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Abstract

This paper deals with the question how to model health effects after
the cessation of a randomised controlled trial (RCT). Using clinical
trial data on severe congestive heart failure patients we illustrate how
survival beyond the cessation of a RCT can be predicted based on
parametric survival models. In the analysis we compare the predicted
survival and the resulting incremental cost-effectiveness ratio (ICER)
of different survival models with the actual survival/ICER. Our main
finding is that the results are highly sensitive to the choice of survival
model and that extensive sensitivity analysis in the CE analysis is
required. We also show that adding the true survival after the end of
the clinical study will underestimate the true variability.
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1 Introduction

Several economic evaluations of new pharmaceuticals are being conducted
alongside clinical trials where individual patient cost and health effect data
are available [1,2]. An advantage of using a controlled clinical trial as the
base for the economic evaluation is that the results from the clinical study are
of high internal validity showing whether a new therapy has an effect or not.
A drawback however is that the clinical study is of relatively low external
validity, i.e. it may not reflect the costs and health effects for patients in
routine care when the drug is out on the market.

A common and a very important methodological question in economic
evaluation studies based on clinical trials is how to predict health effects
after the end of the cessation of the clinical trial. E.g. if the economic
evaluation is based on a clinical survival study the goal of modelling is to
obtain an accurate estimate of the survival gain after the end of the clinical
study to be used in the economic evaluation. In general the modelled gain in
survival after the end of the clinical trial is much greater than the observed
gain stated in the clinical trial [3]. Thus the way of modelling can have major
consequences for the cost-effectiveness (CE) of assessed therapies.

In analysing the effect of a new treatment programme in health economic
studies, one would ideally like to carry out a study where patients are ran-
domly allocated to ”treatment” or "no treatment” alternatives in order to
study the causal effect of the programme on survival in clinical practice. Usu-
ally such data are not available at the time for the implementation of the new

technology. For example, for a newly registred drug often the only available



data comes from a randomized controlled trial. In randomised controlled tri-
als (RCTs), patients are commonly followed-up for a limited amount of time
which implies that one must model the survival after the end of the clinical
study. Such a modelling can be made either based on information within the
clinical study or information external to the clinical study. In Jonsson et al.
[1,4] external information is used and patients being alive at the end of follow
up is assumed to live according to actuarial data from national statistics. In
these studies the assumed expected survival time of 10 years is reached by
adding a constant survival time of 10 years for all patients being alive at the
end of the clinical trial. To account for that health effects will be discounted,
this is fulfilled by assuming that 5% of surviving patients after the cessation
of the clinical study dies each year over a period of 20 years [1,4].

Methods for predicting survival based on observed patient data in a
clinical trial can be characterised as parametric, semi-parametric and non-
parametric. For example, in Jonsson et al. [4] a Weibull model was used
in a sensitivity analysis to predict the expected conditional survival while
Raikou et al. [2] used a simulation model. However there are a number of
models that can be used for the purpose of predicting survial and a priori
there is no reason to prefer one model to the other. To evaluate the accuracy
of the model predictions one would ideally compare the predictions with the
actual survival. However by definition this is not possible since the reason
for modelling survival is the lack of survival data beyond the cessation of the
clinical trial.

When individual patient cost and health effect data become available,

this opens up for the possibility of analysing uncertainty due to sampling



variability. The ICER has been the main focus of interest recently in the
health economic literature and several methods have been presented dealing
with the problem of computing confidence interval for the ICER. It has been
shown that the Fieller’s and non-parametric bootstrap methods represent
most accurately the variablity of the ICER estimator [5]. An alternative pre-
sentation of the CE results is provided by the CE acceptability curve. The
CE acceptability curve produces the minimum significance level at which the
new therapy can be said to be cost-effective for different marginal willingness
to pay. When observed data in a clinical study is combined with modelling
after the cessation of the clinical trial it is unclear whether modelling satisfac-
tory represents the actual variability. There is an obvious risk that statistical
inference based on such combined data will generate a false picture of the
‘true’ variability and yield incorrect statistical information. For example if
survival after the end of the clinical trial is modelled by adding a constant
survival time, there is a risk that the actual variability in health effects are
underestimated.

The aim of this paper is to illustrate how survival beyond the cessation
of a clinical trial can be predicted based on different parametric survival
models. In the analysis we discriminate between the different suvival models
by the commonly used Likelihood Ratio (LR) test. We also compare the
predicted survival /ICER based on the different models with the actual sur-
vival/ICER. All the predictions are based on observed patient information
contained within a clinical trial. The aim is further to investigate whether
"pseudo” P-values and confidence intervals obtained from the combination

of individual patient data and econometric modelling represents the ”true”



P-values and confidence intervals.

