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Abstract

We model organizational decision making as costless pre-play communication.
Decision making is called authoritarian if only one player is allowed to speak and
consensual if all players are allowed to speak. Players are assumed to have limited
cognitive capacity and we characterize their behavior under each decision making
regime for two di¤erent cognitive hierarchy models. Our results suggest that author-
itarian decision making is optimal when players have con�icting preferences over the
set of Nash equilibrium outcomes, whereas consensual decision making is optimal
when players have congruent preferences over this set. The intuition is that author-
itarian decision making avoids con�ict, but sometimes creates insu¢ cient mutual
trust to implement socially optimal outcomes.
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1 Introduction

�A body with two heads is in the social as in the animal sphere a monster, and has
di¢ culty in surviving.�(Henri Fayol 1916/2001)

�What gives unity to organized societies, however, as to all organisms, is the spontaneous
consensus of parts. Such is the internal solidarity which not only is as indispensible as
the regulative actions of higher centres, but which also is their necessary condition, for
they do no more than translate it into another language and, so to speak, consecrate it.�
(Emile Durkheim 1893/1933)

Participation, teambuilding, and consensual decision making are positively laden man-
agement concepts. Yet, the principle of participation stands in contrast to other classic
principles such as unity of direction and command, epitomized by famous leaders and
espoused by Fayol (1916/2001) and other early management thinkers. Empirical stud-
ies show that the magnitude of participation varies substantially both across countries
and across �rms, and suggest that no practice is universally superior.1 The challenge is
therefore to identify the costs and bene�ts associated with each mechanism.
In this paper we use a model of games between boundedly rational players to analyze

the optimal choice of coordination mechanism. Speci�cally, we show that the optimal
structure of pre-play communication in a complete information game with multiple equi-
libria depends on the nature of the game: Roughly, command is optimal in games of
con�icting interests, because it resolves ambiguity as to which equilibrium will be played,
and consent is optimal in games of common interests because communication brings mu-
tual assurance that the best equilibrium will be played. The practical implication is
that consensual decision making might be expected when (i) the production technology
displays strong complementarities due to specialization of tasks; (ii) several agents have
discretion over their work; and (iii) the implementation of decisions is carried out within
a compressed time frame. Under these circumstances, mutual trust is a prerequisite for
successful cooperation and all communication channels should be open.
Our �ndings echo old and intuitive insights from Burns and Stalker (1961) and other

non�mathematical management writers. Informally, the general idea that communication
fosters mutual trust also appears in several other parts of social science �see for example
Moscovici and Doise (1994) for a broad picture, and Schelling (1966, Chapter 7) for a dis-
cussion of the value of bilateral communication in preventing and limiting wars. However,

1Surveying several thousand managers, Myers, Kakabadse, McMahon and Spony (1995) �nd that there
are four distinct management styles in Europe, and that these to a considerable extent are national. At the
two extremes, Swedish and Finnish managers emphasize consensus, whereas French managers emphasize
command structures. See also Hofstede (1991) for a more elaborate discussion of national cultures. Man-
agement practices display much variation also within geographical regions, and it is sometimes di¢ cult
to disentangle cultural e¤ects from e¤ects due to technology.
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we believe that ours is the �rst model to formally demonstrate a bene�t of multilateral
communication over unilateral communication in one-shot complete information games.
A super�cial explanation for the previous neglect of the problem that we study is

that organizational economists have emphasized the role of environmental uncertainty.
Under environmental uncertainty, people often hold private information about the state
of the world. Organizational design then matters because it a¤ects the aggregation of
information, as in team theory, the cost of information revelation, as in mechanism de-
sign theory, or the e¢ cient acquisition and use of information by decision makers, as in
incomplete contracts theory; see Dewatripont (2006) for an overview. However, the con-
siderable progress in all these areas hardly explains why organizational economists have
neglected the conceptually simpler problem of strategic uncertainty, where people hold
private information only about their own plans.2

A deeper explanation for the lack of attention to strategic uncertainty is that the ex-
isting game theoretic analysis of costless communication �the cheap talk literature �has
failed to establish a generally accepted solution concept. After a promising start, where
cheap talk arguments were formally developed by Farrell (1988), Myerson (1989) and Ra-
bin (1990, 1994), and used to analyze core questions in industrial organization, such as
market entry (Farrell 1987) and standardization processes (Farrell and Saloner 1988), the
literature came under attack from theorists (Aumann 1990) as well as experimentalists
(Cooper, DeJong, Forsythe and Ross 1992). Put simply, the proposed cheap talk models
seemed convincing in games with con�icting interests, where they also tracked experimen-
tal data well (Cooper, DeJong, Forsythe and Ross 1989), but were less convincing in some
games with common interests. Much of the criticism focussed on the Stag Hunt game, a
version of which is depicted in Figure 1.

H(igh) L(ow)
H(igh) 9; 9 0; 8
L(ow) 8; 0 7; 7

Figure 1. Stag Hunt

The two players both prefer the (H;H) equilibrium to the (L;L) equilibrium, but without
communication many theories predict the (L;L) equilibrium instead, since L is consider-
ably less risky than H in case the player is uncertain about what the opponent will do.
The Stag Hunt game is therefore a classic illustration of coordination failure due to lack of
mutual trust. The proposal of Farrell (1988) implied that one�way communication would

2Strategic uncertainty has received more attention in the literature on organizational behavior. Yet,
even that literature has tended to focus on con�icts of interest rather than lack of trust as the main
obstacle to ex post implementation of decisions. Indeed, Scott�s (2003) authoritative text continues
to see bureaucracy as the optimal mechanism for computing and implementing decisions whenever the
organization�s participants agree both about means and ends (page 304), citing Thompson and Tuden
(1959).
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su¢ ce to solve the problem, because sending the message of "H" would convince the
receiver that the sender intends playing H, and hence the best response is for the receiver
to play H as well. The theoretical problem, as pointed out by Aumann (1990), is that
even a sender who has decided to play L has an incentive to induce the opponent to play
H. Therefore, a pessimistic receiver should not be a¤ected by the sender�s message. The
empirical problem, as pointed out by Cooper, DeJong, Forsythe and Ross (1992), is that
one�way communication is not su¢ cient to guarantee coordination on the e¢ cient equi-
librium. Another intriguing �nding of the study is that two�way communication entails
substantially more coordination.
A satisfactory theory of communication in games needs to preserve the predictive

power of the existing theory in games with con�icting interests, while better predicting the
outcomes in games with common interests. Our approach deals with Aumann�s critique
by relaxing the assumption that players are completely rational. More speci�cally, we
assume that players are only capable of limited strategic thinking and underestimate the
cognitive capacity of their opponents. Models of this kind have been provided for normal
form games by, e.g., Nagel (1995), Stahl and Wilson (1995), Costa-Gomes, Crawford and
Broseta (2001) and Camerer, Ho and Chong (2004). These models are straightforwardly
extended to the simple extensive form games that we analyze. We �nd that, for realistic
levels of rationality, the models �t the experimental data of Cooper et al. (1992). However,
we caution that a recent related experimental study by Burton, Loomes and Sefton (2005)
arrive at a di¤erent conclusion regarding the contrast between one�way and two�way
communication, so the model�s explanatory power is still an open issue.3

A noteworthy theoretical �nding is that two�way communication selects the e¢ cient
outcome in Stag Hunt and similar games when players�rationality tends to in�nity. We
are also able to extend all our main results to more general classes of games than the
2x2 games which have been the focus of experimental attention so far. Generalization is
important both because it provides ample scope for out�of�sample tests of our approach
and because credible analysis of many applications require models with a richer set of
strategies.
Before providing the complete argument, it is useful to present the main ingredients

of it in the Stag Hunt with two-way communication. Example a: Consider an otherwise
rational player who believes that the opponent randomizes between the two actions avail-
able, but is completely honest and always plays according to his or her message. This
player will listen to the opponent�s message and react to it, playing L if and only if the
opponent sent the message "L": The player�s option to send an own message does not
matter in this example. Example b: Consider an otherwise rational player who believes
the opponent to be completely gullible, i.e., that the opponent will always believe one�s
own message and respond optimally to it. In this case, the player will send the message

3Other related experimental work includes Charness (2000), Clark, Kay and Sefton (2001), Du¤y and
Feltovich (2002), and Blume and Ortmann (2006).

