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Abstract
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1 Introduction

It is well known that classical unit root tests based on linear models such as those
by Dickey and Fuller (1979), Phillips (1987), and Phillips and Perron (1988) among
others, lack power when the model speci�cation under the alternative hypothesis
is nonlinear. In particular, nonlinear models with structural changes in levels and
trends bias the classical tests towards nonrejection, as pointed out in Perron (1990).
In the light of that many time series exhibit jumps or more smooth structural changes
in levels and trends over time, the bias in the classical tests is particularly a non-
desirable property. As such, this has serious implications for applied work because
shocks will be treated as if they have a permanent e¤ect, when they in fact are
transitory.

Nowadays there are many ways of how to test the unit root hypothesis in a
nonlinear set-up. One approach is to test unit roots in time series models with a
change in levels and/or trends where the break point is known as in Perron (1989),
Perron (1990), and Lanne and Lütkepohl (2002) among others, or unknown as in
Perron and Vogelsang (1992), Zivot and Andrews (1992) and Banerjee, Lumsdaine,
and Stock (1992) as examples.

Most of the approaches in above quoted literature deal with a single break in
threshold type of models. In many cases this can be seen a too restrictive and
models with more smooth and multiple breaks in level and/or trends are called for.
Example of more general models can be found in Leybourne, Newbold, and Vougas
(1998) and Harvey and Mills (2002), where the changes are determined by a logistic
smooth transition function, or as in Saikkonen and Lütkepohl (2002) and Lanne,
Lütkepohl, and Saikkonen (2003) where the functional form of the changes is set
very �exible.

The approach that we are taking is similar to the one in Leybourne, Newbold,
and Vougas (1998) and Harvey and Mills (2002), i.e. the null hypothesis of a unit
root is tested against a model with a logistic smooth transition in the intercept and
in the time trend. We extend, however, their discussion by explicitly allowing for
a smooth transition in the dynamics. This extension is reasoned by e.g. that the
amplitude of the �uctuations after a trend shift may not be the same as before the
trend shift. As such, the models that we consider are the pth order logistic smooth
transition autoregressive model (LSTAR(p)) in Lin and Teräsvirta (1994), and also
an LSTAR(p) model where a time trend is included (LSTART(p)). We assume that
the transitions take place over time and that the speed of transition between regimes
may not be the same for all parameters.

We derive several unit root tests in the aforementioned LSTAR type of models
and analytical limiting distributions for the tests are presented. This is in contrary
to Leybourne, Newbold, and Vougas (1998) and Harvey and Mills (2002) because
the limiting distributions of their unit root tests are found by simulations. Their
testing methodology is also di¤erent and is based on NLS estimation, whereas our
tests are based on a Taylor approximation of the transition function which implies
that inference for unit roots is easily obtained by simple regressions.

It should be mentioned that there already exists several unit root tests in the
smooth transition autoregressive (STAR) framework, see for instance Enders and
Granger (1998), Bec, Salem, and Carrasco (2002), Eklund (2003a), Eklund (2003b),
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and Kapetanios, Shin, and Snell (2003), but they di¤er, however fundamentally since
they do not model the transition as a function of time, it is modelled as a function
of lagged dependent variables.

The rest of the paper is organized as follows. In Section 2 the models are pre-
sented. The procedure for testing a unit root against these nonlinear models is
described in Section 3. In Section 4 theoretical asymptotic properties of the tests
are presented. Finite-sample properties of the tests are investigated in Section 5.
Concluding remarks are given in Section 6. Thereafter two appendices follow where
proofs and additional tables can be found.

2 The models

In this section we introduce a new family of nonlinear models by adding a time trend
with its own individual transition function to the LSTAR model de�ned in Lin and
Teräsvirta (1994). Such a model could be de�ned as

yt = x
0
t�1 + x

0
tF�2 + ut; t = 1; :::; T; (1)

where xt = (1; yt�1; yt�2; :::; yt�p; t)0 is a (p+ 2)� 1 vector and p is an integer such
that p � 1, �1 = (�10; :::; �1;p+1)0 2 Rp+2, F =diag fF0; :::;Fp+1g is a (p+ 2)�(p+2)
matrix with transition functions on its diagonal, �2 = (�20; :::; �2;p+1)

0 2 Rp+2, and
ut is an error term whose properties are discussed later on. Suitable transition
functions could be de�ned according to

Fi(t;�i) =
1

1 + exp f�
i(t� ci)g
� 1
2
; i = 0; :::; p+ 1; (2)

where �i= (
i;ci) 2 R+ � (0; T ). Viewing Fi(t;�i) as a function of t, with �i
�xed, it is a bounded continuous non-decreasing transition function in t such that
Fi(t) : R+ ! [�1=2; 1=2]. The speci�cation in (2) allows for one transition over
time for each parameter, where 
i determines the speed of transitions from one
regime to another, and the parameter ci indicates which point in time the transition
is symmetric about.1 Viewing Fi(t; 
i; ci) as a function of 
i, with t and ci �xed,
lim
i!1 Fi(
i) = �0:5 if t 2 (ci; T ], and lim
i!1 Fi = 0:5 if t 2 [0; ci], meaning
that the transition functions make a jump (point of discontinuities) at ci. On the
other hand, lim
i!0 Fi(
i) = 0, and the resulting model in (1) is linear. Finally we
note that Fi(t; 
i;ci) 2 Cn (R+;R+ � (0; T )) where n is an integer such that n � 1.2

It is evident that the model in (1) with (2) is able to capture the properties
of quite complex nonlinear time series where e.g. the level, trend and dynamics
are initially at an equilibrium and as time evolves a nonlinear adjustment towards a
new long-run equilibrium takes place. Notice also that the model speci�cation in (1)
with (2) nests models such as the LSTAR(p) model introduced in Lin and Teräsvirta
(1994), the classical linear autoregressive models in Dickey and Fuller (1979) and

1The concern in this chapter is a smooth transition function with a single transition between
regimes. However, in the Appendix A it becomes clear that we could generalize the discussion
to transition functions with an arbitrary number of transitions, i.e. let F (t; 
; c1; :::; cm) = 1=(1 +

e�
�
m
i=1(t�ci))� 1=2, where 
 > 0, and c1 < ::: < cm for m � 1.

2Cn (R+;R+ � (0; T )) denotes the family of continuous functions that are di¤erentiable of order
n with respect to t 2 R+, 
i 2 R+, and ci 2 (0; T ).
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Figure 1: Typical realizations of an LSTAR(1) model (solid line) with a long-run
equilibrium (dashed line), a stationary AR(1) process (dash-dotted line), and a
random walk (dotted line).

Phillips and Perron (1988), many of the nonlinear models in Leybourne, Newbold,
and Vougas (1998) and Harvey and Mills (2002), and the threshold autoregressive
(TAR) model discussed in Chan and Tong (1986).

2.1 The LSTAR(p), LSTART(p), and LSTD(p) models

The discussion in this paper will focus, without loss of generality due to our testing
methodology in the next section, on a sub-class of models in (1) with (2), where all
transition functions are set equal. The generic transition function will hereafter be
denoted F and is de�ned as Fi in (2) but with all indices dropped. Within the sub-
class of models characterized by equal transition functions, there are three models
of particular interest. First, the LSTAR(p) model obtained by letting �1;p+1 =
�2;p+1 � 0 in (1). Second, a new model that we call the LSTART(p) model which
is characterized by the same nonlinearities as the LSTAR(p) model but in addition
accommodates a nonlinear trend. To obtain the LSTART(p) model, no restrictions
in (1) are imposed. Finally, another new model with a smooth transition only in
the deterministic part, i.e. in the intercept and the time trend, is considered. This
model is obtained by letting �21 = ::: = �2;p � 0 in (1), and is referred to as the
LSTD(p) model. Typical realizations of an LSTAR and LSTART model together
with their linear counterparts are depicted in Figures 1 and 2, respectively.

In the coming discussion it is shown that the power of conventional unit root
tests such as those by Dickey and Fuller (1979) and Phillips and Perron (1988)
have power close to zero under the nonlinear models illustrated in Figures 1 and 2.
In these �gures it is also seen that a random walk is a relevant null hypothesis in
LSTAR type of models, i.e. the trajectories of a random walk in small samples may
appear similarly to the trajectories generated by an LSTAR type of model.
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Figure 2: Typical realizations of an LSTART(1) model (solid line) with a long-run
equilibrium (dashed line), a trend stationary AR(1) process (dash-dotted line), and
a random walk with drift(dotted line).

3 Testing methodology

In this section we derive several testing equations that serve as devices for the
inference about unit roots in the LSTAR, LSTART and LSTD models proposed
above. To proceed it is convenient to separate the cases p = 1 and p � 2. When p =
1, the testing equations are called nonlinear Dickey-Fuller (NDF) testing equations.
Letting p � 2, the resulting testing equations are abbreviated to the nonlinear
augmented Dickey-Fuller (NADF) testing equations, as well as nonlinear partially
augmented Dickey-Fuller (NPADF) testing equations.

3.1 The NDF testing equations

Assuming that p = 1 we want to test the null hypothesis of a random walk without
drift against the LSTAR(1) model. This is reasoned by that both models lack the
property of a time trend. Furthermore, we also want to test the null hypothesis of a
random walk with drift against the LSTART(1) and the LSTD(1) models. As such,
both the null and the alternative hypotheses display a trend, but are fundamentally
di¤erent since in the former case the trend is stochastic and in the latter case it
is nonlinear and deterministic. Testing the unit root hypothesis in the LSTAR(1),
LSTART(1), and LSTD(1) models is formalized as follows

H01 : yt = yt�1 + ut;

Ha1 : yt = �10 + �11yt�1 + (�20 + �21yt�1)F (t;�) + ut;

H0m : yt = �10 + yt�1 + ut; m = 2; 3;

Ha2 : yt = �10 + �11yt�1 + �12t+ (�20 + �21yt�1 + �22t)F (t;�) + ut;

Ha3 : yt = �10 + �11yt�1 + �12t+ (�20 + �22t)F (t;�) + ut:
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The implementation of these three tests is straightforward in the sense that for
m = 1; 2; 3 the models under the alternative hypotheses, Ham, nest the models
under the null hypotheses, H0m. It is evident that these tests can be conducted by
imposing the parameter restrictions


 = 0; �10 = 0; �11 = 1; (3)

on the LSTAR(1) model represented by Ha1 to obtain the null hypothesis H01, and
imposing the restrictions