2 Methods

Assume that a CE study is carried out alongside a clinical study where a new
therapy is compared with an existing standard therapy. Costs and health
effects (measured in survival) are collected from a clinical trial with a mean
follow up time equal to X. After the end of the clinical study it is assumed
that all patients convert to the new therapy. The new therapy is thus assessed
against the old therapy for a mean follow up equal to X. The clinical trial
showed a positive and significant effect on mortality, which means that there
will be a gain in life years within the follow up time of the clinical trial.
At the end of the clinical trial there are more patients alive in the active
treatment group compared with placebo and the question is whether there
will be further gains in survival after the cessation of the clinical trial when
all patients convert to the active treatment. How can information within the
clinical trial be used to predict the expected remaining survival for patients
being alive at the end of the follow up? This question is investigated by using

data according to below.

2.1 Data

The data are based on the Consensus trial [6] and a follow up study [7]. The
initial clinical study [6] compared enalapril with standard therapy in the

treatment of congestive heart failure patients. The mean follow up time in



the clinical study was 0.515 years and after study completion all patients were
offered enalapril therapy [7]. In the placebo group 67% began with enalapril,
while 88% continued with enalapril in the enalapril group. Individual patient
data on life years were available in the clinical study and whether they were
alive or not at the end of follow up. At the end of the clinical study 77 (out
of 127) patients were alive in the enalapril group while 58 (out of 126) were
alive in the placebo group. No comprehensive cost data were collected in
the clinical study. To be able to calculate ICERs individual cost data are
randomly selected from a study comparing bisoprolol with standard therapy
in heart failure [3]. Individual cost and health effect data are thus available
within the follow up time in the clinical study. The health economic question
is whether it is good value for money to implement the enalapril therapy
(treatment 1) added to the standard therapy instead of using the standard
therapy (treatment 0).

In this paper different modelling assumptions are made for patients being
alive at the end of the follow up. The outcome of the modelling is then
compared with the actual outcome presented in a 10-year follow up study
[7]. At the 10 year follow up 5 patients were still alive in the enalapril
treatment group while 1 patient was lost to follow up in the placebo group.
In our calculations we assume that the follow up study contains information
of the total survival after the end of the clinical study and that patients still
alive at the 10 year follow up dies immediately after that point in time. The
conditional mean survival time for patients alive at the end of follow up in
the clinical study were 941 and 774 days in the enalapril and placebo group

respectively. This difference can partly be explained by the fact that a higher



share of the surviving patients in the enalapril group used enalapril also after

the cessation of the clinical trial.

2.2 Modelling

Our data on survival time has some characteristics that are important in
selecting an estimation method. One characteristic is that the survival time
distribution usually is skewed in some way, which violates the ordinary least
squares assumption of normally distributed error terms. The survival time is
also by definition positive, while a normally distributed variable can take
both positive and negative values. Another characteristic is that a cer-
tain proportion of individuals have not reached the end-point of interest,
i.e. some individuals are still alive at the cessation of the clinical study,
which means that such individuals are right censored. This calls for the ap-
plication of duration data models that incorporate the above characteristics
[8]. The random variable T" is assumed to have a density function f(t) re-
flecting the probability of survival time having length ¢, and a distribution
function F(t) = fot f(s)ds = Pr(T < t) which defines the survival function
S(t) = Pr(T > t) =1— F(t). The survival function shows the probability
that the individual survives for at least ¢ periods. From the survival func-
tion one can define the hazard function A(t) = f(¢)/S(t), which shows the
mortality rate at time ¢ conditional on surviving to time ¢ (see Kiefer [9] and
Lancaster [10] for surveys of duration models).

In the results section we estimate four common parametric survival mod-

els, i.e. exponential, Weibull, lognormal and generalized gamma models [8].



These models are distributions for a non-negative random variable, with
hazard functions that display different behaviours; for example, the hazard
function for the exponential distribution is constant while the hazards for the
Weibull distribution are monotonically increasing or decreasing depending on
the shape parameter p [8]. The hazard function of the generalized gamma
model is very flexible allowing for a large number of shapes and the expo-
nential, Weibull, and lognormal models are special cases of the generalized
gamma model. Thus these models can be tested as null hypotheses against

the alternative generalized gamma model by use of a LR x? ~ test.

2.3 Methods for Assessing Uncertainty

2.3.1 A 95% upper bound confidence limit for the ICER

To compute an upper bound confidence limit for the ICER a non-parametric

bootstrap method and Fieller’s method are used.

