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Abstract

The full Bayesian treatment of error component models typically relies
on data augmentation to produce the required inference. Never strictly nec-
essary a direct approach is always possible though not necessarily practical.
The mechanics of direct sampling are outlined and a template for including
model uncertainty is described. The needed tools, relying on various Markov
chain Monte Carlo techniques, are developed and direct sampling, with and
without effect selection, is illustrated.
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1 Introduction

Many interesting panel regression models may be defined in terms of a simple
covariance structure specified by just a few parameters. Examples include, but
are in no way limited to, error component models and models having serially
correlated errors. Parameterizing the mean and covariance structures separately,
any difficulties encountered are mostly associated with the latter. In Bayesian
analysis, problems usually stem from a lack of analytical results and the modern
solutions typically involve posterior simulation.

Data augmentation, introduced by Gelfand and Smith (1990), is a frequently
used tool where the ability to sample, augment and condition on latent variables
may result in major simplifications for convenient prior structures. Although a
generally applicable method, data augmentation is not necessarily efficient. Also,
while elegant and simple, for covariance modeling it is never strictly necessary as
parameterization of the covariance matrix and direct sampling is always possible,
albeit not always very practical. This paper shows how direct sampling can be
implemented for common panel data models and further demonstrates how direct
sampling is a viable alternative to data augmentation.

For direct sampling to be practical and effective, the main requirement is that
the simple structure of the covariance matrix, in a broad sense, carries over to
its inverse. When this is the case, convenient expressions for the full conditional
posterior are readily available. Complicating the posterior simulation, these will
typically not be known densities. Often involving simple, but possibly nonlinear,
polynomials in the covariance parameters they may instead be used to create
arbitrarily good approximations. These may in turn be used to either sample
candidate values for Metropolis type updates, apply the griddy Gibbs sampler of
Ritter and Tanner (1992), or form the basis of any resampling method. Whatever
the preferred method, an expression for the determinant in terms of the parameters
and bounded support for the parameters is helpful but not decisive; the alternative
being brute force calculations.

In addition to providing a generic, if not always practical, solution to some
of the problems associated with data augmentation, direct sampling brings other
advantages. Many models imply restrictions on the covariance matrix, so that
direct parameterizing will be efficient in terms of the number of unknowns in
the model. For instance, in error component models the status of an effect as
present or absent is typically governed by a single parameter, to be compared
with many latent and augmented effects. This also simplifies the administration
and implementation of model selection, keeping the necessary adjustments to the
posterior simulation at a minimum. The changing dimensionality of the parameter
vector necessitates the use of more sophisticated sampling procedures such as the
reversible jump Metropolis-Hastings developed by Green (1995).
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The organization of this paper is as follows. In Section 2, the mechanics of
direct covariance sampling is described. The covariance matrix properties that
make a direct approach practical are briefly discussed and a generic algorithm for
posterior simulation is presented for the case with standard conjugated priors on
all other quantities. Section 3 extends the prior to cater for model selection and
outlines a generic algorithm to include it. To illustrate the methods, Section 4
walks through the necessary computations for a simple error component model.
Establishing the direct approach as a viable method, its performance is compared
to two standard algorithms of varying levels of sophistication in the context of
one-way error component models. Finally, effect selection is then illustrated in the
context of the two-way error component model. Closing, Section 5 summarizes
our experiences to date and offers some ideas for future research.

2 Parametric Covariance Modelling

Consider the standard panel regression model where the response yit of individual
i at time t is linked to p explanatory variables xit by coefficients β common across
units, and is observed with error εit

yit|xit = x′itβ + εit, i = 1, . . . , N, t = 1, . . . , T. (1)

Stacking the observations associated with unit i into a T × 1 vector yi, and a
T × p matrix Xi Bayesian inference may be conducted within the standard linear
regression framework.

Assuming εi ∼ N (0,Σε) and standard conjugated prior structures, analytical
results are available for the two extreme models with respect to the number of
parameters embodied in the covariance matrix Σε. On one end we have the trivial
model with marginally independent and homoscedastic errors, imposing a diagonal
structure on the covariance matrix and contributing with a single scale parameter.
On the other end we have the unrestricted model where the covariance matrix
contributes with a maximal m̄ = T (T + 1) /2 parameters.

Contrasting, many interesting models reduce the number of unique elements
in the covariance matrix or imply exact restrictions in terms of a small number of
parameters. Examples include, but are not limited to, error component models and
models with serially or spatially correlated errors. While more parsimonious with
respect to the number of unknowns, analytical results are typically not available.
Posterior analysis is usually performed by means of approximation, for instance
using Markov chain Monte Carlo (McMC) methods. Special solutions exist for
select models.

However, it is possible to treat any model of type (1) within a single unifying
direct sampling framework which may, under certain favorable circumstances, be
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efficient as well as practical. Writing the proper covariance matrix as a product
of a design matrix, Λθ, and a scale parameter, σ2, the inverse may always be
represented as

Σ−1
ε = σ−2Λ−1

θ = σ−2

m∑
i=1

gi (θ) Qi, (2)

for a set of m scalar functions g = {g1, . . . , gm} of a set of k ≤ m parameters
θ = {θ1, . . . , θk} and a collection of constant matrices Q = {Q1, . . . , Qm}. In
the case with no restrictions, the parameter vector includes the m̄ unrestricted
elements of the inverse and the equal number of fixed matrices are zero everywhere
except either at one position on the main diagonal or two positions symmetrically
to the main diagonal. In general, every restriction introduced reduces the number
of parameters, functions, and matrices needed.

