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Abstract

This chapter is concerned with forecasting from nonlinear con-
ditional mean models. First, a number of often applied nonlinear
conditional mean models are introduced and their main properties dis-
cussed. The next section is devoted to techniques of building nonlinear
models. Ways of computing multi-step-ahead forecasts from nonlinear
models are surveyed. Tests of forecast accuracy in the case where the
models generating the forecasts may be nested are discussed. There is
a numerical example, showing that even when a stationary nonlinear
process generates the observations, future observations may in some
situations be better forecast by a linear model with a unit root. Fi-
nally, some empirical studies that compare forecasts from linear and
nonlinear models are discussed.
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1 Introduction

In recent years, nonlinear models have become more common in empirical
economics than they were a few decades ago. This trend has brought with it
an increased interest in forecasting economic variables with nonlinear models:
for recent accounts of this topic, see Tsay (2002) and Clements, Franses and
Swanson (2004). Nonlinear forecasting has also been discussed in books on
nonlinear economic modelling such as Granger and Terésvirta (1993, Chap-
ter 9) and Franses and van Dijk (2000). More specific surveys include Zhang,
Patuwo and Hu (1998) on forecasting (not only economic forecasting) with
neural network models and Lundbergh and Terisvirta (2002) who consider
forecasting with smooth transition autoregressive models. Ramsey (1996)
discusses difficulties in forecasting economic variables with nonlinear models.
Large-scale comparisons of the forecasting performance of linear and nonlin-
ear models have appeared in the literature; see Stock and Watson (1999),
Marcellino (2002) and Teréisvirta, van Dijk and Medeiros (2005) for exam-
ples. There is also a growing literature consisting of forecast comparisons
that involve a rather limited number of time series and nonlinear models as
well as comparisons entirely based on simulated series.

There exist an unlimited amount of nonlinear models, and it is not possi-
ble to cover all developments in this survey. The considerations are restricted
to parametric nonlinear models, which excludes forecasting with nonpara-
metric models. For information on nonparametric forecasting, the reader is
referred to Fan and Yao (2003). Besides, only a small number of frequently
applied parametric nonlinear models are discussed here. It is also worth
mentioning that the interest is solely focussed on stochastic models. This ex-
cludes deterministic processes such as chaotic ones. This is motivated by the
fact that chaos is a less useful concept in economics than it is in natural sci-
ences. Another area of forecasting with nonlinear models that is not covered
here is volatility forecasting. The reader is referred to Andersen, Bollerslev
and Christoffersen (2006) and the survey by Poon and Granger (2003).

The plan of the chapter is the following. In Section 2, a number of para-
metric nonlinear models are presented and their properties briefly discussed.
Section 3 is devoted to strategies of building certain types of nonlinear mod-
els. In Section 4 the focus shifts to forecasting, more specifically, to different
methods of obtaining multistep forecasts. Combining forecasts is also briefly
mentioned. Problems in and ways of comparing the accuracy of point fore-
casts from linear and nonlinear models is considered in Section 5, and a
specific simulated example of such a comparison in Section 6. Empirical
forecast comparisons form the topic of Section 7, and Section 8 contains final
remarks.



2 Nonlinear models

2.1 General

Regime-switching has been a popular idea in economic applications of non-
linear models. The data-generating process to be modelled is perceived as a
linear process that switches between a number of regimes according to some
rule. For example, it may be argued that the dynamic properties of the
growth rate of the volume of industrial production or gross national prod-
uct process are different in recessions and expansions. As another example,
changes in government policy may instigate switches in regime.

These two examples are different in nature. In the former case, it may
be assumed that nonlinearity is in fact controlled by an observable variable
such as a lag of the growth rate. In the latter one, an observable indicator for
regime switches may not exist. This feature will lead to a family of nonlinear
models different from the previous one.

