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Abstract
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1 Introduction

The issue of parameter constancy in time series models is important and arises since it
appears that data from many e.g. economic time series rather support models whose pa-
rameters are likely to be a¤ected by an economical environment, see for instance Stock
and Watson (1996). These time series exhibit properties that could be captured by
models allowing for parameters that vary, and this most likely in a nonlinear way. Test-
ing parameter constancy in nonlinear models becomes therefore important in attempts
to detect misspeci�ed models and avoid invalid inference.

There is vast literature on how to proceed, and the general approach is to have
parameter constancy as the null hypothesis and test it against a parametric alternative.
The parametric alternative and its properties are therefore in focus, and could for in-
stance be characterized by parameters varying over time or that they change (mostly
a one-time change) with some other endogenous/exogenous threshold variable, see for
instance Chu and White (1991), Hansen (1992), and Andrews (1993). Time-varying
parameters could be divided into two broad categories, i.e. parameters being stochastic
(e.g. a random walk) or that they change according to a certain nonlinear deterministic
function over time. For the former, see for instance Nyblom (1989). The latter will be
in focus in this paper.

Considering nonlinear deterministic functions, the theory has evolved from testing
against abrupt changes (an instantaneous structural break) to testing against more
general and �exible functions where the parameters are allowed to have multiple smooth
changes over time. As such, Lin and Teräsvirta (1994) discuss testing the null hypothesis
of a linear autoregressive model against the logistic smooth transition autoregression
(LSTAR) model. They assume that the data generating process (DGP) is stationary
under the null hypothesis and asymptotic normality holds in their framework.

However, for many time series it may be di¢ cult just by visual inspection to distin-
guish between data that have been generated by a random walk or data generated by a
model that is nonlinear in parameters. It is therefore natural to discuss the same issue
as in Lin and Teräsvirta (1994) when the stationary assumption is relaxed, and instead
consider a random walk (with or without a drift) as the DGP when the modeller tests
parameter constancy in the LSTAR model. Furthermore, another appealing feature of
our approach is that our test is a direct test in the sense that it is based on "raw" data,
and the �rst step is not to make the data stationary by taking �rst di¤erences.

Imposing the assumption of a random walk means that we abandon the asymptotic
normality of the OLS estimates for a non-standard limiting distribution characterized by
various functionals of Brownian motions on the unit interval. The derived test statistic
is robust for a wide class of error terms. In the sequel of �nding the limiting distribution
of our test, we generalize many asymptotic theoretical results in the area of unit roots
that for instance could be found in Phillips (1987), Phillips and Perron (1988), and
Hamilton (1994) among others, and new results are introduced.

The rest of this paper is organized as follows. In Section 2 we present the parametric
alternative, i.e. the LSTAR model. Joint tests of linearity and non-stationarity in an
LSTAR model as well as the distributional theory of the tests and their properties
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are described in Section 3. In Section 4 the Monte Carlo experiments are reported.
Concluding remarks are found in Section 5. A Lemma and proofs are given in the
Mathematical Appendix.

2 The model

Consider the logistic smooth transition autoregression model of order p, henceforth
abbreviated the LSTAR(p) model,

yt = x
0
t�1 + x

0
t�2F (t;�) + ut; t = 1; :::; T; (1)

where x0t = (1; yt�1; :::; yt�p) is a (p+1)�1 vector and p 2 N, �1 = (�10; :::; �1;p)0 2 Rp+1,
�2 = (�20; :::; �2;p)

0 2 Rp+1, ut is an error term with properties discussed in detail in
the next subsection, F (t;�) is a logistic smooth transition function. Following Lin and
Teräsvirta (1994) a full parametrization of F (t;�) in (1) is given by1

F (t;�) =
1

(1 + expf�
(tk + �1tk�1 + :::+ �k�1t+ �k)g)
; k = 1; 2; 3; (2)

where � = (
;�0)0 2 [0;1) � Rk, � = (�1; :::; �k)
0 and � 2 Rk such that the roots

of the polynomial in (2) are real. For any �xed �, F (t) de�nes a bounded function
since F (t) : R+ ! [0; 1]. In the special case k = 1 and 
 2 (0;1) the transition is
increasing in t allowing the model in (1) with (2) to change from E[ytjFt�1] � x0t�1 to
E[ytjFt�1] � x0t(�1 +�2) with t. The parameters 
 and �1 have a clear interpretation.
The latter is a location parameter which indicates where the symmetric transition takes
place, and the former determines the speed of transition. Letting 
 ! 1 implies that
the transition takes place instantaneously at �1, and F becomes the indicator function:
1(�1;0)(t) = 1 if t 2 (�1; 0) and 1(�1;0)(t) = 0 if t =2 (�1; 0) and the model in (1) becomes
a threshold autoregressive (TAR) model of order p. On the other hand, letting 
 ! 0

implies that F ! 1=2 and the resulting model in (1) is a linear AR(p) model with
parameter vector equal to (�1 + �2)=2. Moreover, with k � 2 the transition function
F exhibits two or more transitions and the transition paths are nonmonotonic. Finally
note that for any k and 
 2 [0;1) we have that F is di¤erentiable and for 
 = 1, F
exhibits point(s) of discontinuity.

3 Testing procedures

Our aim is to test for parameter constancy in (1), under the assumption that the true
process is a random walk. To proceed and ease up exposition, we focus on the LSTAR(1)
model with one transition, i.e. we let p = k = 1 in (1) and (2).

1For k = 2, Lin and Teräsvirta (1994) de�ne the transition function F (t) = 1� expf�
(t� �)2g.
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3.1 Testing parameter constancy in the LSTAR(1) model

We will �rst exploit the implications of linearity. We can, without loss of generality,
replace F in (2) by a downward shift, say ~F , de�ned by

~F (t;�) � F (t;�)� 0:5: (3)

It is now evident that we could test for parameter constancy in (1) by letting 
 = 0,
since ~F (t;�) = 0 for all t and �. It is therefore natural to de�ne the hypothesis H0 :

 = 0 against H1 : 
 > 0.2 We have, however, an identi�cation problem under the
null hypothesis, since the vectors �2 and � will be undetermined, see e.g. Luukkonen,
Saikkonen, and Teräsvirta (1988). This problem could be solved by approximating ~F
in a neighborhood of 
 = 0. An obvious candidate is a �rst-order Taylor approximation
of ~F around 
 = 0, and yields

A1(t; 
; �1) = 0:25
(t+ �1) + r1; (4)

and r1 is the remainder. Substituting (4) into (1) gives the linear approximation of the
LSTAR model,

yt = �10 + �11yt�1 + (�20 + �21yt�1) c
(t+ �1) + u
�
t ; (5)

and u�t is the error term adjusted with respect to the Taylor expansion where u�t = ut
holds under the null hypothesis. Collecting the terms in (5) yields the reparametrized
auxiliary regression model

yt = s
0
t�+ (yt�1st)

0'+ u�t , (6)

where st = (1; t)0, � = (�0; �1)
0, ' = ('01; '11)

0. The auxiliary null hypothesis of
parameter constancy becomes

Haux
0 : �0 2 R; �1 = 0; '01 2 R; '11 = 0: (7)

The null hypothesis in (7) implies that the regression equation in (6) is reduced to an
AR(1) process with an intercept since the terms involving a time trend are equal to
zero.

