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Abstract

We summarize some methods useful in formulating and solving Hansen-Sargent

robust control problems, and suggest extensions to discretion and simple rules.

Matlab, Octave, and Gauss software is provided. We illustrate these extensions

with applications to the term structure of interest rates, the time inconsistency of
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and output, and on whether central banks should make their forecasts public.

Key words: robustness, model uncertainty, discretion, simple rules.

JEL: L61, E43, E52.

∗We thank Adrian Pagan, Wouter Den Haan, Noah Williams, an anonymous referee, and seminar
participants at the Swedish Central Bank and at the University of New South Wales for comments.

†University of New South Wales. p.giordani@unsw.edu.au.
‡University of St. Gallen and CEPR. Paul.Soderlind@unisg.ch.

1



1 Introduction

For all the abundance of competing models in economic research, the agents who pop-

ulate them are, as a rule, fully devoted to the one model in which they are cast. They

know everything about their model (including parameter values) and want to know noth-

ing about any other. All their uncertainty is concentrated on the stochastic elements of

the model, which, under the assumption of rational expectations (RE), coincides with

the data generating process (DGP). Several approaches to relaxing these assumptions

have been explored. Here we focus on one such approach, which we refer to as “Hansen-

Sargent robustness”. In recent contributions, Lars Hansen, Thomas Sargent, and coau-

thors have proposed an appealing method of designing choices under model uncertainty.1

This method, which is based on robust control techniques adapted from engineering, en-

compasses RE as a special case, and has the advantage that the robust solution of a given

program can be derived from a suitably modified standard RE program.

This paper is concerned with solving the Hansen-Sargent robust version of the familiar

RE program in which a planner minimizes an intertemporal loss function subject to the

law of motion of the economy. If the law of motion is completely backward looking, the

planner’s commitment technology is irrelevant. Hansen and Sargent (2002) provide a

complete treatment of the robust version of this case.

In the macroeconomic literature, however, the law of motion is often a model involving

expectations. It then becomes necessary to specify the commitment technology of the

planner. In the RE case, there are three standard possibilities: the planner commits to

the optimal policy (commitment), or to a simple linear rule (simple rule), or she cannot

commit at all (discretion). Hansen and Sargent (ch. 15) give a solution approach for the

robust version of the commitment case. This paper’s main contribution is to suggest and

implement solutions for the robust versions of discretion and simple rules.

The paper does not assume that the reader is familiar with the literature on robust

control. Section 2 provides an introduction. It attempts to convey the essence of Hansen

and Sargent’s approach, deals with backward looking models, and then moves on to show

how to solve forward looking models in the commitment case. The simple New Keynesian

model of Clarida, Gaĺı, and Gertler (1999) is solved as an example. This section also

1The bulk of Hansen and Sargent’s work on robustness is contained in a book-length manuscript
(Hansen and Sargent (2002)), which presents results from most of their articles (and more) in a compre-
hensive treatment. Chapters 1 and 2 give an introduction and a summary of the main results. Hansen
and Sargent (2000b, 2001) are relatively non-technical papers which offer a good introduction. Unless
otherwise stated, the reference is to the manuscript (Hansen and Sargent (2002)).
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establishes the notation and the key concepts used in free and user friendly software

(Matlab, Octave, and Gauss versions) which can perform all the calculations described in

this paper.

The rest of the paper proceeds as follows. Sections 3 and 4 propose an extension for

the discretionary case and for simple rules respectively. We argue that these suggestions

are consistent with Hansen and Sargent’s rationale for robustness. They also preserve the

property that the robust program can be transformed into a standard RE program. Sev-

eral examples and applications illustrate the discretionary and simple rule cases. Within

the context of the New Keynesian model of Clarida, Gaĺı, and Gertler (1999), we find the

following: robustness makes monetary policy more aggressive also in the discretionary

solution (confirming a result often found for the commitment solution); robustness is a

promising way of interpreting deviations from the expectations hypothesis of the term

structure; robustness increases the inflation bias in the discretionary equilibrium; robust-

ness in private agent’s expectations increases inflation and output volatility (even if policy

is non-robust). Section 5 concludes.

2 Robust Control with Commitment

2.1 Commitment in Backward Looking Models

Like a RE agent, a Hansen-Sargent robust planner aims at minimizing a loss function

and entertains a reference model (the approximating model) which represents the law of

motion of the economy. Like a RE agent, she can formulate model consistent statements

on the probability of any outcome given a model. However, unlike a RE agent, she is not

certain that the approximating model coincides with the true model. For example, exact

parameter values will not be available in most circumstances.

Being uncertain about the model, the planner considers a set of them when designing

an optimal policy. Faced with the same situation, a Bayesian planner would combine

the data with her priors over the probability of each model being correct to arrive at

a probability distribution over all models. To formulate a policy function, each model

would then be weighted according to its probability and to its associated expected loss.

A Bayesian agent therefore reduces all uncertainty to calculated risk. A robust agent,

on the other hand, does not have her uncertainty as well organized. She is assumed to

face Knightian uncertainty over a set of models, where Knightian uncertainty denotes the

inability to express one’s beliefs fully in terms of well defined probabilistic statements.
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This is not equivalent to saying that all models are considered equally likely (in which

case a Bayesian solution would be straightforward). Rather, a robust agent does not

have sufficient confidence in her beliefs to formulate consistent statements such as “The

probability that model A is true is π” for any conceivable model.

An agent faced with multiple models needs to adopt a choice criterion, as each model

will generally recommend a different course of action. For a robust agent, this criterion

cannot involve a probabilistic weighting of models. Hansen and Sargent (following Gilboa

and Schmeidler (1989)) adopt a min-max approach: for a proposed policy rule, the planner

finds the worst model in the set (the maximum expected loss), eventually selecting the rule

that minimizes the maximum expected loss. Loosely speaking, the aim of robust control

is to design a policy that will work reasonably well even if the approximating model

does not coincide with the true model, as opposed to a policy that is optimal if they do

coincide but possibly disastrous if they don’t. A classical application in engineering is to

program a rocket so that it will get very close to the target even if the law of motion is

not correctly specified, rather than be on the target if the law of motion is exactly right

but go completely astray otherwise.

Robust control in engineering is in a sense normative, because it represents engineers’

best effort to optimize in the face of unknown misspecifications. An analogous motivation

can arguably be used in economics: the complexity of real economies is so overwhelming

that it is not conceivable to even formulate an exhaustive list of all possible models, much

less to assign a prior probability to each. But in economic applications it is also possible

to use robust control descriptively, as a tool to maintain analytical tractability and mimic

certain empirical violation of expected utility theorems. In particular, robust control can

rationalize agents’ aversion to situations in which the odds are not obvious.2 In a market

setting, this ambiguity aversion tends to translate into a higher (with respect to RE

agents with the same preferences) price of risk, a feature exploited by Hansen, Sargent,

and Tallarini (1999) to show that a preference for robustness decreases the equity premium

puzzle in a standard model.

Consider this example: a risk neutral firm is planning an investment which yields a

discounted profit pA in state of the world A, and a loss of pB otherwise. The decision on

whether to invest or not is obvious if the firm can confidently attach a unique probability

π to the state A. However, the solution is no longer straightforward if the firm considers

a range of π, say π ∈ [πL, πH ], to be plausible. If the firm is a robust decision maker, its

2See Hansen and Sargent (2002) ch. 1 for an example.

4



adoption of a min-max criterion means that it will act as if the relevant probability was πL.