 = 0; �10 2 R; �11 = 1; �12 = 0; (4)

on the LSTART(1) and the LSTD(1) models represented by Ha2 and Ha3, re-
spectively, to deduce the null hypotheses H02 and H03. However, it is known
that letting 
 = 0 leads to an identi�cation problem under the null hypotheses.
Following Luukkonen, Saikkonen, and Teräsvirta (1988) we remedy this problem
by a third-order Taylor expansion of 
 around 0 in F . This is feasible because
F 2 C4[R+;R+ � (0; T )], and since F is an odd function we especially note that
@F=@
j
=0 6= 0 and @3F=@
3j
=0 6= 0 in an open interval (�"; "), for " > 0. The
motivation of a third-order Taylor approximation, rather than a �rst, is mainly the
robustness in power to a wider class of DGP�s under the alternative hypotheses.
As far as the LSTAR model is concerned, it is well known that a �rst-order Taylor
approximation results in low power if the transition only takes place in the inter-
cept, see Luukkonen, Saikkonen, and Teräsvirta (1988) and the discussion in He and
Sandberg (2005a). Similar arguments hold for the LSTART and LSTD models and a
third-order approximation is in many cases strongly preferable. Thus, a third-order
Taylor approximation of the transition function is given by

T3(t; 
; c) = 
(t� c)=4 + 
3(t� c)3=48 + r(
); (5)

where r (
) is a remainder such that r (0) = 0. Substituting (5) into the models in
Ha1, Ha2, and Ha3, and merging terms yields the auxiliary regression equations3

Haux
a1 : yt = s

0
1t�1 + (yt�1s1t)

0'1 + u
�
t ; (6)

Haux
a2 : yt = s

0
2t�2 + (yt�1s1t)

0'2 + u
�
t ;

Haux
a3 : yt = s

0
2t�3 + yt�1'30 + u

�
t ;

where s1t = (1; t; t2; t3)0, �1 = (�10; :::; �13)0, '1 = ('10; :::; '13)
0, u�t is an error term

adjusted with respect to the Taylor expansions such that u�t = ut holds whenever 
 =
0, s2t = (1; t; :::; t4)0, �2 = (�20; :::; �24)0, '2 = ('20; :::; '23)

0, and �3 = (�30; :::; �34)0.
The corresponding auxiliary null hypotheses are given by

Haux
01 : �1i = 0 8i; '10 = 1, '1j = 0; j � 1; (7)

Haux
02 : �20 2 R; �2i = 0; i � 1; '20 = 1; '2j = 0 j � 1;

Haux
03 : �30 2 R; �3i = 0; i � 1; '30 = 1:

3Relaxing the assumption that all transitions are set equal in the transition function (2) will not
change the set of explanatory variables in Haux

a1 , Haux
a2 , and Haux

a3 . However, the induced parameters
in the auxiliary regression will not be the same in terms of the original parameters in the models
in Ha1, Ha2, and Ha3.
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It should be pointed out that the auxiliary regression model for the LSTD(1) model
given by Haux

a3 is the same type of regression model as in Ouliaris, Park, and Phillips
(1989), but in addition they allow for a trend of arbitrary order. Applying the same
order of the time trends, (i.e. trends up to the fourth-order) we note that their null
hypothesis would correspond to our null hypothesis Haux

03 but where the restrictions
on �31; :::; �33 are relaxed. In this context the null hypothesis is a random walk where
the drift is characterized by a third order polynomial in t, and with implications that
are to be stressed later on.

To proceed, the auxiliary null hypotheses Haux
02 and Haux

03 imply that the data
generating processes (DGP�s) are random walks with drift. This leads to problems
with multicollinearity in large samples since yt�1 is then asymptotically equivalent
to t�1, an explanatory variable already included in the regression equations in Haux

a2

and Haux
a3 . We avoid this problem by the transformation �t � yt��m0t for m = 2; 3

and where �m0t = EHaux
0m
[yt] = �10t, see e.g. Sims, Stock, and Watson (1990),

Hamilton (1994), and He and Sandberg (2005a) for details. These transformations
give rise to the new set of auxiliary regression equations

~Haux
a2 : yt = s

0
2t�

�
2 +

�
�t�1s1t

�0
'2 + u

�
t ; (8)

~Haux
a3 : yt = s

0
2t�

�
3 + �t�1'30 + u

�
t ; (9)

where ��2 = (�
�
20; :::; �

�
24)

0, �t�1 = yt�1��10(t�1), and ��3 = (��30; :::; ��34)0. The null
hypotheses Haux

a2 and Haux
a3 transform further and yield

~Haux
02 : ��21 2 R; ��2i = 0; i 6= 1; '20 = 1; '2j = 0; j � 1; (10)
~Haux
03 : ��31 2 R; ��3i = 0; i 6= 1; '30 = 1: (11)

It is now clear that imposing the parameter restrictions given in (7), (10), and (11)
on the corresponding auxiliary regression equations (6), (8) and (9), respectively,
the DGP�s yt = yt�1 + ut for m = 1, and �t = �t�1 + ut for m = 2; 3, are obtained.
In other words, we end up with a random walk without a drift for all cases with
the same error term as in (1). The inference about unit roots in the LSTAR(1),
LSTART(1), and LSTD(1) models is now based on the NDF testing equations given
in Haux

a1 , ~H
aux
a2 , and ~Haux

a3 , respectively.

3.2 The NADF testing equations

Assuming that p � 2 means that the LSTAR(p), LSTART(p) and LSTD(p) models
are in focus. In these augmented models we shall test for a single unit root. The
desired testing situations is summarized as follows

Ha
01 : (1�

pX
i=1

�1iL
i)yt = ut;

Ha
a1 : yt = �10 + �11yt�1 + :::+ �1;pyt�p

+(�20 + �21yt�1 + :::+ �2;pyt�p)F (t;�) + ut;
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Ha
0m : (1�

pX
i=1

�1iL
i)yt = �10 + ut; m = 2; 3;

Ha
a2 : yt = �10 + �11yt�1 + :::+ �1;pyt�p + �1;p+1t

+(�20 + �21yt�1 + :::+ �2;pyt�p + �2;p+1t)F (t;�) + ut;

Ha
a3 : yt = �10 + �11yt�1 + :::+ �1;pyt�p + �1;p+1t

+(�20 + �2;p+1t)F (t;�) + ut;

where L denotes the lag operator. As before, the models under the alternative nest
the models under the null hypotheses and the desirable tests could be carried out
by imposing the restrictions 
 = 0 and �10 = 0 on Ha

a1, and 
 = 0 and �10 2 R
on Ha

a2 and Ha
a3, respectively. In addition, we assume, for all m, that fytg1t=1

contains a single unit root under the null hypothesis meaning that the characteristic
polynomial c(z) = 1 �

Pp
i=1 �1iz

i = 0 has a single unit root and all other roots lie
outside the unit circle. Furthermore, the restriction 
 = 0 implies the same kind
of identi�cation problem that was mentioned in Section 3.1, and is circumvented in
the same way. In other words, applying (5) to the models represented in Ha

a1, H
a
a2,

and Ha
a3, respectively, yields the augmented auxiliary regression equations

Ha;aux
a1 : yt = s

0
1t�

a
1 + (s1t 
 y�p)

0'a1 + u
�
t ;

Ha;aux
a2 : yt = s

0
2t�

a
2 + (s1t 
 y�p)

0'a2 + u
�
t ;

Ha;aux
a3 : yt = s

0
2t�

a
3 + y�p'

a
3 + u

�
t ;

where �a1 = (�
a
10; :::; �

a
13)

0, y�p = (yt�1; :::; yt�p)
0 is a p�1 vector, 'a1 = ('a010; :::;'a013)0

and 'a1n =
�
'a1n1; :::; '

a
1np

�0 where n = 0; :::; 3, u�t is an error term adjusted with
respect to the Taylor expansions such that u�t = ut holds whenever 
 = 0, �a2 =
(�a20; :::; �

a
24)

0, 'a2 = ('a020; :::;'
a0
23)

0 and 'a2n =
�
'a2n1; :::; '

a
2np

�0 where n = 0; :::; 3,

�a3 = (�
a
30; :::; �

a
34)

0, and 'a3 =
�
'a301; :::; '

a
30p

�0.
Letting �yt = yt� yt�1, more convenient representations of the auxiliary regres-

sion equations above are found as follows.

Lemma 1 (i) Assuming p � 2, then the models in Ha;aux
a1 and Ha;aux

a2 can be rep-
resented by

yt = s01t�
a
1 + (yt�1s1t)

0�a1 + (s1t 
�yt)
0 �a1 + u

�
t ; (12)

yt = s02t�
a
2 + (yt�1s2t)

0�a2 + (s1t 
�yt)
0 �a2 + u

�
t ; (13)

where �am = (�
a
m0; :::; �

a
m3)

0, �yt = (�yt�1; :::;�yt�p+1)0 is a (p�1)�1 vector, �am =
(�a0m0; :::; �

a0
m3)

0 with �amn = (�
a
mn1; �

a
mn2; :::; �

a
mn;p�1)

0 where n = 0; :::; 3. Furthermore,
the parameter vectors �am and �am are de�ned through the parameter vector 'am in
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Ha;aux
a1 and Ha;aux

a2 by

�amn =

pX
q=1

'amnq;

�amn1 = �
pX
q=2

'amnq;

�amn2 = �
pX
q=3

'amnq;

...

�amn;p�1 = �'amnp:

(ii) Assuming p � 2, then the model in Ha;aux
a3 can be represented by

yt = s
0
2t�

a
3 + yt�1�

a
30 +�y

0
t�
a
3 + u

�
t ; (14)

where �a3 =
�
�a301; �

a
302; :::; �

a
30;p�1

�
. Moreover, �a30 and the parameter vector �

a
3 are

de�ned through the parameter vector 'a3 in H
a;aux
a3 by

�a30 =

pX
q=1

'a30q;

�a301 = �
pX
q=2

'a30q;

�a302 = �
pX
q=3

'a30q;

...

�a30;p�1 = �'a30p:

Proof. See Appendix A.
In Lemma 1 it is seen that the two �rst terms on the right-hand sides of (12)-

(14) are the same set of explanatory variables as in the case p = 1. The augmented
auxiliary regression equations are therefore obtained by adding lagged di¤erences of
the dependent variable multiplied by time trends up to order three to the auxiliary
regression equations in Haux

a1 , H
aux
a2 , and H

aux
a3 , respectively. That the characteristic

polynomial c(z) = 1 �
Pp
i=1 �1iz

i = 0 only contains a single unit root corresponds
now to �am0 = 1 and that the roots of c(z) = 1 �

Pp�1
q=1 �

a
m0qz

q = 0 lie outside the
unit circle. The null hypotheses can be expressed as

Ha;aux
01 : �a1i = 0 8i; �a10 = 1; �a1j = 0; j � 1;

�a10q 2 R; �a1nq = 0; n � 1; q = 1; :::; p� 1;
(15)

Ha;aux
02 : �a20 2 R; �a2i = 0; i � 1; �a20 = 1; �a2j = 0; j � 1;

�a20q 2 R; �a2nq = 0; n � 1; q = 1; :::; p� 1;
Ha;aux
03 : �a30 2 R; �a3i = 0; i � 1; �a30 = 1;

�a30q 2 R; q = 1; :::; p� 1:
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Imposing the restrictions in Ha;aux
01 , Ha;aux

02 , and Ha;aux
03 on (12), 13 and (14), respec-

tively, yields 0@1� p�1X
q=1

�a10qL
q

1A�yt = ut;0@1� p�1X
q=1

�am0qL
q

1A�yt = �am0 + ut; m = 2; 3:

Because the roots of c(z) = 1 �
Pp�1
q=1 �

a
m0qz

q = 0 fall outside the unit circle, it
follows that

Ha;aux
01 : �yt = vt;

Ha;aux
0m : �yt = �m + vt; m = 2; 3;

where vt =
�
1� �am01L� �am02L2 � ::::� �am0;p�1Lp�1

��1
ut and �m = �am0=(1 �

�am01��am02�::::��am0;p�1). Form = 2; 3, the models underHa;aux
0m are random walks

with drift, and again we encounter a problem with multicollinearity in the auxiliary
regression equations (13) and (14). The problem is circumvented by de�ning �t �
yt � �mt and ��t � �yt � �m where �mt = EHa;aux

0m
[yt] and �m = EHa;aux

0m
[�yt].