3.2 Testing unit roots in the LSTAR(1) model

Lin and Teräsvirta (1994) assume that the model (6) is stationary under the null hy-
pothesis, i.e. '01 2 (�1; 1). We will in contrast consider a random walk as the true
DGP implying that '01 = 1, and assume stability under the alternative hypothesis,
i.e. H1 : '01 < 1. Therefore, the joint auxiliary hypothesis of parameter constancy and
non-stationarity is given by

Haux
0 : �0 2 R; �1 = 0; '01 = 1; '11 = 0: (8)

2To identify (1) under the alternative, one has to assume either 
 > 0 or 
 < 0. We choose a priori
to rule out 
 < 0 because in the de�ntion of F in (2) it is assumed that 
 2 [0;1).
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Since the model in (6) contains an intercept, yt�1 is under the null hypothesis asymp-
totically equivalent to �0(t � 1). Thereby we will have a problem with collinearity in
large samples because a time trend is already included in (6), see e.g. Sims, Stock,
and Watson (1990) and Hamilton (1994). To avoid this problem, we �rst note that the
process under the null hypothesis is a random walk with drift implying that E[yt] = �0t.
We de�ne therefore a new explanatory variable according to �t�1 = yt�1�EHaux

0
[yt�1].

This transformation implies the regression model

yt = s
�0
t �

� +
�
�t�1st

�0
'� + u�t ; (9)

where s�t = (s
0
t; t

2)0, �� = (��0; :::; �
�
2)
0, and '�= '. The null hypothesis of (8) is now

equivalent to

Haux
0 : ��1 2 R; ��0 = �

�
2 = 0; '�01 = 1; '�11 = 0: (10)

All necessary transformations are now accomplished in the sense that the process under
the null hypothesis of (10) is a random walk without drift given by �t = �t�1 + ut.

3.3 A joint test of parameter constancy and non-stationarity

We make the following general assumptions on the error term in (1) under the null
hypothesis (10).

Assumption 1 Let futg1t=1 be sequence of random variables de�ned on a probability
space (
;F ;P), satisfying

(A.1.1) Eut = 0 for all t.
(A.1.2) supt2NE jutj� <1 for some � 2 (2;1].
(A.1.3) �2 = limT!1 T

�1E
�PT

t=1 ut

�2
exists and �2 2 (0;1) .

(A.1.4) futg1t=1 is strong mixing with mixing coe¢ cients �(m)
satisfying

P1
m=1 �(m)

1�2=� <1.

Under Assumption 1 the limiting distribution for the OLS estimators (�̂
�0
; '̂�0) in

(9) under the null of (10) can be derived. The result is given in the following theorem.

Theorem 1 Consider model (9) when (10) holds. Furthermore, assume that futg1t=1

satis�es Assumption 1. Then the least square estimator  ̂ =
�
TP
t=1
hth

0
t

��1� TP
t=1
htyt

�
of

 = (��0;'�0)0 in (9), where  ̂ = (�̂
�0
; '̂�0)0 and ht = (s�0t ; (�t�1st)

0)0, has the following
asymptotic properties


T ( ̂ � )
d! 	�1�; (11)

 ̂ � p! 0; (12)

where 
T = diag
n
T 1=2 T 3=2 T 5=2 T T 2

o
, and

	 =

"
M1 �M2

�M0
2 �2M3

#
; � =

"
��1�

�2=2
�
�2

#
;
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where the sub-matrices are given by

M1 =

264 1 1=2 1=3

1=2 1=3 1=4

1=3 1=4 1=5

375 ;

M2 =

264
R 1
0 W (r)dr

R 1
0 rW (r)drR 1

0 rW (r)dr
R 1
0 r

2W (r)drR 1
0 r

2W (r)dr
R 1
0 r

3W (r)dr

375 ;
M3 =

" R 1
0 W

2(r)dr
R 1
0 rW

2(r)drR 1
0 rW

2(r)dr
R 1
0 r

2W 2(r)dr

#
;

�1 =

264 W (1)

W (1)�
R 1
0 W (r)dr

W (1)� 2
R 1
0 rW (r)dr

375 ;
�2 =

"
W (1)2 � ��2u=�2

W (1)2 �
R 1
0 W

2(r)dr � ��2u=(2�2)

#
;

where
p!, and d! denotes convergence in probability and distribution, respectively, W (r)

abbreviates a standard Brownian motion on [0; 1], and ��2u = limT!1 T
�1PT

t=1Eu
2
t

such that ��2u 2 (0;1).

Proof. See Appendix A.

Note that under the null hypothesis (10), '�01 = �11. It follows from Theorem 1 that
the limiting distribution of T ('̂�01 � 1) is given as follows.

Corollary 2 Suppose that the conditions of Theorem 1 hold. De�ne the test statistic

Tn � T ('̂�01 � 1):

Then
Tn

d! Q1 (W (r)) +Q2
�
W (r);�2; ��2u

�
; (13)

where Q1 and Q2 are functions of Brownian motions de�ned in the Appendix A. Remark
that Q2 depends upon the nuisance parameters �2 and ��2u. Hence, de�ne the adjusted
restricted test statistic

Ta � Tn � Q̂2;
where

Q̂2 = T
2
�
�2 � ��2u

�
�44=

�
2s2T
�
+ T 3

�
�2 � ��2u

�
�45=

�
4s2T
�
;

with

�44 = s2T r1

�XT

t=1
hth

0
t

��1
r01; r1 =

h
0 0 0 1 0

i
;

�45 = s2T r1

�XT

t=1
hth

0
t

��1
r02; r2 =

h
0 0 0 0 1

i
;

s2T =
TX
t=1

(yt � h0t ̂1)2=(T � 5):

6



Then,

Ta
d! Q1 (W (r)) : (14)

Proof. See Appendix A.

There are several things to note about the results in (13) and (14). First, both
tests are invariant with respect to �0 in (8), meaning that both tests are invariant with
respect to if the true model is a random walk with or without drift. Second, it is only
the limiting distribution for Ta that is invariant with respect to all nuisance parameters
f�0; �2; ��2ug, whereas, as shown in appendix, the limiting distribution for Tn is a function
of �2 and ��2u. However, if futg1t=1 is an i.i.d. sequence, �2 = ��2u holds, and it follows that
Tn

d! Q1. Third, even if the limiting distribution Q1 is nuisance parameter free, the
test statistic Ta itself contains nuisance parameters. This means that we must replace
�2 and ��2u with some consistent estimates to operationalize the test, see for instance
Phillips (1987). So far only the properties under the null hypothesis are mentioned, but
under the alternative hypothesis and especially that '�01 2 (�1; 1), the estimates  ̂ from
the auxiliary regression equation in (9) are normally distributed, see Lin and Teräsvirta
(1994). Particularly, in our case it follows that '̂�01 is Op(T ) rather than Op(T 1=2).

Furthermore, it is natural to consider the FOLS-test of the joint hypothesis in (10)

which can be expressed as R = r, where R =
h
0 I4

i
and 0 is the 4 � 1 the null

vector and r =
h
0 0 1 0

i0
. The FOLS-test statistic and its limiting distribution

are given in the following corollary.