While the precise definition of the functions and matrices is necessary for any
actual application, they are not essential to the description of direct sampling.
Regardless of the form of the design matrix, the unknown parameters in (1) are
{β, σ2, θ} and the joint distribution of all quantities, known and unknown, is the
product of the likelihood and the prior

p
(
y, β, σ2, θ

)
= L (

y| β, σ2, θ
)
π

(
β, σ2, θ

)
, (3)

where the conditioning on the explanatory variables is implied. The likelihood is,
given a standard normality assumptions and ignoring a proportionality constant,

L (
y| β, σ2, θ

) ∝ σ−NT |Λθ|−N/2 × exp

{
−0.5σ−2

N∑
i=1

e
′
iΛ

−1
θ ei

}
, (4)

ei = yi −X
′
iβ.

Further, adopting the prior structure

π
(
β, σ2, θ

) ∼ π
(
β|σ2, θ

) k∏
i=1

π
(
θi|σ2

)
π

(
σ2

)
, (5)

the choice of a conditional independence structure for the covariance parameters
is dictated by convenience.

Completing the specification of the prior, standard conjugate choices are made
for the regression coefficients and the idiosyncratic error precision

π
(
β|σ2, θ

) ∼ Np

(
b0, σ

2B0

)

π
(
σ−2

) ∼ G (ν0, ν1) ,

3



The prior for the covariance parameters is left unspecified as its precise definition
is problem dependent and not essential at this stage of the presentation. Typically
no convenient prior is available forcing an approximation of the posterior by means
of for instance posterior simulation.

The conditional conjugate prior structure avoids any unnecessary complication
of the posterior simulation. In particular, the full conditional posterior of the
coefficients has a normal kernel, and updating them can be performed with a Gibbs
step based on a generalized least squares type quantities. Similarly, a Gibbs step
can be used for updating the error precision as its full conditional posterior has a
gamma kernel. This limits any remaining difficulties to the covariance parameters
in θ. However, using the representation of the inverse in (2) we may begin to
outline a computationally potentially rather efficient strategy.

Defining the set θ−j = θr θj for any element θj of θ, using (2) and rearranging
slightly, the full conditional posterior is proportional to

p
(
θj| y, β, σ2, θ−j,

) ∝ |Λθ|−N/2 exp

{
−0.5σ−2

m∑

k=1

gk (θ) ck

}
, (6)

where

ck = sk − 2β′vk + tr
(
Mkββ

′
)

,

sk =
N∑

i=1

y′iQkyi, vk =
N∑

i=1

X′
iQkyi, Mk =

N∑
i=1

X′
iQkXi.

While (6) is seldom a known density being a simple function of the parameter
of interest, it can be used for quick and efficient evaluation of the posterior for
select values. Doing so for a reasonably large number of values, an adequate first
order approximation of the full conditional posterior may be constructed. It can
then in turn be used either to sample the next value immediately, applying the
griddy Gibbs sampler of Ritter and Tanner (1992), to sample candidate values,
for Metropolis type updates, or to serve as the basis for the implementation of
any resampling method such as Acceptance-Rejection (AR) sampling. Without
making any claims of optimality, Algorithm 1 describes the building blocks of one
possible simple generic McMC implementation.

Studying Algorithm 1 closer, the complexity, extent and cost of the necessary
computations is increasing in the number and complexity of the functions needed to
write the inverse. That is, practical and efficient direct sampling seems to require
that the simple structure of the covariance matrix, in a broad sense, carries over
to its inverse. In addition to an explicit structure for the inverse, computational
efficiency of the direct approach described relies on the availability of an expression
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Algorithm 1 A generic sampler.

1. Conditional on {σ2, θ}, sample and accept a proposal for β from its full
conditional posterior. Due to the (conditional) Gaussian structure,

yi| β, σ2, θ ∼ Nt

(
Xiβ, σ2Λθ

)
, i = 1, . . . , N

and combining for all units with the prior gives

β| σ2
ν , θ ∼ Np

(
b1, σ

2B1

)
,

where

B1 =

[
B−1

0 +
m∑

j=1

gj (θ)Mj

]−1

, b1 = B1

(
B−1

0 b0 +
m∑

j=1

gj (θ) vj

)

with the Mj and vj as defined in (6).

2. Conditional on {β, θ}, sample and accept a proposal for σ−2 from its full
conditional posterior. The conjugate structure results in

σ−2
∣∣ β, θ ∼ G (ν0 + n0, ν1 + S1) ,

n0 = NT/2, S1 =
m∑

j=1

gj (θ) cj/2,

with cj defined as in (6).

3. Cycle through θ element by element and update θj conditional on
{β, σ−2, θ−j}. Selecting the desired number of nodes, approximate the full
conditional posterior, q (θj), using the results in (6)

θj| β, σ2, θ−j ∝ |Λθ|−N/2 exp

{
−0.5σ−2

m∑

k=1

gk (θ) ck

}
π

(
θj|σ2

)
.

Note that in the exponent we only need to evaluate the factors where θj

is actually referenced in gk (θ). Update the parameter using any preferred
method such as the griddy Gibbs sampler, Metropolis-Hasting updates or
resampling with AR-algorithm.