These transformations imply that (13) and (14) can be expressed as

~Ha;aux
a2 : yt = s

0
2t�

a�
2 + (�t�1s1t)

0�a2 + (s1t 
��t)
0 �a2 + u

�
t ; (16)

~Ha;aux
a3 : yt = s

0
2t�

a�
3 + �t�1�

a
30 +��

0
t�
a
3 + u

�
t ; (17)

where �a�2 = (�a�20; :::; �
a�
24)

0, �a�3 = (�a�30; :::; �
a�
34)

0, and ��t =
�
��t�1; :::��t�p+1

�0.
The null hypotheses transform to

~Ha;aux
02 : �a�21 2 R; �a�2i = 0; i 6= 1; �a20 = 1; �a2j = 0; j � 1;

�a20q 2 R; �a2nq = 0; n � 1; q = 1; :::; p� 1;
(18)

~Ha;aux
03 : �a�31 2 R; �a�3i = 0; i 6= 0; �a30 = 1;

�a30q 2 R; q = 1; :::; p� 1:
(19)

Applying the parameter restrictions (15), (18), and (19) to (12), (16), and (17),
respectively, a random walk without drift for all m is obtained. Speci�cally, m = 1

implies yt = yt�1+vt, and m = 2; 3 gives that �t = �t�1+vt. The di¤erence between
the random walks derived in this section and the random walks in Section 3.1 is that
fvtg de�nes a sequence of serially correlated errors, whereas futg presumably is an
i.i.d. sequence. To this end, notice that the inference about unit roots for the models
in Ha

a1, H
a
a2, and H

a
a3 is now based on the NADF testing equations in H

a;aux
a1 , ~Ha;aux

a2 ,
and ~Ha;aux

a3 , respectively.

3.3 The NPADF testing equations

The NADF testing equations presented above contain rather many regressors and
increase rapidly, especially form = 1; 2, with p. It is therefore interesting to consider
partially augmented testing equations. For m = 1; 2, obvious choices are to consider
the following NPADF testing equations

Hpa;aux
a1 : yt = s

0
1t�

pa
1 + (yt�1s1t)

0�pa1 +�y
0
t�
pa
1 + u

�
t ; (20)

~Hpa;aux
a2 : yt = s

0
2t�

pa�
2 + (�t�1s1t)

0�pa2 +��
0
t�
pa
2 + u

�
t ; (21)
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where �pa1 = (�pa10; :::; �
pa
13)

0, �pa�2 = (�pa�20 ; :::; �
pa�
24 )

0, �pam = (�pam0; :::; �
pa
m3)

0, �pam =

(�pam01; �
pa
m02; :::; �

pa
m0;p�1)

0, and u�t is an error term where u�t = ut holds when 
 = 0.
By (20) and (21) we keep the �rst two parts on the right-hand side of (12) and (16)
(i.e. keeping the same set of regressors that are obtained in the case p = 1), but
all terms with lagged di¤erences of the dependent variables that are multiplied by
a time trend are excluded. Using this approach, the number of reduced regressors
equals 3(p � 1). It is also evident that with this choice of NPADF testing equa-
tions, the equation in (17) quali�es both as a NADF and NPADF testing equation.
Furthermore, the relevant null hypotheses are given by

Hpa;aux
01 : �pa1i = 0 8i; �pa10 = 1; �

pa
1j = 0; j � 1;

�pa10q 2 R; q = 1; :::; p� 1;
(22)

~Hpa;aux
02 : �pa�21 2 R; �pa�2i = 0; i 6= 1; �pa20 = 1; �

pa
2j = 0; j � 1;

�pa20q 2 R; q = 1; :::; p� 1:
(23)

Imposing the restrictions in (20) and (21) on (22) and (23), respectively, we obtain
the same DGP�s under the null hypotheses as in Section 3.2, i.e. yt = yt�1 + vt and
�t = �t�1 + vt, respectively.

4 The NDF, NADF, and NPADF unit root tests

In this section several unit root tests based on the NDF, NADF, and NPADF testing
equations in the previous section are derived. The unit root tests will therefore be
denoted as the NDF, NADF, and NPADF unit root tests.

All theoretical results presented below are derived under the assumption that the
errors ut in (1) are i.i.d. yielding limiting distributions for the test statistics that are
nuisance parameter free (or that the nuisance parameters are trivially eliminated).
Although, similar results can be established under the assumption that the error
term in (1) is a strong mixing, the inference will be a¤ected by nuisance parameters
depending on the mixing assumption, see e.g. Phillips (1987), Phillips and Perron
(1988), and He and Sandberg (2005a). As a remark on notation in the following the-

orems and corollaries, d! and
p! denote convergence in distribution and probability,

respectively, and B(r) denotes a standard Brownian motion de�ned on [0; 1].

Assumption 1 Let futg1t=1 be an i.i.d. sequence of random variables de�ned on a
probability space (
;F ;P) such that E(ut) = 0; E(u2t ) = �2u, and E(u

4
t ) < 1 hold

for all t.

Theorem 2 Consider models (6), (8), and (9) when (7), (10), and (11) hold,
respectively. Furthermore, assume that futg1t=1 ful�lls Assumption 1. Then, for
m = 1; 2; 3,


m1( ̂m � m)
d! 	�1

m �m; (24)

and
 ̂m � m

p! 0;

where


11 = diagfT1g; T1 =
h
T 1=2 T 3=2 T 5=2 T 7=2 T T 2 T 3 T 4

i
;


21 = diagfT2g; T2 =
h
T 1=2 T 3=2 T 5=2 T 7=2 T 9=2 T T 2 T 3 T 4

i
;


31 = diagfT3g; T3 =
h
T 1=2 T 3=2 T 5=2 T 7=2 T 9=2 T

i
;

11



and  ̂1 =
�
�̂
0
1; '̂

0
1

�0
,  ̂2 =

�
�̂
�0
2 ; '̂

0
2

�0
, and  ̂3 =

�
�̂
�0
3 ; '̂30

�0
are the least square

estimators of  1 =
�
�01;'

0
1

�0,  2 = ���02 ;'02�0, and  3 = ���03 ; '30�0 in (6), (8), and
(9), respectively. Moreover, in (24),

	m=

"
Am �uBm
�uB

0
m �2uCm

#
; �m =

"
�uDm

�2uEm

#
;

where
A1 = [aij ]4�4 ; B1 = [bij ]4�4 ; C1 = [cij ]4�4 ; D1 = [di]4�1 ; E1 = [ei]4�1 ;

A2 = [aij ]5�5 ; B2 = [bij ]5�4 ; C2 = C1; D2 = [di]5�1 ; E2 = E1;

A3 = A2; B3 = [bij ]5�1 ; C3 = [cij ]1�1 ; D3 = D2; E3 = [ei]1�1 ;

with

aij = 1=(i+ j � 1);

bij =

Z 1

0
ri+j�2B(r)dr;

cij =

Z 1

0
ri+j�2B(r)2dr;

di = B(1)� (i� 1)
Z 1

0
ri�2B(r)dr;

ei =

�
B(1)2 � (i� 1)

Z 1

0
ri�2B(r)2dr � 1=i

�
=2:

Proof. See Appendix A.
The joint limiting distributions in (24) contain the nuisance parameter �u. How-

ever, it is clear that the sub-matrices Am, Bm, Cm, Dm, and Em are nuisance
parameter free.

Corollary 3 (NDF tests) Suppose that the conditions of Theorem 2 hold. De�ne
the test statistic

 m � T ('̂m0 � 1); m = 1; 2; 3:

Then,

 m
d! rm ~	

�1
m
~�m; (25)

where r1 = [r1i]1�8,r2 = [r2i]1�9,and r3 = [r3i]1�6, with elements de�ned as r15 =
r26 = r36 = 1 and zero otherwise. Moreover, in (25),

~	m =

"
Am Bm
B
0
m Cm

#
; ~�m =

"
Dm

Em

#
:

Proof. See Appendix A.

Corollary 4 (NDF t-type of tests) Suppose that the conditions of Theorem 2 hold.
De�ne the t-test statistic

tm � ('̂m0 � 1)=�̂'̂m0 ; m = 1; 2; 3;

where �̂'̂m0 is the estimated standard deviation of '̂m0. Then

tm
d! rm ~	

�1
m
~�m�

rm ~	
�1
m r0m

�1=2 : (26)

12



Proof. See Appendix A.
It is evident from (25) and (26) in Corollary 3 and 4, respectively, that both the

NDF and the NDF t-type of tests have asymptotic distributions that are nuisance
parameter free. Another important property is that for m = 2; 3, the tests in (25)
and (26) are invariant with respect to if the random walk under the null hypothesis
is with or without drift, i.e. the tests are invariant with respect to the parameters
�20 and �30, respectively. For m = 1 this is not the case. Moreover, it is only the
test based on the LSTD (1) model that are invariant with respect to maintained
trends up to order three under the null hypothesis, as noted in Ouliaris, Park, and
Phillips (1989). In the present context this means that for m = 3, the NDF and the
NDF t-type of tests are invariant with respect to �30; :::; �33. However, in our case
the restrictions �31 = ::: = �33 = 0 in Haux

03 are implied restrictions from those that
are initially imposed on the LSTD(1) model. Even though the restrictions in this
case are not needed in the testing equation in Haux

a3 , it seems rather ad hoc to relax
them in terms of the originally state null hypothesis in (4).

Assumption 2 Let futg1t=1 be an i.i.d. sequence of random variables satisfying
Assumption 1. Furthermore, de�ne vt � c(L)ut =

P1
j=0 cjut�j , where c(L) =P1

j=0 cjL
j is a one-sided moving average polynomial in the lag operator such that

(A.2.1) c(1) 6= 0 (no unit roots), and (A.2.2)
P1
j=0 jjcj j <1 (one-summability).

Due to the earlier assumptions of a single unit root, (A.2.1) in Assumption 2 is
satis�ed under Ha;aux

0m . The only assumption we have to impose is (A.2.2), i.e. we
have to control for the amount of serial dependence in fvtg1t=1.