Some readers may infer from the example that a robust agent is observationally equivalent

to a Bayesian agent with a higher degree of risk aversion and a flat prior. While it may

be possible to establish this equivalence in specific circumstances, the required degree of

risk aversion would not be constant, but rather vary with the level of uncertainty. For

example, an agent who appears to be risk neutral in bets involving a fair coin will seem

risk averse if there are doubts on the fairness of the coin.

From a technical point of view, robustness involves a switch from a minimization

problem (minimizing a loss function) to an appropriately specified min-max problem. In

order to set up and solve a min-max problem, it is convenient to work with a two-agent

representation: the policy function selected by the planner is the equilibrium outcome of

a two person game in which a fictitious evil agent, whose only goal is to maximize the

planner’s loss, chooses a model from the available set, and the planner chooses a policy

function.

The loss function is assumed to be quadratic, and the model linear.3 Because the evil

agent is just a metaphor for the planner’s cautionary behavior, he shares the planner’s

approximating model and loss function (which of course he wants to maximize rather than

minimize). This describes a zero sum game, and we can conveniently write a single loss

function. Hansen and Sargent show that the program for the backward looking model

can be formulated as

min
{u}∞0

max
{v}∞1

E0

∑∞
t=0β

t(x′tQxt + u′tRut + 2x′tUut), (1)

subject to xt+1 = Axt + But + C(εt+1 + vt+1), (2)

E0

∑∞
t=0β

tv′t+1vt+1 ≤ η0, (3)

and where x0 is given. In this problem, xt is the state vector (n× 1), ut is the planner’s

control vector (k × 1), εt+1 is the vector (n× 1) of zero mean iid shocks with an identity

covariance matrix, and vt+1 is the evil agent’s control vector (n × 1). The Q and R

matrices are assumed to be symmetric.

The standard RE dynamic control problem corresponds to η0 = 0. In this case, the

maximization part of the problem becomes irrelevant, and the planner simply minimizes

the loss function (1), using the control vector ut, subject to the law of motion (2) with

vt+1 = 0. In the general case, the evil agent is given an intertemporal budget η0 which

3Anderson, Hansen, and Sargent (2000) and Hansen and Sargent (2002) ch. 16 discuss extensions to
a more general non-linear framework.
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defines the set of models (misspecifications) that the planner is entertaining. Therefore

the set of models that the planner is considering can be interpreted as a ball around the

approximating model, where η0 is the radius of the ball. Section 2.3 considers the choice

of η0; for now we take it as given.

Notice that the stochastic shocks are important for model uncertainty. As can be

seen from (2), the evil agent’s control vector vt+1 is premultiplied by the matrix C. This

captures the fact that there can only be model uncertainty if the true parameters of the

law of motion are (at least partially) masked by random noise (C 6= 0).

The constraint (3) is inserted into (1), yielding:

min
{u}∞0

max
{v}∞1

E0

∑∞
t=0β

t(x′tQxt + u′tRut + 2x′tUut − θv′t+1vt+1), (4)

subject to xt+1 = Axt + But + C(εt+1 + vt+1), (5)

and where x0 is given. Since the value function is monotonous and concave in η0, there is

a bijective negative function from η0 to the Lagrange multiplier θ, so θ defines the set of

models available to the evil agent, with 0 < θ < ∞. A very low θ allows the evil agent to

wreck havoc, while θ = ∞ corresponds to RE.

Misspecifications distort the approximating model by modifying the errors. However,

respect of the budget (3) is the only formal constraint imposed on the evil agent, and the

formulation (4) enforces this constraint. This means that his choice of policy functions for

vt+1 includes a wide range of misspecified dynamics, including wrong parameters (vt+1 is

a linear function of xt), autocorrelated errors (vt+1 is a linear function of lags of x1t), and

nonlinearities (vt+1 is a nonlinear function of xt). At the same time, the researcher needs

to specify only one additional parameter (θ) to robustify the program. This parsimony

is an advantage in some cases, as it limits the number of additional parameters and the

amount of prior knowledge about possible misspecifications, but it can become a drawback

if the researcher wants to focus on a specific misspecification, such as distortions in a given

parameter.

Other approaches to robustness, which we may call parametric (for instance, Giannoni

(2002) and the Bayesian approach pioneered by Brainard (1967)) allow (but also require)

the researcher to be more specific about the exact nature of the uncertainty. In a Bayesian

approach, the planner uses her prior probability distribution over models (which a Hansen

and Sargent robust planner does not have by assumption), so the researcher needs to

specify a prior over all possible models, which can quickly become problematic. Moreover,

the solution can be quite complex. Giannoni (2002) is closer to Hansen and Sargent in
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that the planner is solving for the min-max. However, the researcher must specify the set

of possible models by setting an interval for each of the model’s parameters. Onatski and

Williams (2003) build a more general structure which allows the researcher to be quite

specific about the type of misspecifications feared by the planner (wrong parameters,

measurement errors and autocorrelated errors).

The loss function and the law of motion for the backward looking model given by

equations (4)–(5) can be redefined to write the program in standard state space RE form

min
{u}∞0

max
{v}∞1

E0

∑∞
t=0β

t(x′tQxt + u∗′t R∗u∗t + 2x′tU
∗u∗t ), (6)

subject to xt+1 = Axt + B∗u∗t + Cεt+1, where (7)

R∗ =

[
R 0k×n

0n×k −θIn1

]
, u∗t =

[
ut

vt+1

]
, B∗ =

[
B C

]
, and U∗ =

[
U 0n×n

]
, (8)

and where x0 is given. At first the min-max form of the problem may seem intrinsically

different from a standard minimization. However, because first order conditions for a

minimum are the same as for a maximum, the problem can be treated as a standard RE

one, to which standard solution algorithms can be applied (for example, see Söderlind

(1999) or Hansen and Sargent (2002), ch. 3 and 15).4,5

The solution of the program is that ut and vt+1 are linear functions of the state xt

u∗t = −Fxt, that is,

[
ut

vt+1

]
= −

[
Fu

Fv

]
xt. (9)

Notice that in spite of all his freedom, with a backward looking linear model the evil agent

keeps things simple, and optimally chooses to set vt+1 as a linear function of the state

vector xt. From a technical point of view, the linearity of the evil agent’s policy function

should come as no surprise: the robust program has been rewritten in standard RE form,

and therefore the policy function for u∗t must be linear, since the RE policy function for

ut is known to be linear.

Hansen and Sargent emphasize that the robust solution is not certainty equivalent:

4Second order conditions ensure that the evil agent is maximizing rather than minimizing. These are
unlikely to be problematic. Hansen and Sargent (2002) prove that there is a θ0 such that, for any θ > θ0,
the expected value of the loss function is finite and the second order conditions are satisfied. An easy way
to check that the second order conditions are satisfied is to make sure that the expected loss is higher
than in the RE solution (the value of the expected loss function is included in our software). However, if
θ is chosen with the detection error probability approach (see Section 2.3), experience indicates that the
second order conditions are typically satisfied for any reasonable value of θ.

5Our software follows Söderlind (1999) in using the Schur decomposition, resulting in a reliable and
fast algorithm.
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both Fu and Fv are functions of C. Intuitively, this is due to the fact that the evil

agent hits harder where he can do the most damage with a given budget, which, ceteris

paribus, is where the variance of the forecast error is larger. Alternatively, the planner

fears misspecification the most where errors with large variance better mask the true

parameters. Technically, the program (6)–(7) is still linear-quadratic: the reason why

certainty equivalence does not hold is that C appears in B∗ (see equation (8)).