Corollary 3 De�ne the OLS F statistic

FOLS �
�
R ̂ � r

�08<:s2TR
"
TX
t=1

hth
0
t

#�1
R0

9=;
�1 �

R ̂ � r
�
=4: (15)

Consider model (9) when (10) holds. Assume that futg1t=1 satis�es Assumption 1. Then

FOLS
d! �0	�1R0

�
��2uR	

�1R0
	�1

R	�1�=4: (16)

Furthermore, if futg1t=1 is an i.i.d. sequence, then,

FOLS
d!
"

�1

�2=2

#0 "
M1 M0

2

M2 M3

#�1
R0

8<:R
"
M1 M0

2

M2 M3

#�1
R0

9=;
�1

�R
"
M1 M0

2

M2 M3

#�1 "
�1

�2=2

#
=4: (17)

Proof. See Appendix A.

Without the i.i.d. assumption for the error term, the limiting distribution in (16)
of FOLS would contain the nuisance parameters �2 and ��2u. However, adding the i.i.d.
assumption gives that �2 = ��2u holds and it is immediately seen that (17) is nuisance
parameter free.
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4 Monte Carlo experiments

4.1 Asymptotic critical values and empirical size of the parameter
constancy tests

In this subsection we present the critical values for the adjusted restricted test statistic,
Ta, in Corollary 2. For illustration and comparison we also present the critical values for
the corresponding test statistic based on a third-order Taylor expansion denoted T3.3

The critical values for the FOLS test statistic in Corollary 3 are presented as well. When
generating the asymptotic distributions, we let T = 1 000 000 to simulate a Brownian
motion W (r) on [0; 1], and the number of replications are set to 1 000 000, yielding the
asymptotic critical values. The �nite-sample critical values are obtained by simulating
data from the model yt = yt�1+ ut where ut � nid(0; 1) with desired sample sizes, and
thereafter the test statistics in (14) and (15) are calculated. This procedure is repeated
1 000 000 times, yielding the �nite-sample distributions of the tests. The results are
shown in Table 1.

Table 1: Critical values for the parameter constancy tests when the DGP is
a random walk with i.i.d. increments.

Probability that Ta Probability that T3 Probability that FOLS
is less than entry is less than entry is less than entry

T 0.01 0.05 0.10 0.01 0.05 0.10 0.90 0.95 0.99

50 -44.28 -32.82 -27.05 -119.64 -90.06 -75.56 4.61 5.38 7.12

100 -49.33 -35.70 -29.18 -138.48 -103.72 -86.31 4.42 5.10 6.51

250 -52.98 -37.69 -30.59 -159.44 -116.44 -95.79 4.30 4.91 6.24

500 -54.83 -38.72 -31.34 -168.48 -121.80 -99.730 4.28 4.88 6.16

1000 -54.83 -38.72 -31.34 -173.38 -124.70 -101.80 4.26 4.87 6.13

1 -55.62 -39.35 -31.87 -175.31 -126.50 -103.11 4.26 4.85 6.09

Notes: The probability shown at the head of each column is the area in the left-hand tail.

The results are based on 1 000 000 replications.

In Table 1 we see that the rejection of the null hypothesis requires large absolute
values when using the Ta or T3 tests, and the empirical distributions are heavily skewed
to the left. We also see that the critical values for the Ta test converge faster to the
asymptotic critical values than for the T3 test, but both tests and their critical values at
small sample sizes provide rather poor approximations of the asymptotic critical values.
For the FOLS test we see that it requires substantially higher observed values to reject
the null hypothesis than compared to the standard FOLS distribution.

3The critical values for T3 in Table ?? refer to the test statistic T3 = T ('̂�01 � 1), based on the
auxiliary regression yt = s�0t �

� + (�tst)
0'� + u�t , where s

�
t = (s

0
t; t

4)0, �� = (��1; :::; �
�
5), '

� = ('�01; :::;

'�04)
0, and u�t is an error term with the same properties as the error term in (1).
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In the case ut � nid(0; 1) we can ignore the estimation of the nuisance parameters �2
and ��2u and we have that Q̂2 = 0 holds for all sample sizes. However, allowing for some
more complex structure for the error term, we have to estimate Q̂2. It is well known
that classical unit root tests su¤er from rather large size distortions when the error
term follows an MA(1) process with moving average coe¢ cient close to plus/minus 1,
see e.g. Hall (1989) and Schwert (1989). We choose therefore to study the empirical size
of the Ta test in (14) when the error term is given by the MA(1) process ut = "t+ �"t�1
with "t � nid(0; 1) and � 2 f�0:8;�0:5; 0; 0:5; 0:8g. To see how this a¤ects the size of
the Ta test, we calculate the empirical size (estimated size) for T = 50; 100; 250 and 1
000, based on 1 000 000 replications. The empirical size, for a �xed sample size and
signi�cance level, is measured by calculating Tn � Q̂2 and seeing how many times it is
less than the critical value given in Table 1. To operationalize Q̂2 we use the Newey-
West estimator with lag truncation parameter l equal to 4 to estimate �2, and ��2u is
estimated, consistently, with T�1

P
û2t .

4 The results are presented in Table 2.

Table 2: The Empirical size of T1 when the DGP is a random walk with MA(1)
increments.

T=50 T=100 T=250 T=1000

UAT AT UAT AT UAT AT UAT AT

�

-0.8 0.845 0.695 0.982 0.976 0.994 0.992 0.981 0.946

-0.5 0.463 0.444 0.597 0.551 0.672 0.439 0.695 0.050

0.0 0.050 0.053 0.050 0.051 0.050 0.051 0.050 0.050

0.5 0.003 0.013 0.003 0.014 0.003 0.015 0.003 0.014

0.8 0.002 0.006 0.001 0.007 0.001 0.007 0.001 0.007

Notes: The nominal size is 5% and the results are based on 10 000 replications. UAT

refers to (14) without the adjusting term. AT abbreviates the test in (14) with the

adjusting term.

In Table 2 the empirical sizes reported in the �rst columns are based on the unad-
justed test (UAT) statistic, i.e. we don�t subtract Q̂2 from Q1. The results in the second
columns are based on Tn � Q̂2, i.e. the adjusted test (AT) statistic. From this table we
see that we reject the null hypothesis far too often for negative values of �, and also
that the test is undersized for positive values of �. Of course one hopes that AT statistic
would perform signi�cantly better than the UAT statistic, and with an estimated size
that is close to the nominal size. This is not the case, however, and the improvement
upon the empirical size is rather modest. It is clear that the adjustment is far from
satisfactory. These results are in line with the �ndings for the classical unit root tests
examined in Schwert (1989).

4The lag-truncation parameter in the Newey-West estimator is in our case chosen somewhat arbi-
trarily. Phillips (1987) shows that the Newey-West estimator can provide a consistent estimate of �2 in
an MA(1) process when l, T !1 such that l=T 1=4 ! 0 holds.
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The poor size properties for the adjusted test statistic are explained by the fact
that the adjustment factor Q̂2 is hardly correct in small samples. However, even for
T = 1000 the estimates of �2 and ��2 can be quite far away from their true values. This
problem could be solved, at least partially, by considering the approach of instrumental
variables as in Hall (1989) or by adding lags of the error term. In our case, the latter
would be equivalent to considering an LSTAR(p) model instead of the LSTAR(1) model.
Schwert (1989) reports that for the classical augmented Dickey-Fuller unit root tests
with 12 lags included and the corresponding t-type of test statistic, the size distortions
are eliminated. Even though the de�cit performance of the adjustment factor Q̂2,
Campbell and Perron (1991) argue that a false rejection of the kind reported above is
not necessarily bad, and in fact when � � �1, we essentially reject for a white noise
process. To this end, we also studied the size properties of the Ta test, however not
reported here, under the assumption that the error term was an AR(1) process. Also in
this case it is found that the �nite-sample performance of the adjustment quantity Q̂2 is
non-satisfactory, and the test becomes undersized. In general it seems that the Newey-
West estimator of �2 is hardly precise enough, and even though we in theory allow for
possibly weakly dependent heterogeneously distributed errors, we may in practice end
up in situations where the estimated size is either very high or low.