3



"H" and play H in the expectation that the opponent will disregard his or her own mes-
sage. Note that the receiver�s assumed gullibility here promotes honesty by the sender;
this is an important property of the Stag Hunt game. Depending on the player�s belief
about the opponent, the two examples illustrate that it can be better to be either receiver
(as in example a) or sender (as in example b). Crucially, in neither of the two extreme
cases considered here would a player strictly prefer to close a communication channel. As
our analysis will show, the conclusion continues to hold as players get more sophisticated.
Open information channels are generally optimal in Stag Hunt and related games of com-
mon interests. On the other hand, it is always optimal to close some communication
channels in games with con�icting interests.
We are not the �rst to suggest that studies of strategic communication will bene�t

from taking bounded rationality into account. Crawford (2003, page 134) observes that
the cheap talk theory has been lagging behind the public�s intuition, and argues that
the rationality assumption is at fault.4 In particular, Crawford proposes that deceptive
communication is best understood as a result of bounded rationality. Deception in com-
plete information zero-sum games requires some people to assume others to be boundedly
rational. We propose that an analogous claim is true for honest communication in other
complete information games. Some honest talk is based on the assumption that the lis-
tener may be gullible, and some careful listening is based on the premise that the speaker
may be honest.5

Observe that we take for granted that players have access to a common language. That
is, we take an eductive approach to communication. A substantial fraction of the literature
on cheap talk starts from the presumption that messages are not inherently meaningful;
instead, messages may or may not acquire meaning in equilibrium �where equilibrium
is typically depicted, implicitly or explicitly, as a steady state of an evolutionary process
of random matches between boundedly rational players (see, for example, Matsui 1991,
Wärneryd 1991, Kim and Sobel 1995, and Banerjee and Weibull 2000). The eductive and
evolutionary approaches are complementary, and our assumption of bounded rationality
closes part of the gap between them. However, while the evolutionary approach can
explain how language emerges in �old�games, the eductive approach asks how an existing
language will be used in �new�games. Within the evolutionary cheap talk literature, we
are only aware of one piece of work that emphasizes the distinction between one-way and
two-way communication. In a paper quite closely related to ours, Blume (1998) proves
that two-way communication can be superior to one-way communication in games with
strategic risk, such as Stag Hunt. Interestingly, Blume�s result requires that messages have
some small a priori information content. For example, players may have a slight preference

4See also Cai and Wang (2006).
5There are several di¤erences between our approach and Crawford (2003) and Cai and Wang (2006).

Crawford (2003) considers one-sided communication in 2x2 zero-sum games, whereas Cai andWang (2006)
studies one-sided communication in two-player strategic information transmission games of incomplete
information.
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for playing HH if both players sent the message "H" and the expected payo¤s to playing
H and L are otherwise equal. As Blume notes, his assumption amounts to assuming
some small amount of gullibility on the part of receivers. In our eductive model, a grain
of honesty of senders is instead what drives the superiority of two-way communication in
the Stag Hunt game.6 Taken together, Blume�s results and ours suggest that players who
face strategically risky situations ought to engage in multilateral communication both in
order to develop an e¢ cient language in the long run and in order to ensure e¢ cient
communication in the face of new short-run challenges.
In the next section we discuss some underlying assumptions and present the notation

that is used throughout the paper. Section 3 presents our arguments within a simpli�ed
cognitive hierarchy model; Section 4 o¤ers an analysis based on the full-�edged model of
Camerer et al. (2004). The �nal section concludes.

2 Preliminaries

Camerer et al. (2004) present a one-parameter model with a hierarchy of player types.
At the lowest level, there are zero-step thinkers, who are completely nonstrategic and
randomize uniformly over available strategies. At the next level, a one-step thinker acts
optimally given the belief that the opponents are zero-step thinkers. Each layer of higher
step thinkers act optimally given the belief that all opponents constitute a mixture of
lower-step thinkers. The behavior of zero-step thinkers does not necessarily re�ect actual
behavior of a signi�cant fraction of the player population. It is a heuristic for what higher-
step players tend to believe about the behavior of the most primitive players. Since we
merely utilize the model, without adding any major components, we refer to Camerer
et al. (2004) and to Costa-Gomes and Crawford (2006) for a discussion of the strengths
and weaknesses of the cognitive hierarchy model.
As we study games with pre-play communication, we have to make two additional

assumptions. The �rst assumption concerns the communication strategies of the least
sophisticated players. For simplicity, we initially assume that zero-step thinkers random-
ize uniformly over the messages available and then play accordingly irrespective of any
message received from opponents.7 (Alternative assumptions are explored below.) With
one-way communication the assumption implies that zero-step senders randomize uni-
formly between messages and then play according to the message sent, while receivers
randomize uniformly over the actions available. These assumptions are broadly line with

6The distinction between our form of honesty and Blume�s for of gullibility is not so great, however. It
is the (somewhat excessive) belief of advanced players in the existence of honest players that ultimately
generates our result.

7See Blume, DeJong, Kim and Sprinkle (2001), Cai and Wang (2006) and Du¤y and Feltovich (2006)
for experimental evidence that senders in cheap talk games to large extent are truthful.
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Crawford (2003) and Cai and Wang (2006).8

Since the model by Camerer et al. (2004) and other similar models are developed for
normal form games, we also need to make additional assumptions concerning how players
update their beliefs about their opponents�type. We shall discuss this modelling choice
as it arrives.

2.1 Notation

Let G denote some �nite n-person, complete information normal form game. We refer to
G as an action game and the strategies available in G as actions. Let N = f1; 2; :::; ng
denote the set of players of G, and let Ai denote the (�nite) set of pure actions available
to player i 2 N . The payo¤ to player i is given by a von Neumann-Morgenstern utility
function �i : �i2NAi ! R.
Let �1 (G) denote the action game G preceded by one-way communication. That is, in

�1 (G) exactly one of the players is allowed to send a message mi 2Mi before the action
game G is played. Nature decides with equal probability which of the players will act as
sender. Initially, we assume that the set of messages has the same number of elements
as the set of actions available to each player. Assuming that players share a common
language, we adopt the convention Mi = Ai. Since the message is observed before the
action game is played, the actions chosen by the receivers can be made conditional on the
received message. A strategy si for a player i of the full game �1 (G) prescribes what to do
in the sender role as well as in the receiver role. Thus, the strategy is given by a message
mi 2 Mi and an action ai 2 Ai for the sender role and a mapping fi : �j2NMj ! Ai for
the receiver role. A pure strategy si of �1 (G) is called truthful if ai = mi, i.e., if a player
acting as a sender sends a message that indicates what action he will play.
Let �2 (G) denote the action game G preceded by two-way communication. That is,

in �2 (G) all the players are allowed to send a message mi 2 Mi before the action game
G is played. Since messages are observed before the action game G is played, the actions
chosen can be made conditional on messages sent. A strategy si for player i of the full
game is therefore given by a message mi 2 Mi and a mapping fi : �j2NMj ! Ai. A
pure strategy si of �2 (G) is called truthful if fi (mi;m�i) = mi for all mi 2 Mi and all
m�i 2 M�i, i.e., if a player sends a message and plays an action consistent with that
message irrespective of any messages received.
For some of the proofs it will be useful to de�ne the best-reply correspondence in terms

8These authors assume that zero-step receivers are credulous � in the sense that they believe that
senders are truthful and best respond given this belief. Thus, our one-step receivers are equivalent to
their zero-step receivers. Although it might seem natural for the case with one-sided communication
to assume that zero-step senders are truthful and zero-step receivers are credulous, it leaves open the
question how zero-step thinkers behave with two-sided communication (since a player cannot be both
credulous and truthful). This could be handled by assuming that zero-step thinkers are truthful and
credulous with certain probabilites. We consider this possibility in Appendix 1.
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of actions of the action game. The best response of player i given the action a�i of the
opponents is given by

BRi (a�i) = arg max
ai2Ai

�i (ai; a�i) :

With some abuse of notation, let BRi (m�i) denote a best response to received messages
given the belief that all other players�messages are truthful.
Most of the analysis will concern two-player games in which each player has (the same)

two available actions in the action game. The two actions are labeled H and L. As a
convention, we denote actions by capital letters and messages by the corresponding small
letters. Under one-way communication, we write a pure strategy of player i (given the
received message mj) as

si = hmi; ai; fi (mj = h) ; fi (mj = l)i :

For example, s1 = hh;H; L; Li means that player 1 sends the message h and takes the
action H if he is the sender, while playing L whenever acting as receiver. Under two-way
communication, a strategy consists of a message to send and what to play conditional on
received messages. A pure strategy of player i (given the message mj sent by player j)
can thus be written

si = hmi; fi (mj = h) ; fi (mj = l)i :
For example, s1 = hh;H; Li means that player 1 sends the message h, but plays according
to the received message (i.e., plays H if player 2 sends message h and L if player 2 plays
message l).
We also allow mixed strategies. For example, 1

2
hh;H;Hi ; 1

2
hl; H;Hi means that the

player always plays the action H but randomize uniformly between the two messages h
and l.
Observe that we neglect unused strategy components. For example, we do not specify

what action a player would take in the counterfactual case when he sends another message
than the message speci�ed by his strategy. The reason is that in the models we consider,
interesting counterfactuals cannot arise. First, the model does not permit implementa-
tion mistakes. Second, there always exist (at least in the players�imagination) zero-step
thinkers, and these send all messages with positive probability. Thus, no player is ever
completely surprised by the opponent�s message.