Theorem 5 Consider models (12), (16), and (17) when (15), (18), and (19) hold.
Furthermore, assume that futg1t=1 and fvtg1t=1 ful�ll Assumption 2. Then, for m =

1; 2; 3;


am2( ̂
a

m � 
a
m )

d! (	a
m)

�1�a
m; (27)

and
 ̂
a
m � am

p! 0;

where


a12 = diag

�
T1;

�h
T 1=2 T 3=2 T 5=2 T 7=2

i0

 1
�0 �

;


a22 = diag

�
T2;

�h
T 1=2 T 3=2 T 5=2 T 7=2

i0

 1
�0 �

;


a32 = diag
n
T3;

�
T 1=21

�0 o
;

and 1 is a (p � 1) � 1 vector of ones,  ̂a1 =
�
�̂
a0
1 ; �̂

a0
1 ; �̂

a0
1

�0
,  ̂

a
2 =

�
�̂
a�0
2 ; �̂a02 ; �̂

a0
2

�0
,

and  ̂
a
3 =

�
�̂
a�0
3 ; �̂a30; �̂

a0
3

�0
are the least square estimators of  a1 =

�
�a01 ;�

a0
1 ; �

a0
1

�0,
 a2 =

�
�a�02 ;�a02 ; �

a0
2

�0, and  a3 = ��a�03 ; �a30; �
a0
3

�0 in (12), (16), and (17), respectively.
Moreover, in (27),

(	a
m)

�1�a
m =

"
Pam
Qam

#
;
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with sub-matricies given by

Pam =

"
Am �Bm
�B

0
m �2Cm

#�1 "
�uDm

�u�Em

#
; Qam � N

�
0;�2uV

�1
m

�
;

where � = c(1)�u, and

V1 = A1 
�1; V2 = A1 
�2; V3 = �3;

with

�m =

266664

m;0 
m;1 � � � 
m;p�2

m;1 
m;0 � � � 
m;p�3
...

...
. . .

...

m;p�2 
m;p�3 � � � 
m;0

377775 ;
where 
m;j equals E [�yt�yt�j ] for m = 1 and E

�
��t��t�j

�
for m = 2; 3.

Proof. See Appendix A.

Theorem 6 Consider models (20) and (21) when (22) and (23) hold, respectively.
Furthermore, assume that futg1t=1 and fvtg1t=1 ful�ll Assumption 2. Then, for m =

1; 2; 3,


pam2( ̂
pa

m � 
pa
m )

d! (	pa
m )

�1�pa
m ; (28)

and
 ̂
pa
m �  pam

p! 0;

where

pam2 = diag

n
Tm;

�
T 1=21

�0 o
;

and  ̂
pa
1 =

�
�̂
pa0
1 ; �̂pa01 ; �̂

pa0
1

�0
and  ̂

pa
2 =

�
�̂
pa�0
2 ; �̂pa02 ; �̂

pa0
2

�0
are the least square esti-

mators of  pa1 =
�
�pa01 ;�pa01 ; �pa01

�0
and  ̂

pa
2 =

�
�̂
pa�0
2 ; �̂pa02 ; �̂

pa0
2

�0
in (20) and (21),

respectively. Moreover, in (28),

(	pa
m )

�1�pa
m =

"
Ppam
Qpam

#
;

where
Ppam = Pam; Qpam � N

�
0;�2u�

�1
m

�
:

Proof. See Appendix A.
Note �rst that we allow for m = 3 in Theorem 6. This is only for notational

convenience due to the classi�cation about regression models made in Section 3.3,
and thus it follows that 
pa32( ̂

pa

3 � 
pa
3 ) = 


a
32( ̂

a

3� a3 ), and (	a
3)
�1�a

3 in Theorem
5 equals (	pa

3 )
�1
�pa
3 in Theorem 6. Furthermore, both the asymptotic distributions

(27) and (28) in Theorems 5 and 6 contain the nuisance parameters �u and �.

Corollary 7 (NADF and NPADF type of tests) Suppose that the conditions of The-
orems 5 and 6 hold. De�ne the test statistics,

 am � T (�̂am0 � 1);  pam � T (�̂pam0 � 1); m = 1; 2; 3:
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Then,

c� am
d! rm ~	

�1
m
~�; (29)

and
c� pam

d! rm ~	
�1
m
~�; (30)

where c� = �=�u.

Proof. See Appendix A.
Especially three interesting properties about the NADF and NPADF type of

tests are revealed in Corollary 7. First, although the tests  am and  pam allow for
serially correlated errors, their limiting distributions are trivially adjusted to become
nuisance parameter free. As such, we instead obtain test statistics depending on
nuisance parameters through the quantity c�. Second, the tests c� am based on the
NADF testing equations have the same asymptotic distribution as the c� pam tests
based on the NPADF testing equations. Even though c� am is a test involving the
estimation of a number of 3(p � 1) more regressors than the c� pam test, the extra
set of regressors do not a¤ect the asymptotic distributions. Third, the asymptotic
distributions for c� am and c� pam collapse into the same limiting distributions as
for the  m tests with p = 1 in Corollary 3. This means that the tests c� am and
c� pam are asymptotically invariant with respect to the number of lags included in
the NADF and NPADF testing equations.

Corollary 8 (NADF and NPADF t-type of tests) Suppose that the conditions of
Theorem 5 and 6 hold. De�ne the t-test statistics,

tam � (�̂am0 � 1)=�̂�̂am0 ; tpam � (�̂pam0 � 1)=�̂�̂pam0 ; m = 1; 2; 3;

where �̂�̂am0 and �̂�̂pam0 are the estimated standard deviations of �̂
a
m0 and �̂

pa
m0, respec-

tively. Then,

tam
d! rm ~	

�1
m
~�m�

rm ~	
�1
m r0m

�1=2 ; (31)

and

tpam
d! rm ~	

�1
m
~�m�

rm ~	
�1
m r0m

�1=2 :
Proof. See Appendix A.

Corollary 8 reveals that the NADF and NPADF t-type of tests mainly have the
same asymptotic properties as the NADF and NPADF type of tests in Corollary
7. However, in contrast to the tests in Corollary 7, the limiting distributions for
the tests statistics tam and tpam need no further manipulations to become nuisances
parameter free.

5 Asymptotic and �nite-sample properties of the non-
linear Dickey-Fuller type of tests

In this section we present the asymptotic as well as �nite-sample critical values for
some of the tests presented in Section 4. Due to the �ndings in Corollaries 7 and 8,
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the asymptotic critical values for the tests considering partially or fully augmented
models are the same. However, from a �nite-sample point of view, we choose only
to present the critical values for the tests based on partially augmented models since
they require estimation of less parameters. Moreover, a size study is performed for
a NPADF t-type of test. Finally, the power properties of the tests based on the
LSTAR and the LSTART models are examined.

5.1 Asymptotic and �nite-sample critical values

When generating the asymptotic distribution of the tests  m, tm, c
� pam , and t

pa
m , we

let T = 1 000 000 to simulate a Brownian motion B(r) on [0; 1], and the number of
replications are set to 1 000 000. The �nite-sample critical values for the tests  m
and tm are obtained by simulating data from the model yt = yt�1+ ut where ut �
nid(0; 1) with desired sample sizes, and thereafter the test statistics in Corollaries
3 and 4 are calculated. This procedure is repeated 1 000 000 times, yielding the
�nite-sample distributions of the tests. Furthermore, when generating the �nite-
sample critical values for the test statistics c� pam and tpam , we proceed as above

but we simulate data from the model
�
1� L�pam01 � :::� Lp�1�

pa
m;0;p�1

�
�yt = ut.

Asymptotically this causes no problems, which is shown in Corollaries 7 and 8, but
all �nite-sample distributions depend on the nuisance parameters �pam01,...,�

pa
m0;p�1.

To proceed we let �pam0q = 0 for all m and q under the null hypothesis, and in the
next subsection it is shown that the tests and their �nite-sample distributions are
rather robust against the values of �pam0q, and the size distortions of the tests become

modest. To operationalize c� pam we note that c� = 1=
�
1� �pam01 � :::� �

pa
m;0;p�1

�
,

which is consistently estimated by 1=
�
1� �̂pam01 � :::� �̂

pa

m;0;p�1

�
.4

From Table 1 it is seen that the critical values for  m are large in absolute
values and negative. The same conclusions are drawn for tm, however, with critical
values being standardized. In fact, the empirical distributions turn out to be heavily
skewed to the left with negative means. The reason for this is the inclusion of time
trends of high orders creating a downward bias in '̂m0. In addition, for m = 1; 2

and the  m tests, there are big di¤erences for the critical values among di¤erent
sample sizes. Furthermore, the critical values for the  2 test are the same as for the
T3 test in He and Sandberg (2005a) and they are there presented in the Table 1.1.
In addition, the critical values for the  3 test and the sample size T = 500, are the
same critical values as for the K4(�̂) test in Ouliaris, Park, and Phillips (1989) and
are reported in their Appendix 2.

In Table 2 the critical values for the tests c� pam and tpam with p = 2 are presented.
Critical values for p = 3; 4 can be found in Tables 10 and 11 in the Appendix
B. Notable is that in small samples the estimates of �̂m01 on average are quite
inaccurate. This, of course, a¤ects the �nite-sample distributions because c� is biased
upwards and thus the critical values become even more negative than corresponding
critical values in Table 1. However, as the sample size tends to in�nity, the critical
values at all signi�cance levels for c� pam and tpam equal the critical values for  m and
tm in Table 1 and T =1, which also con�rms the �ndings in Corollaries 7 and 8.

4 In our set-up this means that as T ! 1, �̂pam01 ! 0; :::; �̂
pa

m;0;p�1 ! 0 hold for all m, and
p lim ĉ� = 1.
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Table 1: Critical values for the NDF tests  m and tm in Corol-
laries 3 and 4.