4.2 Power of the parameter constancy tests

We continue with investigation of the power properties of the parameter constancy
tests. The DGP is chosen to be an LSTAR(1) model with one transition, i.e. k = 1.
The experiments are conducted for the sample sizes T = 100 and T = 250, and we let ut
� nid(0; 1). The stability restrictions �11 2 (0; 1) and �11+�21 2 (0; 1) are imposed on
the skeleton of the LSTAR(1) to rule out non-stable or explosive trajectories under the
alternative hypothesis. Speci�cally, the autoregressive coe¢ cients are assigned values
according to the two scenarios

Scenario I: �11 2 f0:65; 0:70; 0:75; 0:80; 0:85g; �21 = 0:1;

Scenario II: �11 = 0:1; �21 2 f0:65; 0:70; 0:75; 0:80; 0:85g:

The remaining parameters are chosen to be the same in the two scenarios and are given
by

�10 = 0; �20 = 1; 
 2 f0:01; 1; 100g; �1 = �T=2:

In Scenario I the autoregressive parameter varies in the linear part while it is kept �xed
in the nonlinear part. Vice versa is exempli�ed in Scenario II. Speci�cally, the time series
realized by Scenario I displays autoregressive parameters that at the beginning of the
period are in a range of relatively high values. As time evolves, a nonlinear adjustment
towards a new level with an autoregressive parameter almost equal to the autoregressive
parameter at the beginning of the period takes place. That is, the di¤erence between the
two autoregressive parameters at the beginning and at the end of the period is about 0:1,
depending on if a complete transition takes place or not. By Scenario II we realize time
series with a low value of the autoregressive parameter at the beginning of the period,
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and here a nonlinear adjustment towards a new level implies that the autoregressive
parameter lie in a range of high values at the end of the period. The di¤erences in
the autoregressive parameters between the beginning and the end of the period range
now from about 0:55 to 0:75 (depending on if a complete transition takes place or not).
Scenario I represents less nonlinear time series because the impact of a nonlinear change
in dynamics is suppressed. Consequently, Scenario II reveals more nonlinear time
series since the nonlinear changes in the dynamics are more pronounced. The di¤erence
between the intercept in the linear and nonlinear part in the LSTAR(1) model is set
modest and equals 1. Furthermore, the in�uence of the speed of transition, occurring at
time T=2, between regimes by varying 
 is studied. With 
 = 0:01 the LSTAR model
is almost linear, and this is the only case when a complete transition does not take
place over the sample periods because F (t = T = 100; 
 = 0:01; �1 = �50) � 0:62 and
F (t = T = 250; 
 = 0:01; �1 = �125) � 0:78. Letting 
 = 1 implies a smooth transition
from one regime to another, and �nally letting 
 = 100 means that an instant single
structural break between two extreme regimes takes place, and the result is a threshold
autoregressive model.

One aim with Scenarios I and II is to illustrate the well-known fact that the tests
based on �rst-order Taylor approximation su¤er from low power when only a change in
the intercept is considered, see Luukkonen, Saikkonen, and Teräsvirta (1988). We expect
therefore that Scenario I will generate quite poor power results for the Ta test since the
main source of power for this test would come from a nonlinear change in the dynamics
�a feature that is suppressed in Scenario I. The opposite is expected in Scenario II �
here a more evident nonlinear change in the dynamics takes place and we would expect
more convincing power results for Ta. Furthermore, we note that by the design of the
experiments above we realize time series that are initially stable with autoregressive
parameter �11 and having an attractor at �10 = 0. A nonlinear adjustment towards a
new long-run equilibrium, i.e. the attractor �20=(1� �11� �21) 2 [4; 20],5 characterized
by the autoregressive parameter �11 + �21, takes place. Time series generated under
Scenarios I and II have the same attractors, but in the way the trajectories travel from
the one attractor to the other is di¤erent. Note also that the level of the long-run
equilibrium does not only depend on �20 but also on �11 and �21, a property that we
choose to call the level leverage e¤ect. We expect the leverage e¤ect to have negative
in�uence on the power for a test based on a �rst order approximation, because when
�11 + �12 is high, the di¤erence in levels between the beginning and the end of the
sample becomes large even for small values of �20. In addition, when �11 + �12 is close
to unity, we encounter a process that is close to a unit root process at the end of the
period, which also causes a reduction in power.

The power analysis is restricted to the tests Ta and T3 in order to illuminate the dif-
ference between a �rst and third-order Taylor approximation. Moreover, to our knowl-
edge, there are no similar parameter constancy tests (with a non-stationary null hy-
pothesis), but we note that the auxiliary regression equation in (9) nests the models
yt = a0 + a1yt�1 + ut and yt = a0 + a1yt�1 + a2t + ut, considered e.g. in Dickey and

5Assuming that a complete transition takes place.
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Fuller (1979) and Phillips and Perron (1988), and that their null hypotheses coincide
with ours. The unit root test based on the former model will be denoted the DF test,
and the test based on the latter model will henceforth be abbreviated to the PP test.
The power results for the tests under Scenario I are found in Tables 3 and 4, and for
Scenario II in Tables 5 and 6.

Table 3: Empirical power of the parameter constancy tests, the Dickey-Fuller test,
and the Phillips-Perron test. The DGP is an LSTAR(1) model under Scenario I.

T = 100 Ta DF PP T3
5% 10% 5% 10% 5% 10% 5% 10%

�11

0.65 0.534 0.697 0.999 0.999 0.981 0.997 0.108 0.203

0.70 0.414 0.583 0.987 0.998 0.912 0.975 0.087 0.159


 = 0:01 0.75 0.297 0.454 0.903 0.974 0.734 0.884 0.067 0.137

0.80 0.192 0.324 0.632 0.822 0.465 0.664 0.057 0.120

0.85 0.114 0.207 0.239 0.420 0.222 0.380 0.052 0.099

0.65 0.337 0.494 0.190 0.454 0.722 0.877 0.229 0.355

0.70 0.196 0.327 0.024 0.097 0.425 0.637 0.207 0.331


 = 1:00 0.75 0.084 0.164 0.001 0.005 0.158 0.303 0.200 0.320

0.80 0.020 0.048 0.000 0.000 0.028 0.071 0.182 0.310

0.85 0.003 0.008 0.000 0.000 0.001 0.002 0.163 0.275

0.65 0.323 0.483 0.185 0.447 0.702 0.871 0.301 0.368

0.70 0.187 0.317 0.023 0.090 0.409 0.622 0.223 0.340


 = 100 0.75 0.079 0.157 0.001 0.005 0.146 0.293 0.205 0.322

0.80 0.019 0.046 0.000 0.000 0.025 0.065 0.187 0.315

0.85 0.002 0.007 0.000 0.000 0.000 0.002 0.172 0.293

Notes: The nominal sizes of the tests are 5% and 10%. The results are based on 10 000

replications.

