

When the DGP is an almost linear PLSTAR(1) model, we see from Table 2 that
HT2 has the highest power, which is due to the near-linearity of the process. Test
statistic HT2 is designed to have high power against linear models, and for small n and
T it actually exhibits substantially higher power than in the case of a completely linear
panel where the autoregressive coe¢ cients range from 0:8 to 0:95, cf. Table 2b in Harris
and Tzavalis (1999). This is natural because in our case the autoregressive parameter
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Table 1: Empirical quantiles of the test statistic in Corollary 3.

T n 1% 5% 10% 50% 90% 95% 99% Size

5 5 -2.60 -1.79 -1.38 0.03 1.47 1.98 2.93 0.06

5 10 -2.44 -1.71 -1.31 0.02 1.37 1.79 2.65 0.06

5 25 -2.33 -1.63 -1.27 0.02 1.29 1.66 2.51 0.05

5 50 -2.34 -1.63 -1.27 0.01 1.31 1.70 2.43 0.05

5 100 -2.29 -1.66 -1.26 0.01 1.32 1.71 2.43 0.05

10 5 -2.55 -1.80 -1.40 -0.03 1.30 1.70 2.44 0.07

10 10 -2.50 -1.78 -1.39 -0.03 1.27 1.63 2.32 0.06

10 25 -2.48 -1.75 -1.35 -0.02 1.27 1.64 2.33 0.06

10 50 -2.41 -1.70 -1.33 -0.01 1.27 1.65 2.27 0.06

10 100 -2.43 -1.69 -1.32 -0.01 1.28 1.62 2.34 0.05

25 5 -2.90 -1.98 -1.53 -0.12 1.21 1.57 2.17 0.08

25 10 -2.64 -1.85 -1.43 -0.04 1.23 1.58 2.23 0.07

25 25 -2.49 -1.78 -1.41 -0.05 1.22 1.58 2.21 0.06

25 50 -2.44 -1.71 -1.33 -0.03 1.24 1.58 2.19 0.06

25 100 -2.43 -1.68 -1.32 -0.02 1.24 1.61 2.22 0.05

50 5 -3.10 -2.05 -1.59 -0.10 1.18 1.50 2.17 0.09

50 10 -2.69 -1.91 -1.48 -0.09 1.16 1.50 2.15 0.07

50 25 -2.67 -1.84 -1.42 -0.05 1.19 1.53 2.17 0.07

50 50 -2.50 -1.75 -1.39 -0.04 1.26 1.60 2.19 0.06

50 100 -2.46 -1.71 -1.33 -0.01 1.23 1.57 2.28 0.06

100 5 -3.11 -2.07 -1.63 -0.10 1.19 1.51 2.09 0.09

100 10 -2.80 -1.87 -1.45 -0.06 1.18 1.51 2.11 0.07

100 25 -2.72 -1.87 -1.43 -0.05 1.21 1.53 2.16 0.07

100 50 -2.52 -1.77 -1.37 -0.04 1.20 1.57 2.22 0.06

100 100 -2.48 -1.74 -1.34 -0.03 1.23 1.57 2.16 0.06

N(0; 1) -2.33 -1.65 -1.28 0.00 1.28 1.65 2.33

Note: The nominal size is 5%, and the results are based on 10 000
replications.
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Table 2: Empirical power of the test statistic in Corollary 3 and the
tests in Harris and Tzavalis (1999). The DGP is a PAR(1) model.


 = 0:01

�12 = 0:40 �21 = 0:40 �21 = 0:50 �21 = 0:55

T n T1 HT2 HT3 T1 HT2 HT3 T1 HT2 HT3

5 5 0.05 0.35 0.08 0.05 0.27 0.07 0.04 0.23 0.06

5 10 0.06 0.54 0.10 0.05 0.41 0.09 0.05 0.34 0.08

5 25 0.06 0.86 0.16 0.05 0.72 0.12 0.05 0.63 0.11

5 50 0.06 0.99 0.23 0.06 0.93 0.17 0.05 0.87 0.15

5 100 0.07 1.00 0.38 0.07 1.00 0.24 0.06 0.99 0.21

10 5 0.14 0.80 0.28 0.12 0.69 0.21 0.10 0.62 0.19

10 10 0.18 0.97 0.41 0.14 0.91 0.30 0.11 0.85 0.26

10 25 0.28 1.00 0.72 0.20 1.00 0.56 0.16 0.99 0.47

10 50 0.41 1.00 0.93 0.27 1.00 0.81 0.21 1.00 0.70

10 100 0.61 1.00 1.00 0.39 1.00 0.97 0.30 1.00 0.93

25 5 0.68 1.00 0.97 0.58 1.00 0.89 0.52 1.00 0.83

25 10 0.89 1.00 1.00 0.79 1.00 0.99 0.74 1.00 0.98

25 25 1.00 1.00 1.00 0.98 1.00 1.00 0.96 1.00 1.00

25 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

25 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: The nominal size is 5%, and the results are based on 10 000
replications.

slowly grows e.g. from 0:4 to 0:67 over time (the case T = 25, 
 = 0:01, and �21 = 0:5),
rather than taking on e.g. the value 0:95 throughout the whole sample in a linear panel.3

Statistic HT3 also performs better than our test. The reason is that HT3 is based on a
more parsimonious alternative than our test which is penalized when the actual DGP
is relatively simple.

For T � 25 and n � 25 our test performs satisfactorily and for T � 50 and all n (not
reported here) all tests have unit power. In fact, increasing �21 has only a moderate
impact on power because the transition is very slow, see Figure 3.

Consider next the PLSTAR(1) model with 
 = 1. In Table 3 we see that T1 out-
performs the other tests. It now becomes evident that our less parsimonious model is
justi�ed and is in fact necessary if one wants to capture the nonlinear behavior char-
acterized by the PLSTAR(1) model. Our test actually has substantial power when the
time dimension is as small as T = 5; 10, for almost all n and �21. This is in contrast to

3For small T and 
 = 0:01, a full transition from zero to one does not take place, see Figure 3.
For example, F (t = T = 25; 
 = 0:01; c = 12:5) � 0:53, implying that the value of the autoregressive
parameter at the end of the period equals �11 + 0:53�21 2 [0:61; 70].
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Table 3: Empirical power of the test statistic in Corollary 3 and
the tests in Harris and Tzavalis (1999). The DGP is a PLSTAR(1)
model.