 1
T 0.01 0.05 0.10

50 -109.61 -81.81 -68.15

100 -125.97 -92.91 -76.83

250 -142.22 -102.54 -83.87

500 -149.16 -106.44 -86.57

1000 -152.84 -108.44 -87.93

1 -156.45 -109.40 -89.33

t1
0.01 0.05 0.10

-3.54 -2.82 -2.41

-3.64 -2.93 -2.54

-3.75 -3.00 -2.61

-3.76 -3.04 -2.65

-3.76 -3.04 -2.65

-3.77 -3.05 -2.66

 2
T 0.01 0.05 0.10

50 -119.64 -90.06 -75.56

100 -138.48 -103.72 -86.31

250 -159.44 -116.44 -95.79

500 -168.48 -121.80 -99.73

1000 -173.38 -124.70 -101.80

1 -175.31 -126.50 -103.11

t2
0.01 0.05 0.10

-3.40 -2.65 -2.26

-3.53 -2.80 -2.41

-3.58 -2.89 -2.52

-3.63 -2.91 -2.54

-3.65 -2.94 -2.56

-3.66 -2.95 -2.57

 3
T 0.01 0.05 0.10

50 -38.94 -32.69 -29.50

100 -43.77 -35.90 -32.07

250 -47.11 -38.13 -33.80

500 -48.27 -38.90 -34.42

1000 -48.31 -39.33 -34.77

1 -48.50 -39.83 -34.91

t3
0.01 0.05 0.10

-5.38 -4.70 -4.36

-5.20 -4.61 -4.30

-5.11 -4.55 -4.26

-5.08 -4.53 -4.26

-5.07 -4.52 -4.25

-5.05 -4.51 -4.24

Notes: The probability shown at the head of each column is the
area in the left-hand tail. The results are based on 1 000 000
replications.
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Table 2: Critical values for the NPADF tests c� pam and tpam in Corol-
laries 7 and 8 with p = 2.

c� pa1 tpa1
T �̂101 0.01 0.05 0.10 0.01 0.05 0.10

50 0.160 -184.30 -127.99 -103.68 -3.90 -3.11 -2.70

100 0.081 -161.97 -115.78 -94.54 -3.82 -3.08 -2.68

250 0.033 -157.32 -112.16 -91.29 -3.80 -3.07 -2.67

500 0.017 -156.66 -111.33 -90.41 -3.78 -3.06 -2.67

1000 0.008 -156.50 -110.40 -90.01 �3.77 -3.05 -2.66

1 0.000 -156.46 -109.51 -89.89 -3.77 -3.05 -2.66

c� pa2 tpa2
T �̂201 0.01 0.05 0.10 0.01 0.05 0.10

50 0.180 -211.89 -148.73 -121.31 -3.80 -3.01 -2.60

100 0.095 -185.66 -133.45 -109.68 -3.72 -2.99 -2.59

250 0.039 -178.53 -128.80 -105.62 -3.69 -2.97 -2.58

500 0.020 -178.00 -128.11 -104.74 -3.68 -2.97 -2.58

1000 0.010 -177.90 -127.63 -103.90 -3.67 -2.96 -2.57

1 0.000 -175.60 -126.55 -103.15 -3.66 -2.95 -2.57

c� pa3 tpa3
T �̂301 0.01 0.05 0.10 0.01 0.05 0.10

50 0.127 -66.05 -50.19 -43.21 -5.42 -4.72 -4.38

100 0.064 -56.91 -44.37 -38.71 -5.22 -4.61 -4.31

250 0.025 -52.30 -41.50 -36.40 -5.11 -4.55 -4.26

500 0.013 -50.88 -40.67 -35.81 -5.08 -4.54 -4.25

1000 0.006 -50.19 -40.16 -35.41 �5.07 -4.53 4.25

1 0.000 -48.70 -39.87 -34.99 -5.06 -4.51 -4.24

Notes: The probability shown at the head of each column is the area in
the left-hand tail. The reported estimates of the nuisance parameters
are average OLS estimates from 1 000 000 replications when the true
values are set to zero.
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As a �nal remark, the critical values presented in Tables 1 and 2 can be seen
as the critical values for unit root tests in LSTAR(p), LSTART(p), and LSTD(p)
models with a transition function allowing for three transitions, i.e.

F (t) =
1

1 + exp f�
(t� c1)(t� c2)(t� c3)g
� 1
2
;

and where we instead apply a �rst-order Taylor approximation. The reason for this
is that in the present case the same set of explanatory variables as in the cases
Haux
a1 -H

aux
a3 , H

a;aux
a1 -Ha;aux

a3 , and Hpa;aux
a1 -Hpa;aux

a3 , are obtained, and the same null
hypotheses will be tested.

5.2 A size study

We examine the size properties of the tpa1 test statistic with p = 2 and the in�uence
of the nuisance parameter �101. The results are reported in Table 3. The size
properties of the tests tpa2 and tpa3 are similar and therefore excluded. Moreover, in
small samples the tpam tests are preferable to the  pam type of tests, and the main
reason for this is, though not reported here, that in general the size distortions are
smaller for the tpam tests.5

In Table 3 we see that the size distortions are substantial, and this especially
for j�101j � 0:8. The size distortions are mitigated by increasing the sample size,
and become negligible for T � 500 except in the two extreme cases �101 = �0:99.
When the estimated size is larger than 6%, we choose to report size-adjusted critical
values, given within the parentheses in Table 3.

Another source of size distortion could arise if we relax our assumption on the
error term vt and allow for some other error structure. It is well known that the
classical Dickey and Fuller type of tests su¤er from large size distortion (up to
90%) when the error term has a unit root moving average structure, see e.g. Schwert
(1989) and He and Sandberg (2005a). A natural approach to this problem is to allow
for a wider class of error terms, e.g. by assuming that the error term is a strong
mixing. However, as pointed out in Schwert (1989) and He and Sandberg (2005a),
this approach does not solve the problem satisfactorily, and the size distortions
are not eliminated. It seems better to adopt the instrumental variable approach
suggested by Hall (1989), or adding lags of the error term. The latter is an approach
that is at hand. In fact, at a 5% nominal level the estimated size becomes 12% for
the tpa1 test when T = 250 and the error term is an MA(1) process with moving
average coe¢ cient equal to �0:8 (not reported here). This should be compared to
99% in a similar testing situation in He and Sandberg (2005a). In general, increasing
the order of augmentation further mitigates the size distortions.

5.3 Power studies

The power properties of the t1 and t2 tests in Corollary 4 are investigated. The
�ndings for the t3 test are similar and therefore omitted. It should be pointed out
that the power of the  m tests are generally higher than for the tm tests. However, as
argued in the previous subsection, the  m tests may su¤er from large size distortions,

5The ranking of the tests assumes that one would like to control for the signi�cance levels of the
tests. If power would be the criteria, the  pam tests should, in general, be used.

19



Table 3: Empirical size of the NPADF tpa1 test in Corollary 8 with
p = 2.

T = 50 T = 100 T = 250

�101 �̂101 Size �̂101 Size �̂101 Size

0.99 0.59 0.115 (-3.64) 0.75 0.111 (-3.66) 0.88 0.109 (-3.61)

0.8 0.57 0.090 (-3.49) 0.68 0.079 (-3.36) 0.76 0.061 (-3.19)

0.6 0.50 0.066 (-3.30) 0.55 0.063 (-3.23) 0.58 0.053

0.4 0.40 0.056 0.40 0.055 0.40 0.054

0.2 0.28 0.052 0.24 0.052 0.22 0.052

0.0 0.16 0.051 0.08 0.049 0.03 0.050

-0.2 -0.03 0.048 -0.08 0.049 -0.15 0.050

-0.4 -0.10 0.050 -0.25 0.046 -0.33 0.047

-0.6 -0.24 0.048 -0.41 0.050 -0.52 0.049

-0.8 -0.39 0.052 -0.58 0.053 -0.70 0.051

-0.99 -0.57 0.086 (-3.42) -0.76 0.082 (-3.39) -0.89 0.078 (-3.36)

T = 500 T = 1000

�101 �̂101 Size �̂101 Size

0.99 0.94 0.103 (-3.53) 0.97 0.09 (-3.47)

0.8 0.78 0.058 0.79 0.055

0.6 0.59 0.051 0.60 0.047

0.4 0.40 0.048 0.40 0.051

0.2 0.21 0.054 0.20 0.052

0.0 0.02 0.049 0.01 0.051

-0.2 -0.18 0.049 -0.19 0.049

-0.4 -0.36 0.049 -0.38 0.050

-0.6 -0.56 0.050 -0.58 0.053

-0.8 -0.75 0.048 -0.78 0.048

-0.99 -0.94 0.076 (-3.33) -0.96 0.070 (-3.22)

Notes: The nominal size of the test is 5%. The reported estimates of
the nuisance parameters are the average OLS estimates from 1 000 000
replications where the true values are shown in the column to the left.
Values in parentheses correspond to size-adjusted critical values.
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and consequently, the power results can be misleading. Furthermore, we choose not
to report the power results for the the augmented tests, but one can expect the main
�ndings to coincide with the results for the tm tests.

5.3.1 Empirical power for the NDF t1 type of test when the DGP is an
LSTAR(1) model

The power of the t1 test is examined when the LSTAR(1) model in Ha1 is the
DGP. Without loss of generality the transition function is replaced, as a matter of
convenience, by ~F � F + 1=2. It is clear that ~F (t) : R+ ! [0; 1]. In all coming
experiments, we impose the Lagrange stability condition,

�11 2 (0; 1) ; �11 + �21 2 (0; 1) ; (32)

on the skeleton of the LSTAR(1) model to rule out unrealistic trajectories (unstable
or explosive trajectories), see Tong (1990). The parameters of the LSTAR(1) model
are assigned to the following values

�10 = 0; �20 2 f1; 2g; 
 2 f0:01; 0:1; 1g;

c 2 f0:5T; 0:25T; 0:75Tg; T = 250; (33)

and the autoregressive coe¢ cients in the linear and nonlinear part are assigned values
according to the scenarios

Low-High: �11 = 0:10; �21 2 f0:75; 0:80; 0:85g;

Medium-High: �11 = 0:40; �21 2 f0:45; 0:50; 0:55g;

High-High: �11 = 0:75; �21 2 f0:10; 0:15; 0:20g:

(34)

By this design we note that all trajectories start at zero and head towards the
long-run attractor �20=(1� �11 � �21), as time evolves. Now varying �20, as well as
�11 and �21, we see that the mean of the LSTAR(1) model at the end of the period
ranges from 6.67 to 40 (assuming that a complete transition takes place). How fast
the trajectories reach the long-run attractor is determined through 
. When 
 = 0:01
the transition is slow and we encounter an almost linear LSTAR(1) model.6 Letting

 = 0:1, the transition is intermediate, although a sample size of 250 is enough for a
complete transition to take place. When 
 = 1:00 the transition is more abrupt and
the LSTAR(1) model behaves almost like a TAR(1) process. We also vary the point
in time around which the transition will take place. For instance, when c = 0:25T ,
it is illustrative to think that we have an TAR(1) model where the �rst 25% of the
sample is an AR(1) process characterized by �11, and in the remaining 75% of the
sample the AR(1) process is characterized by the parameter vector (�20; �11+�21)0.

Finally, the three scenarios re�ect the impact of the nonlinear part in the LSTAR
model in terms of dynamics. The Low-High scenario describes an LSTARmodel with

6When 
 = 0:01 a full transition does not take place during the sample period. Notice that
~F (t = T = 250; 
 = 0:01; c = 62:5) = 0:87, ~F (t = T = 250; 
 = 0:01; c = 125) = 0:78, and
~F (t = T = 250; 
 = 0:01; c = 187:5) = 0:66.
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Table 4: (Low-High) Empirical power of the t1 test and the corresponding
Dickey-Fuller t-type of test.