In this chapter we present a small number of special cases of the nonlinear
dynamic regression model. These are rather general models in the sense that
they have not been designed for testing a particular economic theory propo-
sition or describing economic behaviour in a particular situation. They share
this property with the dynamic linear model. No clear-cut rules for choosing
a particular nonlinear family exist, but the previous examples suggest that in
some cases, choices may be made a priori. Estimated models can, however,
be compared ez post. In theory, nonnested tests offer such a possibility, but
applying them in the nonlinear context is more demanding that in the linear
framework, and few, if any, examples of that exist in the literature. Model
selection criteria are sometimes used for the purpose as well as post-sample
forecasting comparisons. It appears that successful model building, that is,
a systematic search to find a model that fits the data well, is only possible
within a well-defined family of nonlinear models. The family of autoregres-
sive — moving average models constitutes a classic linear example; see Box
and Jenkins (1970). Nonlinear model building is discussed in Section 3.

2.2 Nonlinear dynamic regression model

A general nonlinear dynamic model with an additive noise component can
be defined as follows:

Ye = f(24;0) + & (1)

where z, = (W}, x})" is a vector of explanatory variables, w; = (1, -1, ..., Yt—p)’,
and the vector of strongly exogenous variables x; = (xy, ..., Zg)". Further-
more, &; ~ iid(0,0?). It is assumed that y; is a stationary process. Nonsta-
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tionary nonlinear processes will not be considered in this survey. Many of
the models discussed in this section are special cases of (1) that have been
popular in forecasting applications. Moving average models and models with
stochastic coefficients, an example of so-called doubly stochastic models, will
also be briefly highlighted.

Strict stationarity of (1) may be investigated using the theory of Markov
chains. Tong (1990, Chapter 4) contains a discussion of the relevant theory.
Under a condition concerning the starting distribution, geometric ergodicity
of a Markov chain implies strict stationarity of the same chain, and a set of
conditions for geometric ergodicity are given. These results can be used for
investigating strict stationarity in special cases of (1), as the model can be
expressed as a (p + 1)-dimensional Markov chain. As an example (Example
4.3 in Tong, 1990), consider the following modification of the exponential
smooth transition autoregressive (ESTAR) model to be discussed in the next
section:

p
Yp = Z[Cba‘yt—j + 05y—5(1 — eXP{_’VfUtZ—j})] + &
j=1
p
=S 16 + 00 — Oy s expi—2,}] + = 2)

j=1

where {g;} ~ iid(0,0?). It can be shown that (2) is geometrically ergodic if
the roots of 1 —37"_,(¢; +0;) L’ lie outside the unit circle. This result partly
relies on the additive structure of this model. In fact, it is not known whether
the same condition holds for the following, more common but non-additive,
ESTAR model:

p

e =Y _[by—i + 0w (1 — exp{—yy; })] + e,y >0
7=1

where d > 0 and p > 1.
As another example, consider the first-order self-exciting threshold au-
toregressive (SETAR) model (see Section 2.4)

Ut = d1Y—11 (Yye—1 < ¢) + P12ve—11(yi—1 > ¢) + &4

where I(A) is an indicator function: I(A) = 1 when event A occurs; zero
otherwise. A necessary and sufficient condition for this SETAR process to
be geometrically ergodic is ¢11 < 1, ¢12 < 1 and ¢11¢12 < 1. For higher-order
models, normally only sufficient conditions exist, and for many interesting
models these conditions are quite restrictive. An example will be given in
Section 2.4.



2.3 Smooth transition regression model

The smooth transition regression (STR) model originated in the work of
Bacon and Watts (1971). These authors considered two regression lines and
devised a model in which the transition from one line to the other is smooth.
They used the hyperbolic tangent function to characterize the transition.
This function is close to both the normal cumulative distribution function
and the logistic function. Maddala (1977, p. 396) in fact recommended the
use of the logistic function as transition function, and this has become the
prevailing standard; see, for example, Teréisvirta (1998). In general terms we
can define the STR model as follows:

ye = 'z +0'2,G(7, ¢, s,) + &
={p+0G(v,c,s) Yz + e, t =1,...,T (3)