4. Repeat steps 1-3 using the most recent values of the conditioning variables
until convergence or a stopping criterion is met.
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for the determinant as a function of θ. Also helpful, but in no way essential, is that
the support of the parameters in θ is bounded as this can simplify the construction
of an approximation to the full conditional posterior.

For computational efficiency, note how the sets of scalars s = {s1, . . . , sm},
p × 1 vectors v = {v1, . . . , vm} and p × p matrices M = {M1, . . . ,Mm} in (6)
only depend on fix quantities and need to be computed just once. Further, the
set of scalars c = {c1, . . . , cm} is known conditional on β and though it must be
recomputed for every new instance of β, the computational burden depends on
p which is typically small relative N and T . Consequently, efficiency is mainly a
matter of efficient construction of and sampling from the approximation in Step 3
of Algorithm 1.

Assuming elements of θ are treated one by one, evaluating the full conditional
posterior on a grid using the results in (6) is a relatively simple task. Issues like
the number and placement of nodes is critical for the quality of the approximation
and the classical conflict of precision and computational speed applies two ways.
First, adding nodes will increase the precision of the estimated cumulative density
function at the cost of more function evaluations. Second, gains in precision from
more advanced integration techniques or elaborate node placement strategies are
often lost to loss of speed. Further, the computational burden also depends on the
method selected. For instance, adding to the overhead, Metropolis type updates
require the calculation of an acceptance probability, while the implementation
of the AR algorithm requires the calculation of an envelope constant. On the
positive side, depending on the problem, more or less clever ways of constructing
the approximation may be available.

3 Introducing Model Selection

With the elements of θ having a physical interpretation as a rule, any model
under consideration may nest a number of simpler structures. At the very least,
for specific values on combinations of elements it will typically collapse into the
standard model with marginally independent and homoscedastic errors. Making
model selection relevant, incorporating it into the direct sampling framework is
simply a matter of appropriate prior extension. In the simplest case we want to
distinguish two states for any covariance parameter θj. One special state, θj = θ∗j
say, where it does not contribute to the complexity of the model, and one arbitrary
active state where it does.

The desired effect is achieved with a mixed component prior for any parameter
on the form

π (θj| θ−j) ∼ (1− wj) · Iθj=θ∗j + wjπ (θj) , (7)
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where 0 < wj < 1 a weight, Iθj=θ∗ the standard indicator function for when the
parameter takes the special value and π (θj) an admissible prior for the variance
component. Selecting weights w = {w1, . . . , wk} and the respective continuous
components completes the specification of the model. Lacking prior information,
weights are typically all set to one half; interpreted as a reference uninformative
choice. Notice how selecting a weight at the either end of the admissibility region
imposes the absence (w = 0) or presence (w = 1) of an effect. Reasonable choices
for the continuous components is problem dependent. Extending the prior further,
to include for instance more than one special state or even parameter specific
number of states, is straightforward.

Convolving the individual priors, assuming two states for each parameter, the
resulting joint prior is a mixed component prior with 2k components. Answering to
a particular combination of parameters being active, each component associates
with model. Implying a mixed posterior, the mixture being over the models of
interest, inference conditional on or averaged over the type of model is possible.
With the dimension or content of the parameter vector depending on the model,
posterior simulation is performed using the reversible jump McMC algorithm.
Straightforward application of the chosen method imposes a restriction on the prior
above. Completing it with the necessary continuous components, while the choice
is not essential, the reversible jump requires them to be proper. Also necessary
are a set of steps to update parameters conditional on the model, and a set of
moves that allows the chain to go from one model to another. Algorithm 2 briefly
describes a possible modification of Algorithm 1 to allow just that.

The idea is simple, always attempting to switch between the two main effect
states. All the action is in Step 3 which administrates both the exploration of a
given model as well as the transition between model spaces. In Step 3b, while
adding to the overhead of the algorithm, updating the active effects prior to an
attempted deletion improves the mixing properties of the chain. Further, while
important, the role of the approximation is limited to supplying candidate effect
values. Without a need to differentiate between proposals for an existing effect
and proposals associated with either creating or killing an effect, sharing a single
approximation of the full conditional posterior promotes computational efficacy.
Modifying the algorithm for situations with more than two effect states is straight-
forward.

For moves associated with model space transitions it is necessary to compute
an acceptance probability and, depending on it, sample a new state. If successful,
the model index is then changed and the parameter is added or deleted. The
acceptance probability can always be stated in the standard form of a product of
a likelihood, prior, and proposal ratio; for a detailed description of the method we
refer to the original presentation in Green (1995).
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Algorithm 2 A generic effect selection sampler.

1. Conditional on {σ2, θ}, sample and accept a proposal for β from its full
conditional posterior as in Step 1 of Algorithm 1.

2. Conditional on {β, θ}, sample and accept a proposal for σ2 from its full
conditional posterior as in Step 2 of Algorithm 1.

3. Conditional on σ2, β update θ. Querying the current status of the effect,
attempt to change it.

(a) If the selected parameter is not active attempt to insert it.
Generate the appropriate approximation as in Step 3 of Algorithm 1
and sample a candidate value. Compute an acceptance probability and
sample the next state. If successful, change the model index and set
the parameter to the proposed value.

(b) If the selected parameter is active attempt to delete it.
Generate the appropriate approximation and sample a new value as in
Step 3 of Algorithm 1. Attempt the inverse of Step 3a with the updated
parameter value.