The equilibrium dynamics of the model is found by combining the policy function with

the law of motion (7). Clearly, this dynamics depends on what the true model actually

is—which is captured here by the evil agent’s controls, vt+1. Most researchers have focused

on two cases.

First, the worst case model defines the behavior of the economy when the planner’s

pessimism turns out to be fully warranted. Formally, this means using the policy functions

(9) in the law of motion (7) to get

xt+1 = (A−BFu − CFv)xt + Cεt+1. (10)

This dynamics is typically also used to represent the beliefs of the agents in the model—for

instance, to price assets as discounted sums of expected future payoffs.

Second, the approximating model is the reference model which sets Fv = 0 in (10).

Note that the policy is still robust, so Fu is the same as in the worst case model. Comparing

the dynamics of these two models conveys information on the misspecification that the

planner is fearing.

2.2 Commitment in Forward Looking Models

Forward looking models introduce another player, the private sector, who forms expec-

tations. We consider a class of forward looking models that can be represented by the

linear law of motion[
x1t+1

Et x2t+1

]
= A

[
x1t

x2t

]
+ But + C(vt+1 + εt+1), with C =

[
C1

0n2×n1

]
, (11)

where x1t is a n1×1 vector of predetermined (backward looking) variables with x10 given,

and x2t is a n2× 1 vector of forward looking (or jump) variables. Only the predetermined

variables have shocks, so εt+1 is an iid n1 × 1 vector with zero mean and an identity

covariance matrix—and the last n2 rows of the C matrix are filled with zeros. The evil

agent’s control vector always “hides” behind the shocks, so vt+1 is also an n1 × 1 vector.
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The planner’s loss function (1) is unchanged and the evil agent’s budget constraint is

still given by (3), with x
′
t = (x

′
1t x

′
2t).

Having introduced robustness in a forward looking model, we need to decide whether

private sector expectations are standard or robust. If they are robust, we must specify the

private sector’s approximating model, degree of robustness and loss function. Giannoni

(2002) and Onatski (2000), who also study uncertainty in forward looking models under

commitment, assume that the private sector has no uncertainty, but knows that the

approximating model is exactly correct, and also knows the planner’s loss function and

degree of robustness. On a critical stance, Sims (2001) argues that min-max decisions are

a more appropriate modeling device for the private sector than for a central bank.6 We

follow Hansen and Sargent in taking the middle ground, and assume that the private sector

and planner share the same loss function, approximating model and degree of robustness.

These assumptions greatly simplify the solution.

In the case at hand, the planner credibly commits. Unlike the backward looking case,

it matters whether or not the evil agent also commits. Hansen and Sargent assume that

he does. This is intuitively appealing, considering the rationale for the existence of an

evil agent: when designing a policy rule, the planner is uncertain about the model and

thus designs a robust rule as if she was facing an evil agent. The evil agent is just a

metaphor used to solve the min-max problem efficiently. This perspective suggests that

the evil agent should optimize when and only when the planner does.

Technically, the program can be rewritten in state space form as a standard RE prob-

lem using the same method as in the previous section. This yields

min
{u}∞0

max
{v}∞1

E0

∑∞
t=0β

t(x′tQxt + u∗′t R∗u∗t + 2x′tU
∗ut), subject to (12)[

x1t+1

Et x2t+1

]
= A

[
x1t

x2t

]
+ B∗u∗t + Cεt+1, where (13)

R∗ =

[
R 0k×n1

0n1×k −θIn1

]
, u∗t =

[
ut

vt+1

]
, B∗ =

[
B C

]
, U∗ =

[
U 0(n1+n2)×n1

]
, (14)

and where x10 is given. The numerical solution algorithm we adopt is detailed in Söderlind

(1999), and is based on the generalized Schur decomposition.

The equilibrium dynamics is more complicated than in the backward looking model:

6Sims underlines the importance of the distinction between normative and descriptive when discussing
deviations from the RE paradigm. Specifically, he argues that while it is possible that private agents’
behavior may well be described as robust, it is not clear that a central bank should be advised to choose
a robust policy, rather than try to specify priors and carry out an optimal Bayesian procedure.
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the policy functions are history dependent and the forward looking variables (x2t) depend

on the equilibrium expectations of future values of the other model variables.

In any case, the worst case model is (as before) the equilibrium dynamics of (12)–(14),

that is, when the planner’s pessimism turns out to be fully warranted (the evil agent is

fully active). The approximating model uses the same policy function and expectations

formation—but sets the evil agent’s controls (vt+1) to zero (Appendix B gives the details

of these calculations). For example, in a monetary policy model with forward looking

price setting (a Calvo style Phillips curve, say), the approximating model uses the same

central bank interest rule and mapping from the state of the economy to the price setting

as the worst case model. This means, effectively, that the approximating model uses both

robust policy and robust expectations. We will return to the role expectations formation

when we discuss simple policy rules in Section 4.2.

Example: A Simple New Keynesian Model

We provide an example of how to frame a forward looking model in state space form. The

model consists of an Euler/IS equation and of a Calvo style Phillips curve, as in Clarida,

Gaĺı, and Gertler (1999)

yt = Et yt+1 − γ(it − Et πt+1) + e1t, (15)

πt = β Et πt+1 + αyt + e2t, (16)

e1t = ρ1e1t−1 + ξ1t, where ξ1t is iid N(0, σ2
1), and (17)

e2t = ρ2e2t−1 + ξ2t, where ξ2t is iid N(0, σ2
2). (18)

In this model, it is the short interest rate controlled by the central bank, yt is the output

gap, and πt is inflation. The central bank minimizes the loss function

E0

∑∞
t=0β

s(π2
t + λyy

2
t + λii

2
t ). (19)

This problem can be framed in standard state space form. Write the model in matrix

form
1 0 0 0
0 1 0 0
0 0 1 γ
0 0 0 β




e1t+1

e2t+1

Et yt+1

Et πt+1

 =


ρ1 0 0 0
0 ρ2 0 0
−1 0 1 0
0 −1 −α 1




e1t

e2t

yt

πt

 +


0
0
γ
0

 it +


σ1 0
0 σ2

0 0
0 0

[
ε1t+1

ε2t+1

]
,
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where we have ordered the predetermined variables (e1t and e2t) before the forward looking

variables (yt and πt). Then, premultiply by the inverse of the matrix on the far left we

get the same form as (11). Finally, the loss function matrices are

Q =

[
02×2 02×2

02×2 Qbb

]
where Qbb =

[
λy 0
0 1

]
, R = λi, and U = 04×1.

Once the model is written in standard form, solving for the robust policy only requires

specifying the degree of robustness (the scalar θ) and the solution strategy, which in this

case is commitment.

Figure 1 provides an introduction to the effects of robustness in this model. The

parameters are set as follows: β = 0.99, γ = 0.5, α = 0.645, ρ1 = ρ2 = 0.8, σ2
1 = σ2

2 = 1,

λy = 0.5, and λi = 0.2. We compute both the RE solution and the robust solution. The

latter of course depends on our choice of θ. For the moment we ask our readers to think of

the amount of robustness in this example as neither trivial nor unreasonably high.7 Figure

1.a plots the response of the cost-push process ε2t to a one-standard-deviation innovation

(ζ2t = 1), for the approximating model and for the worst case model. It is evident that

robust agents fear that the cost-push process ε2t will turn out to be more persistent than

implied by the approximating model. In the case at hand, the predetermined variables

are independent of the endogenous variables at all lags; that is, expectations cannot affect

any predetermined variable, implying that the trajectory of ε2t under the approximating

model is the same as under RE.