3 Simple Cognitive Hierarchy (SCH) Model

In this section we demonstrate our main argument within a simpli�ed version of Camerer
et al. (2004); call it the simple cognitive hierarchy (SCH) model � in contrast to the
Poisson cognitive hierarchy (PCH) model that complies fully with the original model.
(The SCH model is similar to earlier cognitive hierarchy models by Nagel 1995, Stahl and
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Wilson 1995 and Costa-Gomes et al. 2001.) We mainly focus on the two-player Stag Hunt
and Battle of the Sexes, but also generalize these results to broader classes of games.
The simplicity of the SCH model is largely due to the assumption that any k � 1 step

thinker believes that all opponents are level k � 1 thinkers. The assumption implies that
players are often indi¤erent between strategies, and, in addition, that there is nothing
to pin down k-step thinkers�beliefs when they receive a message that k� 1 step thinkers
would never send. For convenience we assume that whenever a k � 2 step thinker is
indi¤erent between strategies or receives a message that a k � 1 player would not send,
he takes into account the possibility that the opponent might be a k � 2 step thinker,
proceeding to lower levels if the player continues to be indi¤erent or receive a message
only lower-level thinkers would send. If this procedure still leaves a player indi¤erent
between strategies, we assume that he randomizes, albeit not necessarily uniformly, over
the remaining strategies. The assumptions underlying the SCH model corresponds closely
to the PCH model if the average number of thinking steps (�) is high and k su¢ ciently
small, since this implies that a k-step thinker will believe that almost all opponents are
of level k � 1.
As will become clear, players who perform at least two thinking steps often, but not

always, behave alike. Therefore, players who perform at least two thinking steps are called
advanced thinkers. Players who are not advanced, i.e., zero-step and one-step thinkers,
are called primitive thinkers.

3.1 Stag Hunt

Consider the Stag Hunt game in Figure 2.

H(igh) L(ow)
H(igh) c; c 0; b
L(ow) b; 0 a; a

Figure 2. Stag Hunt

Let 0 < a � b < c and c < a+ b; so that HH is the Pareto dominant equilibrium and LL
is the risk dominant equilibrium (see Harsanyi and Selten 1988).
With no possibility to communicate, the simple cognitive hierarchy model implies that

one-step and all advanced (k � 2) thinkers play L. With two-way communication, ad-
vanced thinkers play H instead. With one-way communication, actions alternate between
even and odd thinking steps.
To understand the di¤erence in behavior between one-way and two-way communi-

cation, consider �rst the behavior of zero-step thinkers. With two-way communication,
zero-step thinkers always play according to their own sent message, while with one-way
communication, they play randomly as receivers. Next, consider the one-step thinkers.
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With two-way communication one-step thinkers play according to the received message.
Thus, two-step thinkers will send a message indicating that they will play H and then
playH (since one-step thinkers always best respond to received messages). All higher-step
thinkers will consequently play H as well. If there are many high-level thinkers playing
the game, players are therefore likely to coordinate on the Pareto dominant equilibrium.
With one-way communication, on the other hand, one-step thinkers acting as senders al-
ways play L (since zero-step thinkers do not respond to messages), which in turn implies
that two-step thinkers acting as receivers will play L as well. Similarly, one-step thinkers
acting as receivers will play according to received messages, which implies that two-step
thinkers will send and play H. With one-way communication, behavior thus alternates
between even and odd thinking steps �even-step thinkers play as two-step thinkers while
odd-step thinkers play as three-step thinkers.

Proposition 1 In the SCH model, the actions in Stag Hunt taken by advanced thinkers
are as follows: (i) Under two-way communication, all players play H. (ii) Under one-way
communication, even-step thinkers play L and odd-step thinkers play H.

Proof. First consider one-way communication. Then zero-step thinkers will play
1
2
hh;H;H;Hi ; 1

2
hl; L; L; Li and one-step thinkers p1 hh; L;H; Li ; (1� p1) hl; L;H; Li with

p1 2 (0; 1). This in turn implies that two-step thinkers will play hh;H; L; Li. Three-
step thinkers will play hh; L;H; Li if b > a and p3 hh; L;H; Li ; (1� p3) hl; L;H; Li with
p3 2 (0; 1) if b = a. The behavior of higher-step thinkers will alternate between even and
odd thinking steps �even-step thinkers play as two-step thinkers while odd-step thinkers
play as three-step thinkers.
With two-way communication one-step thinkers will play p1 hh;H; Li ; (1� p1) hl; H; Li

with p1 2 (0; 1). This in turn implies that all higher-step thinkers will play hh;H;Hi.

An immediate consequence of Proposition 1 is that, for any given distribution of types,
two-way communication results in more coordination on the Pareto dominant equilibrium
than does one-way communication.
Note that under two-way communication, advanced thinkers play H irrespective of

received messages. The reason is that if a two-step thinker receives a message indicating
that L will be played, he believes that the message comes from a one-step thinker that
plays according to received messages. This is at odds with the idea that communication
creates reassurance that H will be played when both players indicate that they intend to
play H. This is partly an artefact of this simpli�ed model �in the PCH two-step thinkers�
behavior depends on the average number of thinking steps.
The result that two-way communication leads advanced thinkers to play H holds also

if zero-step thinkers are not always truthful. Let p denote the probability that a zero-
step thinker is truthful. Then it is straightforward to show that behavior with two-way
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communication will be identical to Proposition 1 whenever p satis�es

p >
a� (c� b)
a+ (c� b) .

The assumptions on parameters imply that the right hand side will always be between
zero and one. For example, in the Stag Hunt shown in Figure 1, the truthfulness of zero-
step thinkers must be above 7 � (9� 8) =7 + (9� 8) = 3=4 for two-way communication
to lead to the Pareto dominant equilibrium.

3.2 Battle of the Sexes

Consider now instead the two-player Battle of the Sexes game in Figure 3.

L(ow) H(igh)
H(igh) b; a 0; 0
L(ow) 0; 0 a; b

Figure 3. Battle of the Sexes

For this game to be a Battle of the Sexes, and for the labels to make sense, we require
that 0 < a < b.
Recall that zero-step thinkers randomize uniformly. Without communication, one-step

thinkers will therefore play H and as a result two-step thinkers will play L. Generally,
play alternates between even and odd thinking steps, resulting in little coordination.
Now consider the possibility to communicate. With two-way communication, one-step

thinkers will send random messages and play whatever the zero-step thinkers indicated
that they will play. This in turn implies that the two-step thinkers will send and play
H, which in turn implies that three-step thinkers will send and play L. Similar to the
case without communication, behavior will alternate between thinking steps, resulting
in little overall coordination. With one-way communication matters are quite di¤erent.
One-step thinkers still play according to the received message in one-way communication,
but they play H as senders. Advanced thinkers therefore play L as receivers and send
and play H as senders. This implies that whenever advanced thinkers meet, there will be
perfect coordination. Intuitively, the asymmetric roles at the communication stage admit
coordination on the e¢ cient but asymmetric outcomes �receivers always have to give in
and play their least preferred option.

Proposition 2 In the SCH model, advanced thinkers take the following actions in the
Battle of the Sexes: (i) Under two-way communication, two-step thinkers play H, three-
step thinkers best respond to received messages and the behavior of higher-step thinkers
cycles over four thinking steps. (ii) Under one-way communication, senders play H and
receivers play L.
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Proof. First consider one-way communication. Zero-step thinkers play 1
2
hh;H;H;Hi,

1
2
hl; L; L; Li and one-step thinkers p1 hh;H; L;Hi ; (1� p1) hl; H; L;Hi with p1 2 (0; 1).
All advanced thinkers play hh;H; L; Li. With two-way communication, zero-step thinkers
play 1

2
hh;H;Hi ; 1

2
hl; L; Li and one-step thinkers play p1 hh; L;Hi ; (1� p1) hl; L;Hi with

p1 2 (0; 1). Two-step thinkers play hh;H;Hi while three-step thinkers play hh; L;Hi.
Four-step thinkers play hh;H;Hi, whereas �ve-step thinkers play hl; L; Li. Six-step
thinkers play hl; L;Hi and seven-step thinkers play hh; L;Hi. Eight-step and higher-
step thinkers play as k � 4 step thinkers, so that behavior alternates in cycles of four
thinking steps.

Note that the truthfulness of zero-step thinkers is important for this result. If the
messages of zero-step senders were to convey no information, one-step receivers would
always play H and will not respond to sent messages. In order for one-step receivers
to respond to messages, the probability of truthfulness of zero-step thinkers must sat-
isfy p > (b� a) = (a+ b). Hence, for su¢ ciently high degree of truthfulness, one-way
communication will work according to Proposition 2. Note that the required degree of
truthfulness is increasing in the di¤erence b� a, suggesting that one-way communication
would work less well if equilibrium outcomes are very unequal.

3.3 Multiplayer Generalizations

From the preceding sections it is tempting to draw the conclusion that two-way commu-
nication results in coordination on the Pareto dominant equilibrium when players have
common interests, whereas one-way communication works �ne when players have con�ict-
ing interests in the sense of having di¤erent "favorite" equilibria. In Appendix 2 we show
that this conjecture is true, with some additional quali�cations, for a broad class of two-
player games. In this section we discuss two classes of n-player games that demonstrate
the relative advantages of two-way versus one-way communication.