T = 250 c = 0:5T c = 0:25T c = 0:75T

t1 DF t1 DF t1 DF


 �21=�20 1 2 1 2 1 2 1 2 1 2 1 2

0.75 0.54 0.64 1.00 1.00 0.47 0.63 1.00 1.00 0.58 0.64 1.00 1.00

0.01 0.80 0.53 0.64 1.00 1.00 0.47 0.63 1.00 0.97 0.57 0.63 1.00 1.00

0.85 0.53 0.64 1.00 1.00 0.48 0.64 1.00 0.47 0.57 0.64 1.00 1.00

0.75 0.97 1.00 0.45 0.00 1.00 1.00 0.47 0.00 0.31 0.24 0.98 0.00

0.10 0.80 0.99 1.00 0.00 0.00 1.00 0.98 0.00 0.00 0.30 0.25 0.47 0.00

0.85 1.00 1.00 0.00 0.00 0.99 0.95 0.00 0.00 0.30 0.28 0.01 0.00

0.75 1.00 1.00 0.23 0.00 0.96 0.54 0.00 0.00 0.19 0.33 0.81 0.00

1.00 0.80 1.00 1.00 0.00 0.00 0.87 0.29 0.00 0.00 0.21 0.51 0.05 0.00

0.85 1.00 1.00 0.00 0.00 0.63 0.14 0.00 0.00 0.34 0.86 0.00 0.00

Note: The nominal size of the tests is 5%, and the results are based on 10 000
replications.

a low value of the autoregressive root in the beginning of the period and reaches
a closer to unstable state, �11 + �21 = 0:95, at the end of the period. The non-
linear impact of dynamics is viewed as high. The Medium-High scenario presents
an LSTAR model where the autoregressive root is intermediate in the beginning
of the period and reaches a closer to unstable state at the end of the period. The
magnitude of nonlinear dynamics is seen as medium. In the High-High scenario the
LSTAR model displays an autoregressive root with a high value in the beginning of
the period and reaches a state closer to unstableness at the end of the period. The
nonlinear change in dynamics is perceived as low.

We choose to compare the power of the t1 test with the power of the Dickey-
Fuller (DF) t-type of test based on the model yt = a0 + a1yt�1 + ut. This will give
the opportunity to investigate the bias towards nonrejection for the DF tests when
the DGP has a smooth change in levels and dynamics. The results are presented in
Tables 4-6.

For 
 = 0:01 it is seen in Tables 4-6 that the DF test, in general, is superior to
the t1 test. This is to be expected since the LSTAR(1) model appears almost linear.
The modest power for the t1 test is explained by the fact that it is penalized due to
an ambiguous set of explanatory variables.

When 
 = 0:10 we notify the collapse in power of the DF test under all scenarios.
The reason for this is that a full transition actually takes place for all values of c, and
that the speed of transition is fast enough to generate truly nonlinear models with a
clear shift in levels. The power of the t1 test is increased and is close to unity under
the Low-High and Medium-High scenarios with c = 0:5T , �20 = 1, and all values
of �21. This illuminates how the power of the t1 test responds to the timing of the
transition and the magnitude of nonlinearities. It also con�rms that the linearity
part in the LSTAR(1) model dominates both when c = 0:75T or the High-High
scenario is concerned, and consequently the t1 test performs less satisfactorily. Even
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Table 5: (Medium-High) Empirical power of the t1 test and the corresponding
Dickey-Fuller t-type of test.

T = 250 c = 0:5T c = 0:25T c = 0:75T

t1 DF t1 DF t1 DF


 �21=�20 1 2 1 2 1 2 1 2 1 2 1 2

0.45 0.27 0.36 1.00 1.00 0.24 0.39 1.00 0.99 0.27 0.34 1.00 1.00

0.01 0.50 0.26 0.37 1.00 0.99 0.25 0.39 1.00 0.60 0.28 0.34 1.00 1.00

0.55 0.26 0.38 1.00 0.80 0.27 0.40 0.94 0.01 0.27 0.35 1.00 1.00

0.45 0.77 0.98 0.00 0.00 0.95 0.93 0.00 0.00 0.11 0.08 0.85 0.00

0.10 0.50 0.87 0.99 0.00 0.00 0.95 0.87 0.00 0.00 0.11 0.09 0.16 0.00

0.55 0.94 0.99 0.00 0.00 0.90 0.78 0.00 0.00 0.11 0.10 0.01 0.00

0.45 0.95 1.00 0.00 0.00 0.76 0.25 0.00 0.00 0.07 0.12 0.51 0.00

1.00 0.50 0.99 1.00 0.00 0.00 0.61 0.11 0.00 0.00 0.08 0.22 0.01 0.00

0.55 1.00 1.00 0.00 0.00 0.40 0.06 0.00 0.00 0.13 0.55 0.00 0.00

Note: The nominal size of the tests is 5%, and the results are based on 10 000
replications.

Table 6: (High-High) Empirical power of the t1 test and the corresponding
Dickey-Fuller t-type of test.

T = 250 c = 0:5T c = 0:25T c = 0:75T

t1 DF t1 DF t1 DF


 �21=�20 1 2 1 2 1 2 1 2 1 2 1 2

0.10 0.07 0.13 1.00 0.83 0.08 0.17 1.00 0.86 0.06 0.09 1.00 0.96

0.01 0.15 0.07 0.13 0.96 0.19 0.09 0.17 0.90 0.12 0.06 0.10 1.00 0.69

0.20 0.09 0.15 0.76 0.00 0.10 0.17 0.20 0.00 0.07 0.11 0.96 0.18

0.10 0.22 0.53 0.05 0.00 0.35 0.37 0.35 0.00 0.03 0.02 0.40 0.00

0.10 0.15 0.32 0.62 0.00 0.00 0.41 0.35 0.00 0.00 0.02 0.02 0.01 0.00

0.20 0.46 0.68 0.00 0.00 0.44 0.35 0.00 0.00 0.02 0.02 0.00 0.00

0.10 0.37 0.67 0.01 0.00 0.21 0.05 0.00 0.00 0.01 0.02 0.17 0.00

1.00 0.15 0.52 0.73 0.00 0.00 0.18 0.03 0.00 0.00 0.01 0.04 0.00 0.00

0.20 0.65 0.77 0.00 0.00 0.15 0.02 0.00 0.00 0.01 0.10 0.00 0.00

Note: The nominal size of the tests is 5%, and the results are based on 10 000
replications.
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though in the present context the nonlinear part and its dynamics are suppressed,
the generated trajectories appear nonlinear enough and the power for the DF test
is modest. It is also interesting to note that the t1 test is very robust against
changes in the intercept and levels, in contrast to tests based on �rst-order Taylor
approximation, see He and Sandberg (2005a) for the discussion about the level
leverage e¤ect.

For 
 = 1:00 the main �ndings are the same as for 
 = 0:10. Especially note
that for c = 0:25T and �20 = 2, the power of the test t1 decreases to rather low
levels due to that (approximately) 75% of the sample is characterized by a linear
AR process.

To this end, we conclude that if we are right about the timing of the transition
in the sense that it takes place around the middle of the sample (c = 0:5T ), the t1
test has very satisfactory power and increases in �20 and �21, as well as with 
, in
all scenarios. An opposite relationship for the power holds for the DF test, and the
power is in general close to zero or equal to zero.

5.3.2 Empirical power for the NDF t2 type of test when the DGP is an
LSTART(1) model

The power of the t2 test presented in Corollary 4 is explored when the DGP is the
LSTART(1) model in Ha2. The analysis is conducted under the same prerequisites
as in Subsection 5.3.1, but the analysis of varying the timing of the transition is
excluded and only the case c = 0:5T is in focus. In addition to these prerequisites,
the coe¢ cients of the time trend are assigned the following values

�12 = 0:005; �22 2 f0:005; 0:0075; 0:01g.

The (linearly time-dependent) long-run attractors implied by this set-up are
given by �20=(1��11��21)+ (�12+�22)=(1��11��21)t, and the slope coe¢ cient
ranges from 0:0667 to 0:3 at the end of the sample period (assuming that a complete
transition takes place). The power of the t2 test is compared to the classical t-
type of test in Phillips and Perron (1988) denoted PP, and is based on the model
yt = a0 + a1yt�1 + a2t + ut. This means that we will investigate the bias towards
nonrejection for a test based on a linear trend-stationary model when the DGP
accommodates a smooth shift in levels, dynamics, and trends. The power results
are presented in Tables 7-9.

For 
 = 0:01 it appears in Tables 7-9 that the PP test outperforms, in general,
the t2 test. This is because the LSTART(1) model acts like a linear trend stationary
process. More interesting is the extraordinary robustness in the power of the t2 test
under the Low-High and Medium-High scenarios whenever 
 � 0:1 and regardless
of how the values of the other parameters are varied. That is, when the nonlinear
impact is medium or high, it appears that the design of the t2 test is very satisfactory,
and the probability of rejecting the null hypothesis when it is wrong is unity. The
opposite is true for the PP test and the lack of power is evident. Moreover, in the
High-High scenario in Table 9, we see that the power is substantial but, however,
lower than for the two other scenarios. This emphasizes that the power for the t2
test is reduced due to a less evident impact of nonlinearity in the High-High scenario.

To this end, we note that the collapse in power for the PP test is even more
pronounced than for the DF test in the previous section. It is also seen that the
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Table 7: (Low-High) Empirical power of the t2 test and the corresponding
Phillips-Perron t-type of test.

T = 250 �22 = 0:005 �22 = 0:0075 �22 = 0:01

t2 PP t2 PP t2 PP


 �21=�20 1 2 1 2 1 2 1 2 1 2 1 2

0.75 0.59 0.62 1.00 1.00 0.61 0.63 1.00 1.00 0.63 0.65 1.00 1.00

0.01 0.80 0.59 0.61 1.00 1.00 0.61 0.65 1.00 1.00 0.64 0.65 1.00 1.00

0.85 0.60 0.63 1.00 1.00 0.64 0.67 1.00 1.00 0.66 0.69 1.00 1.00

0.75 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

0.10 0.80 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

0.85 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

0.75 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

1.00 0.80 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

0.85 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

Note: The nominal size of the tests is 5%, and the results are based on 10 000
replications.

Table 8: (Medium-High) Empirical power of the t2 test and the corresponding
Phillips-Perron t-type of test.

T = 250 �22 = 0:005 �22 = 0:0075 �22 = 0:01

t2 PP t2 PP t2 PP


 �21=�20 1 2 1 2 1 2 1 2 1 2 1 2

0.45 0.30 0.33 1.00 1.00 0.32 0.33 1.00 1.00 0.34 0.36 1.00 1.00

0.01 0.50 0.32 0.34 1.00 1.00 0.33 0.37 1.00 0.99 0.37 0.39 1.00 0.97

0.55 0.33 0.37 0.99 0.92 0.37 0.40 0.93 0.71 0.39 0.42 0.73 0.38

0.45 1.00 1.00 0.01 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

0.10 0.50 1.00 1.00 0.01 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

0.55 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

0.45 1.00 1.00 0.01 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

1.00 0.50 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

0.55 1.00 0.98 0.00 0.00 1.00 0.96 0.00 0.00 0.99 0.01 0.00 0.00

Note: The nominal size of the tests is 5%, and the results are based on 10 000
replications.
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Table 9: (High-High) Empirical power of the t2 test and the corresponding
Phillips-Perron t-type of test.