Figure 1.b shows the response of output (a forward-looking variable) to the same cost-

push shock. The contemporaneous response is the same for the approximating model

and for the worst case model8, but the dynamic paths are then different, with output

feared to be more persistent than suggested by the approximating model. The RE and

the approximating solution share the same underlying dynamics for the predetermined

variables, but differ because of the role of expectations.

2.3 Choosing the Degree of Robustness, θ

In formulating a robust control problem, the choice of θ is crucial, since the evil agent’s

constraint is always binding in a linear-quadratic framework. In other words, the policy

7Formally, θ corresponds to a detection error probability of 20% in a sample of 150 observations. (See
Section 2.3 for a discussion.)

8This is a general feature of the Hansen and Sargent solution, and is due to the fact that vt+1 is a
function of variables dated t or earlier.
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Figure 1: Impulse response functions of the cost-push process ε2t and of output to a cost-
push innovation in the model of Clarida et al. (1999), commitment solution: standard RE
solution (continuous line), approximating solution (dashed line) and worst case solution
(thin dots).

function chosen by a robust planner (who prepares for the worst) is tailored on a model

lying on the boundary of the set from which the evil agent can choose.

This set is defined by deviations from the approximating model, where the allowed

deviations are decreasing functions of the parameter θ (and hence increasing functions of

η0). The choice of the parameter θ is therefore crucial, as the planner’s policy function will

vary with it. Svensson (2002) uses this feature of the solution to stress what seems like a

weakness of robust control, at least from a Bayesian perspective: a model on the boundary

of the available set shapes the policy function, yet models outside this set (including those

only an epsilon away) receive no consideration. He also warns that “highly unlikely models

can come to dominate the outcome of robust control” (page 7). In a linear-quadratic

framework it is easy to make a robust planner look like a foolish catastrophist: her policy

function will be implausible if the amount of requested robustness is sufficiently large (θ

is sufficiently small).

While these warnings are appropriate, it is usually possible to define θ so that the

planner looks cautious rather than foolish. As a guide to choosing θ, Hansen and Sargent

adopt a detection error probability approach based on the idea that the models in the set

should not be easy to distinguish with the available data. Essentially, one takes an agnostic

position on whether the true data generating process is given by the approximating model
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or by the worst case model, and chooses a probability of making the wrong choice between

the two models on the basis of in-sample fit, for a sample of given size.

The value of θ corresponding to this probability is computed by simulation, inverting

the monotonous function π(θ)

π(θ) = Probability(LA > LW |W )/2 + Probability(LW > LA|A)/2, (20)

where LA and LW are the values of the likelihood of the approximating and worst case

model respectively, and the notation (·|W ) and (·|A) denotes that the DGP are the worst

case model and the approximating model respectively.9 Zero robustness corresponds to

a detection error probability of 50%. Hansen and Sargent suggest the range 10% to

20%. The larger the sample (for a given probability), the higher θ, so the uncertainty

surrounding the approximating model disappears as the sample goes to infinity. However,

it is assumed that the planner makes no attempt to incorporate learning in a dynamic

fashion: when solving for a policy function at t, she does not consider the reduction in

uncertainty that future observations may provide (see Hansen and Sargent (2000b) for a

discussion).

Example: Persistence of Cost-Push Shocks

As an example of the effects of varying θ, consider the simple New Keynesian model of

Section 2.2 (with the same parametrization), where it was noticed that the cost-push

shock ε2t is more persistent in the worst case scenario. Figure 2 plots the response of ε2t

to a one-standard-deviation innovation for varying degrees of robustness (i.e. for varying

detection error probabilities). As the detection error probability becomes smaller, ε2t

becomes more persistent. The result is intuitive, since a more persistent process results

in larger inflation and output variance, and thus higher expected loss for the planner.

3 Robust Control with Discretion

The discretionary solution coincides with the commitment solution in a backward looking

model, which has already been treated in Section 2.1.

9See Hansen and Sargent (2002) ch. 8. The procedure requires a distributional assumption on εt

(normality in our software). For applied research, it is advisable to verify that the results of interest are
not overly sensitive to reasonable variations in detection error probabilities.
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Figure 2: Impulse response functions of the cost-push process ε2t to a cost-push innovation
in the model of Clarida et al. (1999), commitment solution, for different detection error
probabilities.

3.1 Discretion in Forward Looking Models

When working with forward looking models (particularly in the field of monetary policy)

it is often assumed that the planner (the central bank) cannot commit. Since this case is

of crucial interest, it seems important to extend the robust methods.10 In this section we

propose solution concepts and algorithms for dynamic models which preserve the property

of transforming the problem to a RE form.

In order to illustrate our solution approach to the robust case, it is useful to review

the main steps involved in the RE solution (see Backus and Driffil (1986) or the summary

in Söderlind (1999) for a more detailed description of the solution procedure).

1. At time t, the private sector observes x1t and decides on a matrix Kt+1 to use in

formulating expectations Ea
t x2t+1 = Kt+1 Ea

t x1t+1, where the notation Ea
t denotes

agents’ expectations in period t. The planner moves after the private sector, so the

matrix Kt+1 incorporates a guess of the planner’s policy function.

2. At time t, the planner observes x1t and Kt+1 and chooses a policy function ut =

−Futx1t+1 to minimize the loss function (1) subject to the law of motion (11) (the

10Hansen and Sargent (2002) ch. 5 discuss the robust discretionary solution of the static model in
Kydland and Prescott (1977).
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same as in the commitment case), but also subject to the expectation formation

process Ea
t x2t+1 = Kt+1 Ea

t x1t+1.

3. The equilibrium solution is found when the matrix Kt+1 of the private sector’s expec-

tations coincides with the mathematical expectation. This happens when the policy

function Fut implied by Kt+1 is also the policy function that solves the planner’s

problem given Kt+1. In equilibrium Kt+1 and Fut are constant.

Our proposal for dealing with the discretionary case is to extend the principle that,

robustness being a metaphor for the planner’s concerns for model misspecification at

the time of choosing a policy function, the evil agent should optimize when and only

when the planner does. When applied to the commitment case, this results in Hansen

and Sargent’s solution. In the discretionary case, this principle suggests that since the

planner reoptimizes at every period (taking expectations as given), the evil agent should

be allowed to do the same. The interpretation is that every time the planner considers a

policy, she will have to deal with uncertainty and design a robust rule.

We maintain the assumptions (used by Hansen and Sargent in the commitment case)

that the private sector’s loss function, approximating model, and θ are the same as the

planner’s.

The main steps involved in the RE solution are therefore modified as follows to find the

robust discretionary policy. First, Kt+1 now implies a guess of the policy functions of both

the planner and the evil agent (private agents share the planner’s concern for robustness).

Second, the evil agent chooses a policy function vt+1 = −Fvtx1t (at the same time as the

planner) in order to maximize the loss function, subject to the same constraints as the

planner, but also subject to the budget Et Σ∞
s=1β

svt+svt+s ≤ η. Third, in equilibrium both

policy rules are constant and consistent with the private sector’s expectations.

This formulation of the robust discretionary case seems quite natural. Moreover,

since η does not depend on t, the size of the deviations from the approximating model

contemplated by the planner is constant through time.