where z; is defined as in (1), ¢ = (¢o, ¢1, ..., o) and 0 = (6o, 04, ..., 0,,)" are
parameter vectors, and &; ~ iid(0,¢?). In the transition function G(v,c, s;),
7 is the slope parameter and ¢ = (¢y, ..., ¢k )" a vector of location parameters,
c1 < ... < ¢g. The transition function is a bounded function of the transition
variable s;, continuous everywhere in the parameter space for any value of
s¢. The last expression in (3) indicates that the model can be interpreted
as a linear model with stochastic time-varying coefficients ¢ + 0G(, c, s;)
where s; controls the time-variation. The logistic transition function has the
general form

K

Glyes) = (L+exp{— [ [(ss =)™ 7 >0 (4)

where v > 0 is an identifying restriction. Equation (3) jointly with (4)
defines the logistic STR (LSTR) model. The most common choices for K
are K = 1 and K = 2. For K = 1, the parameters ¢ + 0G(v,c, s;) change
monotonically as a function of s; from ¢ to ¢ + 6. For K = 2, they change
symmetrically around the mid-point (¢; + ¢2)/2 where this logistic function
attains its minimum value. The minimum lies between zero and 1/2. Tt
reaches zero when 7 — oo and equals 1/2 when ¢; = ¢ and v < . Slope
parameter v controls the slope and ¢; and ¢, the location of the transition
function.

The LSTR model with K = 1 (LSTR1 model) is capable of characterizing
asymmetric behaviour. As an example, suppose that s; measures the phase
of the business cycle. Then the LSTR1 model can describe processes whose
dynamic properties are different in expansions from what they are in reces-
sions, and the transition from one extreme regime to the other is smooth.



The LSTR2 model is appropriate in situations where the local dynamic be-
haviour of the process is similar at both large and small values of s; and
different in the middle.

When v = 0, the transition function G(v, c, s;) = 1/2 so that STR model
(3) nests a linear model. At the other end, when v — oo the LSTR1 model
approaches the switching regression (SR) model, see Section 2.4, with two
regimes and 0? = ¢2. When v — oo in the LSTR2 model, the result is a
switching regression model with three regimes such that the outer regimes
are identical and the mid-regime different from the other two.

Another variant of the LSTR2 model is the exponential STR (ESTR, in

the univariate case ESTAR) model in which the transition function

G(v,¢, 8) =1—exp{—7(s; —c)*},v >0 (5)

This transition function is an approximation to (4) with K =2 and ¢; = ¢s.
When v — oo, however, G(v, ¢, s;) = 1 for s; # ¢, in which case equation (3)
is linear except at a single point. Equation (3) with (5) has been a popular
tool in investigations of the validity of the purchasing power parity (PPP)
hypothesis; see for example the survey by Taylor and Sarno (2002).

In practice, the transition variable s; is a stochastic variable and very often
an element of z;. It can also be a linear combination of several variables. A
special case, s; = t, yields a linear model with deterministically changing
parameters. Such a model has a role to play, among other things, in testing
parameter constancy, see Section 2.7.

When x; is absent from (3) and s, = y;_q or 84 = Ay;_4, d > 0, the
STR model becomes a univariate smooth transition autoregressive (STAR)
model. The logistic STAR (LSTAR) model was introduced in the time series
literature by Chan and Tong (1986) who used the density of the normal
distribution as the transition function. The exponential STAR (ESTAR)
model appeared already in Haggan and Ozaki (1981). Later, Terésvirta
(1994) defined a family of STAR models that included both the LSTAR
and the ESTAR model and devised a data-driven modelling strategy with
the aim of, among other things, helping the user to choose between these two
alternatives.

Investigating the PPP hypothesis is just one of many applications of the
STR and STAR models to economic data. Univariate STAR models have
been frequently applied in modelling asymmetric behaviour of macroeco-
nomic variables such as industrial production and unemployment rate, or
nonlinear behaviour of inflation. In fact, many different nonlinear models
have been fitted to unemployment rates; see Proietti (2003) for references.
As to STR models, several examples of the its use in modelling money de-
mand such as Terésvirta and Eliasson (2001) can be found in the literature.
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Venetis, Paya and Peel (2003) recently applied the model to a much in-
vestigated topic: usefulness of the interest rate spread in predicting output
growth. The list of applications could be made longer.