Non-parametric bootstrap approach The bootstrap procedure is based

on the following steps [5,11]:

1. Given a chosen model with predicted conditional expected survival for
patients being alive at the end of the clinical trial, resample (with
replacement) ng cost and effect pairs from the control sample. Also,
resample (with replacement) n; cost and effect pairs from the new

treatment sample. Calculate the bootstrap cost and effect averages

. ~xb —xb b —*b kb —x*b ~xb —xb .
estimate fi¢, = Cy , lip, = Ey, ig, = C| and iy = E7, respectively.
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2. Calculate the bootstrap ICER estimate icer = g/l

3. Repeat step (1) and (2) B times. Following the recommendations by
Efron and Tibshirani [14], the number of bootstrap replications is set to
B = 1000 in the empirical application. This size of B is recommended
in order to make the variability of the boundaries of the confidence

intervals constructed from the bootstrap ”acceptably” low.

——xb
The B bootstrap replicates of the ICER statistic icer , b = 1,..., B,
are then arranged in increasing order. 5% of the bootstrap replicates in the
upper tail is then cut away. The remaining upper value is defined as the 95%

upper bound bootstrap percentile confidence limit for the ICER.

Fieller’s approach As shown by, for example, Briggs and Fenn [5], the

Fieller’s confidence limits for ICER = R are found by solving the second

order equation:

ﬁQAC + RzﬁQAE — 2Rﬁ2AEﬁAC
R2Var (fiag) + Var (iac) — 2RCov (iap, ac)

= 22/2, (1)

where zg denotes the 3 quantile from the standard normal density func-
tion, defined by ® (z3) = . For 8 = 0.9 the upper limit is a 95% upper
bound Fieller’s confidence limit for the ICER.

2.3.2 A CE acceptability curve

An informative presentation of the CE results is provided by the acceptability

curve (see e.g. Gray et al. [12]). CE acceptability curves can be defined in two



completely equivalent ways, either in terms of the ICER estimator (as first
proposed by van Hout et al. [13]) or the NB estimator, as discussed by Briggs
and Fenn [5] and formally shown by Lothgren and Zethraeus [14]. A monetary
net benefit (N B) measure is defined as NB (A\) = Aupg — piac, Where \ is the
maximum price society is willing to pay for one more unit of health effects
[15]. Based on the net benefit the decision rule is that the new treatment
should replace the control treatment if NB(A) > 0. The CE acceptability
curve is given by CEye. (\) = @ (NB (A) /UN\B(/\)) and can be estimated by
CEoce A\ =@ (%(A) /EN\B()\)) (using the sample estimates). One minus
the acceptability estimate corresponds to the minimum significance level at
which the null hypothesis (the new treatment is not cost-effective) can be
rejected. Thus, a CE acceptability curve is simply the mirror-image of a

P-value curve.

3 Results

Table 1 shows the actual and expected survival (discounted and undiscounted)
and costs with and without treatment based on different model alternatives.
According to the LR x? ~ test the Weibull and exponential model are re-
jected against the gamma model at the 1% level of significance but not the
lognormal model. However, the model that best predicts the actual sur-
vival (discounted or undiscounted) in the enalapril and placebo group is the
Weibull model. The exponential model systematically underestimates the
survival while the gamma and log normal models overestimates the survival.

The model that best predicts the difference in survival is the lognormal and

10



gamma models. The reason for this is that the lognormal and gamma models
overestimate the survival in the treatment and placebo group to about the
same extent. The Weibull model on the other hand overestimates the sur-
vival in the placebo group and underestimates the survival in the enalapril
group. Thus when comparing the ICERs (discounted or undiscounted) de-
rived from the models with the 'true’ one the lognormal and gamma models
are the most accurate ones (Table 2).

Note that we assume equal expected survival in the two treatment groups
in our modelling exercises. However, the actual observed data shows that the
conditional expected survival time is higher in the enalapril group (941) com-
pared with the placebo group (774). Thus even if we predicted the correct
conditional expected survival in the enalapril group and used that for the
placebo group the true difference in survival would be understated. Mod-
els that ’correctly’ overestimates the conditional expected survival in the
enalapril group gives survival differences equal to the true one.

In Figure 1a and 1b the survival curves based on actual data and models
are presented for the enalapril and placebo groups. Note that the survival
curve based on the observed data is above the modelled survival curves in
the beginning of the prediction period (for the first 1500 days) and therafter
comes close the modelled survival curves.

To account for the variability in the patient cost and health effect data
confidence interval can be computed. In Table 2 the upper 95% confidence
limit based on a non-parametric bootstrap percentile method and the Fieller’s
methods are presented. In all the modelling alternatives a constant survival

is added to all the patients being alive at the cessation of the clinical study.
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In the modelled (true) 941 and 774 days were added in the therapy and
placebo group respectively. This corresponds to the actual expected survival
in the two treatment groups observed in the follow up study [7]. In all the
other model alternatives (gamma, lognormal, weibull, and exponential) the
conditional expeced survival is obtained based on the specified model as de-
scribed above. These models predict the conditional expected survival based
on the patient data in the enalapril group, which is used for all surviving
patients at the end of the clinical trial. In the gamma model the predicted
conditional expected survival was 1669 days. The corresponding figures for
the lognormal, Weibull and exponential models are 1642 days, 901 days, and
546 days, respectively.