3.3.1 Two-way communication

In order to �nd a class of games for which two-way communication induces advanced
thinkers to play the Pareto dominant equilibrium, let us recall three pieces of terminol-
ogy. A common interest game is a �nite normal form game with one Pareto dominant
equilibrium such that this equilibrium gives strictly higher payo¤s to all players than all
other outcomes of the game. We restrict attention to games with a �nite number of ac-
tions and we can therefore without generality assign integers f1; 2; :::; aig to each player�s
actions. A normal form game G has strategic complementarities if best responses are
increasing in the opponents�actions, i.e., if a�i � a0�i implies BRi (a�i) � BRi

�
a0�i
�
. Fi-

nally, the game G has positive spillovers if the payo¤ increases in the opponents�actions,
i.e., if a�i � a0�i implies �i (ai; a�i) � �i

�
ai; a

0
�i
�
. If a common interest game has positive
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spillovers, then all players choosing their highest action is a Pareto dominant equilibrium.
This fact is used in the following proof, so we state it as a separate lemma.

Lemma 1 The Pareto dominant equilibrium of a common interest game with positive
spillovers, is given by the action pro�le a = (a1; a2; :::; an):

Proof. Suppose the Pareto dominant equilibrium is some pro�le a� 6= a. Then at least
one player has an action ai > a�i available that by positive spillovers gives the opponents
the same or higher payo¤s, contradicting the assumption that a� is a Pareto dominant
equilibrium of a common interest game with positive spillovers.

Using Lemma 1 it is straightforward to show that two-way communication will result
in the Pareto dominant equilibrium.

Proposition 3 Let G be an n-player common interest game with strategic complemen-
tarities and positive spillovers. Then two-way communication implies perfect coordination
whenever all players are advanced thinkers.

Proof. Zero-step thinkers randomize over truthful strategies, so one-step thinkers play
BRi(m�i) and randomize messages. In particular, if m�i = a�i, one-step thinkers play ai
since a is an equilibrium (by Lemma 1). A two-step thinker believes that the opponents are
one-step thinkers that best-respond to messages. Since G has strategic complementarities,
BRi(m�i) is non-decreasing in m�i, and since there are positive spillovers, it is weakly
dominant for a two-step thinker to send the message mi = ai. From Lemma 1 we know
that a gives higher payo¤ than all other outcomes of the game implying that a two-step
thinker will send ai and play ai if m�i = a�i. Higher-step thinkers will play in the same
way and whenever advanced thinkers play the game, the outcome is a.

To understand the logic of Proposition 3, consider the weak-link game. In a weak-link
game, each player picks an integer from 1 to m. Payo¤s are such that all players want to
play the minimum of what the opponents play, but all players are better o¤ if everybody
chooses higher numbers. Any strategy pro�le in which all players choose the same number
constitutes a Nash equilibrium, and the Pareto dominant equilibrium involves all players
playingm. (For a more detailed exposition of the weak-link game see for example Camerer
2003, Chapter 7.) If the weak-link game is played with two-way communication, zero-
step thinkers will randomize over all truthful strategies. One-step thinkers best respond
by (sending random messages and) playing according to the minimum of the received
messages. In particular, if all received messages are equal to m, then a one-step thinker
plays m as well. Two-step thinkers believe they face n � 1 one-step thinkers that send
random messages and play the minimum of received messages. The best-response of two-
step thinkers must therefore be also to play the minimum of all received messages, but to
send the message m (since it might be the case that all other n�1 player sent m so that it
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is optimal for two-step thinkers to do so too). Since all two-step thinkers send the message
m and play the minimum of the received messages, three-step thinkers best-respond using
the same strategy. Hence, as long as only advanced thinkers play the game, there will be
perfect coordination on the Pareto dominant equilibrium, whereas this will typically not
be the case if some primitive thinkers play the game.
This reasoning and the proof of Proposition 3 rely on the fact that zero-step thinkers

are believed to be truthful. In order for the argument to work, truthfulness must be high
enough to induce one-step thinkers to play the Pareto dominant equilibrium whenever he
receives messages indicating that the opponents intend to play that equilibrium.

3.3.2 One-way communication

Here is a natural n-player extension of the Battle of the Sexes: Each player i chooses an
integer ai 2 f1; 2; :::; ng. If all players pick di¤erent integers they get positive payo¤s, and
payo¤s are increasing in ai. If two or more players choose the same number, all players get
the lowest possible payo¤. A natural interpretation is that there are n workers and tasks,
that each worker can undertake exactly one task, that each task has to be be performed
for the project to succeed, and that the tasks di¤er in popularity. For future reference,
let us call it the Battle of the Workers.
In the Battle of the Workers, there are n! di¤erent pure strategy equilibria and there

is little hope of attaining coordination as long as each player is con�ned to communicate
a plan for the own action only. We therefore extend the message space. Let a message
consist of a list of recommended actions, one for each player, i.e., M = �i2NAi. In order
for communication to a¤ect the outcome, we also assume that zero-step receivers respond
obediently to received messages under one-way communication. Since zero-step receivers
always act obediently, one-step senders assign action n to themselves and divide up the
remaining n � 1 actions between the opponents. One-step receivers, believing that the
other receivers are zero-step receivers, play obediently if the sender has assigned a unique
number to each player. By induction, all advanced thinkers play in the same way. Hence
one-way communication attains perfect coordination.
The argument relies on the assumption that zero-step receivers are believed to be

perfectly obedient. However, this su¢ cient condition can often be relaxed. In Appendix
1 we derive a necessary and su¢ cient condition for one-way communication to sustain
perfect coordination in the Battle of the Workers. Extending the message space and
introducing the possibility that zero-step thinkers are obedient also a¤ects the previous
results. In Appendix 1 we therefore also provide a complete analysis of the Stag Hunt
and Battle of the Sexes with the extended message space.
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4 Poisson Cognitive Hierarchy (PCH) Model

A drawback of the SCH model is that beliefs become more and more unrealistic the more
steps of thinking a player does. The Poisson cognitive hierarchy model of Camerer et al.
(2004) does not have this undesirable implication. As a robustness check, let us also
conduct our analysis within the PCH model.
Camerer et al. (2004) assume that the distribution of types is Poisson distributed, i.e.,

the proportion of k-step thinkers is given by

f (k) =
e��� k

k!
:

A player of level k best responds given the belief that everybody else are of level 0 up
to k � 1. The conditional density function for the belief of a k-step thinker about the
proportion of l < k step thinkers is

gk (l) =
f (l)Pk�1
h=0 f (h)

:

The PCH model is developed for normal form games only. In order to adapt the model
to games with pre-play communication we must specify how beliefs are updated after
messages have been received. As it turns out, our results are quite insensitive to the
updating rule, so for reasons of familiarity we assume Bayesian updating.9 For the games
preceded by one round of communication, let pki (mi) denote the probability that player
i 2 N sends the message mi when the player thinks k steps (and is allowed to send a
message). A k-step thinker�s belief that the sender i is a l < k step thinker conditional
upon receiving the message mi is

gki (ljmi) =
gk (l) pli (mi)Pk�1
h=0 gk (h) phi (mi)

=
f (l) pli (mi)Pk�1
h=0 f (h) phi (mi)

;

where the latter equality follows from the de�nition of gk (l). Note that if all l < k step
players randomize uniformly, then gki (ljmi) = gk (l) for all i and mi. It is also useful
to note that the relative conditional proportion of two lower level types is the same for
players of di¤erent level of rationality for a given received message mi. For any l such
that 1 < l < k � 1 the relative conditional proportion of l-step and l + 1-step thinkers is
(supposing pli (mi) > 0)

gki (l + 1jmi)

gki (ljmi)
=
f (l + 1) p(l+1)i (mi)Pk�1

h=0 f (h) phi (mi)
=

f (l) pli (mi)Pk�1
h=0 f (h) phi (mi)

=
�

i+ 1

p(l+1)i (mi)

pli (mi)
:

9Results are robust to updating assumptions because zero-step and one-step thinkers randomize uni-
formly over the messages available. Thus, two-step thinkers�updated beliefs coincide with their initial
beliefs. Since Lemma 2 also applies when beliefs are not updated, our results are robust to the updating
rule.
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Retaining our previous assumption about the behavior of zero-step thinkers, the be-
havior of one-step thinkers will be practically identical in the SCH and PCH model (since
in both models a one-step thinker believes that the opponent is a zero-step thinker). How-
ever, in the PCH model we adopt the tie-breaking rule of Camerer et al. (2004), so that
players randomize uniformly over all strategies that give the same expected payo¤.
A feature of the PCHmodel is that if a k-step thinker plays a pure equilibrium strategy

of a two-player game with one round of pre-play communication, then all higher-step
thinkers will play that strategy too (this result also holds if a k-step player is indi¤erent
between strategies). Since this result will be used repeatedly we state it separately in
Lemma 2.