4. Repeat steps 1-3 using the most recent values of the conditioning variables
until convergence or a stopping criterion is met.

4 An Illustrative Example

4.1 The two-way error component model

To illustrate direct sampling, consider the two-way random effects model,

yit = xitβ + εit, i = 1, . . . , N, t = 1, . . . , T (8)

εit = µi + λt + νit

µi ∼ N (
0, σ2

µ

)
, λt ∼ N (

0, σ2
λ

)
, νit ∼ N (

0, σ2
ν

)
,

where the error term εit now consists of three parts: a unit effect µi which is
constant across time for a given unit i, a time effect λt which is common across units
at a given date, and an idiosyncratic error νit. Each random effect is independently
and identically normally distributed, and also independent of each other as well as
of xit. Arranging the data appropriately and stacking the individual measurements,
the covariance matrix can be written as

Σε = σ2
ν (IN ⊗ IT ) + σ2

µ (IN ⊗ JT ) + σ2
λ (JN ⊗ IT ) , (9)
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where IT the identity matrix and JT a matrix of ones. Following Baltagi (1995),
defining the idempotent counterparts J̄T ≡ T−1JT and ET ≡ IT−J̄T , substituting
into (9) and collecting terms gives

Σε = σ2
ν

[
Q1 + θ−1

µ Q2 + θ−1
λ Q3 +

(
θ−1

µ + θ−1
λ − 1

)
Q4

]
,

θµ ≡
(
Tσ2

µσ
−2
ν + 1

)−1
, θλ ≡

(
Nσ2

λσ
−2
ν + 1

)−1
, 0 < θµ, θλ ≤ 1

Q1 = EN ⊗ET , Q2 = EN ⊗ J̄T , Q3 = J̄N ⊗ET , Q4 = J̄n ⊗ J̄t.

The functions represent the characteristic roots, with respective multiplicity being
(N − 1) (T − 1), N−1, T−1, and 1. Also, the Qi are independent of θ, idempotent
and sum to the identity matrix. Thus, the inverse and determinant are given by

Σ−1
ε = σ2

νΣ
−1
θ = σ−2

ν

[
Q1 + θµQ2 + θλQ3 +

(
θ−1

µ + θ−1
λ − 1

)−1
Q4

]
,

|Σε| = σ2T
ν |Σθ| = σ2T

ν

[
θ−N

µ θ−T
λ (θµ + θλ − θµθλ)

]
,

so that in terms of the quantities defined in Section 2 we have

m = 4, θ = {θµ, θλ}
g =

{
1, θµ, θλ, θ

−1
µ + θ−1

λ − 1
}

and Q defined as above.
Making the reparametrization, {β, σ2

ν , θµ, θλ} are the unknown parameters of
the model. Stacking the data and dropping the summation, the likelihood is as in
(4). As θµ = 1 and θλ = 1 deletes the random unit and time effect respectively,
convoluting mixed component priors on the form discussed in Section 3, the implied
prior adopted for the variance components is

π
(
σ2

µ, σ
2
λ

∣∣ σ2
ν

)
= w0 · Iθµ=1Iθλ=1 + wµ · π

(
σ2

µ

∣∣σ2
ν

)
Iθλ=1 + wλ · π

(
σ2

λ

∣∣σ2
ν

)
Iθµ=1+

+ wµλ · π
(
σ2

µ

∣∣σ2
ν

)
π

(
σ2

λ

∣∣ σ2
ν

)
.

Here {w0, wµ, wλ, wµλ} is a collection of prior weights corresponding to models with
no random effects, only a random unit effect, only a random time effect, and both
random effects present.

Completing the prior specification any continuous components must be selected
together with the prior model weights. As before, the choice of continuous prior
components is not essential as long as they are proper. Lacking prior information
the weights are typically set equal. In the posterior simulation, the expressions
in Algorithm 1 are valid after the proper redefinition of the sets s, v, and M to
account for the effects of the stacking performed.
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4.2 Relative Performance

The merits of direct sampling are investigated in the context of the simple one-way
error component model. This model has a long history in the Bayesian literature,
where early examples of a full Bayesian treatment can be found in for instance
Tiao and Tan (1965) and Hill (1965). Box and Tiao (1973) contains a thorough
presentation. A crucial element in the modern treatment, is the method of data
augmentation introduced by Tanner and Wong (1987). Inference is facilitated by
the ability to sample, augment and subsequently condition on the latent random
effects and Gelfand, Sahu and Carlin (1995), Vines, Gilks and Wild (1996), and
Gilks and Roberts (1996) among others propose various refinements to the basic
algorithm presented in Gelfand and Smith (1990). Chib and Carlin (1999) offers
a brief overview and presents two of the best procedures available to date.

For direct sampling in the one-way model without model selection, the results
in Section 4.1 are valid after setting θλ = 1 and adjusting the prior accordingly. Its
performance is compared with the standard 3-block algorithm and the improved
2-block algorithm, presented and labeled A1 and A2 in Chib and Carlin (1999).
Concentrating on the variance of the random effect and the intercept, aspects of
the resulting Markov chains are illustrated with the relative numerical efficiency
as the main indicator of performance. An attempt to characterize the convergence
properties of the used samplers is made using the Yu and Mykland (1998) CUSUM
plots, the Geweke (1992) diagnostic statistic and the estimated autocorrelation
function.