It is seen in Table 3 that the DF test performs uniformly the best among all tests
when 
 = 0:01. This is to be expected since the LSTAR model appears linear without
any evidence of a time trend or other pronounced nonlinearities, see panel (a) in Figure 1
(an LSTAR(1) model with 
= 0:01, �11= 0:7, and �21= 0:1). The power of the Ta and
T3 test statistics are modest because when the LSTAR model is nearly linear, the many
regressors come to no e¢ cient use and the tests are instead penalized. By this reasoning
it is clear why the power for T3 is lower than that for Ta which in turn is lower than
that for PP.
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Figure 1: Realizations of the LSTAR(1) models under Scenario I.

Table 4: Empirical power of the parameter constancy tests, the Dickey-Fuller test,
and the Phillips-Perron test. The DGP is an LSTAR(1) model under Scenario I.

T = 250 Ta DF PP T3
5% 10% 5% 10% 5% 10% 5% 10%

�11

0.65 0.992 0.998 1.000 1.000 1.000 1.000 0.410 0.568

0.70 0.971 0.990 1.000 1.000 1.000 1.000 0.324 0.473


= 0:01 0.75 0.912 0.961 1.000 1.000 1.000 1.000 0.248 0.378

0.80 0.766 0.877 0.976 0.997 0.998 1.000 0.171 0.295

0.85 0.512 0.680 0.291 0.531 0.862 0.949 0.119 0.210

0.65 0.933 0.971 1.000 1.000 1.000 1.000 0.652 0.788

0.70 0.793 0.894 0.875 0.991 0.999 1.000 0.596 0.731


= 1:00 0.75 0.477 0.656 0.072 0.356 0.899 0.977 0.526 0.675

0.80 0.100 0.208 0.000 0.000 0.222 0.444 0.488 0.648

0.85 0.007 0.001 0.000 0.000 0.000 0.001 0.433 0.600

0.65 0.930 0.970 1.000 1.000 1.000 1.000 0.654 0.780

0.70 0.787 0.890 0.874 0.991 0.999 1.000 0.593 0.737


= 100 0.75 0.472 0.648 0.070 0.356 0.896 0.976 0.529 0.695

0.80 0.099 0.203 0.000 0.000 0.217 0.440 0.485 0.649

0.85 0.006 0.001 0.000 0.000 0.000 0.002 0.429 0.610

Note: The nominal sizes of the tests are 5% and 10%. The results are based on 10 000

replications.
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Increasing the speed of transition to 
 = 1:00, we see a turn in ranking among the
test. The DF test is now inferior and its power is close to zero or equal to zero for
high values of �11. We see that the PP test still performs better than the Ta test. In
fact, the PP test has substantial power for low values of �11 which may be explained
by that the trajectories display rather linear time trends, see panel (b) in Figure 1 (an
LSTAR(1) model with 
= 1, �11 = 0:7, and �21 = 0:1). The presence of a possible
time trend and/or shift in levels also explains the remarkable drop in power for the DF
test. The non-satisfactory performance of the Ta test just con�rms the above stated
expectations under Scenario I. If a complete transition takes place the impact of the
level leverage e¤ect on the power for Ta, by increasing �11, without a clear nonlinear
change in dynamics is revealed. The T3 test is robust in the sense that it is quite
independent of the values of �11, and is in fact the only test that has power for high
values of �11. This can also be understood by inspection of panel (c) in Figure 1 (an
LSTAR(1) model with 
 = 1:00, �11 = 0:85, and �21 = 0:1), where the change in level
between the regimes at the beginning and the end of the sample period is about 20
units. To this end we note that T3 is the only test whose power is increasing in 
.

The same conclusions as with 
 = 1:00 hold for 
 = 100, and the power results for
all tests are hardly a¤ected by a more instantaneous transition.

We continue examining Scenario I with a larger sample size T = 250. From Table 4
we see that for �11 � 0:75 the power of the Ta increases to quite satisfactory levels,
and that the PP test has the highest power among all tests. Even though the sample
size is increased, we see that the impact of the level leverage e¤ect on the Ta test still
dominates, and as soon as a complete transition takes places the power for Ta is rapidly
decreasing in �11. The power for the T3 test for 
 � 1:00 is substantial and quite robust
against variations in �11. Once again it is the only test having reasonable power with
high values of �11.
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Table 5: Empirical power of the parameter constancy tests, the Dickey-Fuller test,
and the Phillips-Perron test. The DGP is an LSTAR(1) model under Scenario II.

T = 100 Ta DF PP T3
5% 10% 5% 10% 5% 10% 5% 10%

�21

0.65 0.970 0.989 1.000 1.000 1.000 1.000 0.307 0.450

0.70 0.965 0.988 1.000 1.000 1.000 1.000 0.285 0.442


 = 0:01 0.75 0.956 0.983 1.000 1.000 1.000 1.000 0.267 0.416

0.80 0.950 0.977 1.000 1.000 1.000 1.000 0.254 0.411

0.85 0.938 0.976 1.000 1.000 1.000 1.000 0.240 0.390

0.65 0.976 0.989 0.538 0.825 0.959 0.988 0.661 0.789

0.70 0.938 0.975 0.134 0.453 0.854 0.939 0.715 0.839


 = 1:00 0.75 0.833 0.912 0.007 0.034 0.559 0.755 0.785 0.883

0.80 0.489 0.636 0.000 0.000 0.133 0.290 0.865 0.936

0.85 0.071 0.125 0.000 0.000 0.001 0.005 0.917 0.964

0.65 0.970 0.983 0.519 0.817 0.959 0.988 0.667 0.807

0.70 0.932 0.967 0.123 0.341 0.828 0.932 0.729 0.851


 = 100 0.75 0.814 0.893 0.006 0.027 0.536 0.722 0.806 0.900

0.80 0.462 0.614 0.000 0.000 0.123 0.278 0.884 0.943

0.85 0.056 0.106 0.000 0.000 0.001 0.005 0.932 0.971

Note: The nominal sizes of the tests are 5% and 10%. The results are based on 10 000

replications.

From Table 5, illustrating Scenario II with T = 100, it is observed that for 
 = 0:01
the classical unit root tests still have better power due to the linear properties of the
LSTAR model. What is interesting is the positive change in power for the Ta test
compared to Table 3. It is obvious that the presence of more pronounced nonlinear
changes in dynamics result in an increase in power. For an example, the power in
the case (
 = 1:00; �11 = 0:7; �21 = 0:1) of Table 3 equals 0:196, whereas the power in
and the case (
 = 1:00; �11 = 0:1; �21 = 0:7) of Table 5 equals 0:938. The increase also
con�rms the expectations for Scenario II. In fact, it is the explanatory variable t�t�1
in the auxiliary regression (9) that accounts for the increase in power compared to
Scenario I. The power for the T3 test has also increased, but su¤ers still from loss in
power due to its ambiguity in modelling a relatively simple DGP. The power results
of unity for the DF and PP tests are also rather expected since the autoregressive
coe¢ cient never exceeds 0:63 during the whole sample (which should be compared to
that the autoregressive coe¢ cient Scenario I never exceeds 0:92, explaining why the
power for the DF and PP tests is lower in Table 3 than in Table 5).
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Table 6: Empirical power of the parameter constancy tests, the Dickey-Fuller test,
and the Phillips-Perron test. The DGP is an LSTAR(1) model under Scenario II.