 = 1:00

�11 = 0:40 �21 = 0:40 �21 = 0:50 �21 = 0:55

T n T1 HT2 HT3 T1 HT2 HT3 T1 HT2 HT3

5 5 0.20 0.06 0.08 0.23 0.03 0.06 0.26 0.02 0.05

5 10 0.27 0.04 0.10 0.32 0.01 0.08 0.37 0.01 0.07

5 25 0.46 0.01 0.16 0.58 0.00 0.10 0.65 0.00 0.08

5 50 0.69 0.00 0.24 0.83 0.00 0.14 0.89 0.00 0.10

5 100 0.90 0.00 0.40 0.98 0.00 0.21 0.99 0.00 0.14

10 5 0.47 0.00 0.17 0.55 0.00 0.08 0.58 0.00 0.05

10 10 0.68 0.00 0.23 0.77 0.00 0.09 0.81 0.00 0.03

10 25 0.94 0.00 0.38 0.98 0.00 0.09 0.99 0.00 0.01

10 50 1.00 0.00 0.59 1.00 0.00 0.10 1.00 0.00 0.00

10 100 1.00 0.00 0.85 1.00 0.00 0.13 1.00 0.00 0.00

25 5 0.79 0.01 0.52 0.76 0.00 0.09 0.74 0.00 0.00

25 10 0.95 0.00 0.77 0.93 0.00 0.09 0.92 0.00 0.00

25 25 1.00 0.00 0.98 1.00 0.00 0.10 0.99 0.00 0.00

25 50 1.00 0.00 1.00 1.00 0.00 0.11 1.00 0.00 0.00

25 100 1.00 0.00 1.00 1.00 0.00 0.14 1.00 0.00 0.00

50 5 0.97 0.21 0.96 0.77 0.00 0.17 0.57 0.00 0.00

50 10 1.00 0.46 1.00 0.94 0.00 0.30 0.77 0.00 0.00

50 25 1.00 0.92 1.00 1.00 0.00 0.67 0.97 0.00 0.00

50 50 1.00 1.00 1.00 1.00 0.00 0.95 1.00 0.00 0.00

50 100 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00

100 5 1.00 1.00 1.00 0.79 0.00 0.76 0.26 0.00 0.00

100 10 1.00 1.00 1.00 1.00 0.00 0.97 0.35 0.00 0.00

100 25 1.00 1.00 1.00 1.00 0.00 1.00 0.56 0.00 0.00

100 50 1.00 1.00 1.00 1.00 0.00 1.00 0.79 0.00 0.00

100 100 1.00 1.00 1.00 1.00 0.00 1.00 0.96 0.00 0.00

Note: The nominal size is 5%, and the results are based on 10 000
replications.
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Figure 3: The logistic transition function with di¤erent values of the speed of transition
parameter: 
 = 0:01 (dotted line), 
 = 1:00 (solid line), and 
 = 100 (dash-dotted line).

HT2 and HT3, and especially the power of HT2 is very low.
For T � 25 there are two points worth stressing. The �rst one is the successive

break-down in power of the tests based on linear models by increasing �21. To take
an example, in the case T = n = 50 and �21 = 0:40 all tests have a power of unity.
When �21 is increased to 0:50, a remarkable drop in power occurs for HT2 (from 1 to 0)
whereas the power for T1 and HT3 basically remains unchanged. Increasing �21 further
to 0:55, there is a similar drop in power for HT3 (from 0:95 to 0) whereas our test still
has power of unity. This emphasizes the relevance of the inclusion of the set of extra
explanatory variables ft; tyi;t�1g, missing from HT2, and ftyi;t�1g missing from HT3, in
our auxiliary regression equation (3). The break-down in power could be explained by
investigating the shape of the trajectories from the LSTAR(1) model as time evolves.
In the cases �21 = 0:40, 0:50, and 0:55, the autoregressive parameter changes smoothly
over time from 0:4 to 0:80, 0:90, and 0:95, and typical realizations of the LSTAR model
start at zero and end up at levels around 5, 9, and 13 respectively, see the panel (b) in
Figure 4.4 Thus, increasing �21 does not only imply that the LSTAR model is closer to
being non-stable at the end of the period, it also implies a strive towards higher levels,
see He and Sandberg (2005a) for the discussion about the level leverage e¤ect. These
two e¤ects contribute to the successive break-down in power of the HT2 and HT3 tests.
The bias towards nonrejection for HT2 and HT3 tests when the time series in the panel
have a pronounced shift in levels is demonstrated.

4With T = 50 and 
 = 1, a complete transition takes place, see Figure 3.
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Figure 4: Typical realizations for a cross section unit in the PLSTAR(1) model where
the sample sizes and the autoregressive roots in the nonlinear parts are varied.

The second phenomenon is that the power of T1 actually decreases in T when �21 =
0:55 and T � 25, although it still increases monotonically with n. To study this, consider
the case n = 5 while varying T and �21. For T = 25 and �21 = 0:40, 0:50, and 0:55,
the T1 test show about the same power (� 0:77). In panel (a) in Figure 4, we can see
that the trajectories at the end of the period reaches levels approximately equal to 5,
7, and 9 respectively. The di¤erences in levels at the end of the period are modest. For
T = 50 there are two obvious tendencies. First there is an evident drop in power for
T1 from 0:97 to 0:77 to 0:57 when �21 ranges from 0:40 to 0:55. The reason for this is
that the levels of the trajectories at the end of the period now equal about 5, 9 and
13 respectively, see panel (b) in Figure 4, and more clear di¤erences in the levels are
encountered. Second, and perhaps more interesting, is that the power when �21 = 0:55
and T = 50 is lower than that when �21 = 0:55 and T = 25, i.e. 0:57 compared to
0:74. This drop in power is explained by a larger jump in level for T = 50 than for
T = 25 (13 compared to 9) and that increasing the length of the time-series reveals the
complexity of the process (cf. the (a) and (b) panels in Figure 4). It becomes clear
that the term tyt�1is not able to capture distinct changes in level and the autoregressive
coe¢ cient at the same time5. The same two tendencies, even more pronounced, can be
observed when T is increased further. Speci�cally, when T = 100, the power decreases
from 1:00 to 0:79 to 0:26 by increasing �21, and in panel (c) in Figure 4, we see that

5Despite a panel set-up and the large amount of information available, these results indicate that
a test with a a third-order Taylor approximation of the transition function in (2) might be preferable.
However, this will ruin the analytical tractability of the results derived in Section 3.
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the trajectories have now reached their long-run equilibriums, i.e. the levels at 5, 10,
and 20 respectively.6 Furthermore, the reduction in power from 0:57 (the case T = 50
and �21 = 0:55) to 0:26 (the case T = 100 and �21 = 0:55) is larger than the reduction
in power from 0:74 (the case T = 25 and �21 = 0:55) to 0:57 (the case T = 50 and
�21 = 0:55). Larger reductions in power by increasing T can be explained by the fact
that the levels at the end of the sample periods for T = 25, 50, and 100, equal 9, 13,
and 20 respectively.

Moreover, it should also be mentioned that increasing T further results in yet another
reduction in power. This reduction in power continues actually until T = 250 (not
reported here), from where the power rapidly increases and reaches unity. This can
then be seen as a measure of that we need T (su¢ ciently) larger than 250 for the term
tyt�1 to adequately capture the nonlinear structure of an LSTAR(1) model allowing for
a modest shift in the intercept and an almost non-stable root at the end of the sample
period. We conclude that despite a panel data model with an increased information set,
there may still be a need for a third-order approximation of the DGP (1) with (2) to
achieve acceptable power when the cross section dimension of the panel is small.

From Table 4 we can see that when the DGP is a PLSTAR(1) model behaving
almost like a PTAR(1) model, the empirical powers of the tests are lower than in the
previous case. Di¤erences in power compared to what is reported in Table 3 are modest,
however, and the response of the tests is robust against the change in 
 from 1 to 100
in the PLSTAR model.

4.2.2 A heterogeneous nonlinear panel

A less restricted approach is adopted in the next two experiments because a heteroge-
neous panel is considered. In the �rst of these experiments, this is achieved by specifying
the following parameter values in the PLSTAR model

�i;10 = 0 8i; �12 = 0:4; �i;20 � U [0:5; 1:5] ;

�21 = 0:5; c = T=2; 
 = 1:

(19)

The cross section speci�c parameter �i;20 is drawn once from the uniform distribution
and thereafter held �xed throughout the replications. By doing this we allow for cross
section speci�c long-run attractors.7

In the second experiment we increase the heterogeneity of our PLSTAR model al-
lowing �21 to be individual-speci�c as well, denoted �i;21. We choose the same design
as in (19) but let �i;21 � U [0:5; 0:55].8 The empirical powers for these two experiments
are reported in Table 5.