The illustration uses the Grunfeld panel which, having small unit and time
dimensions, is a fairly typical example of the kind of panels appearing in macroe-
conomic applications. This choice is further motivated by the extensive presenta-
tion of results for this panel in Baltagi (1995). Grunfeld (1958) considers a simple
model of corporate investment where the real gross investment of firm i at date j
is assumed to be a function of the firms’ real value measured by the value of out-
standing shares, x1, and the real value of its capital stock, x2. The panel consists
of N = 10 firms observed over a period of T = 20 years.

In all examples a zero mean g-prior is selected for the regression parameters β
and gamma priors for the precision of the error components. In direct sampling
this implies a prior for the structural parameter θµ,

π (θµ) ∝ θν3−1
µ (1− θµ)−(ν3+1) exp

{−ν4θµT/ (1− θµ) /σ2
ν

}
,

where (ν3, ν4) are the prior parameters for the random effect precision. While
perhaps not the most natural choice, it is used for comparability. As this choice
results in a full conditional posterior which is very similar to a truncated gamma
distribution, an attempt to use this is made in the context of Metropolis-Hastings
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updates by sampling proposals from

q (θµ) ∼ G
(

ν3 + N/2,

(
ν4T + 0.5

N∑
i=1

e
′
iJ̄ei

)
/σ2

ν

)
.

All runs are made using the same or equivalent prior and 50000 samples are
generated in each case. The same prior parameters are used for both variance
components. In particular, ν1 = ν3 = 1 and ν2 = ν4 = 100, implying a low
prior precision for data that is known to be noisy. For the regression coefficients,
g = 2000 so that, as things are defined, the contribution of the prior precision will
be small.

Data augmentation is applied to establish a benchmark. While the algorithm
is very fast, the results are mixed as illustrated in Figure 1 and by Table 1.

For the random effect variance the sample path of the standardized CUSUM
statistic, though consistently within the standard 5% tolerance, we observe how
the convergence towards the final estimate is interrupted at intervals by sudden
jumps. Matters are even worse for the intercept, with the sample path making long
excursions away from any smooth convergence path. Autocorrelation is a problem
across the board and though small for the random effect variance it is highly
persistent. Computing the Geweke (1992) diagnostic statistics is problematic due
to the difficulties in estimating numerical standard errors with any confidence.
Selecting a large truncation lag and using the estimated autocorrelation time as
in Chib and Carlin (1999), significant diagnostics are observed even after as much
as a 40% burnin.

Discarding the initial 2500 iterations as burnin, the observations above are
complemented and reinforced by the results in Table 1. The performance being
what it is, the cut-off point is arbitrary. Excess autocorrelation is a problem across
the board and the performance, as measured by the relative numerical efficiency,
is poor with the idiosyncratic error variance as the only exception.

Contrasting, the improvement offered by the 2-block algorithm is remarkable.
In Figure 2, the convergence appears to be clean, smooth, and fast, in particular
for the intercept. What little autocorrelation is present dies out quickly. The
estimate of the numerical standard error is robust, all methods yielding similar
results for the various truncation and batch sizes tried. The Geweke statistics for
the random effect variance are stable and insignificant.

Discarding 2500 iterations again, the results in Table 2 show how the fortunes
are completely reversed, sampling being efficient across the board. For the variance
components improvement is concentrated to the random effect variance for obvious
reasons. In terms of computational speed, the improvement is bought at a cost of
an approximate 78% increase in execution time.
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The results being so good for the 2-block algorithm leaves little, if any, room
for improvement. Experimenting with various grid construction techniques and
updating principles, the results are robust with respect to the choice of method
and the main difference is in computational speed. Figure 3 and Table 3 illustrate
the results for a simple equidistant grid on a truncated support using rejection
sampling where the truncation is decided based on the output of a very short trial
run using data augmentation and the 2-block algorithm. In the final run, the
output of the Markov chain is monitored to ensure that the selected truncation
limits do not affect the results in any obvious way.

Using 51 nodes and refreshing the approximation in every iteration, the results
are at least equally good as those using the improved 2-block algorithm, depending
primarily on what quantity is monitored (θµ or σ2

µ). The average rejection rate
is just below 0.3, meaning that on average 1.4 draws are needed to generate an
accepted sample.

Convergence seems to be immediate and there is very little autocorrelation in
the chain as expected. Because the regression parameters are sampled the same
way, that is after marginalization of the random effects, the performance in that
part of the model is the same. The numerical standard error is not sensitive to
choice of method, though the spectral estimate is fragile when the truncation lag
increases beyond a certain point. The Geweke diagnostics are insignificant so there
are no obvious signs of trouble.

Turning to the table, the slight improvement in numerical efficiency for the
random effect variance is not due to more efficient sampling of the effect parameter.
Being computed as a function of the effect parameter and the idiosyncratic error
variance the source of the apparent improvement is the more efficient sampling of
the latter. On the downside, the execution time increased further by 8%.

The last experiment in this segment uses direct sampling truncated gamma
proposals and Metropolis-Hastings updates. Cutting the execution time with more
than 50% compared to the 2-block algorithm , this sampler clearly illustrated the
cost of maintaining and adapting a grid in every iteration. As illustrated in Figure
4 and Table 4, the improvement is achieved with only the slightest loss of efficiency.
In retrospect, this loss is of minor if any importance, especially when accounting
also for the extra effort needed to fine tune the strategies that make the grid
techniques work well.