2.4 Switching regression and threshold autoregressive
model

The standard switching regression model is piecewise linear, and it is defined
as follows:

r+1
v = (¢ +ep)I(cia < s < ¢5) (6)
j=1
where z; = (w},x})" is defined as before, s; is a switching variable, usually
assumed to be a continuous random variable, cg,cq, ..., .41 are threshold
parameters, cg = —00, ¢,41 = +00. Furthermore, ¢, ~ iid(0, 032-), j=1,..r
It is seen that (6) is a piecewise linear model whose switch-points, however,

are generally unknown. A popular alternative in practice is the two-regime
SR model

Yo = (9120 + 1) (s < 1) + (992 + e2){1 — I(s; < c1)}. (7)

It is a special case of the STR model (3) with K =1 in (4).

When x; is absent and s; = y;_4,d > 0, (6) becomes the self-exciting
threshold autoregressive (SETAR) model. The SETAR model has been
widely applied in economics. A comprehensive account of the model and
its statistical properties can be found in Tong (1990). A two-regime SE-
TAR model is a special case of the LSTAR1 model when the slope parameter
v — 0.

A special case of the SETAR model itself, suggested by Enders and
Granger (1998) and called the momentum-TAR model, is the one with two
regimes and s; = Ay;_4. This model may be used to characterize processes
in which the asymmetry lies in growth rates: as an example, the growth of
the series when it occurs may be rapid but the return to a lower level slow.

It was mentioned in Section 2.2 that stationarity conditions for higher-
order models can often be quite restrictive. As an example, consider the
univariate SETAR model of order p, that is, x, = 0 and ¢; = (1, ¢;1, ..., ¢;p)’
in (6). Chan (1993) contains a sufficient condition for this model to be
stationary. It has the form

P
m?XZ lpji| < 1.
j=1
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For p = 1 the condition becomes max; |¢1;| < 1, which is already in this
simple case a more restrictive condition than the necessary and sufficient
condition presented in Section 2.2.

The SETAR model has also been a popular tool in investigating the PPP
hypothesis; see the survey by Taylor and Sarno (2002). Like the STAR
model, the SETAR model has been widely applied to modelling asymme-
tries in macroeconomic series. It is often argued that the US interest rate
processes have more than one regime, and SETAR models have been fitted
to these series, see Pfann, Schotman and Tschernig (1996) for an example.
These models have also been applied to modelling exchange rates as in Henry,
Olekalns and Summers (2001) who were, among other things, interested in
the effect of the East-Asian 1997-1998 currency crisis on the Australian dol-
lar.

2.5 Markov-switching model

In the switching regression model (6), the switching variable is an observable
continuous variable. It may also be an unobservable variable that obtains
a finite number of discrete values and is independent of 1, at all lags, as
in Lindgren (1978). Such a model may be called the Markov-switching or
hidden Markov regression model, and it is defined by the following equation:

v =Y aiml(s, = j) + e (8)

J=1

where {s;} follows a Markov chain, often of order one. If the order equals
one, the conditional probability of the event s, = i given s;_, k= 1,2, ..., is
only dependent on s;_; and equals

Pr{st = Z"Stfl = .]} = Dij; Lj=1..,r (9)

such that >, p;; = 1. The transition probabilities p;; are unknown and
have to be estimated from the data. The error process ¢; is often assumed
not to be dependent on the 'regime’ or the value of s;, but the model may
be generalized to incorporate that possibility. In its univariate form, z; =
w;, model (8) with transition probabilities (9) has been called the suddenly
changing autoregressive (SCAR) model; see Tyssedal and Tjgstheim (1988).