In Table 5 we can see that the power for T1 is satisfactory for all combinations
of T and n, whereas HT3 requires T , n � 50 or T = 100 and n � 5 to achieve a

6These long-run equilibriums are given by (�10 + �20) =(1� �11 � �21).
7The long-run attractor for individual i is given by (�10 + �i;20)=(1� �11 � �21) 2 [5; 15].
8The long-run attractor for individual i is now given by (�10 + �i;20)=(1 � �11 � �i;21) 2 [5; 30].

Furthermore, notice that the model speci�cation in (1) with (2) only supports heterogenity in �i;10 and
�i;20.
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Table 4: Empirical power of the test statistic in Corollary 3 and
the tests in Harris and Tzavalis (1999). The DGP is a PTAR(1)
model.


 = 100

�11 = 0:40 �21 = 0:40 �21 = 0:50 �21 = 0:55

T n T1 HT2 HT3 T1 HT2 HT3 T1 HT2 HT3

5 5 0.21 0.01 0.04 0.25 0.01 0.02 0.28 0.00 0.02

5 10 0.28 0.00 0.04 0.35 0.01 0.02 0.39 0.01 0.01

5 25 0.45 0.00 0.03 0.58 0.00 0.01 0.65 0.00 0.00

5 50 0.65 0.00 0.02 0.81 0.00 0.01 0.86 0.00 0.00

5 100 0.87 0.00 0.01 0.97 0.00 0.00 0.98 0.00 0.00

10 5 0.36 0.00 0.10 0.42 0.00 0.04 0.44 0.00 0.01

10 10 0.51 0.00 0.12 0.59 0.00 0.03 0.65 0.00 0.03

10 25 0.81 0.00 0.15 0.89 0.00 0.01 0.93 0.00 0.01

10 50 0.97 0.00 0.21 0.99 0.00 0.00 1.00 0.00 0.00

10 100 1.00 0.00 0.34 1.00 0.00 0.00 1.00 0.00 0.00

25 5 0.67 0.00 0.41 0.59 0.00 0.04 0.57 0.00 0.00

25 10 0.86 0.00 0.65 0.80 0.00 0.03 0.76 0.00 0.00

25 25 1.00 0.00 0.95 0.98 0.00 0.02 0.97 0.00 0.00

25 50 1.00 0.00 1.00 1.00 0.00 0.02 1.00 0.00 0.00

25 100 1.00 0.00 1.00 1.00 0.00 0.02 1.00 0.00 0.00

50 5 0.96 0.20 0.95 0.65 0.00 0.13 0.44 0.00 0.00

50 10 1.00 0.42 1.00 0.86 0.00 0.24 0.62 0.00 0.00

50 25 1.00 0.91 1.00 0.99 0.00 0.56 0.90 0.00 0.00

50 50 1.00 1.00 1.00 1.00 0.00 0.89 0.99 0.00 0.00

50 100 1.00 1.00 1.00 1.00 0.00 0.99 1.00 0.00 0.00

100 5 1.00 0.00 1.00 0.81 0.00 0.74 0.21 0.00 0.00

100 10 1.00 0.00 1.00 0.97 0.00 0.92 0.26 0.00 0.00

100 25 1.00 0.00 1.00 1.00 0.00 1.00 0.41 0.00 0.00

100 50 1.00 0.00 1.00 1.00 0.00 1.00 0.63 0.00 0.00

100 100 1.00 0.00 1.00 1.00 0.00 1.00 0.85 0.00 0.00

Note: The nominal size is 5%, and the results are based on 10 000
replications.
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Table 5: Empirical power of the test statistic in
Corollary 3 and the tests in Harris and Tzavalis
(1999). Heterogeneous panels.

T n T1 HT2 HT3

25 5 0.73 (0.73) 0.00 (0.00) 0.07 (0.04)

25 10 0.92 (0.91) 0.00 (0.00) 0.07 (0.02)

25 25 1.00 (1.00) 0.00 (0.00) 0.06 (0.00)

25 50 1.00 (1.00) 0.00 (0.00) 0.04 (0.00)

25 100 1.00 (1.00) 0.00 (0.00) 0.02 (0.00)

50 5 0.71 (0.62) 0.00 (0.00) 0.17 (0.05)

50 10 0.87 (0.84) 0.00 (0.00) 0.25 (0.06)

50 25 1.00 (0.98) 0.00 (0.00) 0.49 (0.08)

50 50 1.00 (1.00) 0.00 (0.00) 0.81 (0.10)

50 100 1.00 (1.00) 0.00 (0.00) 0.98 (0.11)

100 5 0.77 (0.64) 0.00 (0.00) 0.65 (0.34)

100 10 0.93 (0.75) 0.00 (0.00) 0.89 (0.39)

100 25 1.00 (0.97) 0.00 (0.00) 1.00 (0.74)

100 50 1.00 (1.00) 0.00 (0.00) 1.00 (0.93)

100 100 1.00 (1.00) 0.00 (0.00) 1.00 (1.00)

Notes: The nominal size is 5%, and the results are
based on 10 000 replications. Values in parentheses
correspond to the power from a panel with a higher
degree of heterogeneity.

substantial power. In addition, the power for HT3 (the power for HT2 remains zero) is
clearly reduced compared to the results in Table 3 with �21 = 0:5. For instance, when
T = n = 50 the power is reduced by 15% (from 0.95 to 0.81) in the �rst experiment
and by 89% (from 0.95 to 0.10) in the second experiment where the heterogeneity is
increased, whereas the power of our test is still unity. In general the reduction is much
smaller for our test. This is of course an important aspect for practitioners, and we see
that the T1 test appears more robust than the HT3 test when each individual is allowed
for its own long-run attractor, even though the design of the DGP�s is not supported
by the model speci�cation in (1) with (2).

4.2.3 A heterogeneous linear panel

In the next experiment we examine the power when the DGP is either a stationary (S)
or trend stationary (TS) process de�ned according to the DGP�s under the alternative
in Harris and Tzavalis (1999). Thus,

yit = �i + 'yi;t�1 + uit; (S);
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Table 6: Empirical power of the test statistic in Corollary 3 and the
tests in Harris and Tzavalis (1999). The DGP�s are stationary and trend
stationary.