This formulation is also convenient, since it allows us to handle the discretionary

case by augmenting the law of motion and the loss function just like in the commitment

case. In practice, this means finding the discretionary solution to the problem detailed in

equations (12)–(14). We use algorithms developed for the standard RE discretionary case

(ours follows Söderlind (1999)), because they solve for the first order conditions (which

are the same for the minimum and maximum).
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In equilibrium, the predetermined variables (x1t) follow a VAR(1) process

x1t+1 = Mx1t + C1εt+1, (21)

and the forward looking variables and the controls are linear functions of the predeter-

mined variables  x2t

ut

vt+1

 =

 N
−Fu

−Fv

x1t. (22)

The only difference between the worst case model and the approximating model is in

terms of the M matrix in (21) (see Appendix B for details). The difference between the

two M matrices is therefore a useful indicator of the misspecification that the planner

fears.

Since (22) is the same, it is clear that the approximating model uses both robust policy

and robust expectations (the mapping from the predetermined variables to the forward

looking variables is very closely tied to expectations).

Application: The Simple New Keynesian Model

The model defined by equations (15)–(19) is written in state space form exactly as for the

commitment solution. Only the solution algorithm changes. The robust policy function

takes the form given in equation (22) and is therefore not history dependent.

Consider the following application. We wish to derive the central bank policy function

and the behavior of the economy as the degree of robustness goes from zero (RE) to a θ

which implies a 20% probability of error detection in a sample of 150 observations. The

other parameters are set as in Section 2.2. Figure 3 shows the results. Each quadrant

plots the response of a variable to a cost push shock (ξ2t) for three cases: standard RE

(θ = ∞), the approximating model, and the worst case model.

Robustness leads to higher reactions of all variables at all horizons. The response of

the short interest rate is also higher for the approximating model (when policy is robust

but vt+1 is always zero) than for the standard RE case. Finally, the robust monetary

policy function is more aggressive: the policy vector Fu is −(3.0, 1.9)′ for the RE solution,

and −(3.5, 2.4)′ for the robust solution. This result is not new, as other papers conclude

that robustness lead to more aggressive policies under commitment.11 However, it is of

11See, for instance, Hansen and Sargent (2001), and, with a different approach, Giannoni (2002).
However, this result is not general (Hansen and Sargent (2002), ch.8, provide a counter-example): the
outcome will depend on the model and on the loss function parameters.
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Figure 3: Impulse response functions of inflation, output and short interest rate to a cost-
push shock in the model of Clarida et al. (1999), discretionary solution: standard RE
solution (continuous line), approximating solution (dashed line) and worst case solution
(thin dots).

some independent interest that we reach the same conclusion in the discretionary case.

A recurrent feature of the solution is the evil agent’s common choice of increasing the

persistence of the driving processes. In Figure 3 the responses of all variables are in fact

more persistent in the worst case than in both the standard RE and the approximating

case. More persistent processes imply higher variances and therefore a greater loss for

the risk averse planner.12 Fearing this outcome, a robust agent typically has a stronger

reaction to shocks than a standard agent.13

This feature of the robust solution, namely the worst case model displaying more

12Hansen and Sargent (2000a, 2000b) analyze this point at length through spectral analysis, showing
how the evil agent often accentuates the low frequency components of the exogenous processes.

13Kasa (2001) proves that a robust forecaster, whose loss function is the mean squared error, revises the
forecast by more than a standard forecaster following new information, because she is more vulnerable
when she underestimates the persistence of the driving processes.
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persistence than the approximating model, suggests than we can often expect robustness

to make forward looking prices overreact to news. This implies that robustness makes

asset prices more volatile and more forecastable, as illustrated in the applications of

sections 4.1 and 3.1.

Application: The Term Structure of Interest Rates

The literature considered in this paper is young, and yet offers several interesting empiri-

cal applications, including consumption/saving decisions (Hansen, Sargent, and Tallarini

(1999)), asset pricing (Anderson, Hansen, and Sargent (2000), Hansen, Sargent, and Tal-

larini (1999), Tornell (2000)), and monetary policy rules (Hansen and Sargent (2001),

Giannoni (2002), Onatski (2000)). In the latter case the focus is on the behavior of the

short interest rate (the policy instrument). We suggest a natural extension, namely to

consider the implied behavior of multiperiod interest rates. We continue to work with

the model of Section 2.2.14 The exercise could be carried out assuming commitment, but

discretion is arguably more realistic, so we opt for the latter.

Let it—the policy instrument—be the one period interest rate (not annualized). We

assume that multiperiod rates obey the expectations hypothesis of the term structure.

The h-period interest rate (denoted it,h) then follows

it,h = E∗
t

h−1∑
i=0

it+i, (23)

where E∗ denotes robust expectations, that is, expectations which condition on the worst

case model. We also define a ‘fundamental’ rate, computed substituting the mathematical

expectation E for the robust expectation E∗ in equation (23). The fundamental rate

therefore guarantees that no expected excess profits are available, whereas the actual rate

does not. Referring to Figure 3, the actual rate and the fundamental rate are derived by

plugging into equation (23) the path of the short interest rate for the worst case model

and for the approximating model respectively.

Figure 4 shows the difference—at the time of a unit shock to the inflation equation—

between a long (h = 4) interest rate, and the correponding fundamental rate, for different

degrees of robustness (represented by error detection probabilities). This difference can

be considered an overreaction in the classical sense that the price of the multiperiod bond

14Parameter values are the same as in Section 2.2, and θ again implies a detection error probability of
20% in a sample of 150 observations.
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Figure 4: Over-reaction of the long interest rate to a CP shock as a function of the degree
of robustness (in terms of the detection error probability) in the model of Clarida et al.
(1999) with discretionary solution. 0.01 corresponds to one basis point.

reacts to a shock by jumping beyond its new equilibrium value (we are assuming, of course,

that the approximating model is in fact the DGP). The overreaction is around 1.25% at

a 20% detection probability, and grows monotonously with the degree of robustness.

A rather large empirical literature on the term structure has found that actual changes

in short interest rates are smaller than predicted by the slope of the yield curve.15 Our

examples show that robust expectations can contribute to an interpretation of this finding.

Application: The Inflation Bias

A well known example of how the presence or absence of a commitment technology can

affect an economic outcome is the time inconsistency of optimal monetary policy first

studied by Kydland and Prescott (1977) and Barro and Gordon (1983). They assume

that the planner is targeting a level of output above potential output, and then show that

the discretionary solution involves an inflation bias (inflation is higher than the optimal

level). The model of Kydland and Prescott is static and involves expectations about the

control variable, so it cannot be cast into the form of equation (11). However, an analyt-

ical solution is available. Hansen and Sargent (2002) show that fear of misspecification

15See, for example, Walsh (1998) ch. 10 and Campbell, Lo, and MacKinlay (1997) ch. 10.
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increases the inflation bias. The intuition is that the planner fears that the expected value

of output is lower than in the approximating model, which increases the distance between

desired and expected output. Thus a preference for robustness has the same effect as an

increase in target output: higher inflation.

With our solution approach for discretion in dynamic models, we can recast Hansen

and Sargent’s exercise in more general settings. Here we study the inflation bias in the

dynamic model of Clarida, Gaĺı, and Gertler (1999) used in the previous section (equations

(15)–(19)), except that we allow for an output target level y∗ > 0 in the loss function,

which becomes

Et

∑∞
s=0β

s[π2
t+s + λy(yt+s − y∗)2 + λii

2
t+s]. (24)

Technically, this requires adding the constant 1 to the vector of predetermined vari-

ables. Average inflation in the standard RE solution is then a positive function of y∗. In

our proposed solution for the discretionary case, the evil agent’s control vector, vt+1, is a

linear function of the predetermined variables, just like the central bank’s policy rule.