Studying all the tables, it is clear how the choice of method has very little
effect on the estimates of the marginal posterior distributions. Kernel density
estimates based on the output of the various samplers tested indicate how the
slight differences present are mainly located in the right tail.
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Figure 1 Inference in the Grunfeld panel using data augmentation and the stan-
dard 3-block algorithm. Select Markov chain properties for the random effect
variance σ2

µ and the intercept β0.
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(b) Standardized CUSUM statistics, β0;
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(d) Geweke convergence diagnostics for σ2
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burnin< 50%.

Table 1 Posterior simulation results for the Grunfeld panel; data augmentation
and the simple 3-block algorithm.

Spectrala Batch
Mean S.d Median Modeb ρ1 NSE RNE NSE RNE

β0 −60.112 28.967 −60.016 −60.249 0.97 1.155 79.46 0.977 54.08
β1 0.109 0.010 0.109 0.110 0.90 0.217c 22.53 0.211c 20.28
β2 0.308 0.017 0.308 0.308 0.31 0.125c 2.66 0.127c 2.61
σ2

ν 2781.211 288.025 2761.905 2721.409 0.05 1.355 1.11 1.337 1.02
σ2

µ 7306.572 4017.653 6338.053 5065.369 0.12 48.732 7.36 44.981 5.95
a Calculation based on estimated autocorrelation time.
b Estimated from the kernel density estimate.
c All values ×103.
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Figure 2 Inference in the Grunfeld panel using data augmentation and the im-
proved 2-block algorithm. Select Markov chain properties for the random effect
variance σ2

µ and the intercept β0.
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(b) Standardized CUSUM statistics, β0;
complete run.
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(d) Geweke convergence diagnostics for σ2
µ;

burnin< 50%.

Table 2 Posterior simulation results for the Grunfeld panel; data augmentation
and the improved 2-block algorithm.

Spectrala Batch
Mean S.d Median Modeb ρ1 NSE RNE NSE RNE

β0 −60.534 28.869 −60.125 −58.267 0.01 0.133 1.06 0.128 0.93
β1 0.109 0.010 0.109 0.109 0.01 0.046c 1.00 0.048c 1.02
β2 0.308 0.017 0.308 0.309 0.01 0.074c 0.94 0.078c 0.97
σ2

ν 2783.752 290.798 2764.349 2725.108 0.06 1.371 1.11 1.385 1.08
σ2

µ 7319.079 4015.353 6355.243 5106.032 0.13 20.183 1.26 20.426 1.23
a Calculation based on estimated autocorrelation time.
b Estimated from the kernel density estimate.
c All values ×103.
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Figure 3 Inference in the Grunfeld panel using direct sampling with acceptance
rejection. Select Markov chain properties for the random effect variance σ2

µ and
the intercept β0.

10 20 30 40 50

−0.05

0.05

Cu
su

m

Iteration ×103

(a) Standardized CUSUM statistics, σ2
µ;

complete run.

10 20 30 40 50

−0.05

0.05

Cu
su

m

Iteration ×103

(b) Standardized CUSUM statistics, β0;
complete run.
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(d) Geweke convergence diagnostics for σ2
µ;

burnin< 50%.

Table 3 Posterior simulation results for the Grunfeld panel; direct simulation
using an equidistant grid on the truncated support and rejection resampling.

Spectrala Batch
Mean S.d Median Modeb ρ1 NSE RNE NSE RNE

β0 −60.507 28.737 −60.149 −58.536 0.00 0.130 1.02 0.127 0.98
β1 0.109 0.010 0.109 0.109 −0.00 0.046c 0.98 0.049c 1.12
β2 0.308 0.017 0.308 0.309 −0.00 0.075c 0.95 0.074c 0.92
σ2

ν 2812.870 293.840 2791.584 2746.111 0.07 1.442 1.20 1.365 1.08
σ2

µ 7315.252 4017.892 6326.377 5123.122 0.10 18.843 1.10 19.157 1.14
θµ 0.023 0.010 0.022 0.018 0.13 0.052c 1.26 0.051c 1.21
a Calculation based on estimated autocorrelation time.
b Estimated from the kernel density estimate.
c All values ×103.
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Figure 4 Inference in the Grunfeld panel using direct sampling with Metropolis-
Hastings and truncated gamma proposals. Select Markov chain properties for the
random effect variance σ2

µ and the intercept β0.
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(b) Standardized CUSUM statistics, β0;
complete run.
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(d) Geweke convergence diagnostics for σ2
µ;

burnin< 50%.

Table 4 Posterior simulation results for the Grunfeld panel; direct sampling using
Metropolis-Hastings with truncated gamma proposals.

Spectrala Batch
Mean S.d Median Modeb ρ1 NSE RNE NSE RNE

β0 −60.695 28.810 −60.265 −58.277 0.01 0.129 1.00 0.128 0.99
β1 0.109 0.010 0.109 0.109 0.00 0.046c 0.98 0.046c 0.97
β2 0.308 0.017 0.308 0.309 0.00 0.077c 1.00 0.076c 0.98
σ2

ν 2813.651 292.700 2794.763 2725.891 0.07 1.395 1.14 1.373 1.10
σ2

µ 7306.661 3979.154 6343.952 4989.580 0.12 19.958 1.26 19.556 1.21
θµ 0.023 0.010 0.022 0.018 0.16 0.053c 1.35 0.052c 1.30
a Calculation based on estimated autocorrelation time.
b Estimated from the kernel density estimate.
c All values ×103.
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4.3 Model Selection

Implementing model selection with the reversible jump, for the moves associated
with model space transitions computing an acceptance probability is necessary.
Sampling the next state, when appropriate the model index is changed and the
effect is either added or deleted.