Lemma 2 Let G be a two-player normal form game. If k-step thinkers play mutual best
responses of �1 (G) or �2 (G), then all higher-step thinkers will play these strategies too.

Proof. Consider the case of two-way communication (the proof for one-way com-
munication is analogous). Let the strategy played by k-step thinkers be denoted s�i =
hm�

i ; f
�
i (mj)i and s�j =



m�
j ; f

�
j (mi)

�
. Consider a k-step player i that received the mes-

sage mj. We know that f �i (mj) is the action that maximizes expected payo¤ conditional
on receiving mj given the belief that the opponent is a l < k step thinker with probability

gkj (ljmj) =
f (l) plj (mj)Pk�1
h=0 f (h) phj (mj)

:

Similarly, a k+1 step thinking player i that receives the same message mj best responds
given the belief that the opponent is a l < k + 1 step thinker with probability

g(k+1)j (ljmj) =
f (l) plj (mj)Pk
h=0 f (h) phj (mj)

:

Since f �i (mj) maximizes the expected payo¤ of a k-step thinker i and is a best response
against a k-step opponent j, by linearity of expected payo¤s it must be a best response
also to the mixture of types a k + 1 step player i believes to be facing (note that this
argument does not extend to more than two players). Similarly, if a k-step thinker is
indi¤erent between certain actions, a k + 1 step thinker will be so too and both k-step
and k + 1 step thinkers will therefore randomize uniformly over these actions.
Now consider the communication stage of the game. If a k-step sender i plays s�, then

then m�
i is a best response given the belief that the opponent is a l < k step thinker with

probability

gk (l) = f (l) =
k�1X
h=0

f (h) :
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Similarly a k + 1 step sender believes that the opponent is a l < k + 1 step thinker with
probability

gk+1 (l) = f (l) =

kX
h=0

f (h) :

Since m�
i maximizes the payo¤ of a k-step sender and is a best response against another

k-step thinker it must be a best response also to the mixture of types a k + 1 sender
believes to be facing. If the best-response is not unique, both k and k + 1 step senders
randomize uniformly among these messages.
By induction this reasoning holds for all higher level players as well.

In the PCH model, behavior depends both on the payo¤s of the game and on the
average level of thinking steps, � . Unless all advanced thinkers play the same strategy, we
will focus on the behavior of two-step thinkers. This is enough to establish the qualitative
conclusions about one-way and two-way communication.

4.1 Stag Hunt

Consider the Stag Hunt game of Figure 2. If there is no pre-play communication, one-step
thinkers and all advanced thinkers play L in the Stag Hunt, implying coordination on the
risk dominant equilibrium LL unless zero-step thinkers play.
To determine what happens under two-way communication turns out to be straight-

forward.

Proposition 4 In the Stag Hunt with two-way communication, the PCH model predicts
that advanced thinkers play hh;H; Li if � < a= (c� b) and hh;H;Hi if � > a= (c� b).

Proof. Zero-step thinkers play 1
2
hh;H;Hi ; 1

2
hl; L; Li and one-step thinkers respond

by playing 1
2
hh;H; Li ; 1

2
hl; H; Li. Two-step thinkers either respond to messages or send

and play H. Since zero-step and one-step thinkers send both messages with equal prob-
abilities, g2i (ljmi) = g2 (l). Two-step thinkers therefore prefer hh;H; Li over hh;H;Hi
whenever

g2 (0)
1

2
(a+ c) + g2 (1)

1

2
(b+ c) > g2 (0)

1

2
c+ g2 (1) c;

which is equivalent to the condition � < a= (c� b). Conversely, if � > a= (c� b), two-step
thinkers play hh;H;Hi.
Since hh;H; Li and hh;H;Hi are both pure equilibrium strategies, by Lemma 2 all

higher-step thinkers will play like the two-step thinkers.

As in the SCH model, one-step thinkers play according to received messages and send
random messages. Proposition 4 shows that we observe the same outcome as in the
simpli�ed model also for higher-step thinkers whenever � is su¢ ciently high. If � is lower,
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however, higher-step thinkers believe there is enough zero-step thinkers around to make
it worthwhile to play hh;H; Li rather than hh;H;Hi. For example, in the Stag Hunt
depicted in Figure 1, the threshold is given by �̂ = 7= (9� 8) = 7. Since � is typically
around 1:5 we would therefore expect that higher-step thinkers will play hh;H;Li in that
game.10 This in turn implies perfect coordination on the Pareto dominant equilibrium
whenever advanced thinkers play the game. In addition, advanced thinkers will end up
coordinating on one of the equilibria when they play against zero-step thinkers, whereas
there will be coordination failure in half of the cases when they meet one-step thinkers
(i.e., when they play hl; H; Li).
Note also that Proposition 4 implies that as � !1, there is perfect coordination on

the Pareto dominant equilibrium. This contrasts with Aumann�s (1990) argument that
only the risk dominant equilibrium LL is self-enforcing. If we consider full rationality
as a limiting case of the PCH model, the Pareto dominant equilibrium HH is the only
self-enforcing equilibrium.
The case with one-way communication is slightly more complicated since advanced

thinkers may play in di¤erent ways depending on payo¤s. Proposition 5 states the model
predictions for two-step thinkers.

Proposition 5 In the Stag Hunt with one-way communication, the PCH model predicts
the following behavior:

(i) If � < (a+ b� c) =2 (c� b) and � > (c� b) =a, then advanced thinkers play hh; L; L; Li
if b > a and 1

2
hh; L; L; Li ; 1

2
hl; L; L; Li if b = a.

(ii) If � > (a+ b� c) =2 (c� b) and � < (c� b) =a, then advanced thinkers play hh;H;H;Li.

(iii) In the remaining two cases, two-step thinkers play either hh; L;H; Li, hh;H; L; Li or
1
2
hh; L;H; Li ; 1

2
hl; L;H; Li depending on � and the payo¤s of the game.

Proof. Zero-step thinkers play 1
2
hh;H;H;Hi ; 1

2
hl; L; L; Li and one-step thinkers play

1
2
hh; L;H; Li ; 1

2
hl; L;H; Li. It remains to work out the strategies of more sophisticated

players. Senders have four strategies to consider: hh;Hi ; hh; Li ; hl; Hi and hl; Hi. The
strategy hl; Hi is dominated by hh;Hi, so we need not consider that strategy. Receiver
strategies are hH;Hi ; hH;Li ; hL;Hi and hL;Li, but hL;Hi is dominated by hL;Li. Again
we note that since zero-step and one-step thinkers send both messages with equal prob-
abilities, g2i (ljmi) = g2 (l). The three relevant sender strategies of two-step thinkers give

10This estimate of � comes from Camerer et al. (2004) and is based on the PCH without pre-play
communication �results might of course be di¤erent if � was estimated based on games with pre-play
communication.
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payo¤s

� (hl; Li) = g2 (0)
1

2
(a+ b) + g2 (1) a;

� (hh;Hi) = g2 (0)
1

2
c+ g2 (1) c;

� (hh; Li) = g2 (0)
1

2
(a+ b) + g2 (1) b:

Clearly, � (hh; Li) � � (hl; Li) with strict inequality if b > a. The strategy hh;Hi is
preferred over hh; Li whenever

g2 (0)
1

2
c+ g2 (1) c > g2 (0)

1

2
(a+ b) + g2 (1) b;

which simpli�es to (c� b) =a > 1= (1 + 2�) or � > (a+ b� c) =2 (c� b). Now consider
the behavior of two-step receivers. Since hH;Hi and hL;Hi are dominated we note that
hH;Li is preferred over hL;Li when

g2 (0)
1

2
(a+ c) + g2 (1)

1

2
a > g2 (0)

1

2
(a+ b) + g2 (1) a;

which simpli�es to � < (c� b) =a. Since c < a + b, � must be below 1 for this condition
to be satis�ed.
Of the strategies above, hh; L; L; Li and hh;H;H;Li are pure equilibrium strategies,

so it is only in these cases we know that all higher-step thinkers will play that strategy
too (according to Lemma 2). If a = b, two-step thinkers mix uniformly between strategies
involving hh; Li and hl; Li instead of playing hh; Li, which by Lemma 2 implies that all
higher-step thinkers will play 1

2
hh; L; L; Li ; 1

2
hl; L; L; Li.

As shown by Proposition 5, the behavior of higher-step thinkers depends heavily on
payo¤s and � . For the game in Figure 1, (c�b)=a = 1=7; implying that advanced thinkers
play hh; L; L; Li as long as 1=7 < � < 3. If � is in this range, we would observe coordination
on the risk dominant equilibrium, but also a considerable amount of non-equilibrium play
when advanced thinkers playing L fool one-step thinkers into playing H. In this case,
Aumann�s (1990) argument against the honesty presumption has full force.
Although behavior depends on payo¤s and the distribution of player types, coordi-

nation on the Pareto dominant equilibrium is unambiguously higher with two-way than
with one-way communication for a given � .