It turns out that the evil agent decides to affect both the constant and the autoregres-

sive parameters, thus increasing both the mean of inflation and its variance. The constant

is negative because y∗ is positive. Intuitively, since the loss function is symmetric in y

around y∗ while the evil agent’s cost is symmetric in y around zero, it is cheap and effec-

tive for the evil agent to set a negative constant to output. The result is that robustness

leads to an increase of average inflation in the discretionary solution, for the same reason

as in the Kydland-Prescott example.

Figure 5 shows how the inflation bias varies with the degree of robustness in the model

of Clarida, Gaĺı, and Gertler (1999). The calibration is the same as in Section 2.2. We

set y∗ to 0.4. The inflation rate is defined as the growth rate in prices during one period.

Therefore, if we think of the model as applying to quarterly data, an inflation bias of 0.8%

translates into an annual bias of approximately 3.2%.

4 Robust Control with Simple Rules

The monetary policy literature has paid a good deal of attention to the properties of simple

rules, defined as commitment rules that set the policy instrument as a linear function of

the system variables. Examples include Taylor type rules and rules for money growth.

Simple rules are typically not optimal. In some cases they are motivated as good empirical

approximations to actual policy.
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Figure 5: Inflation bias as a function of the detection error probability in the model of
Clarida et al. (1999). The horizontal line gives the inflation bias for the RE solution.

In other cases simple rules are justified as an attempt to identify rules that work well

in a variety of models. A prominent proponent of robustness in this sense is McCallum

(1988, 1999). An interesting example is Levin, Wieland, and Williams (2001), who focus

on simple monetary policy rules that work well in models that incorporate rather different

views of the transmission mechanism.16

This literature uses the term robust for a rule that performs well across models. Hansen

and Sargent propose, instead, to design rules that perform well for deviations around a

single model. Sims (2001) argues that a Hansen-Sargent robust solution to a single ap-

proximating model may in fact not be robust in the sense of McCallum. There is of course

no reason why the two concepts should be substitutes rather than complements: one could

try to identify a rule that is robust in a Hansen-Sargent’s sense for several approximating

models, or, when possible, merge the competing models and thus reduce model uncer-

tainty to parameter uncertainty. A preliminary requirement for this is to specify solution

concepts for simple rules in a Hansen-Sargent robust framework. A solution for backward

looking models is already available, and one for forward looking models is proposed in

this section.

Another reasons why we are interested in simple rules in a robust framework is that

16Leitemo and Söderström (2001) evaluate the performance of simple monetary policy rules (compared
to optimal rules) in several variations of a baseline model.
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they allow us to isolate the effects of the private sector deviations from RE. In effect, a

planner who has committed to a given simple rule is no longer involved in any decision,

so any change in economic outcome between the RE and the robust solution is entirely

due to the role of private sector expectations.

4.1 Simple Rules in Backward Looking Models

Managing a simple rule in a backward looking model is a straightforward application of

the robust pure prediction problem analyzed in Hansen and Sargent (2002) and Kasa

(2001). The planner commits to a specific Fu in setting ut = −Fuxt (where xt can be

augmented by any variables that are important for policy decisions). Then the evil agent

is left with the following program

max
{v}∞1

E0

∑∞
t=0β

t(x′tQxt + 2x′tUut − θv′t+1vt+1) (25)

subject to xt+1 = (A−BFu)xt + C(vt+1 + εt+1),

and where x0 is given. This is a standard RE problem of finding the optimal policy rule

in a backward looking model. The evil agent will therefore choose to set vt+1 as a linear

function of the state xt.

Example: A Simple Forecasting Problem As an illustration, consider a simple

robust forecasting problem. Let the loss function be the mean squared forecast error

Et(xt+i − xe
t+i,t)

2, where xe
t+i,t denotes the forecast of xt+i made at time t. Suppose that

xt is the amount of dividends. The approximating model of the dividend is an AR(1)

process (A in (25) is the autoregressive coefficient and B = 0).

It is straightforward to show that the robust forecast of xt+i at time t, denoted by

E∗t xt+i, is E∗t xt+i = (A∗)ixt, where A∗ > A so the investor forecasts as if the process

driving dividends was more persistent than in the approximating model. The investor

thus fears that the process has high peristence. The intuition is that more persistence

gives larger uncertainty of long horizon forecasts (as future shocks are propagated more).

If the asset price is the discounted (at rate β) sum of expected dividends, then we get

the price xt/(1−A∗β). Since A∗ is a positive function of the degree of robustness, so too

is the price variance.17 A small degree of robustness can have large effects on the behavior

of prices. For example, let β = 0.98, and A = 0.99, and A∗ = 1. This relatively small

17See Hansen and Sargent (2002), from which this example is adapted.
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degree of robustness implies an increase of around 50% in the standard deviation of the

asset price.

4.2 Simple Rules in Forward Looking Models

The forward looking case is less straightforward. We propose to be more specific about the

set of models from which the evil agent can choose (that is, the type of misspecification

feared), by imposing that he sets his instruments vt+1 as a linear function of predetermined

variables. That is, we allow for misspecifications of the form

vt+1 = −Fvx1t, (26)

and leave the evil agent free to choose the coefficients of the (n1 × n1) matrix Fv (within

the limits of the budget defined by θ).

For the moment we concentrate on the technical aspects of our proposed solution,

postponing its motivation to the end of this section. Formally, we suggest to set up the

problem as (recall that all shocks are included in the predetermined variables, so the lower

n2 × n1 block of the matrix C is made of zeros)

max
Fv

E0

∑∞
t=0β

t(x′tQxt + 2x′tUut − θv′t+1vt+1), subject to (27)[
x1t+1

Et x2t+1

]
=

(
A−BFu − C

[
Fv 0n1×n2

]) [
x1t

x2t

]
+ Cεt+1, with C =

[
C1

0n2×n1

]
,

and where x10 is given. The constraint vt+1 = Fvx1t has been imposed and the maximiza-

tion is explicitly in terms of Fv. The interpretation is that the planner is fearing errors in

the coefficients which relate predetermined variables to lags of predetermined variables.

For a given Fu, the solution concept is that of a simple rule in a forward looking model:

private sector expectations are consistent with the evolution of the economy in the worse

case model (which requires that the Fv which solves the problem is correctly perceived by

the private sector). The solution algorithm for a given Fv is outlined in Appendix D. The

solution to (27) is then found by letting a numerical maximization routine search over

Fv. (It is also possible to find an optimal robust simple rule by then letting a numerical

minimization routine search over Fu.)

The formal representation of the equilibrium can be written in the same form as in

the discretionary case (21)–(22) where the predetermined variables (x1t) follow a VAR(1)

process and the other variables are linear functions of the predetermined variables (see

Appendix B for details).
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Example: The Simple New Keynesian Model The state space form is as for

the commitment and discretionary solution, except that the researcher must provide a

matrix Fu (and of course a value of θ).

Motivation of Our Robust Simple Solution

We will now motivate of our proposed solution for the simple rule in a forward looking

model. Recall that we are constraining the vt+1 to be a linear function of predetermined

variables. Why this constraint? The problem is that an evil agent free to commit to any

rule uses agents’ expectations to his advantage, and therefore makes the set of plausible

models dependent on the expectation formation. By strategically exploiting expectations,

an agent free to commit can drive the loss function to infinity for any degree of robustness,

for example by committing to an exponentially increasing or decreasing series of vt+1, a

highly improbable misspecification to fear. This does not happen when the planner is

allowed to choose a robust policy (in the commitment or discretionary case)—but it

happens with a simple rule since the policy maker is bound to follow a given rule. To put

it simply, the planner is defenceless against the evil agent.