The acceptance probability is just a product of a likelihood, prior, and proposal
ratio where the ratios are evaluated based on the current and some candidate value
for the effect in question. Indexing the current and proposed states with i and i+1,
when adding an effect the product of prior and proposal ratios will always be on
the form

wi+1

wi

π
(
θi+1|σ2

ν

) pi+1,1

pi,i+1 · q (θi+1)
,

where q (θi+1) the constructed approximation of the full conditional posterior and
pst the probability of proposing a move that attempts to move the chain from a
model s to a model t. What does separate the cases is the extent to which the
likelihood ratio simplifies. For example, when adding a unit random effect in the
absence of any time effect the relevant ratio simplifies to

θN/2
µ exp

{−0.5σ−2 (c1 + c3) (θµ − 1)
}

,

but when the time effect is present the correct ratio is

(
θN

µ

θµ + θλ − θµθλ

)1/2

exp

{
−0.5σ−2

[
c1 + c3

θ2
λ

(θλ + θµ − θµθλ)

]
(θµ − 1)

}
.

Similarly, when adding a time effect in the absence of a unit effect

θ
T/2
λ exp

{−0.5σ−2 (c2 + c3) (θλ − 1)
}

,

but when the unit effect is present

(
θT

λ

θµ + θλ − θµθλ

)1/2

exp

{
−0.5σ−2

[
c2 + c3

θ2
µ

(θλ + θµ − θµθλ)

]
(θλ − 1)

}
.

These results rely on the Qi being symmetric, idempotent, orthogonal in pairs
and, in particular, summing to the identity matrix. For the inverse moves that
attempts to delete the effect, the acceptance probability is just the inverse where
the current value of the relevant effect is treated as if it is sampled from the
constructed proposal distribution.

The Grunfeld panel is also used to illustrate effect selection. Setting all weights
equal, the sampler is run 50000 iterations and updating is performed using the
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Figure 5 Standardized CUSUM plots for the posterior probability of a simple
one-way model and various sections of the random unit effects variance chain.
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griddy Gibbs sampler. To allow a comparison between results for the random unit
effect model and those obtained in Section 4.2 the same prior parameters are used.
The time effect parameters are set equal to the unit effect parameters.

One problem that occurs with model selection is that it is not longer clear
what and how to monitor convergence. Conditioning on the model index, which
is what we typically want to do, quantities such as estimated autocorrelations
may be misleading as a gauge of performance. This as a sampler mixing over the
model indexes will act as an indirect thinning process. One natural parameter to
monitor is the model index. Being a quantity known to be hard to pin down with
precision, apparently smoothly converging posterior model probabilities, though
not definitive evidence of anything, have some value.

In Figure 5, CUSUM plots for the model index, the random effect variance
conditional on model index and the random effect model averaged are illustrated.
The idea is that if the chains conditional on the index as well as the model index
probabilities behave well then so should also the model averaged chain. This seems
to be the case, possibly with the exception of the output conditional on a two-way
random effects specification. However, considering that it is based on the fewest
observation in the lot, this is perhaps to be expected. That the model index
converges smoothly and reasonably fast is particularly gratifying.
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Table 5 Posterior simulation results for the Grunfeld panel; direct sampling using
the griddy Gibbs sampler and featuring model selection.

P (θµ < 1 ∧ θλ = 1) = 0.74
Spectrala Batch

Mean S.d Median Modeb ρ1 NSE RNE NSE RNE
β0 −60.668 28.861 −60.206 −59.421 0.01 0.131 1.03 0.151 1.02
β1 0.109 0.010 0.109 0.109 −0.01 0.045c 0.97 0.053c 0.97
β2 0.308 0.017 0.308 0.309 0.00 0.078c 1.02 0.091c 1.03
σ2

ν 2806.512 293.001 2786.979 2783.182 0.04 1.360 1.08 1.553 1.04
σ2

µ 7308.590 4072.257 6314.829 5149.746 0.06 19.272 1.12 22.534 1.13

P (θµ < 1 ∧ θλ < 1) = 0.26
Spectrala Batch

Mean S.d Median Modeb ρ1 NSE RNE NSE RNE
β0 −63.216 29.279 −62.654 −60.189 −0.00 0.131 1.00 0.257 1.01
β1 0.110 0.011 0.110 0.109 −0.01 0.049c 1.05 0.093c 0.98
β2 0.314 0.018 0.314 0.312 −0.00 0.084c 1.04 0.165c 1.00
σ2

ν 2749.408 292.844 2730.220 2703.463 0.02 1.334 1.04 2.596 1.03
σ2

µ 7431.542 4555.323 6438.231 4986.550 0.00 20.372 1.00 39.497 0.98
σ2

λ 88.978 51.582 77.000 48.069 0.04 0.245 1.12 0.468 1.07
a Calculation based on estimated autocorrelation time.
b Estimated from the kernel density estimate.
c All values ×103.

Studying the transition probabilities, the sampler seems to be moving between
the one- and two-way specification at a healthy rate. While the survival probability
of a two-way model is low this is countered by a sizeable transition probability from
the one- to the two-way model. With a posterior probability of 74%, the evidence
for the one-way specification is strong without being overwhelming.