' = 0:80 ' = 0:90 ' = 0:95

S T.S. S T.S. S T.S.
T1 HT2 T1 HT3 T1 HT2 T1 HT3 T1 HT2 T1 HT3

T n

5 5 0.05 0.29 0.08 0.06 0.05 0.18 0.08 0.05 0.05 0.13 0.09 0.05

5 10 0.03 0.41 0.13 0.07 0.04 0.22 0.11 0.05 0.04 0.14 0.14 0.05

5 25 0.03 0.69 0.42 0.08 0.03 0.39 0.32 0.06 0.04 0.17 0.41 0.05

5 50 0.01 0.91 0.77 0.09 0.02 0.51 0.61 0.06 0.03 0.23 0.70 0.06

5 100 0.00 1.00 0.98 0.11 0.01 0.76 0.95 0.06 0.02 0.35 0.93 0.06

10 5 0.09 0.50 0.11 0.11 0.06 0.30 0.07 0.08 0.06 0.19 0.07 0.07

10 10 0.08 0.70 0.17 0.14 0.05 0.40 0.13 0.08 0.05 0.23 0.11 0.07

10 25 0.08 0.94 0.44 0.20 0.04 0.64 0.29 0.09 0.04 0.34 0.27 0.07

10 50 0.08 0.99 0.82 0.30 0.03 0.87 0.62 0.10 0.02 0.48 0.52 0.07

10 100 0.08 1.00 0.99 0.47 0.02 0.98 0.94 0.13 0.02 0.71 0.89 0.07

25 5 0.29 0.93 0.34 0.43 0.13 0.59 0.15 0.17 0.09 0.36 0.11 0.11

25 10 0.37 0.99 0.62 0.61 0.14 0.79 0.24 0.21 0.08 0.47 0.13 0.11

25 25 0.59 1.00 0.98 0.92 0.17 0.97 0.55 0.31 0.06 0.73 0.31 0.11

25 50 0.82 1.00 1.00 0.99 0.19 1.00 0.91 0.48 0.06 1.00 0.63 0.14

25 100 0.97 1.00 1.00 1.00 0.25 1.00 1.00 0.72 0.04 1.00 0.94 0.19

50 5 0.86 1.00 0.91 0.95 0.29 0.92 0.36 0.43 0.14 0.58 0.16 0.18

50 10 1.00 1.00 1.00 0.99 0.38 0.99 0.64 0.63 0.15 0.78 0.25 0.20

50 25 1.00 1.00 1.00 1.00 0.60 1.00 0.98 0.91 0.18 0.97 0.58 0.32

50 50 1.00 1.00 1.00 1.00 0.81 1.00 1.00 0.99 0.20 1.00 0.90 0.46

50 100 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.27 1.00 1.00 0.72

100 5 0.98 1.00 1.00 1.00 0.67 1.00 0.91 0.94 0.28 0.93 0.38 0.42

100 10 1.00 1.00 1.00 1.00 0.87 1.00 1.00 1.00 0.38 0.99 0.65 0.62

100 25 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.59 1.00 0.98 0.91

100 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 1.00 1.00 1.00

100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00

Note: The nominal size is 5%, and the results are based on 10 000 replications.
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or
yit = �i + �i(1� ')t+ 'yi;t�1 + uit; (T.S.);

where �i is drawn once from the standard normal distribution and thereafter held �xed
throughout the replications and ' 2 f0:80; 0:90; 0:95g. The null hypothesis is the DGP
in (18).

The results in Table 6 show, as may be expected, that T1 is clearly inferior to HT2
for all n and T . However, our test is reasonably powerful for ' = 0:80, 0:90, and T = 50
and n � 25, or T = 100 and all n. However, for ' = 0:95 we see that our test has
power close to the nominal size. The situation is di¤erent when we instead consider a
trend stationary DGP�s and compare the power of T1 to HT3. We see that for n = 5
and T � 5 the di¤erences in power between T1 and HT3 are marginal. In fact, studying
the same situation but assuming that n > 5 and T � 5, our test T1 actually has higher
power than the HT3 test, and in particular, for ' = 0:95, T1 performs substantially
better than the latter test statistic. We may conclude that our test seems to have
reasonable power properties against stationary/trend stationary alternatives, and that
the power of T1 approaches unity at a faster rate with n than the power of HT3.

4.2.4 Power when viewing T and n as asymptotic when the true T is �nite

The last experiment concerns the empirical power of the test in Corollary 4 (denoted
T2) when we treat both n and T as asymptotic but T is actually �nite. This also
demonstrates the mean-shift e¤ect and variance e¤ect addressed in Sub-section 3.2. For
comparison the same e¤ects are investigated for the corresponding tests by Harris and
Tzavalis (1999), denoted HT2* and HT3*. For this study we choose the same set-up
as for the experiment with a homogeneous panel and 
 = 1:00. These �ndings are
presented in Table 7

In this table we see that treating both T and n as asymptotic leads to rather severe
size distortions and the statistic T2 becomes undersized for almost all n and T � 25.
This indicates that the variance e¤ect discussed in Section 3 dominates the mean shift
e¤ect, resulting in a net reduction in the size of the test, which agree with the �ndings
reported in Harris and Tzavalis (1999). As a result we see a clear drop in power (cf.
Table 3). For T � 50 and all n the power reduction is marginal. It seems that in order
to maintain a test with correct size when letting n and T tend to in�nity, a diagonal
convergence criterion should be imposed to control for the mean-shift and variance
e¤ect.
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Table 7: Empirical power and size of the test statistic in Corollary
4 and the tests in Harris and Tzavalis (1999), assuming that T and
n are large.


 = 1:00

�11 = 0:40 �21 = 0:40 �21 = 0:50 �21 = 0:55

Size Power Power Power

T n T2 T2 HT2*HT3* T2 HT2*HT3* T2

5 5 0.00 0.02 0.01 0.00 0.02 0.00 0.00 0.02

5 10 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01

5 25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

10 5 0.01 0.21 0.00 0.01 0.26 0.00 0.00 0.27

10 10 0.01 0.34 0.00 0.00 0.76 0.00 0.00 0.47

10 25 0.00 0.63 0.00 0.00 0.96 0.00 0.00 0.83

10 50 0.00 0.88 0.00 0.00 1.00 0.00 0.00 0.99

10 100 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00

25 5 0.05 0.72 0.01 0.32 0.66 0.00 0.02 0.64

25 10 0.04 0.92 0.00 0.51 0.88 0.00 0.02 0.86

25 25 0.02 1.00 0.00 0.89 1.00 0.00 0.01 0.99

25 50 0.02 1.00 0.00 1.00 1.00 0.00 0.00 1.00

25 100 0.00 1.00 0.0 01.00 1.00 0.00 0.00 1.00

50 5 0.08 0.96 0.18 0.95 0.73 0.00 0.11 0.53

50 10 0.06 1.00 0.38 1.00 0.91 0.00 0.18 0.72

50 25 0.04 1.00 0.87 1.00 1.00 0.00 0.43 0.95

50 50 0.03 1.00 1.00 1.00 1.00 0.00 0.79 1.00

50 100 0.02 1.00 1.00 1.00 1.00 0.00 0.99 1.00

100 5 0.08 1.00 1.00 1.00 0.85 0.00 0.72 0.23

100 10 0.07 1.00 1.00 1.00 0.97 0.00 0.95 0.31

100 25 0.05 1.00 1.00 1.00 1.00 0.00 0.00 0.51

100 50 0.04 1.00 1.00 1.00 1.00 0.00 0.00 0.74

100 100 0.03 1.00 1.00 1.00 1.00 0.00 0.00 0.94

Note: The nominal size is 5%, and the results are based on 10 000
replications.
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5 Conclusions

In this paper we argue that many of the traditional panel data unit root tests are based
on too restrictive panels because it is likely that e.g. macroeconomic panels involve cross
sections with time series that exhibit structural changes in levels. We also emphasize the
importance of testing unit roots in a nonlinear panel which accommodates a smooth shift
in levels and the dynamic structure (the PLSTAR model) because here the conventional
unit root tests, such as the test in Harris and Tzavalis (1999), are biased towards
nonrejection of the null hypothesis.

The unit root test that we derive in the PLSTAR model is based on an auxiliary
regression, and inference is based on the LSDV estimator under the assumption that the
disturbances are independently and identically distributed under the null hypothesis.
It is shown that the test statistic is normally distributed where the �rst two moments
are calculated analytically. Due to the fact that these moments are known for a �xed
sample size, we are able to analyze how this will a¤ect the inference when T is in�nite.