T = 250 Ta DF PP T3
5% 10% 5% 10% 5% 10% 5% 10%

�21

0.65 1.000 1.000 1.000 1.000 1.000 1.000 0.918 0.964

0.70 1.000 1.000 1.000 1.000 1.000 1.000 0.913 0.957


 = 0:01 0.75 1.000 1.000 1.000 1.000 1.000 1.000 0.911 0.952

0.80 1.000 1.000 1.000 1.000 1.000 1.000 0.898 0.950

0.85 1.000 1.000 1.000 1.000 1.000 1.000 0.897 0.950

0.65 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.999

0.70 1.000 1.000 0.998 1.000 1.000 1.000 0.999 1.000


 = 1:00 0.75 1.000 1.000 0.527 0.896 0.998 1.000 1.000 1.000

0.80 0.983 0.996 0.000 0.001 0.754 0.906 1.000 1.000

0.85 0.142 0.285 0.000 0.000 0.002 0.016 1.000 1.000

0.65 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.999

0.70 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000


 = 100 0.75 1.000 1.000 0.529 0.897 0.998 1.000 1.000 1.000

0.80 0.980 0.994 0.000 0.009 0.740 0.890 1.000 1.000

0.85 0.130 0.265 0.000 0.000 0.002 0.018 1.000 1.000

Note: The nominal sizes of the tests are 5% and 10%. The results are based on 10 000

replications.

The bene�ts from including nonlinear regressors become clearer when studying the
cases 
 � 1:00. We see that the Ta test now performs uniformly better than the PP
and DF tests at all values of �21. This is plausible since none of the DF and PP tests
contains the regressor t�t�1 combined with the fact that a full transition takes place.
Furthermore, the power for Ta is decreasing with 
 and �21 which indicates the trade-o¤
between the fact that a distinct di¤erence in �11 and �21 is needed to gain power through
the term t�t�1, and the fact that the larger the di¤erence in �11 and �21 is, the more
pronounced the level leverage e¤ect will be. The domination of the latter is, however,
less evident than in Scenario I. Moreover, the opposite holds for the T3 test where the
power actually increases with 
 and �21. That is, with evident changes in levels and
dynamics, the advantages with a third-order Taylor expansion are illuminated.

The results when increasing the sample size under Scenario II are presented in Table
6. We see that the same conclusions can be drawn as from Table 5. However, we note
that the power for Ta is close to unity, except for models that are almost non-stable at
the end of the period, which holds independently of the value of 
. Moreover, the T3
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test exhibits a rather extraordinary robustness in power close to unity regardless of how

 and �21 are varied. Especially in a larger sample, the many regressors come into their
own and a test based on third-order Taylor approximation seems highly preferable.

5 Conclusions

In this paper we derive tests for parameter constancy in an �rst order LSTAR model
when the null hypothesis is a random walk (possibly with a drift). This means that
we relax the stationarity assumption made by Lin and Teräsvirta (1994) under the null
hypothesis in the LSTAR model. We argue that in many cases it can be di¢ cult to
distinguish if data have been generated by a nonlinear model with a smooth structural
break in parameters or a random walk. A non-stationary process, rather than a sta-
tionary autoregressive process, might in many cases be a more plausible null hypothesis
in an LSTAR(1) model.

To obtain our tests, and considerably simplify the testing procedures, we make a
Taylor approximation of the smooth transition function yielding an auxiliary model.
The inference about unit roots is then based on the OLS estimates from the auxiliary
regression model. Analytical expressions for the asymptotic distributions of the tests are
enabled by a very applicable Lemma, given and proved in the Mathematical appendix,
which generalizes many asymptotic results derived in Phillips (1987), Phillips and Perron
(1988), and Hamilton (1994) among others. The asymptotic results hold under a wide
class of error terms, and nuisance parameter free tests are presented. All tests are
invariant with respect to a possible drift in the random walk.

Despite the fact that the asymptotic results are robust against a wide class of errors,
the tests su¤er from rather large size distortions, as many of the conventional unit root
tests do, in �nite-samples. The size distortions are especially severe in the presence of
a moving average error structure.

The power of our test, Ta, based on a �rst-order approximation is compared to the
power of the Dickey and Fuller (DF) and Phillips and Perron (PP) tests, when the
DGP is an LSTAR(1) model. We conclude that, in general, the DF test is the best
test when a nearly linear LSTAR(1) model is considered. Studying LSTAR(1) models
with more pronounced nonlinearities, both the Ta and PP tests perform better than
the DF test. The main reason for this is that the DF test is based on a linear model
without a time trend. Moreover, under modest nonlinear changes in the intercept and
in the dynamics in the LSTAR(1) model, the power for the PP test is higher than for
our Ta test. However, with a modest change in the intercept and a more pronounced
nonlinear change in the dynamics, the Ta test performs better than the PP test. It is
also revealed that with a dynamic root that is close to unity at the end of the sample
period the impact of the level leverage e¤ects is large and both the Ta and PP tests
have modest power. As such, we also introduced a parameter constancy test based on
a third-order Taylor approximation which in contrary to the Ta and PP tests performs
very satisfactorily in the cases of clear nonlinear changes both in the intercept and in
the dynamics.
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Mathematical Appendix A

To be able to prove Theorem 1, we �rst introduce the following lemma.

Lemma 4 If futg1t=1 satis�es Assumption 1 and �t = �t�1 + ut, with P (�0 = 0) = 1,
then as T !1

T�(p+q=2+1)
TX
t=1

tp�qt�1
d! �q

Z 1

0
rpW (r)qdr; (18)

T�(p+1)
TX
t=1

tpu2t
a:s:! ��2u=(p+ 1); (19)

T�(v+1=2)
TX
t=1

tvut
d! �W (1)� v�

Z 1

0
rv�1W (r)dr; (20)

T�(p+1)
TX
t=1

tp�t�1ut

d! 1
2

�
�2W (1)2 � �2p

Z 1

0
rp�1W (r)2dr � ��2u

(p+ 1)

�
; (21)

where p; v � 0, q � 1, and a:s:! denotes convergence almost surely.

Note that Lemma 4 gives more general results than needed to prove Theorem 1. In
fact, it enables us to derive the limiting distribution for a parameter constancy test in a
�rst order LSTAR model based on any order of approximation of the logistic transition
function with an arbitrary number of transitions.

Proof of (18). De�ne the following cadlag function on D[0; 1],6

Wt(r; !) =
1

�
p
T
�[Tr] =

1

�
p
T
�t�1; r 2 [ t�1T ;

t
T ); t = 1; :::; T;

where [:] denotes the integer part of its argument. Using ([Tr] + 1)=T = t=T , we can
conclude that

(([Tr] + 1)=T )pWt(r)
q = (t=T )p

�
1

�
p
T
�t�1

�q
holds. The left-hand side now de�nes a continuous functional of Wt(r) on D[0; 1]. It
follows from the Functional Central Limit Theorem (FCLT), the Continuous Mapping
Theorem (CMT), and limT!1 (([Tr] + 1)=T )

p = rp, that

T�(p+q=2+1)
TX
t=1

tp�qt�1

= �qT�1
TX
t=1

(t=T )p
�

1p
T�
�t�1

�q
= �q

Z 1

0
(([Tr] + 1)=T )pWt(r)

qdr
d! �q

Z 1

0
rpW (r)qdr:

6See for instance Billingsley (1968) and Davidson (1994).
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Thus, (18) holds.