Proposition 6 In the PCH model, for a given � , two-way communication leads to more
coordination on the Pareto dominant outcome in the Stag Hunt than does one-way com-
munication.
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Proof. In order to prove the result we must verify that two-way communication leads
to more coordination on the Pareto dominant outcome for all combination of types than
does one-way communication.
First consider when two advanced thinkers play the game. Proposition 4 then implies

that there will be perfect coordination on the HH equilibrium under two-way communi-
cation.
Now consider when primitive thinkers play the game using the behavior of primitive

thinkers speci�ed in the proof of Proposition 4 and 5. When two zero-step thinkers meet,
there will be 25 percent average coordination on HH under both one-way and two-way
communication. If instead two one-step thinkers meet, two-way communication results in
25 percent coordination onHH, whereas one-way communication never results in theHH
outcome being played. If one-step thinkers play against zero-step thinkers, two-way com-
munication results in 50percent coordination on HH, whereas one-way communication
results in 25percent coordination on HH. It is clear that two-way communication results
in more coordination on the Pareto dominant outcome when only primitive thinkers play
the game.
It remains to determine the outcome when advanced thinkers play against primitive

thinkers. For two-way communication this is straightforward. From Proposition 4we
know that advanced thinkers play either hh;H; Li or hh;H;Hi. When advanced thinkers
play hh;H; Li, coordination is 50percent on HH when playing against primitive thinkers.
If they instead play hh;H;Hi, there is 50 percent coordination on the HH outcome
when playing against zero-step thinkers and 100 percent when they play against one-step
thinkers. Hence, if we can show that one-way communication never results in more than
50 percent coordination on the Pareto dominant outcome when advanced thinkers meet
primitive thinkers, we have established the result. To see that this never can happen, note
from the proof of Proposition 5 that zero-step thinkers play 1

2
hh;H;H;Hi ; 1

2
hl; L; L; Li.

Clearly, no matter what strategy advanced thinkers play, they can never obtain aver-
age coordination on HH of more than 50 percent. Similarly, one-step thinkers play
1
2
hh; L;H; Li ; 1

2
hl; L;H; Li. As senders, advanced thinkers can maximally achieve 100

percent average coordination when playing aginst one-step thinkers, but as receivers they
can never achieve coordination on the HH outcome. Since players are randomly assigned
to either the sender or receiver role, coordination on HH can never be higher than 50
percent on average.
Since types are Poisson distributed, there is a positive probability of all type combi-

nations when the game is played. Since coordination on the Pareto dominant outcome
under two-way communication is the same for some type combinations and higher for oth-
ers, this implies that two-way communication results in more coordination on the Pareto
dominant outcome for any given value of � .

19



4.2 Battle of the Sexes

In the Battle of the Sexes, one-way communication is easiest to analyze. As in the SCH
model, higher-step thinkers typically send and play their preferred action H as senders,
whereas they give in and play L as receivers. Although exact behavior will depend on
payo¤s and � , the qualitative conclusion is clear.

Proposition 7 In the PCH model, whenever advanced thinkers play the game, one-way
communication leads to more coordination on e¢ cient outcomes in the Battle of the Sexes
than does two-way communication. As � ! 1; there is virtually always coordination on
the sender�s preferred Nash equilibrium outcome under one-way communication.

Proof. First consider behavior under one-way communication. As in the SCH model,
zero-step thinkers play 1

2
hh;H;H;Hi ; 1

2
hl; L; L; Li and one-step thinkers 1

2
hh;H; L;Hi,

1
2
hl; H; L;Hi. As before, g2i (ljmi) = g2 (l) for two-step receivers. A two-step receiver
therefore prefers hL;Hi over hL;Li whenever

g2 (0)
1

2
(a+ b) + g2 (1)

1

2
a > g2 (0)

1

2
a+ g2 (1) a;

which simpli�es to � < b=a. Hence, for su¢ ciently high � , two-step thinkers will play
hL;Li : Under the opposite inequality, two-step thinkers play hL;Hi. As senders, two-step
thinkers face zero-step receivers that randomize and one-step receivers that play hL;Hi,
so it is optimal to play hh;Hi. Hence, two-step thinkers play hh;H; L;Hi if � < b=a and
hh;H; L; Li otherwise. Since both these strategies are pure equilibrium strategies, from
Lemma 2 we have that all higher-step thinkers play these strategies too.
Now consider two-way communication. Zero-step thinkers play 1

2
hh;H;Hi ; 1

2
hl; L; Li

and one-step thinkers play 1
2
hh; L;Hi ; 1

2
hl; L;Hi. Two-step thinkers face a trade-o¤

between responding to messages and sending and playing H. The strategy hh;H;Hi is
preferred over hh; L;Hi whenever (again noting that two-step players don�t update their
beliefs in the second stage of the game)

g2 (0)
1

2
b+ g2 (1) b > g2 (0)

1

2
(a+ b) + g2 (1)

1

2
b;

which simpli�es to � > a=b. That is, two-step thinkers will play hh;H;Hi if � > a=b and
hh; L;Hi otherwise.
Since one-way communication implies lower coordination when one-step senders meet

zero-step receivers, we can only state our conclusion for advanced thinkers. Whenever
advanced thinkers play the game, one-way communication results in perfect coordination,
while two-way communication does not.
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4.3 Multiplayer Generalizations

In the PCH model it is di¢ cult to derive results for more general classes of games since
behavior depend on both payo¤s and � . However, as � ! 1, the PCH model is very
similar to the SCH model for low-step thinkers. If zero-step and one-step thinkers ran-
domize messages uniformly, the PCH model implies that g2 (1) =g2 (0) = � . Therefore,
as � ! 1, two-step thinkers will behave as if they are certain that the opponents are
one-step thinkers and only attach an in�nitely small probability to the opponents be-
ing zero-step thinkers. This allows us to derive predictions for more general two-player
games, but since Lemma 2 does not generally apply to games with more than two players
it is di¢ cult to predict behavior for general multiplayer games. Two generalizations for
two-player games as � !1 are provided in Appendix 2.

5 Concluding Remarks

We view organizational structure as a solution to the equilibrium selection problem. In
a model with boundedly rational players, we have shown that an authoritarian structure
with one-way communication improves coordination in games with con�icting interests
such as the Battle of the Sexes, whereas a consensual structure with two-way communica-
tion is optimal in games with common interests such as the Stag Hunt. We have argued
that the existence of boundedly rational players that communicate naively or truthfully
may help to explain why how communication a¤ects coordination. The fraction of such
players need not be very large �and it can in fact be zero as long as there is some players
that believe they exist (or some people that believe that people believe they exist, and
so on ad in�nitum). In fact, the model has some bite even in the limit when players�
rationality goes to in�nity. We prove that the unique outcome in the Stag Hunt is then
for both players to say that they will play according to the e¢ cient equilibrium, and to
act accordingly. This result contrasts with Aumann�s (1990) famous argument that only
the ine¢ cient equilibrium is self-enforcing when players are perfectly rational.
The assumption we make about the behavior of zero-step thinkers is made mainly on a

priori grounds. The main ingredient required for communication to work is that zero-step
thinkers send messages truly indicating what action they are going to take. We believe
that our assumptions are plausible, but that is ultimately an empirical question. In order
to develop a more realistic theory, we would need data about players�beliefs. Such data
can be generated not only through survey questions, but also by measuring response times
and information search (Costa-Gomes et al. 2001) or by using neuroimaging techniques
(Bhatt and Camerer 2005).
Although we have emphasized the role of pre-play communication as a equilibrium

selection device throughout the paper, the theory does not assume equilibrium play. It is
therefore also applicable to situations in which players realistically fail to play a unique
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and e¢ cient Nash equilibrium �such as the High Risk game devised by Gilbert (1990).
Experimental results of Burton and Sefton (2004) con�rms the prevalence of coordination
failure in one-shot play of the High Risk game, but demonstrates that players learn to play
the equilibrium after having played a number of practice rounds with the same opponent.
Our theory predicts that two-way communication could induce the unique equilibrium
outcome even in a one-shot game, at least if players are su¢ ciently sophisticated.
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Appendix 1: Extended Message Space in the SCH
Model

Let us analyze the Stag Hunt, Battle of the Sexes and the Battle of the Workers with
the extended message space. Let p denote the probability that a zero-step thinker is
truthful and q the probability that the receiver is obedient. For two-way communication,
consistency requires that p+ q � 1, since a player cannot be truthful and obedient at the
same time.
Extending the message space requires a generalization of our previous notation. The

sender strategy with one-way communication is denoted

si =


mi
i;m

j
i ; ai

�
;

where mi
i indicates the what action player i intends to take and m

j
i indicates what action

player i wants player j to take. Since there are four di¤erent combinations of messages in
the Stag Hunt and Battle of the Sexes, a receiver strategy consists of an action for each
of these four possible message combinations. The receiver strategy is denoted

si = hfi (h; h) ; fi (h; l) ; fi (l; h); fi (l; l))i :