Finite-sample properties of the test are explored through Monte Carlo simulations
and show satisfactory results. The size distortion is modest and the power is generally
superior to the power of the tests in Harris and Tzavalis (1999). We especially demon-
strate that the traditional tests in Harris and Tzavalis (1999) lack power if the change
in levels is too evident, but with more modest shifts the test with a linear trend has
reasonable power. There are situations, however, in which our test may be modi�ed in
order to increase the power. This can be done by applying a higher-order Taylor approx-
imation to the PLSTAR model, but it will make the analytical results less tractable,
and the question is left for further research.
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Appendix A

Lemma 5 Let MT = [mij ]T�T be the matrix de�ned in (5). Then the (i; j)-th element
of MT can be expressed

mij =
2

T (T 2 � 1) ((T + 1) ((2T + 1)� 3i� 3j) + 6ij) ; (20)

for any i; j = 1; :::; T .

Proof. Note that the inverse (X0TXT )
�1 = 2

T (T�1)

"
(2T + 1) �3
�3 6(T + 1)�1

#
. Thus,

the formula for mij in (20) holds by computing MT .

Lemma 6 Let CT be the (T �T ) matrix de�ned in (7), and DT andMT be the (T �T )
matrices de�ned in (5). Then

the (i,j)-th element of C0TMTCT

=

8><>:
TP

t=i+1

TP
s=j+1

mts; i; j = 1; :::; T � 1:

0; i = T or j = T:

; (21)

the (i,j)-th element of C0TDTMTDTCT

=

8><>:
TP

t=i+1

TP
s=j+1

tsmts; i; j = 1; :::; T � 1:

0; i = T or j = T:

; (22)

the (i,j)-th element of C0TMTDTCT

=

8><>:
TP

t=i+1

TP
s=j+1

smts; i; j = 1; :::; T � 1:

0; i = T or j = T:

; (23)

the (i,j)-th element of C0TMT

=

8<:
TP

t=i+1
mtj ; ; i = 1; :::; T � 1; j = 1; :::; T:

0; i = T:

; (24)

the (i,j)-th element of C0TDTMT

=

8<:
TP

t=i+1
tmtj ; ; i = 1; :::; T � 1; j = 1; :::; T:

0; i = T:

: (25)

Proof. Applying (20) to C0TMTCT ;C
0
TDTMTDTCT ;C

0
TMTDTCT ;

C0TMT , and C0TDTMT , respectively, gives the formulas in (21)-(25).
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Lemma 7 . Consider model (3) when (4) and (A1)-(A3) in Assumption 1 hold. Fur-
thermore, let Wi;jt, j = 1; :::; 5; be de�ned in (5). Then, for any �xed T ,

p lim
n!1

n�1
nP
i=1
Wi;1t =

1

15
(T 2 � 4)�2u; (26)

p lim
n!1

n�1
nP
i=1
Wi;2t =

1

420
(T 2 � 4)(11T 2 + 14T � 1)�2u; (27)

p lim
n!1

n�1
nP
i=1
Wi;3t =

1

30
(T 2 � 4)(T + 1)�2u; (28)

p lim
n!1

n�1
nP
i=1
Wi;4t = �1

2
(T � 2)�2u; (29)

p lim
n!1

n�1
nP
i=1
Wi;5t = � 1

60
(17T + 19) (T � 2)�2u: (30)

Proof. (i) Under (4), express the model in (3) as

yi;�1 = yi0�T +CTui. (31)

(ii) Note that QT de�ned in (5) is orthogonal to �T so pre-multiplying QT on both sides
of yi;�1 in (31) yields

QTyi;�1 = QTCTui: (32)

Since QT is idempotent it follows from (32) that

Wi;1t = y0i;�1QTyi;�1

= u0iC
0
TCTui � u0iC0TMTCTui: (33)

In (33), we have

u0iC
0
TCTui =

TP
t=1
(T � t)u2it + 2

T�1P
t=1

TP
s=t+1

(T � s)uituis;

and

u0iC
0
TMTCTui =

TP
t=2
(
TP
i=t

TP
j=t
mij)u

2
i;t�1 + 2

TP
t=2

TP
s=t+1

(
TP
i=t
ui;t�1

TP
j=s
mij)ui;s�1:

By assumption (A1), fuitg is a sequence of i.i.d. random variables across i and t so that

E(Wi;1t) = E(u0iC
0
TCTui)� E(u0iC0TMTCTui)

=
TP
t=1
(T � t)�2u �

TP
t=2
(
TP
i=t

TP
j=t
mij)�

2
u;

and it follows now from (21) that E(Wi;1t) =
1
15(T

2 � 4)�2u: Finally, by the LLN, (26)
holds. Similarly, we can show that (27)-(30) hold.
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Proof of Theorem 1. (i) It follows from Anderson and Hsiao (1981) that the LSDV
estimators of � and � for model (3), under the null hypothesis (4), equal b�� 1b�

!
=

"
nP
i=1

 
y0i;�1QTyi;�1 y0i;�1QTDTyi;�1
y0i;�1DTQTyi;�1 y0i;�1DTQTDTyi;�1

!#�1

�
"
nP
i=1

 
y0i;�1QTui
y0i;�1DTQTui

!#
; (34)

where QT and DT are de�ned in (5). It follows immediately from (34) that the expres-
sion for (b�� 1) in (5) holds.

(ii) It follows from Lemma 7, (31), and (32) that the probability of the numerator
of (34) is

p lim
n!1

n�1
nP
i=1

 
y0i;�1QTui
y0i;�1DTQTui

!
= ��2u

 
1
2(T � 2)

1
60 (17T + 19) (T � 2)

!
;

whereas the probability limit of the denominator in (34) equals

p lim
n!1

n�1
nP
i=1

 
y0i;�1QTyi;�1 y0i;�1QTDTyi;�1
y0i;�1DTQTyi;�1 y0i;�1DTQTDTyi;�1

!

= �2u

 
1
15(T

2 � 4) 1
30(T

2 � 4)(T + 1)
1
30(T

2 � 4)(T + 1) 1
420(T

2 � 4)(11T 2 + 14T � 1)

!
:

(iii) By the Slutsky Theorem (see, e.g. page 286 of Davidson (1994)) we obtain

p lim
n!1

 b�� 1b�
!

=

"
p lim
n!1

n�1
nP
i=1

 
y0i;�1QTyi;�1 y0i;�1QTDTyi;�1
y0i;�1DTQTyi;�1 y0i;�1DTQTDTyi;�1

!#�1

�
"
p lim
n!1

n�1

 
nP
i=1

y0i;�1QTui
y0i;�1DTQTui

!#

=

"
�0:25

�
23T 2 � 21T � 74

�
=
�
(T 2 � 2)(T + 2)

�
�3:5=

�
T 2 � 2

� #
: (35)

provided that T � 2. The inconsistency of (b�� 1) in (6) is the upper element of the
limit vector on the right-hand side of (35).
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Lemma 8 Let M = [mij ]T�T and N = [nij ]T�T be any constant matrices. Assume
that (A1) and (A3) in Assumption 1 hold. Then,

E(u0iMui)(u
0
iNui)

= �4
TP
t=1
mttntt + �

4
uf

TP
t=1
[mtt(

TP
s=t+1

nss)] +
TP
t=1
[ntt(

TP
s=t+1

mss)]

+
T�1P
t=1

TP
s=t+1

(mtsnts) +
T�1P
s=1

TP
t=s+1

(mtsnts)

+
T�1P
t=1
[

TP
s=t+1

(mtsnst)] +
T�1P
s=1
[

TP
t=s+1

(mtsnst)]g:

Proof. Because uit is i.i.d., u0iMui =
PT
s=1

PT
t=1mstuisuit, and u0iMui =

PT
s=1

PT
t=1 nstuisuit,

it follows by collecting all the terms of mttntt for t = 1; :::; T in (u0iMui)(u
0
iNui) and

now taking the expectations we obtain the coe¢ cient of �4. For the coe¢ cients of �
4
u,

considering all the terms of mtsnts; mtsnst and mttnss; for t 6= s; in (u0iMui)(u
0
iNui)

and computing all the expectations for those terms yield the coe¢ cients for �4u.