T = 250 �22 = 0:005 �22 = 0:0075 �22 = 0:01

t2 PP t2 PP t2 PP


 �21=�20 1 2 1 2 1 2 1 2 1 2 1 2

0.10 0.07 0.07 1.00 1.00 0.08 0.08 1.00 1.00 0.09 0.09 1.00 0.98

0.01 0.15 0.08 0.09 0.94 0.87 0.09 0.10 0.82 0.70 0.11 0.11 1.00 0.46

0.20 0.11 0.11 0.26 0.07 0.13 0.13 0.07 0.01 0.14 0.15 0.73 0.00

0.10 0.58 0.76 0.14 0.00 0.69 0.81 0.01 0.00 0.77 0.85 0.00 0.00

0.10 0.15 0.76 0.85 0.00 0.00 0.82 0.87 0.00 0.00 0.86 0.89 0.00 0.00

0.20 0.82 0.83 0.00 0.00 0.83 0.84 0.00 0.00 0.87 0.85 0.00 0.00

0.10 0.72 0.87 0.00 0.00 0.81 0.88 0.00 0.00 0.86 0.90 0.00 0.00

1.00 0.15 0.86 0.90 0.00 0.00 0.84 0.88 0.00 0.00 0.84 0.86 0.00 0.00

0.20 0.84 0.70 0.00 0.00 0.80 0.59 0.00 0.00 0.71 0.49 0.00 0.00

Note: The nominal size of the tests is 5%, and the results are based on 10 000
replications.

t2 test indicates an extraordinary robustness in power, and even though the t2 test
is based on auxiliary regression equations, it handles smooth or abrupt changes in
mean, dynamics, and the time trends comfortably.

6 Concluding remarks

In this paper we propose a new model that accommodate a smooth change in mean,
trend, and dynamics. The model is a generalization of the LSTAR(p) model intro-
duced in Lin and Teräsvirta (1994) because a nonlinear trend is added. In particular
this model should be an appealing alternative when testing the null hypothesis of a
random walk with drift.

Several unit root tests are derived in both the LSTAR(p) and the LSTART(p)
models. The tests are enhanced by a third-order Taylor approximation, and infer-
ence about unit roots is based on the LS estimators obtained from the auxiliary
testing equations. The distributional asymptotic theory for the LS estimators is
non-standard because of the unit root assumption. In order to �nd these asymp-
totic distributions, we generalize many theoretical results that are derived in the
econometric unit root literature. In comparison to the related approaches by Ley-
bourne, Newbold, and Vougas (1998) and Harvey and Mills (2002), we note that
the nonlinear models under the alternative are similar, but it should be pointed out
that their testing methodology is di¤erent and no analytical limiting distributions
for their unit root tests are provided.

Finite-sample properties are investigated and our tests indicate modest size dis-
tortions. The empirical power is compared to the power of the conventional unit root
tests by Dickey and Fuller (1979), Phillips (1987), and Phillips and Perron (1988)
when the DGP is an LSTAR and LSTART model, respectively. It turns out that
the canonical tests only have satisfactorily power when the LSTAR and LSTART
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models appear linear, and under these circumstances our tests are penalized due to
the many explanatory variables. Assuming more nonlinear LSTAR and LSTART
models, the robustness in power of our tests in a wide range of parameter values,
due to a third-order Taylor approximation, is rather extraordinary and equal unity
in most of the situations. The opposite holds for the conventional tests, and the
power is close to or equal to zero.
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Appendix A

The proofs given in this Appendix are only for m = 1 (i.e. the LSTAR(p) model).
The proofs for m = 2; 3 are similar and therefore omitted.
Proof of Lemma 1. The proof is straightforward and follows by induction.

Proof of Theorem 2. Write
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�
 ̂1� 1

�
=

"
~A1 ~B1
~B01 ~C1

#�1 "
~D1

~E1

#
;

where

~A1 = [~aij ]4�4 , and ~aij = T�(i+j�1)
TX
t=1

t(i+j�2);

~B1 =
h
~bij

i
4�4

, and ~bij = T�(i+j�1=2)
TX
t=1

t(i+j�2)yt�1;

~C1 = [~cij ]4�4, and ~cij = T�(i+j)
TX
t=1

t(i+j�2)y2t�1;

~D1 = [ ~di]4�1, and ~di = T�(i�1=2)
TX
t=1

ti�1ut;

~E1 = [~ei]4�1, and ~ei = T�i
TX
t=1

ti�1yt�1ut:

By using Lemma 4 in He and Sandberg (2005a) we conclude that the following
expressions converge jointly for all i and j:

~aij
d! aij ; ~bij

d! �ubij ; ~cij
d! �2ucij ;

~di
d! �udi; ~ei

d! �2uei:

Thus, (24) holds.
Furthermore, plimT!1( ̂1� 1) = 0 holds because the element with the slowest

rate of convergence in  ̂1 equals Op(T�1=2).

Proof of Corollary 3. It follows from Theorem 2 and the Slutsky Theorem that

 1 � T ('̂10 � 1)

= r1

"
~A1 ~B1
~B01 ~C1

#�1 "
~D1

~E1

#
d! r1	

�1
1 �1:

De�ne the matrix S1 = diag
n
1 1 1 1 �u �u �u �u

o
. Then

r1	
�1
1 �1 = r1

0@S�11
"
A1 B1
B1 C1

#�1
S�11

1A �uS1 " D1

E1

#!

= r1

"
A1 B1
B1 C1

#�1 "
D1

E1

#
;
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because �ur1S�11 = r1. By Theorem 2, (25) holds for m = 1.

Proof of Corollary 4. We �rst note that

T 2�̂2'̂10 = S2T r1

"
~A1 ~B1
~B01 ~C1

#�1
r01

d! r1 ~	
�1
1 r

0
1;

where S2T =
�
yt �

�
s01t; (yt�1s1t)

0�  ̂1�2 =(T � 8). From Theorem 2, plimT!1S
2
T =

�2u holds. By Corollary 3 and the Slutsky Theorem we conclude that

t1 � ('̂10 � 1)=�̂'̂10

=
T ('̂10 � 1)�
T 2�̂'̂m0

�1=2 d! r1~ 
�1
1
~�1�

r1~ 
�1
1 r

0
1

�1=2 :
Thus, (26) holds for m = 1.

To prove Theorem 5, we introduce the following lemma.

Lemma 9 If futg1t=1 and fvtg1t=1 satisfy Assumptions 1 and 2, respectively, and
�t = �t�1 + �t with P (�0 = 0) = 1, then as T !1

T�(p+q=2+1)
TX
t=1

tp�qt�1
d! �q

Z 1

0
rpW (r)qdr; (35)

T�(p+1)
TX
t=1

tp�t�t�h
a:s:! 
h=(p+ 1); (36)

T�(v+1=2)
TX
t=1

tv�t�h
d! �W (1)� v�

Z 1

0
rv�1W (r)dr; (37)

T�(v+1=2)
TX
t=1

tvut
d! �uW (1)� v�u

Z 1

0
rv�1W (r)dr; (38)

T�(p+1)
TX
t=1

tp�t�1ut
d!

0:5��u

�
W (1)2 � p

Z 1

0
rp�1W (r)2dr � 1

(p+ 1)

�
; (39)

T�(p+1)
TX
t=1

tp�t�1�t�h
d!

(i)

8<: 0:5

�
�2W (1)2 � p�2

R 1
0 rp�1W (r)2dr � 
0

(p+ 1)

�
;

for h = 0;
(40)

(ii)

8<: 0:5

�
�2W (1)2 � p�2

R 1
0 W (r)2rp�1dr � 
0

(p+ 1)

�
+

Ph�1
s=0 
s
p+ 1

;

for h > 0;

T�(p+1=2)
TX
t=1

tp�t�hut
d! N

�
0;


0�
2
u

2p+ 1

�
; h > 0; (41)
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where � = c(1)�u, 
h = �2u
P1
j=0 cjcj+h, h; v; p � 0, and q � 1.

Note that Lemma 9 gives more general results than needed to prove Theorem 5.
In fact, it enables us to derive the limiting distribution for the NADF and NPADF
tests in the LSTAR(p), LSTART(p), and the LSTD(p) models based on any order
of approximation of a logistic transition function that accommodates an arbitrary
number of transitions. Lemma 9 also generalizes many of the results derived in
Hamilton (1994).
Proof of (35) in Lemma 9. De�ne the following cadlag function on D[0; 1],

Wt(r; !) =
1

�u
p
T
�[Tr] =

1

�u
p
T
�t�1; r 2 [ t�1T ; tT ); t = 1; :::; T;

where �t = �t�1 + vt. Using the Beveridge and Nelson (1981) decomposition we

conclude that Wt
d! c(1)W , where W is a standard Brownian motion on [0; 1]. We

can rely upon the proof for (18) in Lemma 4 in He and Sandberg (2005a), where we
replace � with c(1)�u.

Proof of (36) in Lemma 9. By Assumption 2

T�1
TX
t=1

vtvt�h
a:s:! E [�t�t�h] = 
h = �2u

1X
j=0

cjcj+h;

where �2u = E
�
u2t
�
, see Phillips and Solo (1992) for a proof. Furthermore,

T�(p+1)
TX
t=1

tpvtvt�h

= T�1
TX
t=1

(t=T )p (vtvt�h � Evtvt�h + Evtvt�h)

= T�1
TX
t=1

(t=T )p(vtvt�h � Evtvt�h) + T�1
TX
t=1

(t=T )pE[vtvt�h]

a:s:! �2u

1X
j=0

cjcj+h=(p+ 1);

because
���T�1PT

t=1(t=T )
p(vtvt�h � Evtvt�h)

��� � T�1
PT
t=1 j(vtvt�h � Evtvt�h)j

a:s:!
0, and

lim
T!1

T�1
TX
t=1

(t=T )pE[vtvt�h] = lim
T!1

8<:(�2u
1X
j=0

cjcj+h)T
�1

TX
t=1

(t=T )p

9=;
= (�2u

1X
j=0

cjcj+h)=(p+ 1) = 
h=(p+ 1)

hold.
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Proof of (37) in Lemma 9. This proof follows from (20) in Lemma 4 in He and
Sandberg (2005a), because

T�(v+1=2)
TX
t=1

tvvt�h

= T�1=2
TX
t=1

vt�h � T�(v+1=2)v
TX
t=1

tv�1�t�h�1 +Op(T
�1)

d! �uc(1)W (1)� �uc(1)v
Z 1

0
rv�1 W (r)dr;

holds for h � 0, and it is assumed that u�h; :::; u0 are additional starting values or
random variables with �nite second moments.