With two-way communication, a strategy speci�es what messages to send and what to
do conditionally on the received messages. (As before we need not specify what a player
does after sending a message that is not a part of his strategy.) Therefore a strategy is
denoted

si =


mi
i;m

j
i ; fi (h; h) ; fi (h; l) ; fi (l; h); fi (l; l))

�
:

Stag Hunt

One-way communication

Zero-step senders randomize over truthful strategies with probability p, i.e., they play

1

4
hh; h;Hi ; 1

4
hh; l;Hi ; 1

4
hl; l; Li ; 1

4
hl; h; Li

with probability p and randomize uniformly over all strategies with probability (1 �
p). Zero-step receivers are obedient with probability q, i.e., they play hH;L;H;Li with
probability q and randomizes uniformly with probability (1�q). For simplicity, we assume
that b > a so that the only relevant one-step sender strategies give the payo¤s

� (hh; h;Hi) = � (hl; h;Hi) = qc+ (1� q) 1
2
c;

� (hh; h; Li) = � (hl; h; Li) = qb+ (1� q) 1
2
(a+ b) :
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A one-step sender plays the �rst of these pairs of strategies if

q >
a� (c� b)
a+ (c� b) � A:

One-step receivers play either hH;H;L; Li or hL;L; L; Li. They play hH;H;L; Li if

p
1

2
(a+ c) + (1� p) 1

4
(a+ b+ c) > p

1

2
(a+ b) + (1� p) 1

2
(a+ b) ;

or equivalently if p > A. If p < A, they play hL;L; L; Li : The two conditions for p and
q yield four possible cases for the behavior of one-step thinkers, which in turn pin down
the behavior of higher-step players. These results are summarized in the table below.

Senders Receivers
p > A; q > A k = 1 p1 hh; h;Hi ; (1� p1) hl; h;Hi with p1 2 (0; 1) hH;H;L; Li

k � 2 hh; h;Hi hH;H;H;Li
p > A; q < A k = 1 p1 hh; h; Li ; (1� p1) hl; h; Li with; p1 2 (0; 1) hH;H;L; Li

k = 2 hh; h;Hi hL;H;L; Li
k � 3 hh; l;Hi hH;H;L; Li

p < A; q > A k = 1 p1 hh; h;Hi ; (1� p1) hl; h;Hi with p1 2 (0; 1) hL;L; L; Li
k = 2 p2 hh; h; Li ; (1� p2) hl; h; Li with p2 2 (0; 1) hH;L;H;Li
k � 3 Alternates Alternates

p < A; q < A k � 1 p1 hh; h; Li ; (1� p1) hl; h; Li with; p1 2 (0; 1) hL;L; L; Li

Observe that one-way communication induces advanced thinkers to play H if both p and q
exceed A. If both p and q are su¢ ciently low, however, communication becomes irrelevant;
one-step and higher-step players then always play L. Remarkably, when truthfulness is
high, but obedience is low, advanced thinkers still end up coordinating on the Pareto
dominant equilibrium. The reason is that three-step senders mimic zero-step senders and
send the message h; l which induces receivers to play H. There are at least two reasons
why we might expect that this particular prediction is non-robust. First, higher-step
thinkers would not play H if there is the slightest probability that a one-step thinker
sends the message h; l. Second, suppose that there is a chance that zero-step thinkers
realize (after having sent the message h; l) that it is unwise to play H when they have
asked the opponent to play L. If a fraction of zero-step thinkers manage to think one
more step after having sent messages, one-step thinkers may no longer play H upon seeing
the message h; l. If so, the strategy hh; l;Hi becomes unattractive for advanced thinkers.

Two-way communication

Zero-step players play truthfully with probability p and obediently with probability q. As
long as b > a, it is optimal for one-step thinkers to propose that the opponent should play
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H, whereas the message about his own play doesn�t matter. A one-step player therefore
faces a trade-o¤ between playing H irrespective of the messages received, playing H if
the opponent indicates that he will play H, and always playing L. The payo¤s for these
strategies are

� (hh; h;H;H;H;Hi) = � (hl; h;H;H;H;Hi) = p1
2
c+ qc+ (1� p� q) 1

2
c;

� (hh; h;H;H;L; Li) = � (hl; h;H;H;L; Li) =

= p
1

2
(a+ c) + q

1

2
(c+ b) + (1� p� q) 1

4
(a+ b+ c) ;

� (hh; h; L; L; L; Li) = � (hl; h; L; L; L; Li) = p1
2
(a+ b) + qb+ (1� p� q) 1

2
(a+ b) :

The strategies hh; h;H;H;L; Li and hl; h;H;H;L; Li are preferred over hh; h; L; L; L; Li
and hl; h; L; L; L; Li whenever

p+ q >
a� (c� b)
a+ (c� b) = A:

Similarly, hh; h;H;H;H;Hi and hl; h;H;H;H;Hi are preferred over hh; h;H;H;L; Li and
hl; h;H;H;L; Li whenever

q � p > a� (c� b)
a+ (c� b) = A:

Thus, if p + q > A two-way communication induce the Pareto dominant equilibrium
outcome whenever advanced thinkers meet. Note that the higher q is, the lower can p
be, which is in line with the assurance motive of two-way communication discussed in the
introduction. Finally, note that if p+ q = 1 then this condition is always ful�lled.

Battle of the Sexes

One-way communication

Zero-step senders randomize over truthful strategies with probability p, i.e., they play

1

4
hh; h;Hi ; 1

4
hh; l;Hi ; 1

4
hl; l; Li ; 1

4
hl; h; Li ;

with probability p. Zero-step receivers are obedient, i.e., they play hH;L;H;Li with
probability q. One-step senders thus play p1 hh; h;Hi ; (1� p1) hl; h;Hi with p1 2 (0; 1).
One-step receivers face a trade-o¤ between playing according to received messages or
playing H. They play according to the received message if

p
1

2
(a+ b) + (1� p) 1

4
(a+ b) > p

1

2
b+ (1� p) 1

2
b;
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which simpli�es to p > (b� a) = (a+ b). Since one-step senders play H irrespective of
whether zero-step receivers are obedient or not, q does not a¤ect the impact of one-way
communication in the Battle of the Sexes.

Two-way communication

Zero-step players play truthfully with probability p and obey orders with probability q.
One-step players face a trade-o¤ between always playing H and responding to the senders
message as it was truthful. They best-respond to messages if

p
1

2
(a+ b) + q

1

2
b+ (1� p� q) 1

4
(a+ b) > p

1

2
b+ qb+ (1� p� q) 1

2
b;

which is equivalent to p � q > (b� a) = (a+ b). This condition can only hold if p > q.
However, irrespective of the behavior of one-step thinkers, two-way communication entails
little coordination.

Battle of the Workers

Let us derive a lower bound on the degree of zero-step thinkers�obedience that is required
for one-way communication to induce loyalty by more advanced thinkers in the Battle of
the Workers. For simplicity, assume throughout that zero-step thinkers are truthful.
(Observe that the analysis applies only for n � 3. If n = 2 the game is equivalent to the
Battle of the Sexes.)
For one-way communication to work, we must make sure that a one-step receiver plays

the action that the sender intends. Let us assume that a one-step receiver has received a
message allocating task n to the sender and each of the remaining n� 1 tasks to separate
receivers. Since zero-step thinkers are truthful, the best payo¤ a one-step receiver could
hope for is � (n� 1), i.e., the equilibrium payo¤when playing n�1. Since we are interested
in deriving a lower bound on q, consider the problem of a one-step receiver who has been
assigned the number 1 �so that the payo¤di¤erence between obedience and playing n�1
is as large as possible.
A one-step receiver believes that the other n � 2 receivers are zero-step thinkers and

consequently that they obey orders with probability q and play randomly with probability
(1� q). The probability that exactly x out of the opponents obey orders is�

n� 2
x

�
qx (1� q)n�2�x :

If x out of n�2 receivers obey orders, the probability that the remaining receivers manage
to pick one number each among the numbers that are not chosen by the n�2�x receivers
that are obedient is given by

(n� 2� x)!
�
1

n

�n�2�x
:
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Using these probabilities we can derive the payo¤ to a one-step receiver of loyalty, i.e.,
playing 1

E [1] =

n�2X
x=0

�
n� 2
x

�
qx (1� q)n�2�x (n� 2� x)!

�
1

n

�n�2�x
� (1)

= � (1) (n� 2)!
n�2X
x=0

qx

x!

�
1� q
n

�n�2�x
:

What is the expected payo¤ from picking n � 1 instead of 1? For this strategy to result
in positive payo¤, it must be the case that the particular player that was assigned to
n � 1 does not obey orders. Given that one particular player does not obey orders, the
probability that x players obey orders is

(1� q)
��
n� 3
x

�
qx (1� q)n�3�x

�
:

Given that x players obey orders, the probability that the remaining n � 2 � x players
pick a unique number each is

(n� 2� x)!
�
1

n

�n�2�x
;

allowing us to calculate the expected payo¤ of picking n� 1 as,

E [n� 1] =
n�3X
x=0

(1� q)
�
n� 3
x

�
qx (1� q)n�3�x (n� 2� x)!