Lemma 9 Consider model (3) when (4) and (A1)-(A3) in Assumption 1 hold. Let
Wi;jt; j = 1; :::; 5; be de�ned in (5). Then, for any �xed T > 1,

E(Wi;1t)
2 =

1

210

�
(T 2 � 4)=

�
T (T 2 � 1)

�	
� f�4(T 4 � 25)

+�4u[
1

10
(13T 5 � 30T 4 + 10T 3 � 23T + 750)]g; (36)
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E(Wi;2t)
2 =

1

1081 080

�
(T 2 � 4)=

�
T (T 2 � 1)

�	
� f�4(1382T 8 + 3185T 7

+4141T 6 + 3770T 5 � 80 204T 4 � 153 907T 3 + 163 997T 2

+343 512T � 2484) + �4u[
1

210
(244 231T 9 � 282 072T 8

�1261 143T 7 � 1695 918T 6 � 7526 883T 5 + 40 810 812T 4

+99 837 023T 3 � 95 101 902T 2 � 215 126 028T
+1564 920)]g; (37)

E(Wi;3t)
2 =

1

13 860

�
(T 2 � 4)=

�
T (T 2 � 1)

�	
� f�4(24T 6 + 33T 5 + 32T 4

�926T 2 � 825T + 1182) + �4u[
1

30
(715T 7 � 873T 6 � 902T 5

�1890T 4 � 7205T 3 + 81 063T 2 + 78 672T � 106 380)]g; (38)

E(Wi;4t)
2 =

1

105

�
(T � 2) =

�
T (T 2 � 1)

�	
� f�4

�
29T 3 � 47T 2 � 23T + 59

�
+�4u[

1

2

�
56T 4 � 167T 3 + 226T 2 + 131T � 354

�
]g; (39)

E(Wi;5t)
2 =

1

630

�
(T � 2) =

�
T (T 2 � 1)

�	
� f�4(64T 5 + 29T 4 � 37T 3 + 16T 2

�357T � 435) + �4u[
1

20
(1153T 6 � 904T 5 � 2840T 4 � 3130T 3

�1013T 2 + 23 834T + 26 100)]g: (40)

Proof. For instance, by the de�nition of Wi;3t we can write

E(Wi;3t)
2 = E(u0iC

0
TDTCTui)

2 � 2E(u0iC0TDTCTui)(u
0
iC

0
TMTDTCTui)

+E(u0iC
0
TMTDTCTui)

2: (41)

From the assumptions on uit and Lemmas 6 and 8 we are able to compute the �rst term
of the right-hand side of (41),

E(u0iC
0
TDTCTui)

2

= �4[
TP
t=1
(
TP
j=1
j �

tP
i=1
i)2] + �4uf2

TP
t=1
[(
TP
j=1
j �

tP
i=1
i)(

TP
s=t+1

(
TP
j=1
j �

sP
i=1
i))]

+4
T�1P
t=1

TP
s=t+1

[(
TP
j=1
j �

sP
i=1
i)2]g

= �4[
1

60
T
�
T 2 � 1

� �
8T 2 + 5T � 2

�
]

+�4u[
1

180
T
�
T 2 � 1

�
(T � 2)

�
50T 2 + 22T � 21

�
]; (42)
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for the second term of the right-hand side of (41), we have

E(u0iC
0
TDTCTui)(u

0
iC

0
TMTDTCTui)

= �4[
TP
t=1
(
TP
j=1
j �

tP
k=1

k)(
TP

k=t+1

TP
j=t+1

jmkj)]

+�4uf
TP
t=1
[(
TP
j=1
j �

tP
k=1

k)(
TP

s=t+2
(
TP
k=s

TP
j=s
jmkj))]

+
TP
t=1
[(

TP
k=t+1

TP
j=t+1

jmkj)(
TP

s=t+1
(
TP
j=1
j �

sP
k=1

k))]

+2
T�1P
t=1

TP
s=t+1

[(
TP
j=1
j �

sP
k=1

k)(
TP

k=t+1

TP
j=s+1

jmkj)]

+2
T�1P
s=1

TP
t=s+1

[(
TP
j=1
j �

tP
k=1

k)(
TP

k=t+1

TP
j=s+1

jmkj)]g

= �4[
1

120
(T + 1)

�
15T 4 � 7T 3 � 12T 2 + 8T + 8

�
]

+�4u[
1

15 120
(T � 2) (4037T 5 + 1717T 4 � 4811T 3

+779T 2 + 4758T + 1584)]; (43)

and for the third term we �nd that,

E(u0iC
0
TMTDTCTui)

2

= �4[
TP
t=2
(
TP
k=t

TP
j=t
jmkj)

2]

+�4uf2
TP
t=2
[(
TP
k=t

TP
j=t
jmkj)(

TP
s=t+1

(
TP
k=s

TP
j=s
jmkj))] +

T�1P
t=2

TP
s=t+1

(
TP
k=t

TP
j=s
jmkj)

2

+
T�1P
t=2

TP
s=t+1

(
TP
k=s

TP
j=t
jmkj)

2 + 2
T�1P
t=2
[

TP
s=t+1

(
TP
k=t

TP
j=s
jmkj)(

TP
k=s

TP
j=t
jmkj)]g

= �4[
1

13 860
(1641T 8 + 726T 7 � 3760T 6 � 594T 5 + 4259T 4

+792T 3 + 1652T 2 + 1452T � 4728)]=
�
T (T 2 � 1)

�
+�4u[

1

69 300
(T � 2) (17 875T 8 + 7362T 7 � 34 963T 6

+7726T 5 + 50 465T 4 + 10 018T 3 + 4603T 2 � 6026T
�35 460)]=

�
T (T 2 � 1)

�
: (44)
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Substituting (42)-(44) for E(u0iC
0
TDTCTui)

2, E(u0iC
0
TDTCTui)

(u0iC
0
TMTDTCTui) and E(u0iC

0
TMTDTCTui)

2, respectively, on the right-hand side of
(41) gives (38). Similarly we can show that (36), (37), (39), and (40) hold.

Lemma 10 Consider model (3) when (4) and (A1)-(A3) in Assumption 1 hold. Let
Wi;jt; j = 1; :::; 5; be de�ned in (5). Then, for any �xed T > 1,

E(Wi;1tWi;2t) =
1

83 160

�
(T 2 � 4)=

�
T (T 2 � 1)

�	
� f�4(155T 6 + 198T 5

+104T 4 � 5677T 2 � 4950T + 7290) + �4u[
1

5
(935T 7

�1038T 6 � 3157T 5 � 570T 4 � 4675T 3 + 82 878T 2

+78 177T � 109 350)]g;

E(Wi;1tWi;3t) =
1

420

�
(T 2 � 4)= (T (T � 1)

	
� f�4

�
T 2 � 5

� �
T 2 + 5

�
+�4u[

1

10

�
13T 5 � 30T 4 + 10T 3 � 23T + 750

�
]g;

E(Wi;1tWi;4t) = � 1

420

�
(T 2 � 4)=

�
T (T 2 � 1

�	
� f�4

�
14T 3 � 15T 2 � 14T � 33

�
+�4u

�
14T 4 � 42T 3 + 31T 2 + 42T + 99

�
g;