There is a Markov-switching autoregressive model, proposed by Hamilton
(1989), that is more common in econometric applications than the SCAR
model. In this model, the intercept is time-varying and determined by the



value of the latent variable s; and its lags. It has the form

p
Yt = Us, + Z aj(yt—j - ﬂst,j) + & (10)

j=1

where the behaviour of s, is defined by (9) , and p,, = p for s, = 4, such that
pt # ) i £ j. For identification reasons, y,—; and fi,, ; in (10) share the
same coeflicient. The stochastic intercept of this model, p,, — Z§:1 Qjfls,_ ;s
thus can obtain rP*! different values, and this gives the model the desired
flexibility. A comprehensive discussion of Markov-switching models can be
found in Hamilton (1994, Chapter 22).

Markov-switching models can be applied when the data can be conve-
niently thought of as having been generated by a model with different regimes
such that the regime changes do not have an observable or quantifiable cause.
They may also be used when data on the switching variable is not available
and no suitable proxy can be found. This is one of the reasons why Markov-
switching models have been fitted to interest rate series, where changes in
monetary policy have been a motivation for adopting this approach. Mod-
elling asymmetries in macroeconomic series has, as in the case of SETAR and
STAR models, been another area of application; see Hamilton (1989) who
fitted a Markov-switching model of type (10) to the post World War II quar-
terly US GNP series. Tyssedal and Tjgstheim (1988) fitted a three-regime
SCAR model to a daily IBM stock return series originally analyzed in Box
and Jenkins (1970).

2.6 Autoregressive neural network model

Modelling various processes and phenomena, including economic ones, using
artificial neural network (ANN) models has become quite popular. Many
textbooks have been written about these models, see, for example, Fine
(1999) or Haykin (1999). A detailed treatment can be found in White (2006),
whereas the discussion here is restricted to the simplest single-equation case,
which is the so-called ”single hidden-layer” model. It has the following form:

q
v =Bz + Y BiG(z) + & (11)
j=1

where y; is the output series, z; = (1, yi—1, ..., Yt—p, T1t, ..., Tgt)' is the vector
of inputs, including the intercept and lagged values of the output, 5z, is a
linear unit, and 3;,j = 1, ..., ¢, are parameters, called ”connection strengths”
in the neural network literature. Many neural network modellers exclude the
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linear unit altogether, but it is a useful component in time series applications.
Furthermore, function G(.) is a bounded function called ”the squashing func-
tion” and v;, j = 1, ..., ¢, are parameter vectors. Typical squashing functions
are monotonically increasing ones such as the logistic function and the hyper-
bolic tangent function and thus have the same form as transition functions
of STAR models. The so-called radial basis functions that resemble density
functions are another possibility. The errors &; are often assumed iid(0,0?).
The term ”hidden layer” refers to the structure of (11). While the output y;
and the input vector z; are observed, the linear combination Z?:l BiG(vizs)
is not. It thus forms a hidden layer between the ”output layer” 3; and ”input
layer” z;.

A theoretical argument used to motivate the use of ANN models is that
they are universal approximators. Suppose that y, = H(z,), that is, there
exists a functional relationship between y; and z;. Then, under mild regular-
ity conditions for H, there exists a positive integer ¢ < gy < oo such that for
an arbitrary 6 > 0, |H(z) — >_7_, 8;G(7;z:)| < d. The importance of this
result lies in the fact that ¢ is finite, whereby any unknown function H can
be approximated arbitrarily accurately by a linear combination of squashing
functions G/(v}z;). This has been discussed in several papers including Cy-
benko (1989), Funahashi (1989), Hornik, Stinchombe and White (1989) and
White (1990).

A statistical property separating the artificial neural network model (11)
from other nonlinear econometric models presented here is that it is only
locally identified. It is seen from equation (11) that the hidden units are
exchangeable. For example, letting any (3;,7;)" and (8;,7;)',4 # j, change
places in the equation does not affect the value of the likelihood function.
Thus for ¢ > 1 there always exists more than one observationally equivalent
parameterization, so that additional parameter restrictions are required for
global identification. Furthermore, the sign of one element in each v;, the
first one, say, has to be fixed in advance to exclude observationally equivalent
parameterizations. The identification restrictions are discussed, for example,
in Hwang and Ding (1997).