Proof of (38) and (39) in Lemma 9. These are special cases of (20) and (21),
respectively, in Lemma 4 in He and Sandberg (2005a).

Proof of (40)(i) in Lemma 9. Consider �rst the case h = 0, we then have that

T�(p+1)
TX
t=1

tp�t�1�t

d! 0:5

�
�2W (1)2 � p�2

Z 1

0
W (r)2rp�1dr � 
0

(p+ 1)

�
(42)

follows from (21) in Lemma 4 in He and Sandberg (2005a), where we replace �2 and
��2u with �

2 and 
0, respectively.

Proof of (40)(ii) in Lemma 9. For h > 0 notice that the following recursive
relationship,

�t�1�t�h =

0@�t�(h+1) + �t�h + �t�h+1 + :::+ �t�1| {z }
h - terms

1A �t�h

= �t�(h+1)�t�h + �
2
t�h +

h�1X
s=1

�t�h�t�h+s;

holds, and implies

T�(p+1)
TX
t=1

tp�t�1�t�h

= T�1
TX
t=1

(t=T )p�t�(h+1)�t�h + T
�1

TX
t=1

(t=T )p�2t�h

+T�1
TX
t=1

(t=T )p
h�1X
s=1

�t�h�t�h+s

d! 0:5

�
�2W (1)2 � p�2

Z 1

0
W (r)2rp�1dr � 
0

(p+ 1)

�
+


0
(p+ 1)

+

Ph�1
s=1 
s
(p+ 1)

;
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where the convergence follows from the results in (36) and (42).

Proof of (41) in Lemma 9. Write

T�1
TX
t=1

(t=T )2p�2t�hu
2
t

= T�1
TX
t=1

(t=T )2p(�2t�hu
2
t � E�2t�hu2t ) + T�1

TX
t=1

(t=T )2pE�2t�hu
2
t

a:s:! 
0�
2
u

(2p+ 1)

because T�1
PT
t=1(t=T )

2p(�2t�hu
2
t � E�2t�hu

2
t )

a:s:! 0 and notice that E�2t�hu
2
t =


0�
2
u = �4u

P1
s=0 c

2
s < 1 combined with limT!1 T�1

PT
t=1(t=T )

2p = 1=(2p + 1)

gives the convergence results. Using a Central Limit Theorem (CLT) for Martingale
Di¤erence Sequences (MDS) (f(t=T )p�t�hutg de�nes a MDS) we conclude that

T�(p+1=2)
TX
t=1

tp�t�hut
d! N

�
0;


0�
2
u

2p+ 1

�
:

Proof of Theorem 5. Write


a12

�
 ̂
a
1� a1

�
=

"
~F1 ~G1

~G0
1

~H1

#�1 "
~K1

~L1

#
;

where

~F1 =

"
~A1 ~B1
~B01 ~C1

#
8�8

;

~G1 = 08�4(p�1) under H
a;aux
01 ;

~H1 =

�
T�111

�XT

t=1

�
s1ts

0
1t

�


h
~hij

i
(p�1)�(p�1)

�
T�111

�
4(p�1)�4(p�1)

; with

~hij = vt�ivt�j for i; j � 1;

T11 = diag

(�h
T 1=2 T 3=2 T 5=2 T 7=2

i0

 1
�0
1�4(p�1)

)
;

~K1 =

"
~D1

~E1

#
8�1

;

~L1 =

�
T�111

�XT

t=1
s1t
[~li](p�1)�1

��
4(p�1)�1

, with ~li = vt�iut for i � 1.

Noticing that ~L1 de�nes a vector MDS with covariance matrix �2uA1
�1 and obeys
a CLT for MDS�s, applying Lemma 4 in He and Sandberg (2005a), and Lemma 9,
gives that the following expressions converge jointly under the null hypothesis:

~G1
p! 0; ~F1

d! 	a
1; ~H1

d! A1 
�1;
~K1

d! �a
1; ~L1

d! R
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where

	a
1 =

"
A1 �B1
�B

0
1 �2C1

#
; �a

1 =

"
�D1

��E1

#
, R �N(0; �2uA1 
�1):

By using the Slutsky Theorem,


a12

�
 ̂
a
1� a1

�
d!
"
	a
1 0

0 A1 
�1

#�1 "
�a1
R

#
=

"
(	a

1)
�1�a

1

(A1 
�1)�1R

#
:

Thus, Qa1 = V�1
1 R �N(0; �2uV�1

1 ). Furthermore, the fact that  ̂
a
1 is consistent is

an immediate consequence of (27).

Proof of Theorem 6. This is similar to the proof of Theorem 5 and is therefore
omitted.

Proof of Corollary 7. First, in the case  a1 de�ne r
�
1 =

h
r1 00

i
, where 0 is a

4(p� 1)� 1 vector of zeros. It follows from Theorem 5 that

 a1 � T (�̂a10 � 1) = r�1
a12( ̂
a

1 � 
a
1 )

d! r�1 (	
a
1)
�1�a

1 = r1P
a
1: (43)

Furthermore, de�ne S3 = diag
n
1 1 1 1 � � � �

o
. Then,

r1P
a
m = r1

0@S�13
"
A1 B1
B1 C1

#�1
S�13

1A �uS3 " D1

E1

#!

=
�u
�
r1

"
A1 B1
B1 C1

#�1 "
D1

E1

#
.

and pre-multiplying with �=�u in (43) ensures that (29) holds for m = 1.

Second, in the case  pa1 , de�ne ~r1 =
h
r1 00

i
, where 0 is a (p � 1) � 1 vector

of zeros. It follows from Theorem 6 that

 pa1 � T (�̂pa10 � 1) = ~r1

pa
12( ̂

pa

1 � 
pa
1 )

d! ~r1 (	
pa
1 )

�1
�pa
1 = r1P

a
m;

and that (30) now holds follows from the �rst part of the proof.

Proof of Corollary 8. We only give the proof for (31), since the proof for partial
augmentation is similar. Hence,

T 2�̂2�̂a10 = (SaT )
2 r�1

"
~F1 ~G1

~G0
1

~H1

#�1
r�01

d! �2ur
�
1

"
	a
1 0

0 A1 
�1

#�1
r�01

= �2ur1 (	
a
1)
�1 r01

= �2ur1S
�1
3
~	�1
1 S

�1
3 r

0
1

= �2u=�
2r1 ~	

�1
1 r

0
1;
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where (SaT )
2 =

�
yt �

�
s01t; (yt�1s1t)

0 ; (s1t 
�yt)0
�
 ̂
a
1

�2
=(T�8�4(p�1)). It follows

from Theorem 5 that (SaT )
2 p! �2u. Using Corollary 7 and the Slutsky Theorem we

conclude that

ta1 � (�̂a10 � 1)=�̂�̂a10 =
T (�̂a10 � 1)�
T 2�̂2�̂a10

�1=2 d! r1 ~	
�1
1
~�1�

r1 ~	
�1
1 r

0
1

�1=2 :

34



Appendix B

Table 10: Critical values for the NPADF tests c� pam and tpam in
Corollaries 7 and 8 with p = 3.

c� pa1 tpa1
T 0.01 0.05 0.10 0.01 0.05 0.10

50 -451.27 -230.45 -170.90 -3.99 -3.21 -2.81

100 -211.43 -143.54 -115.99 -3.89 -3.15 -2.77

250 -172.32 -122.21 -98.90 -3.83 -3.11 -2.71

500 -163.55 -115.41 -93.87 -3.80 -3.08 -2.70

1000 -160.35 -112.81 -91.20 -3.79 -3.06 -2.67

1 -156.46 -109.5 -89.89 -3.77 -3.05 -2.66

c� pa2 tpa2
T 0.01 0.05 0.10 0.01 0.05 0.10

50 -655.89 -302.44 -219.37 -3.93 -3.16 -2.75

100 -247.81 -171.04 -138.84 -3.83 -3.09 -2.71

250 -197.13 -141.11 -115.12 -3.74 -3.02 -2.63

500 -188.72 -133.50 -109.12 -3.71 -3.00 -2.61

1000 -182.92 -130.21 -105.79 -3.69 -2.97 -2.59

1 -175.60 -126.55 -103.15 -3.66 -2.95 -2.57

c� pa3 tpa3
T 0.01 0.05 0.10 0.01 0.05 0.10

50 -190.16 -98.82 -74.52 -5.32 -4.63 -4.30

100 -79.46 -56.64 -47.75 -5.18 -4.57 -4.27

250 -58.06 -45.00 -39.09 -5.08 -4.53 -4.25

500 -53.48 -42.22 -37.06 -5.07 -4.52 -4.25

1000 -51.45 -41.11 -36.03 -5.06 -4.52 -4.24
1 -48.70 -39.87 -34.99 -5.06 -4.51 -4.24

Notes: The probability shown at the head of each column is
the area in the left-hand tail. The results are based on 100 000
replications when the true values of the nuisance parameters are
zero.
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Table 11: Critical values for the NPADF tests c� pam and tpam in
Corollaries 7 and 8 with p = 4.

c� pa1 tpa1
T 0.01 0.05 0.10 0.01 0.05 0.10

50 -823.27 -663.55 -364.47 -4.09 -3.32 -2.92

100 -322.00 -197.03 -151.67 -3.97 -3.23 -2.84

250 -190.65 -133.64 -107.55 -3.89 -3.15 -2.76

500 -173.87 -121.52 -98.11 -3.83 -3.12 -2.73

1000 -163.29 -115.74 -93.81 -3.80 -3.09 -2.69

1 -156.46 -109.5 -89.89 -3.77 -3.05 -2.66

c� pa2 tpa2
T 0.01 0.05 0.10 0.01 0.05 0.10

50 -1553.21 -722.89 -488.81 -4.05 -3.28 -2.88

100 -419.25 -247.02 -189.14 -3.91 -3.17 -2.79

250 -222.47 -156.82 -127.78 -3.81 -3.09 -2.70

500 -198.86 -141.57 -115.27 -3.75 -3.03 -2.65

1000 -188.85 -134.74 -109.63 -3.71 -2.99 -2.62

1 -175.60 -126.55 -103.15 -3.66 -2.95 -2.57

c� pa3 tpa3
T 0.01 0.05 0.10 0.01 0.05 0.10

50 -1462.068 -332.69 -184.10 -5.34 -4.65 -4.32

100 -136.38 -80.78 -63.83 -5.17 -4.57 -4.27

250 -66.20 -49.74 -42.81 -5.09 -4.54 -4.26

500 -56.49 -44.02 -38.43 -5.06 -4.52 -4.25

1000 -52.79 -41.75 -36.67 -5.06 -4.51 -4.24
1 -48.70 -39.87 -34.99 -5.06 -4.51 -4.24

Notes: The probability shown at the head of the column is the area
in the left-hand tail. The results are based on 100 000 replications
when the true values of the nuisance parameters are zero.
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