�
1

n

�n�2�x
� (n� 1)

= � (n� 1) (n� 3)!
n�3X
x=0

(n� 2� x) q
x

x!

�
1� q
n

�n�2�x
:

Thus, the expected payo¤ of obedience is higher than picking n� 1 wheneverPn�2
x=0 (n� 2)

qx

x!

�
1�q
n

�n�2�xPn�3
x=0 (n� 2� x)

qx

x!

�
1�q
n

�n�2�x > � (n� 1)
� (1)

:

It is di¢ cult to solve this condition explicitly, but we can plot numerically the left
hand side of the expression. The graph below plots the left hand side as a function of q
for n = f3; 5; 10; 50g where the leftmost graph correspond to n = 50 and the rightmost
one to n = 3.
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For example, one-way communication works �ne if q is larger than 0:35 and � (n� 1) =� (1) =
2. Thus, a relatively small degree of obedience among aero-step thinkers is su¢ cient to
induce loyalty by one-step thinkers.

Appendix 2: Two-Player Generalizations

For two-player games it is possible to derive predictions for somewhat more general payo¤
structures. In order to do so, we introduce some additional terminology. First, we say
that player i has a favorite equilibrium if there is a pure Nash equilibrium that gives that
player strictly higher payo¤ than all other outcomes of the game. Secondly, we de�ne an
action aSii in game G as safe for player i if it gives player i a strictly higher payo¤ than
all other actions given that the opponent randomizes uniformly over his available actions.

SCH Model

The reason why two-way communication is so e¢ cient in achieving coordination in the
Stag Hunt is that two-step thinkers get the possibility to choose among equilibria when
playing against one-step thinkers. If they choose a pure equilibrium action, then all
higher-step players will play this strategy too. In order for this sort of argument to work,
we must make sure that the Pareto dominant equilibrium gives higher payo¤s than all
other payo¤s of the game �otherwise two-step thinkers will be tempted to play another
action and send a message to get the one-step player to play the action that gives him the
highest payo¤. An equivalent way of formulating this requirement is that both players
have the same favorite equilibrium, or that it is a common interest game. This result is
stated in Proposition 8, but is a straightforward extension of Proposition 1.
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Proposition 8 Let G be a two-player common interest game. In the SCH model, ad-
vanced thinkers coordinate on the unique Pareto dominant equilibrium of G under two-
way communication. Under one-way communication, advanced thinkers generally fail to
coordinate on the Pareto dominant equilibrium.

Proof. First consider two-way communication. Zero-step thinkers randomize over all
truthful strategies, which implies that one-step thinkers send random messages but best
respond to the received message, i.e., they play BRi (mj). Since one-step thinkers best-
respond to messages as if they are truthful, a two-step thinker can "pick" the best outcome
among those actions that are best-responses of the opponent. The highest possible payo¤
to player i is by assumption achieved in the unique Pareto dominant equilibrium. The
player can achieve this equilibrium by sending the message indicating that he will play
the action corresponding to that equilibrium. Higher-step thinkers will play in the same
way, i.e., they will play the truthful strategies involving the unique Pareto dominant
equilibrium.
Now consider one-way communication. Zero-step senders play truthfully, whereas they

respond randomly to messages. One-step receivers will therefore play BRi (mj), whereas
one-step senders will send any message and play the safe action aSii . Two-step senders
will be able to "pick" their favorite outcome and therefore play the truthful strategy
involving the Pareto dominant equilibrium. As receivers, they will best-respond to the
safe action chosen by one-step senders, i.e., they will play BRi(a

Sj
j ). Unless the safe action

pro�le aSii ; a
Sj
j happens to be the Pareto dominant equilibrium, it is clear that there will be

more coordination with two-way communication than with one-communication (otherwise
coordination will only be higher for two-way communication when zero-step and one-step
players play the game).

Now consider games with multiple pure equilibria that cannot be Pareto ranked, but
were each player has a favorite equilibrium. Following the logic of Proposition 2 regarding
the Battle of the Sexes, it is tempting to conclude that one-way communication would re-
sult in more coordination than two-way communication. However, we also need to assume
that the favorite equilibrium of each player coincide with the safe action of that player,
i.e., the one that he plays if the opponent randomizes uniformly over available actions.
The reason is that one-step senders play against zero-step receivers that respond ran-
domly, which implies that one-step senders will play their safe action. Two-step receivers
will therefore play the best-response to the safe action of the sender, which corresponds
to the favorite equilibrium of the one-step senders only if the safe action is the same as
the favorite equilibrium action. This result is stated in the next proposition.

Proposition 9 Let G be a two-player game such that each player has a favorite equilib-
rium which coincides with the safe action of that player. Then coordination on the two
favorite equilibria will be higher among advanced thinkers with one-way than with two-way
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communication in the SCH model. Furthermore, with one-way communication advanced
thinkers will play so that the sender plays his favorite equilibrium and receivers play the
favorite equilibrium of the sender.

Proof. First consider one-way communication. Zero-step senders randomize over
truthful strategies, whereas they respond randomly to messages. One step receivers will
therefore play strategies fi (mj) = BRi (mj), whereas one-step senders will send any
message and play the safe action aSii . Two-step senders may thus "pick" their favorite
equilibrium outcome. As receivers, two-step thinkers best-respond to the safe action
chosen by one-step thinkers, i.e., they play BRi(a

Sj
j ); which corresponds to the favorite

equilibrium of the opponent. Consequently, all higher-step thinkers will play in the same
way � senders play the truthful strategy involving their favorite equilibrium outcome,
while receivers play the favorite outcome of the opponent.
Now consider two-way communication. Zero-step thinkers randomize over all truthful

strategies, which implies that one-step thinkers send random messages but best respond
to the message sent by zero-step thinkers, i.e., they play strategies such that fi (mi;mj) =
BRi (mj). Thus a two-step thinker plays the strategy involving his favorite equilibrium.
Three-step thinkers play the favorite equilibrium of the opponent, and four-step thinkers
again play their own favorite equilibrium. Behavior continues to alternate, leading to
little coordination on either equilibrium. Clearly, for advanced thinkers, coordination will
be higher with one-way than with two-way communication.

The conditions stated in Proposition 8 and 9 are su¢ cient but not necessary. For
example, the result in Proposition 8 holds even if we add non-equilibrium payo¤s that are
higher than the payo¤s in the Pareto dominant equilibrium, as long as the non-equilibrium
outcome involves a dominated strategy for one of the players.

PCH Model

In the PCH model it is more di¢ cult to obtain general results, since behavior depend
on both payo¤s and � . However, as � ! 1, there are analogs to Proposition 8 and
9 For example, it is straightforward to show that common interest games imply perfect
coordination with two-way communication as � !1. To say what happens with one-way
communication as � ! 1 is not straightforward, however, since we cannot make use of
Lemma 2 to determine what higher-step players will do. Similarly, it is easy to show
that one-way communication leads to perfect coordination as � ! 1 for games where
each player has a favorite equilibrium that coincides with his safe action, but it is more
di¢ cult to characterize the outcome of two-way communication as � !1. The next two
propositions summarize the perfect coordination results.
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Proposition 10 Let G be a two-player common interest game. Then, as � ! 1; the
PCH model implies that there is perfect coordination on the unique Pareto dominant
equilibrium under two-way communication.

Proof. Since zero-step and one-step players randomize messages uniformly, two-step
thinkers do not update beliefs. Use the fact that g2 (1) =g2 (0) = � to conclude that
whenever � ! 1 two-step thinkers behave as if they are certain that the opponent is a
one-step thinker (and only attach an in�nitely small probability to the opponent being
a zero-step thinker). Therefore two-step thinkers behave in the same way as two-step
thinkers in the SCH model unless they are indi¤erent between strategies. Following the
proof of Proposition 8 we realize that two-step thinkers will play the truthful strategy
associated with the Pareto dominant equilibrium. Since this is a pure equilibrium strategy,
by Lemma 2 all higher-level thinkers will play that strategy too.

Proposition 11 Let G be a two-player normal form game in which each player have a
favorite equilibrium which coincides with the safe action of that player. Then, as � !
1; the PCH model implies that there is perfect coordination on the sender�s preferred
equilibrium under one-way communication .

Proof. Again we note that g2 (1) =g2 (0) = � so that whenever � ! 1 two-step
thinkers behave as if they are certain that the opponent is a one-step thinker (and only
attach an in�nitely small probability to the opponent being a zero-step thinker). Unless
two-step thinkers are indi¤erent between strategies, they will behave as two-step thinkers
in the SCH model. For the same reason as in the proof of Proposition 9 two-step senders
thus play the truthful strategy involving their safe action, whereas two-step receivers
best-respond to the received message. Since this strategy is a best-response to itself, by
Lemma 2 all higher-step players will play the same strategy �senders play the truthful
strategy involving their favorite equilibrium, while receivers play the favorite equilibrium
of the opponent.
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