Proof of (19). Note that the left-hand side in (19) can be written as

T�(p+1)
TX
t=1

tpu2t = T
�1

TX
t=1

(t=T )p
�
u2t � �2t

�
+ T�1

TX
t=1

(t=T )p�2t ;

where �2t = E(u
2
t ). The condition supt2NE jutj

� <1, where � > 2 and (t=T )p 2 [0; 1]

implies that
P1
t=1

�
E(t=T )p

��u2t � �2t ��� =t��1=� <1 holds. It follows by the strong law

of large numbers for � -mixings (see, e.g. McLeish (1975), Theorem 2.10, and Herrndorf
(1984)), that T�1

PT
t=1(t=T )

p
�
u2t � �2t

� a:s:! 0. The second term on the right-hand side
converges to ��2u=(p+ 1) where ��

2
u = limT!1 T

�1PT
t=1 �

2
t .

Proof of (20). First, the case where v = 0 follows by Wooldridge and White (1988)

which says that T�1=2
PT
t=1 ut

d! �W (1) � N(0; �2). Furthermore, for some integer
v � 1 we use the result in (18) letting p = v � 1 and q = 1, to deduce that

T�(v+1=2)
TX
t=1

tv�1�t�1

= T�(v+1=2)
TX
t=1

0@ TX
i=1

iv�1 �
tX
j=1

jv�1

1Aut
= T�(v+1=2)

TX
t=1

ut

TX
i=1

iv�1 � T�(v+1=2)
TX
t=1

0@ tX
j=1

jv�1

1Aut:
Rewriting

PT
i=1 i

v�1 = T v=v +O(T v�1) and
Pt
j=1 j

v�1 = tv=v +O(tv�1), gives

T�(v+1=2)
TX
t=1

utt
v

= T�1=2
TX
t=1

ut � T�(v+1=2)v
TX
t=1

tv�1�t�1 +Op(T�1)

d! �W (1)� �v
Z 1

0
rv�1 W (r)dr;

and (20) is proved.

Proof of (21). This is a bit more problematic since we cannot de�ne any continuous
functional with bounded variation, almost surely, corresponding to the expression in
(21). We shall solve this problem by two di¤erent approaches.
Approach 1: De�ne a random polygon function on C[0; 1],

W 0
t(r; !) =

1

�
p
T
�[Tr](!) +

Tr � [Tr]
�
p
T

u[Tr]+1(!)

=
1

�
p
T
�t�1(!) +

1

�
p
T

ut(!)

1=T
r � t� 1

T
,
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which has continuous sample paths with bounded variation, almost surely. Note that
W 0
t(r; !) is linear on each of the subintervals r 2

�
t�1
T ;

t
T

�
and taking on the value �t=

p
T�

at the point t=T . Since W 0
t(r; !) has bounded variation, almost surely, we can de�ne

the Riemann Stieltjes integralZ 1

0
rpW 0

t(r)dW
0
t(r)

=
TX
t=1

Z t=T

(t�1)=T
rp
�

1

�
p
T
�t�1 +

1

�
p
T

ut
1=T

�
r � t� 1

T

��
dW 0

t(r)

=
TX
t=1

Z t=T

(t�1)=T

�
rp
�
�t�1 � (t� 1)ut2

�2

�
+ rp+1

ut
2T

�2

�
dr

= T�(p+1)
TX
t=1

�
tp�t�1ut
�2

+
tput

2

2�2

�
+Op(T�1); (22)

where we at the second equality used that dW 0
t(r) = (

p
Tut=�)dr, to obtain the result,

by direct integration, at the last line. Moreover, because the integral in (22) is de�ned in
a Riemann-Stieltjes sense, we use the rules for partial integration to obtain the following
result for the left-hand side in (22)Z 1

0
rpW 0

tdW
0
t(r) = 0:5

�
W 0
t(1)

2 � p
Z 1

0
rp�1W 0

t(r)
2dr

�
. (23)

Combining (22) and (23), making use of the FCLT, CMT, and the result in (19), we
deduce that

T�(p+1)
TX
t=1

tp�t�1ut

= �2=2

�
W 0
t(1)

2 � p
Z 1

0
rp�1W 02

t (r)dr

�
� T�(p+1)=2

TX
t=1

tput
2 +Op(T�1)

d! 0:5

�
�2W (1)2 � �2p

Z 1

0
rp�1W (r)2dr � ��2u=(p+ 1)

�
;

and (21) follows.
Approach 2: Above result could also be established without using the theory of
Riemann-Stieltjes integrals. To see this note that

T�(p+1)
TX
t=1

tp�1�2t�1

= T�(p+1)
TX
t=1

0@ TX
i=1

ip�1 �
tX
j=1

jp�1

1A (u2t + 2ut�t�1)
= T�(p+1)

TX
t=1

(u2t + 2ut�t�1)
TX
i=1

iv�1 � T�(p+1)
TX
t=1

0@ tX
j=1

jv�1

1A (u2t + 2ut�t�1):
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Rewriting
PT
i=1 i

p�1 = T p=p+O(T p�1) and
Pt
j=1 j

v�1 = tp=p+O(tp�1) gives

T�(p+1)
TX
t=1

tp�t�1ut

= T�1
TX
t=1

�t�1ut + 0:5T
�1

TX
t=1

u2t � 0:5T�(p+1)p
TX
t=1

tp�1�2t�1

�0:5T�(p+1)
TX
t=1

tpu2t +Op(T�1)

= 0:5�2Wt(1)
2 � 0:5T�(p+1)p

TX
t=1

tp�1�2t�1

�0:5T�(p+1)
TX
t=1

tpu2t +Op(T�1)

d! 0:5

�
�2W (1)2 � �2p

Z 1

0
rp�1W (r)2dr � ��2u=(p+ 1)

�
;

where we have used T�1
PT
t=1 �t�1ut = 0:5�2Wt(1)

2 � 0:5T�1
PT
t=1 u

2
t to obtain the

last equality, and thereafter the weak convergence follows by using the results derived
in (18) and (19). The claim in (21) follows once again.

Proof of Theorem 1. The limiting distribution is obtained by applying the results
in Lemma 4. To see this note that,


T ( ̂ � ) =
"
M̂1 M̂2

M̂0
2 M̂3

#�1 "
P̂1
P̂2

#
; (24)

where

M̂1 = [m̂1ij ]3�3 , and m̂1ij = T
�(i+j�1)

XT

t=1
t(i+j�2);

M̂2 = [m̂2ij ]3�2 , and m̂2ij = T
�(i+j�1=2)

TX
t=1

t(i+j�2)�t�1;

M̂3 = [m̂3ij ]2�2 , and m̂3ij = T
�(i+j)

TX
t=1

t(i+j�2)�2t�1;

P̂1 = [p̂1i]3�1 , and p̂1i = T
�(i�1=2)

TX
t=1

ti�1ut;

P̂2 = [p̂2i]2�1 , and p̂2i = T
�i

TX
t=1

ti�1�t�1ut:

It follows from Lemma 4 that

M̂1
d!M1; M̂2

d! �M2; M̂3
d! �2M3;

P̂1
d! ��1; P̂2

d! 0:5�2�2;
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hold, whereM1,M2,M3, �1, and �2, are de�ned in Theorem 1. Because (24) de�nes
a continuous function we conclude that (11) holds.

The consistency of the OLS estimators is an immediate consequence of (24).