The rich parameterization of ANN models makes the estimation of pa-
rameters difficult. Computationally feasible, yet effective, shortcuts are pro-
posed and implemented in White (2006). Goffe, Ferrier and Rogers (1994)
contains an example showing that simulated annealing, which is a heuristic
estimation method, may be a powerful tool in estimating parameters of these
models. ANN models have been fitted to various economic time series. Since
the model is a universal approximator rather than one with parameters with
economic interpretation, the purpose of fitting these models has mainly been
forecasting. Examples of their performance in forecasting macroeconomic
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variables can be found in Section 7.3.

2.7 Time-varying autoregressive model

A time-varying regression model is an STR model in which the transition
variable s; = ¢. It can thus be defined as follows:

v = ¢'z4+0'2,G(y,¢c,t) + ey, t=1,...,T (12)

where the transition function

G(v,¢,5) = (L+exp{—y ][t —er)}) "7 > 0. (13)

k=1

When K =1 and v — oo in (13), equation (12) represents a linear dynamic
regression model with a break in parameters at t = ¢;. It can be generalized
to a model with several transitions:

v = Ozt Y 0mGi(y, e t) +ep, t=1,....T (14)

j=1

where transition functions G; typically have the form (13) with X = 1. When
v; — 00, j =1,...,7,in (14) , the model becomes a linear model with multiple
breaks. Specifying such models has recently received plenty of attention; see,
for example, Bai and Perron (1998, 2003) and Banerjee and Urga (2005). In
principle, these models should be preferable to linear models without breaks
because the forecasts are generated from the most recent specification instead
of an average one, which is the case if the breaks are ignored. In practice,
the number of break-points and their locations have to be estimated from the
data, which makes this suggestion less straightforward. Even if this difficulty
is ignored, it may be optimal to use pre-break observations in forecasting.
The reason is that while the one-step-ahead forecast based on post-break
data is unbiased (if the model is correctly specified), it may have a large
variance. The mean square error of the forecast may be reduced if the model
is estimated by using at least some pre-break observations as well. This intro-
duces bias but at the same time reduces the variance. For more information
of this bias-variance tradeoff, see Pesaran and Timmermann (2002).
Time-varying coefficients can also be stochastic:

yt:¢gzt+€t, tzl,,T (15)

where {¢;} is a sequence of random variables. In a large forecasting study,
Marcellino (2002) assumed that {¢;} was a random walk, that is, {A¢;} was
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a sequence of normal independent variables with zero mean and a known
variance. This assumption is a testable alternative to parameter constancy;
see Nyblom (1989). For the estimation of stochastic random coeflicient mod-
els, the reader is referred to Harvey (2006). Another assumption, albeit a less
popular one in practice, is that {¢,} follows a stationary vector autoregressive
model. Parameter constancy in (15) may be tested against this alternative
as well: see Watson and Engle (1985) and Lin and Terisvirta (1999).

2.8 Nonlinear moving average models

Nonlinear autoregressive models have been quite popular among practition-
ers, but nonlinear moving average models have also been proposed in the
literature. A rather general nonlinear moving average model of order ¢ may
be defined as follows:

Y = f(er-1,61-2, ..., €1-¢; 0) + &4

where {&;} ~iid(0,0?). A problem with these models is that their invertibility
conditions may not be known, in which case the models cannot be used for
forecasting. A common property of moving average models is that if the
model is invertible, forecasts from it for more than ¢ steps ahead equal the
unconditional mean of y;. Some nonlinear moving average models are linear
in parameters, which makes forecasting with them easy in the sense that no
numerical techniques are required when forecasting several steps ahead. As
an example of a nonlinear moving average model, consider the asymmetric
moving average (asMA) model of Wecker (1981). It has the form

q q
yo=p+ Y e+ Y Uil >0)e+e (16)
=1 j=1
where I(e;—; > 0) = 1 when ¢;_; > 0 and zero otherwise, and {e;} ~

nid(0, 0?). This model has the property that the effects of a positive shock
and a negative shock of the same sizes on y; are not symmetric when ; # 0
for at least one j, j = 1,.... 4.