In Table 5, the results conditional on the one-way model are consistent with
the results obtained in Section 4.2. The transition between specifications hardly
affects the parameters in the mean model and results only in slight shifts in the
variance components. As calculated, the relative numerical efficiencies cannot be
interpreted the usual way. Arguably, their near perfect values reflect that the chain
moves between models in an unpredictable way. In general, the results are in line
with some of the classical estimates reported in Baltagi (1995). Model averaged
the results are similar to those obtained using iterated maximum likelihood to
estimate a two-way model.
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5 Final Remarks

This paper presents a direct sampling method for inference in panel regression
models with parametric covariance structures. Developing the tools necessary for
posterior simulation, the illustrated examples of direct sampling with and without
effect selection offered many valuable insights. When practical, direct sampling
is competitive, works well, is reasonably fast and can be relied on to produce
the required inference. It offers the opportunity to re-examine models in search
of exciting alternatives outside the mainstream. A good example of that is the
Metropolis-Hastings with truncated gamma proposals tested for the one-way model
which did something so rare as to combine the best of two worlds; the speed of
simple data augmentation with the efficiency of the 2-block algorithm. Avoiding
data augmentation, direct sampling can be quite economical, in particular when
the panel size grows. It also offers a greater sense of control, making for instance
model selection simpler.

There are several technical issues relating to the posterior simulation that in-
fluence the performance, the main being how to sample the variance components.
In particular, how to construct reliable grids in an efficient manner are important
questions. There is ample room for improvement on both counts. Experimentation
showed, as expected, that adaptive grids enhanced the performance in terms of
numerical efficiency at the cost of fewer iterations per time unit. However, placing
nodes in a clever way is time consuming and after some point any clever procedure
may end up defeating itself. Finding ways to combine quick and cheap strate-
gies with slow, more elaborate but better methods would lead to quicker samplers.
Also, finding means to generate and administrate multidimensional grids efficiently
offers an interesting challenge with potentially high rewards. Other technical issues
include the efficient parametrization of the models. How it is done should depend
on what kind of quantities we are willing to make statements about a priori. Still,
the methods outlined and the tools developed do not depend on the prior, at least
not as long as the necessary structure is preserved.

While the theory for implementing model selection is standard, the application
of the method revealed some practical problems. In particular, the priors on
the variance components play an important role and being vague, but proper, is
difficult. The mindless application of the standard more or less automatic choices,
can lead to strange inference. While falling outside the scope of this paper, finding
reasonable default priors should be a priority. Another interesting but more general
question is when, if ever, posterior simulation should perhaps be abandoned in
favor of classical numerical integration techniques. This because, in the end, doing
things only because we can is usually a bad idea.

20



References

Baltagi, B. H. (1995), Econometric Analysis of Panel Data, Wiley.

Box, G. E. P. and Tiao, G. C. (1973), Bayesian Inference in Statistical Analysis,
John Wiley & sons, inc, Chichester.

Chib, S. and Carlin, B. P. (1999), ‘On MCMC sampling in hierarchical longitudinal
models’, Statistics and Computing 9, 17–26.

Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1995), ‘Efficient parametrizations
for generalized linear mixed models’, Biometrika 82, 479–488.

Gelfand, A. E. and Smith, A. F. M. (1990), ‘Sampling-based approaches to cal-
culating marginal densities’, Journal of the American Statistical Association
85, 398–409.

Geweke, J. (1992), Evaluating the accuracy of sampling-based approaches to the
calculation of posterior moments, in J. M. Bernardo, J. O. Berger, A. P.
Dawid and A. F. M. Smith, eds, ‘Bayesian Statistics 4’, Oxford University
Press, Oxford, pp. 169–93.

Gilks, W. R. and Roberts, G. O. (1996), Strategies for improving MCMC, in W. R.
Gilks, S. Richardson and D. J. Spiegelhalter, eds, ‘Markov Chain Monte Carlo
in Practice’, Chapman Hall, London, pp. 89–114.

Green, P. J. (1995), ‘Reversible jump markov chain monte carlo computation and
bayesian model determination’, Biometrika pp. 711–732.

Grunfeld, Y. (1958), The Determinants of Corporate Investment, PhD thesis, Uni-
versity of Chicago.

Hill, B. M. (1965), ‘Inference about variance components in the one-way model’,
Journal of the American Statistical Association 60, 806–825.

Ritter, C. and Tanner, M. A. (1992), ‘Fascilitating the gibbs sampler: The gibbs
stopper and the griddy-gibbs sampler’, Journal of the American Statistical
Association 87, 861–868.

Tanner, M. A. and Wong, W. (1987), ‘The calculation of posterior distributions by
data augmentation’, Journal of the American statistical Association pp. 528–
550.

21



Tiao, G. C. and Tan, W. Y. (1965), ‘Bayesian analysis of random-effects models
in the analysis of variance. I: Posterior distribution of variance components’,
Biometrika 52, 37–53.

Vines, S. K., Gilks, W. R. and Wild, P. (1996), ‘Fitting bayesian multiple random
effects models’, Statistics and Computing 6, 337–346.

Yu, B. and Mykland, P. (1998), ‘Looking at Markov samplers through cusum path
plots: A simple diagnostic idea’, Statistics and Computing 8(3), 275–286.

22