Proof of (13) in Corollary 2. De�ne the matrices

D1 = diag
n
1 1 1 � �

o
;

~�12 =

"
0:5(W (1)2 � 1)

0:5(W (1)2 �
R
W 2 � 0:5)

#
:

We can now decompose 	�1� as

	�1� = �D�1
1

"
M1 M2

M0
2 M3

#�10B@" �1

~�2

#
+

264 0

#2=2�2

#2=4�2

375
1CA ;

where #2 = �2 � ��2u and 0 is a (3� 1) vector of zeros. It follows from Theorem 1 that

Tn = r1
T ( ̂ � )
d! r1	

�1�, and where we can write

r1	
�1� = r1

"
M1 M2

M0
2 M3

#�1 "
�1

~�2

#
+
#2

�2
r1

"
M1 M2

M0
2 M3

#�1 264 0

1=2

1=4

375 ; (25)

because r1�D�1
1 = r1 holds. We see that (25) involves the inversion of a 5� 5 matrix,

but the pre-multiplication with r1 implies that it is only the elements at the 4th row
of the inverse that are of interest. Hence, to proceed we use the rules for the inverse of
partioned matrices 

M1 M2

M0
2 M3

!�1
=

 
M�1
1 +M�1

1 M2H
�1M0

2M
�1
1 �M�1

1 M2H
�1

�H�1M0
2M

�1
1 H�1

!
; (26)

whereH =M3�M0
2M

�1
1 M2. Obviously we must �nd the expressions for�H�1M0

2M
�1
1

and H�1. Thus, we adopt the following notation

H =

"
H11 H12
H21 H22

#
;
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with elements

H11 =

Z
W 2 + 72

Z
W

Z
rW � 60

Z
W

Z
r2W + 360

Z
rW

Z
r2W

�9
�Z

W

�2
� 192

�Z
rW

�2
� 180

�Z
r2W

�2
;

H12 =

Z
rW 2 � 9

Z
W

Z
rW + 36

Z
W

Z
r2W � 30

Z
W

Z
r3W

�222
Z
rW

Z
r2W + 180

Z
rW

Z
r3W � 180

Z
r2W

Z
r3W

+36

�Z
rW

�2
+ 180

�Z
r2W

�2
;

H21 = H12;

H22 =

Z
r2W 2 + 72

Z
rW

Z
r2W � 60

Z
rW

Z
r3W + 360

Z
r2W

Z
r3W

�9
�Z

rW

�2
� 192

�Z
r2W

�2
� 180

�Z
r3W

�2
;

where for instance
R
W 2 is short for

R 1
0 W (r)

2dr. This implies that

H�1 =
1

D

"
H22 �H12
�H12 H11

#
=

"
H�
44 �H�

45

�H�
54 H�

55

#
;

where D = H11H22 �H2
12, H

�
44 = D

�1H22, H�
45 = H

�
54 = D

�1H12, and H�
55 = D

�1H11.
The sub-indices of the elements with asteriks denotes the actual position they have in
(26). Due to r1 we are only interested in H�

44 and H
�
45. For the same reason con-

sidering the 2 � 3 matrix �H�1M0
2M

�1
1 , we only need the result of the upper row

(corresponding to the 4th row in (26)), denoted (4; :). Hence, (�H�1M0
2M

�1
1 )(4;:) =h

H�
41 H�

42 H�
43

i
where

H�
41 = H�

44

�
9

Z
W � 36

Z
rW + 30

Z
r2W

�
+H�

45

�
�9
Z
rW + 36

Z
r2W + 30

Z
r3W

�
H�
42 = H�

44

�
�36

Z
W + 192

Z
rW � 180

Z
r2W

�
+H�

45

�
36

Z
rW � 192

Z
r2W + 180

Z
r3W

�
H�
43 = H�

44

�
30

Z
W � 180

Z
rW + 180

Z
r2W

�
+H�

45

�
�30

Z
rW + 180

Z
r2W � 180

Z
r3W

�
:
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This implies that the �rst term on the right-hand side of (25) is given by

r1

"
M1 M0

2

M2 M3

#�1 "
�1

~�2

#

= H�
41W (1) +H

�
42

�
W (1)�

Z
W

�
+H�

43

�
W (1)� 2

Z
rW

�
+H�

44

�
0:5(W (1)2 � 1)

�
�H�

45

�
0:5(W (1)2 �

Z
W 2 � 0:5)

�
� Q1(W (r));

and that the second term on the right-hand side of (25) equals

#2

�2
r1

"
M1 M0

2

M2 M3

#�1 264 0

0:5

0:25

375 = #2

2�2
(H�

44 � 0:5H�
45) � Q2(W (r);�2; ��2u):

Adding up Q1(W (r)) and Q2(W (r);�2; ��2u) we obtain the limiting distribution for Tn.
It is evident that only Q1 is nuisance parameter free, and the claim in (13) follows.

Moreover, to prove (14) note �rst that

T 2�44 = s2T r1

 

T

�XT

t=1
hth

0
t

��1

T

!
r01

p! ��2u
�2
r1

"
M1 M0

2

M2 M3

#�1
r01 =

��2u
�2
H�
44;

T 3�45 = s2T r1

 

T

�XT

t=1
hth

0
t

��1

T

!
r02

p! ��2u
�2
r1

"
M1 M0

2

M2 M3

#�1
r02 = �

��2u
�2
H�
45;

since s2T
p! ��2u holds under the null hypothesis and that the identities Tr1 = r1
T , and

T 2r2 = r2
T are valid. We conclude that,

T 2�44#
2

2s2T
+
T 3�45#

2

4s2T

p! #2

2�2
H�
44 �

#2

4�2
H�
45 = Q2;

implying that

Ta = Tn �
�
T 2�44#

2

2s2T
+
T 3�45#

2

4s2T

�
d! Q1:

Thus, (14) holds.

Proof of Corollary 3. De�ne ~
T=diag
n
T 1=2 T 5=2 T T 2

o
. Note that ~
TR = R
T

holds. It follows that
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"
TX
t=1

hth
0
t

#�1
R0

9=;
�1 �

R ̂ � r
�
=4

=
�
 ̂ � 

�0
R0~
T

8<:s2T ~
TR
"
TX
t=1

hth
0
t

#�1
R0~
T

9=;
�1

~
TR
�
 ̂ � 

�
=4

=
�
R
T

�
 ̂ � 

��08<:s2TR
T
"
TX
t=1

hth
0
t

#�1

TR

0

9=;
�1 �

R
T

�
 ̂ � 

��
=4:

24



Moreover, 
T ( ̂ �  )
d! 	�1� holds by Theorem 1, and s2T is an consistent estimate

to ��2u, so the Slutsky Theorem yields

FOLS
d!
�
R	�1�

�0 �
��2uR	

�1R0
	�1

R	�1�=4;

and thus, (16) holds.
Furthermore, assuming that futg1t=1 is an i.i.d. sequence implies that ��2u = �2.

De�ne D2 = diag
n
� � 1 1

o
. We obtain

R	�1� = D2R

"
M1 M0

2

M2 M3

#�1 "
�1

�2=2

#
; (27)

and

�2R	�1R0 = D2R

"
M1 M0

2

M2 M3

#�1
R0D2: (28)

Using (27) and (28) yields

FOLS
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R	�1�

�0 �
�2R	�1R0

	�1
R	�1�=4
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"
�1

�2=2

#0 "
M1 M0

2

M2 M3

#�1
�R0
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M1 M0

2

M2 M3

#�1
R

09=;
�R

"
M1 M0

2

M2 M3

#�1 "
�1

�2=2

#
=4:

Finally, since futg1t=1 is an i.i.d. sequence, �2 is nuisance parameter free. Thus, (17)
holds.
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