Briannds and De Gooijer (1994) extended (16) to contain a linear au-
toregressive part and called the model an autoregressive asymmetric moving
average (ARasMA) model. The forecasts from an ARasMA model has the
property that after ¢q steps ahead they are identical to the forecasts from a lin-
ear AR model that has the same autoregressive parameters as the ARasMA
model. This implies that the forecast densities more than ¢ periods ahead
are symmetric, unless the error distribution is asymmetric.
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3 Building nonlinear models

Building nonlinear models comprises three stages. First, the structure of
the model is specified, second, its parameters are estimated and third, the
estimated model has to be evaluated before it is used for forecasting. The last
stage is important because if the model does not satisfy in-sample evaluation
criteria, it cannot be expected to produce accurate forecasts. Of course, good
in-sample behaviour of a model is not synonymous with accurate forecasts,
but in many cases it may at least be viewed as a necessary condition for
obtaining such forecasts from the final model.

It may be argued, however, that the role of model building in construct-
ing models for forecasting is diminishing because computations has become
inexpensive. It is easy to estimate a possibly large number of models and
combine the forecasts from them. This suggestion is related to thick mod-
elling that Granger and Jeon (2004) recently discussed. A study where this
has been a successful strategy will be discussed in Section 7.3.1. On the
other hand, many popular nonlinear models such as the smooth transition
or threshold autoregressive, or Markov switching models, nest a linear model
and are unidentified if the data-generating process is linear. Fitting one of
these models to linear series leads to inconsistent parameter estimates, and
forecasts from the estimated model are bound to be bad. Combining these
forecasts with others would not be a good idea. Testing linearity first, as a
part of the modelling process, greatly reduces the probability of this alter-
native. Aspects of building smooth transition, threshold autoregressive, and
Markov switching models will be briefly discussed below.

3.1 Testing linearity

Since many of the nonlinear models considered in this chapter nest a linear
model, a short review of linearity testing may be useful. In order to illustrate
the identification problem, consider the following nonlinear model:

Y = ¢z +0'2,G(v;8) + e = (¢ + 0G(7;8¢)) 2t + &4 (17)

where z, = (1,z})" is an (m x 1) vector of explanatory variables, some of

which can be lags of y;, and {g;} is a white noise sequence with zero mean
and Ee? = 02, Depending on the definitions of G(v;s;) and s;, (17) can
represent an STR (STAR), SR (SETAR) or a Markov-switching model. The
model is linear when ¢ = 0. When this is the case, parameter vector 7y is not
identified. It can take any value without the likelihood of the process being
affected. Thus, estimating ¢, 0 and ~ consistently from (17) is not possible
and for this reason, the standard asymptotic theory is not available.

13



The problem of testing a null hypothesis when the model is only identified
under the alternative was first considered by Davies (1977). The general idea
is the following. As discussed above, the model is identified when - is known,
and testing linearity of (17) is straightforward. Let Sy () be the correspond-
ing test statistic whose large values are critical and define I'= {7 : v €I'},
the set of admissible values of 7. When v is unknown, the statistic is not
operational because it is a function of . Davies (1977) suggested that the
problem be solved by defining another statistic St = sup,cp Sr(7) that is
no longer a function of ~. Its asymptotic null distribution does not gener-
ally have an analytic form, but Davies (1977) gives an approximation to it
that holds under certain conditions, including the assumption that S(v) =
plimy_, .. S7(7y) has a derivative. This, however, is not the case in SR and
SETAR models. Other choices of test statistic include the average:

Sr = aveSr(y) = / Sr(7)dWW (7) (18)

T

where W () is a weight function defined by the user such that [ W (vy)dy = 1.
Another choice is the exponential:

exp St = ln(/F exp{(1/2)S7(7)}dW (v)). (19)

see Andrews and Ploberger (1994).