E(Wi;1tWi;5t) = � 1

840

�
(T 2 � 4)=

�
T (T 2 � 1)

�	
� f�4(17T 4 � 15T 3 + 9T 2

�33T � 170) + �4u[
1

15
(253T 5 � 555T 4 + 175T 3 � 615T 2

+1732T + 7650)]g;

E(Wi;2tWi;3t) =
1

166 320

�
(T 2 � 4)= (T (T � 1))

	
� f�4(245T 6 + 198T 5

+290T 4 � 11 839T 2 � 4950T + 26 424)

+�4u[
5

2
(539T 7 � 1194T 6 � 649T 5 � 1680T 4

�8899T 3 + 87 654T 2 + 44 649T � 198 180)]g;

E(Wi;2tWi;4t) = � 1

2520

�
(T 2 � 4)=

�
T (T 2 � 1)

�	
� f�4(30T 5 + 5T 4 + 27T 3

�29T 2 � 489T � 312) + �4u[
1

5
(163T 6 � 317T 5 � 95T 4

�545T 3 + 292T 2 + 7342T + 4680)]g;
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E(Wi;2tWi;5t) = � 1

166 320

�
(T 2 � 4)=

�
T (T 2 � 1)

�	
� f�4(1682T 6 + 1089T 5

+1502T 4 � 396T 3 � 34 792T 2 � 29 205T + 18 648)

+�4u[
1

5
(6490T 7 � 8598T 6 � 11 825T 5 � 64 110T 4 � 33 770T 3

+546 828T 2 + 466 785T � 279 720)]g;

E(Wi;3tWi;4t) = � 1

840

�
(T 2 � 4)=

�
T (T 2 � 1)

�	
� f�4(13T 4 � T 3 + 7T 2

�47T � 164) + �4u[
1

15
(208T 5 � 375T 4 � 5T 3 � 525T 2

+1957T + 7380)]g;

E(Wi;3tWi;5t) = � 1

5040

�
(T 2 � 4)=

�
T (T 2 � 1)

�	
� f�4(63T 5 + 10T 4

+24T 3 � 58T 2 � 951T � 624) + �4u[
1

5
(251T 6 � 319T 5

�280T 4 � 1720T 3 + 749T 2 + 14 999T + 9360)]g;

E(Wi;4tWi;5t) =
1

210

�
(T � 2)=

�
T (T 2 � 1)

�	
� f�4(29T 4 � 3T 3 � 40T 2

�15T � 43) + �4u[
1

2
(63T 5 � 104T 4 � 52T 3 + 170T 2

+97T + 258)]g:

Proof. We only give the proof for E(Wi;2tWi;3t). Thus, write

E(Wi;2tWi;3t)

= E(u0iC
0
TD

2
TCTui)(u

0
iC

0
TDTCTui)

�E(u0iC0TD2
TCTui)(u

0
iC

0
TMTDTCTui)

�E(u0iC0TDTMTDTCTui)(u
0
iC

0
TDTCTui)

+E(u0iC
0
TDTMTDTCTui)(u

0
iC

0
TMTDTCTui): (45)

Further manipulation for those terms on the right-hand side of (45), by applying Lemmas
6 and 8, yields,

E(u0iC
0
TD

2
TCTui)(u

0
iC

0
TDTCTui)

= �4f
T�1P
t=1
[(
TP
j=1
j2 �

tP
k=1

k2)(
TP
j=1
j �

tP
k=1

k)]g

+�4uf
T�2P
t=1
[(
TP
j=1
j2 �

tP
k=1

k2)(
T�1P
j=t+1

(
TP
s=1
s�

jP
k=1

k))]

+
T�2P
t=1
[(
TP
j=1
j �

tP
k=1

k)(
T�1P
j=t+1

(
TP
s=1
s2 �

jP
k=1

k2))]

+4
T�2P
t=1

T�1P
s=t+1

[(
TP
j=1
j2 �

sP
k=1

k2)(
TP
j=1
j �

sP
k=1

k)]g

= �4[
1

72
T 2 (7T + 2) (T � 1) (T + 1)2]

+�4u[
1

840
T
�
T 2 � 1

�
(T � 2)

�
178T 3 + 209T 2 + 15T � 12

�
]; (46)
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E(u0iC
0
TD

2
TCTui)(u

0
iC

0
TMTDTCTui)

= �4f
T�1P
t=1
[(

TP
k=t+1

TP
j=t+1

jmkj)(
TP
j=1
j2 �

tP
k=1

k2)]g

+�4uf
T�2P
t=1
[(

TP
k=t+1

TP
j=t+1

jmkj)(
T�1P
j=t+1

(
TP
s=1
s2 �

jP
k=1

k2))]

+2
T�2P
t=1

T�1P
s=t+1

[(
TP

k=t+1

TP
j=s+1

jmkj)(
TP
j=1
j2 �

sP
k=1

k2)]

+2
T�2P
s=1

T�1P
t=s+1

[(
TP

k=t+1

TP
j=s+1

jmkj)(
TP
j=1
j2 �

tP
k=1

k2)]g

= �4[
1

15 120
(1367T 6 + 1635T 5 � 1051T 4 � 1263T 3

+1196T 2 + 1572T + 144)]

+�4u[
1

7560
(T � 2) (1541T 6 + 1806T 5 � 1030T 4

�678T 3 + 1793T 2 + 1608T + 288)]; (47)

E(u0iC
0
TDTMTDTCTui)(u

0
iC

0
TDTCTui)

= �4f
T�1P
t=1
[(

TP
k=t+1

TP
j=t+1

kjmkj)(
TP
j=1
j �

tP
k=1

k)]g

+�4uf
T�2P
t=1
[(

TP
k=t+1

TP
j=t+1

kjmkj)(
T�1P
j=t+1

(
TP
s=1
s�

jP
k=1

k))]

+
T�2P
t=1
[(
TP
j=1
j �

tP
k=1

k)(
T�1P
j=t+1

(
TP

k=j+1

TP
s=j+1

ksmks))]

+4
T�2P
t=1

T�1P
s=t+1

[(
TP

k=t+1

TP
j=s+1

kjmkj)(
TP
j=1
j �

sP
k=1

k)]g

= �4[
1

7560
(691T 6 + 855T 5 � 509T 4 � 783T 3 + 394T 2 + 792T + 144)]

+�4�[
1

3780
(T � 2) (760T 6 + 879T 5 � 554T 4

�492T 3 + 694T 2 + 765T + 180)]; (48)

32



and

E(u0iC
0
TDTMTDTCTui)(u

0
iC

0
TMTDTCTui)

= �4f
T�1P
t=1
[(

TP
k=t+1

TP
j=t+1

kjmkj)(
TP

j=t+1

TP
k=t+1

jmkj)]g

+�4uf
T�2P
t=1
[(

TP
k=t+1

TP
j=t+1

kjmkj)(
T�1P
j=t+1

(
TP

s=j+1

TP
k=j+1

smks))]

+
T�2P
t=1
[(

TP
k=t+1

TP
j=t+1

jmkj)(
T�1P
j=t+1

(
TP

s=j+1

TP
s=j+1

ksmks))]

+2
T�2P
t=1

T�1P
s=t+1

[(
TP

k=t+1

TP
j=s+1

jmkj)(
TP

k=t+1

TP
j=s+1

kjmkj)]

+2
T�2P
s=1

T�1P
t=s+1

[(
TP

k=t+1

TP
j=s+1

jmkj)(
TP

k=s+1

TP
j=t+1

kjmkj)]g

= �4[
1

83 160T (T � 1)(7157T
8 + 1067T 7 � 13 952T 6

+44T 5 + 11 887T 4 + 1661T 3 + 21 908T 2

+7524T � 52 848)]

+�4�[
1

46 200T (T � 1) (T � 2) (8976T
8 + 1356T 7

�14 723T 6 + 5768T 5 + 16 904T 4 + 6014T 3

+9883T 2 � 16 058T � 44 040)]: (49)

By (46)-(49) further algebra gives (45). Similarly, we can show that the remaining
formulas in Lemma 10 hold.