On the other hand, the choice of constraining vt+1 to be linear in the predetermined

variables ensures that the set of misspecifications that the planner considers plausible is

given exogenously, in the sense that it does not depend on how expectations are formed,

and that there is a finite θ for which a model that has stable dynamics under RE remains

stable in the robust solution.

The following example illustrates the argument. Let the planner’s loss function depend

on squared inflation rates, L0 = E0 Σ∞
t=0β

tπ2
t , and the law of motion of the economy be

given by the simplified Calvo style Phillips curve

πt = β Et πt+1 + εt, where εt is iid with E εt = 0 and Var(εt) = 1.

In this case, the planner has no effect at all on inflation—but the more general point is

that he cannot revise his policy to defend against the evil agent. Assume that the evil

agent can commit to any policy rule. He therefore solves18

max{v}∞1 E0

∑∞
t=0β

tπ2
t (28)

subject to πt = β Et πt+1 + vt+1 + εt and E0

∑∞
t=0β

tv2
t+1 ≤ η0.

18We write the evil agent’s constraint explicitly rather than in terms of the Lagrange multiplier θ. A
high η0 corresponds to a low θ. We also set c = std(εt) = 1.
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It is straightforward to prove that an evil agent who is able to commit will choose

a non-stationary (exponentially increasing or decreasing) vt+1 (see Appendix C), which

makes the loss function unbounded for any strictly positive η0. The misspecification feared

is then a trend increase (or decrease) of inflation, which is a case of limited interest.

In contrast, this problem has a well defined solution under our proposed approach

to the simple rule case, which here forces the evil agent to set vt+1 as a function of εt

(the only predetermined variable), say vt+1 = aεt. The robust expectations are therefore

formed as if the standard deviation of the errors was 1 + a rather than 1.

Application: Output and Inflation Volatility

The differences between the robust and RE solutions illustrated in Figure 3 are due to

deviations from rational expectations of both the planner and the private sector. The

solution approach to simple rules in forward looking models developed in Section 4.2

opens up the possibility of isolating the effects of private sector deviations from RE. We

might then ask how a preference for robustness on the part of the private sector affects

macroeconomic variables and asset prices, keeping the behavior of the planner fixed by

assuming that she has committed to a simple rule.

To illustrate, we continue to consider the simple model of Section 2.2. The goal is

to establish a link between the degree of robustness and the volatility of inflation and

output.

The central bank is assumed to commit to the Taylor rule

it = 1.5πt + 0.5yt.

The solution takes the form [
x2t

vt+1

]
=

[
N
−Fv

]
x1t. (29)

As in the other equilibria, N is a function of θ and does not depend on whether the

planner’s fears are founded or not (that is, the approximating model and the worst case

model share the same way of forming expectations).

We assume that the approximating model is correct, and therefore that x1t evolves as

(see Appendix B)

x1t+1 = Max1t + C1ε1t, (30)

from which we obtain the variance of the predetermined shocks (e1t and e2t). The matrix

N in (29) is then used to compute the variance of the corresponding series of output and
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inflation. This is done for the standard RE case (θ = ∞) and for the robust case.

The variance of output and inflation is found to be a monotonous function of the

degree of robustness (an inverse function of θ). At θ = 850, which corresponds to a 20%

error detection probability for a sample of 150 observations, the variances of output and

inflation are some 3% and 46% higher than in the standard RE case respectively.

To gain some intuition for this result, it is useful to compare the matrix Ma, which

actually generates the predetermined variables in (30), and M , which corresponds to the

worst case model and therefore to agents’ expectations (see Appendix B). The parameters

in Ma are ρ1 and ρ2

Ma =

[
0.8 0
0 0.8

]
,

while M (the worst case model) is

M =

[
0.86 0.04
0.02 0.82

]
.

Comparing Ma and M , we notice that the planner is fearing that the exogenous processes

are more persistent than in the approximating model. Expecting persistent dynamics of

the driving processes (the predetermined variables), consumers and price setters overreact

to news, in the sense that output and inflation have a stronger response to shocks than

in the RE case.

Using the same model we can isolate the effects of robust expectations on the term

structure. The results (not reported) are similar to those of the discretionary solution,

shown in Figure 3 and 4: the public fears more persistent effects of shocks and multiperiod

interest rates overreact.19

Application: Publishing Central Bank Forecasts

Sims (2001) argues that a min-max approach to robustness is better suited to capture

agents’ near rational behavior than as a normative course of action for central banks. The

following example embraces his point of view and departs from the assumption that the

private sector and the central bank share the same information and the same taste for

robustness. We assume that the central bank has a good and precisely estimated model,

while the private sector nurtures strong doubts about the behavior of the economy.

To simplify the problem as much as possible, we make the following assumptions.

19We obtained similar results on the behavior of long interest rates in the model of Fuhrer (1997), with
the parameters estimated in Söderlind (1999).
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First, the private sector does not know the model (or simply the coefficients) estimated

by the central bank, but it knows that the bank has an accurate representation of the

economy. Second, the central bank follows the Taylor rule it = 1.5πt + 0.5yt. Third, the

private sector’s approximating model is the same as the central bank’s and it is also the

DGP.

The second assumption means that we can adopt the simple rule solution developed

in Section 4.2. Altogether, these three assumptions are admittedly unrealistic, but they

help us make the following point: the central bank can reduce the variance of inflation and

output by releasing information to the public, for example in the form of forecasts. To

verify the statement, notice that if the central bank does not release information, the setup

and outcome is exactly as in the previous application, where robustness increases business

cycle volatility. However, if the central bank announces its forecasts of the predetermined

variables, the private sector makes these forecasts their own (by the first assumption),

taking the economy back to the superior RE solution.

Whether central banks should release explicit forecasts is a matter of current debate

(see Svensson (2001) for a list of central banks that do, and arguments in favor of the

practice). While our example cannot be a serious attack on the issue, it does lead us to

believe that a more thorough investigation would be worth the effort.

5 Conclusions

The approach to dealing with model uncertainty proposed by Lars Hansen and Thomas

Sargent seems promising from both a normative (designing a rule that works well in a

neighborhood of the approximating model) and a descriptive (replicating the behavior of

actual agents) perspective. In the discussion of fiscal and monetary policy, much of the

debate is centered around two non history dependent sets of policies: simple rules and

discretionary solutions, which Hansen and Sargent do not consider. This paper proposes

solution approaches for simple rules and discretion. These extensions preserve the prop-

erty that the robust program can be written and solved as a suitably modified rational

expectations program. Some applications show that these extensions can be interesting

for applied work. The analysis of the term structure of interest rates complements previ-

ous research and suggests that standard models give a better empirical description of asset

returns if agents are attributed a taste for robustness. The result that the inflation bias

increases with robustness can be interpreted as saying that the gains from commitment
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increase if potential output is imprecisely estimated. The application to the variance of

inflation and output for a given policy function is perhaps the most interesting. It suggests

that a robust private sector may amplify those same fluctuations in inflation and output

that it fears, and can provide a theoretical motivation for central banks to be transparent

about their forecasts.