Ceteris paribus adding the true conditional expected survival for patients
being alive in the two treatment groups (Modelled (true)) will underestimate
the true variability, which is reflected by a lower upper confidence limit (47
081) compared to the 'true’ one of 64 881. The other model alternatives
either over or underestimates the true’ 95% confidence limit. The gamma
and lognormal models produce upper limits that slightly underestimate the
‘true’ one while the Weibull and exponential models overestimates the true
95% upper confidence limit.

These results are confirmed in Figure 2 that shows CE acceptability curves
based on the actual data and based on different modelling alternatives. Ce-
teris paribus adding the true conditional expected survival for patients being
alive in the two treatment groups underestimates the true variability which is
reflected by the CE acceptability curve (Modelled (true)) always being above

the true acceptability curve. The interpretation is that the new intervention
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is significanly cost-effective at a lower level compared to the actual true case.
The other model alternatives either over or underestimates the true CE ac-
ceptability curve. The gamma and lognormal models are just over the true
acceptability curve while the Weibull and exponential models underestimates
the true actual curve.

Based on the true data for all prices above 60 000 the null hypothesis
that the new intervention is not cost-effective can be rejected at the 5%
significance level. The price based on the Modelled (true) is 47 000. The
corresponding price based on the gamma and lognormal models are close to
the true value and are estimated at 59 000 and 60 000 respectively. The
corresponding price based on the Weibull and exponential models are 87
000 and 114 000 respectively. Alternatively given a price of 100 000 the true
significance level is 0.02 which can be compared with Modelled (true) of 0.00.
The gamma and lognormal models produce the same significance level of 0.02
while the Weibull model (P = 0.04) and the exponential model (P = 0.07)

overestimates the significance levels.

4 Summary and Conclusion

This paper investigates the question of predicting survival in CE studies
based on the information contained in a RCT with a given follow up. In the
paper we predict survival using different parametric survival models (general-
ized gamma, lognormal, Weibull, exponential), and which are tested against
each other by use of the likelihood ratio test. Furthermore the model predic-

tions are compared with the observed true survival.
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The Weibull model predicts the actual survival in the enalapril group
most accurately. However this was not confirmed by the statistical tests. The
used likelihood ratio test rejected the Weibull model (and the exponential)
but not the lognormal model against the gamma model. Thus for this partic-
ular data the gamma and lognormal models would be selected based on the
statistical tests but the Weibull model generated the most accurate survival
predictions. The observed difference in survival between the two therapies
are most accurately predicted by the log-normal and gamma models. The
reason for this is that these models overstate the conditional survival in the
enalapril group that reduces the underestimation of the actual difference in
survival that results from the Weibull model. A model that exactly predicts
the conditional actual survival in the enalapril group will underestimate the
true difference in survival.

Our conclusion is that statistical tests discriminating between models
used to predict survival out of sample should be complemented by an exten-
sive sensitivity analysis since it is not obvious that the model that performed
best in the statistical tests generates the best survival predictions.

Ceteris paribus adding a ’true’ conditional expected survival for all pa-
tients being alive at the end of a clinical trial underestimates the true vari-
ability which is reflected by a lower upper confidence limits compared to the
‘true’ one. This will also produce CE acceptability curves that underesti-
mates the minimum significance level at which the null hypothesis that a
new therapy is not cost-effective can be rejected. Also the analysis of un-
certainy requires extensive sensitivity analysis with respect to the chosen

model.
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To assess our model predictions we ideally need health effect data from
an extended RCT, i.e. a study that continues also after the cessation of the
initial RCT and where all patients are using enalapril in a controlled setting.
Our data are based on an open setting where the two patient groups are
offerred the new therapy. In what way does our data differ from the ideal
data? The data in this study reflect actual clinical practice (effectiveness)
and not a controlled situation (efficacy). It is a lower share of patients in the
initial placebo group that after the cessation of the clinical trial begins with
enalapril compared with the share of patients that continues with enalapril
in the enalapril group. In a controlled setting no difference in the share of
patients on the active therapy is expected. However, patients in this study
are in severe disease states and are probably in frequent contact with the
health care, which means that the clinical practice is rather close to the
controlled enviroment.

Instead of using a RCT as a base for the economic evaluation a controlled
trial conducted under more naturalistic circumstances can be used as a base
for the health economic evaluation. Such a study would be characterised
with both a high internal and external validity. However at the time for
the registration of a new chemical entity the ’only’ available information is
usually the one offerred by the RCT. The appropriateness of using a RCT
should be assessed and discussed and can vary depending on the patient

group under study.
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