Lemma 11 Consider model (3) when (4) and (A1)-(A3) in Assumption 1 hold. Then,
for any �xed T � 2,

p
n

" b�� 1b�
!
�
 
B1(T )

B2(T )

!#
d! N

 "
0

0

#
;Q�1T 
TQ

�1
T

!
; (50)

where

QT =

 
E (Wi;1t) E (Wi;3t)

E (Wi;3t) E (Wi;2t)

!
; (51)

and


T = E

"
E
�
G21t
�

E (G1tG2t)

E (G1tG2t) E
�
G22t
� #

; (52)

whereas

Gi;1t = Wi;4t �B1(T )Wi;1t �B2(T )Wi;3t; (53)

Gi;2t = Wi;5t �B1(T )Wi;3t �B2(T )Wi;2t; (54)

B2(T ) = �3:5=(T 2 � 2): (55)
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Proof. (i) The inconsistency of b� given by B2(T ) in (55) is the lower element of the
limit vector on the right-hand side of (35).

(ii) The LSDV estimator of (�; �)0, under the null hypothesis (4), corrected by
[B1(T ); B2(T )]

0, can be expressed as" b�� 1b�
#
�
"
B1(T )

B2(T )

#

=

2664
nP
i=1
Wi;1t

nP
i=1
Wi;3t

nP
i=1
Wi;3t

nP
i=1
Wi;2t

3775
�1

�

0BB@
2664

nP
i=1
Wi;4t

nP
i=1
Wi;5t

3775�
2664

nP
i=1
Wi;1t

nP
i=1
Wi;3t

nP
i=1
Wi;3t

nP
i=1
Wi;2t

3775
"
B1(T )

B2(T )

#1CCA

=

2664
nP
i=1
Wi;1t

nP
i=1
Wi;3t

nP
i=1
Wi;3t

nP
i=1
Wi;2t

3775
�1 2664

nP
i=1
Gi;1t

nP
i=1
Gi;2t

3775 ; (56)

where Wi;jt; j = 1; :::; 5; are de�ned in (5), Gi;1t and Gi;2t are given by (53) and (54),
respectively. Note that for a �xed T , (Gi;1t; Gi;2t)

0 is by Assumption 1 an i.i.d. vector
across i with zero mean and �nite covariance matrix 
T de�ned in (52). It follows from
Lemmas 9 and 10 that
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E
�
G2i;1t

�
= E

�
W 2
i;4t

�
+B21(T )E

�
W 2
i;1t

�
+B22(T )E

�
W 2
i;3t

�
�2B1(T )E (Wi;4tWi;1t)� 2B2(T )E (Wi;4tWi;3t)

+2B1(T )B2(T )E (Wi;3tWi;1t)

= �4
1

110 880
f[(T � 3) (T � 2) =(

�
T 2 � 2

�2 �
T 2 � 1

�
(T + 2)T )]

�(6543T 7 � 13 599T 6 � 36 602T 5 + 170 566T 4

�25 173T 3 � 707 131T 2 � 29 344T + 589 812)g

+�4�f
1

3326 400
(T � 2) =(

�
T 2 � 2

�2 �
T 2 � 1

�
(T + 2)T )g

�(392 843T 9 � 1987 498T 8 + 3181 711T 7 + 5981 726T 6

�34 139 267T 5 + 37 748 138T 4 + 74 407 229T 3 � 182 674 806T 2

�70 246 356T + 159 249 240);

E (Gi;1tGi;2t) = E (Wi;4tWi;5t)�B1(T )E (Wi;3tWi;4t)�B2(T )E (Wi;2tWi;4t)

�B1(T )E (Wi;1tWi;5t) +B
2
1(T )E (Wi;1tWi;3t)

+B1(T )B2(T )E (Wi;1tWi;2t)�B2(T )E (Wi;3tWi;5t)

+B1(T )B2(T )E
�
W 2
i;3t

�
+B22(T )E (Wi;2tWi;3t)

= �4
1

221 760
f(T 2 � 9) (T � 2) =(

�
T 2 � 2

�2 �
T 2 � 1

�
(T + 2)T )g

�(3647T 7 + 1535T 6 + 3726T 5 � 10 450T 4 � 179 845T 3

�226 905T 2 + 219 080T + 348 188)

+�4uf
1

6652 800
(T � 2) =(

�
T 2 � 2

�2
(T + 1) (T + 2) (T � 1)T )g

�(382 943T 10 � 1478 555T 9 � 1151 547T 8 + 11 553 117T 7

�1552 641T 6 � 12 256 869T 5 + 21 309 007T 4 � 120 784 417T 3

�220 115 082T 2 + 156 524 484T + 282 032 280);

and

E
�
G2i;2t

�
= E

�
W 2
i;5t

�
+B21(T )E

�
W 2
i;3t

�
+B22(T )E

�
W 2
i;2t

�
�2B1(T )E (Wi;5tWi;3t)� 2B2(T )E (Wi;2tWi;5t)

+2B1(T )B2(T )E (Wi;3tWi;2t)
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= �4f[
1

2882 880
(T � 3) (T � 2) =

��
T 2 � 2

�2 �
T 2 � 1

�
(T + 2)T

�
g

�(55 489T 9 + 125 238T 8 + 298 513T 7 + 975 550T 6 � 4756 977T 5

�18 293 686T 4 � 2616 677T 3 + 34 056 714T 2 + 19 476 036T

�6731 784) + �4uf
1

259 459 200
(T � 2) =

(
�
T 2 � 2

�2 �
T 2 � 1

�
(T + 2)T )g � (11 556 935T 11 � 40 537 573T 10

�55 120 525T 9 + 286 295 547T 8 + 63 649 665T 7 + 923 928 009T 6

+843 787 177T 5 � 12 232 771 967T 4 � 10 684 267 460T 3

+21 359 553 264T 2 + 17174 416 608T � 5452 745 040):

As n!1, with T �xed, the Linderberg-Lèvy CLT implies that the numerator of (56)
converges at the rate

p
n to a normal random variable,

n�1=2
nP
i=1

"
Gi;1t
Gi;2t

#
d! N

 "
0

0

#
;
T

!
: (57)

On the other hand, the denominator of (56) converges in probability at the rate n such
that

n�1
nP
i=1

"
Wi;1t Wi;3t

Wi;3t Wi;2t

#
p! QT : (58)

where QT is de�ned in (51). It follows from (57) and (58) that as n!1 with T �xed,
(50) holds.

Proof of Theorem 2. For T > 2, QT de�ned in Lemma 11 is positive de�nite.

Thus, Q�1T exists. Let Q�1T =

 
q11 q12
q12 q22

!
. It follows from Lemma 11 that

p
n(b� �

1�B1(T ))
d! N(0; �2b�(T; �4)) holds with
�2b�(T; �4) = q211E �G2i;1t�+ 2q11q12E (Gi;1tGi;2t) + q212E �G2i;2t� : (59)

Further manipulation in (59) by using the results in Lemma 11 gives the expression of
�2b�(T; �4) in Theorem 2.

Proof of Corollaries 3. This is an immediate consequence of Theorem 2.
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