Appendix A Software

Our software can be downloaded freely at http://home.tiscalinet.ch/paulsoderlind. A

user’s manual and example programs are provided. The procedures follow the notation of

this paper, and their syntax is therefore immediately understood. The user needs to write

the loss function (that is, specify β, Q, R, U), write the model in state space form (that is,

specify A, B, C, n1), select a θ, and decide on a solution algorithm (commitment, discre-

tion, simple rule). Advanced users can fine tune the optimization algorithms. Bayesian

error detection probability is also implemented (assuming normally distributed errors) to

assist the user in selecting θ. We follow Hansen and Sargent in plotting the probability

(of selecting the wrong model) against σ = −1/θ, rather than against θ. To find the θ

corresponding to a probability of 0.2 in the Euler+Calvo model (discretionary solution),

we solved the model 10,000 times. This took around 20 seconds on a Pentium III PC

using Gauss, and a few seconds more using Matlab.

Appendix B Reduced Form Dynamics

This appendix shows how to compute the dynamics of the worst case and of the approxi-

mating model in the commitment case. The discretionary and simple rule case are special

instances (ρ1t = ρ2t = 0).

The solution can be written in the following general form (see Söderlind (1999))[
x1t+1

ρ2t+1

]
= M

[
x1t

ρ2t

]
+ Cεt+1 (31)


x2t

ut

vt+1

ρ1t

 = N

[
x1t

ρ2t

]
=


N1

N2

N3

N4

[
x1t

ρ2t

]
(32)

with ρ20 = 0n2×1. In the discretionary and simple rule solutions, ρ2t = 0 for all t.
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Equations (31) and (32) give the dynamics of the worst case model. To retrieve the

dynamics of the approximating model, we rewrite (31) as[
x1t+1

ρ2t+1

]
= M

[
x1t

ρ2t

]
+ Cεt+1, (33)

where

M = P−1(A−BFu −BFv)P (34)

P =

[
In1 0n1×n2

N1

]
=⇒

[
x1t

x2t

]
= P

[
x1t

ρ2t

]
, and[

ut

vt+1

]
=

[
N2

N3

]
P−1

[
x1t

x2t

]
=

[
−Fu

−Fv

] [
x1t

x2t

]
.

We then set Fv = 0n1×n in (33), so[
x1t+1

ρ2t+1

]
= Ma

[
x1t

ρ2t

]
+ Cεt+1, (35)

where Ma = P−1(A − BFu)P . The values x1t and x2t are then determined by (35) and

(32). In applications, Ma is sometimes not a function of θ. This happens when the

predetermined variables are block exogenous, that is, independent of lagged values of the

forward looking variables.

Appendix C The Stability Problem of Robust Sim-

ple Rules

Proposition 1 If η0 is strictly positive, the loss function is unbounded. This outcome can

be achieved by the evil agent committing to an ever increasing (or decreasing) constant in

the law of motion.

Proof. Assume that the evil agent commits to the sequence vt+1 = αγt, α > 0. Then

E0 πt =
∑∞

s=0β
svt =

αγt

1− βγ
. (36)

The constraint is binding, so η0 = α2(1− βγ2) and the problem can be written as

maxγ
α2

(1− βγ2)(1− βγ)2
, s.t. 1− βγ2 > 0. (37)
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This problem does not have a maximum: γ =
√

1/β is a supremum. However, the

evil agent can pick a γ∗ such that 1 < γ∗ <
√

1/β, which in turn makes the loss

unbounded by (37), and limt→∞ E0πt = ∞ by (36).

Appendix D Solution Algorithm for the Simple Pol-

icy Rule

Appendix D.1 Simple Rule: The Solution for a given Fv

We start by finding the equilibrium for a given “decision rule” of the evil agent, Fv. Take

expectations conditional on the information set in period t of the law of motion in (27)

Et

[
x1t+1

x2t+1

]
= D

[
x1t

x2t

]
, where D = A−BFu − C

[
Fv 0n1×n2

]
. (38)

Calculate the Schur decomposition of D.20 The decomposition of the n× n matrix D

gives the matrices T and Z such that

D = ZTZH (39)

where Z is a unitary n×n matrix (so ZZH = I, where ZH is the transpose of the complex

conjugate of Z) and T is an n × n upper triangular Schur form with the eigenvalues

along the diagonal. The ordering of the eigenvalues in T is here reshuffled so the stable

eigenvalues (with a modulus less than unity) come first, although this requires that Z is

reshuffled conformably to keep (39) to hold.

Introduce the auxiliary variables[
θt

δt

]
= ZH

[
x1t

x2t

]
, (40)

where θt corresponds to the stable eigenvalues in T . Use the Schur decomposition (39) in

20This decomposition is used to solve the eigenvalue problem Dx = λx. The results in the text hold
also for the real Schur decomposition, where Z is a real orthogonal matrix, and T a real upper quasi-
triangular matrix. If A − BF has linearly independent eigenvectors, then a spectral decomposition can
be used. See Golub and van Loan (1989).
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(38). Then, premultiply with the non-singular matrix ZH , and use (40)

ZH Et

[
x1t+1

x2t+1

]
= ZHZTZH

[
x1t

x2t

]
Et

[
θt+1

δt+1

]
= ZHZT

[
θt

δt

]
=

[
Tθθ Tθδ

0 Tδδ

] [
θt

δt

]
, (41)

where T is partitioned conformably with (40). Notice that the last equation gives a

recursive dynamics of δt and θt.

Since Tδδ contains the roots outside the unit circle, δt will diverge as t increases unless

δ0 = 0. Any stable solution will therefore require that δt = 0 for all t, so (41) can be

written as δt = 0 and Et θt+1 = Tθθθt.

Invert (40) and partition as[
x1t

x2t

]
=

[
Zkθ Zkδ

Zλθ Zλδ

] [
θt

δt

]
=

[
Zkθ

Zλθ

]
θt, (42)

since δt = 0.

We have initial values of the backward looking variables, that is, values on x10. From

(42) x10 = Zkθθ0, which can be solved for θ0 if Zkθ is invertible. This matrix has n1 rows

(as many as elements in x1t) and nθ columns (as many as stable roots), so a necessary

condition is that the number of stable roots equal the number of backward looking vari-

ables (the saddlepoint condition in proposition 1of Blanchard and Kahn (1980)).If that is

the case, then θ0 = Z−1
kθ x10.

21

To put the innovations back we take the following steps. From (27) x1t+1−Et x1t+1 =

C1εt+1. Use (42) to rewrite as Zkθ (θt+1 − Et θt+1) = C1εt+1. If Zkθ is invertible (see above),

then θt+1 = Et θt+1 + Z−1
kθ C1εt+1. Combined with the previous result that Et θt+1 = Tθθθt,

we have θt+1 = Tθθθt + Z−1
kθ C1εt+1. The last step is to combine this expression with (42)

to write the dynamics in terms of x1t and x2t

x1t+1 = Mx1t + C1εt+1, where M = ZkθTθθZ
−1
kθ (43)

x2t = Nx1t, where N = ZλθZ
−1
kθ . (44)

21If the number of stable roots is less than the number of predetermined variables, n1, then there is no
stable solution. If the number of stable roots is larger than the number of predetermined variables, n1,
then there is an infinite number of stable solutions.
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Appendix D.2 Simple Rule: The Optimal Choice of Fv

It is straightforward to show that the loss function value, for a given F matrix, is

J0 = x′10V x10 +
β

1− β
trace (V C1C

′
1) , (45)

where the matrix V is the fixed point in the iteration (“backwards in time”) on

Vs = P ′
[

Q U∗

U∗′ R∗

]
P + βM ′Vs+1M , where P =

 In

−Fu

−Fv

[
In1

N

]
. (46)

The evil agent maximizes the loss function (45) by choosing the optimal elements in

the decision rule Fv. This rule is found by a non-linear optimization algorithm.
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