Hansen (1996) shows how to obtain asymptotic critical values for these
statistics by simulation under rather general conditions. Given the observa-
tions (y;,z¢),t = 1,..., T, the log-likelihood of (17) has the form

Ly(¢) = ¢ = (T/2)Ino® — (1/20%) Y {y — ¢'z—0'2,G(v:8,)}?

Y= (¢',0")". Assuming v known, the average score for the parameters in the
conditional mean equals

T

sp(¥,7) = (@°T) 'Y (m@ [ 1 Glys) | e (20)

t=1

Lagrange multiplier and Wald tests can be defined using (20) in the usual
way. The LM test statistic equals

S%’M (7) = TST (&7 V)ITT (’{/;7 7)71871(1;7 fy)

where @Z is the maximum likelihood estimator of ¢ under Hy and TT(zz, v)
is a consistent estimator of the population information matrix I(¢,v). An
empirical distribution of S¥M () is obtained by simulation as follows:
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1. Generate T observations €§j),t =1,..,T for each j = 1,...,J from a

normal (0,52) distribution, JT' observations in all.

2. Compute S(Tj)(¢,7a) =73 (z® [ 1 G(ya;se) }/)ugj) where 7, €
racr.

3. Set Sy (7,) = TP (9, 70T (4, 7a) 82 (4, 7a).
4. Compute S;M(j) from S;l\'l(j) (Ya),a=1,..., A.

Carrying out these steps once gives a simulated value of the statistic. By
repeating them J times one generates a random sample {S;M(l), - S;M(J)}
from the null distribution of S¥M. If the value of SEM obtained directly from
the sample exceeds the 100(1—«)% quantile of the empirical distribution, the
null hypothesis is rejected at (approximately) significance level ov. The power
of the test depends on the quality of the approximation I"4. Hansen (1996)
applied this technique to testing linearity against the two-regime threshold
autoregressive model. The empirical distribution may also be obtained by
bootstrapping the residuals of the null model.

There is another way of handling the identification problem that is ap-
plicable in the context of STR models. Instead of approximating the un-
known distribution of a test statistic it is possible to approximate the con-
ditional log-likelihood or the nonlinear model in such a way that the identi-
fication problem is circumvented. See Luukkonen, Saikkonen and Terisvirta
(1988), Granger and Terésvirta (1993) and Teridsvirta (1994) for discussion.
Define v = (y1,74)" in (17) and assume that G(7y1,72;s8:) = 0 for 43 = 0.
Assume, furthermore, that G(71,72;8;) is at least k times continuously dif-
ferentiable for all values of s; and 7.

It is now possible to approximate the transition function by a Taylor
expansion and circumvent the identification problem. First note that due
to lack of identification, the linearity hypothesis can also be expressed as
Hy : 71 = 0. Function G is approximated locally around the null hypothesis

as follows: .

Glsasst) = D (1/31)8;(s) + Relm,7581) (21)

Jj=1

where 0,(s;) = %G(%,w;stﬂw:o,j =1,...,k. Replacing G in (17) by (21)

yields, after reparameterization,

k
Yyr = 'zt Z 0;(71)'2:0;(st) + €} (22)

Jj=1
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where the parameter vectors 6;(y1) = 0 for 73 = 0, and the error term
ef = ey + 0’z Ry (71, 72;8¢). The original null hypothesis can now be restated
as Hj : 6;(y1) = 0,7 = 1,...,k. It is a linear hypothesis in a linear model
and can thus be tested using standard asymptotic theory, because under
the null hypothesis €} = ¢,. Note, however, that this requires the existence
of Ed;(s;)?z,z,. The auxiliary regression (22) can be viewed as a result of a
trade-off in which information about the structural form of the alternative
model is exchanged against a larger null hypothesis and standard asymptotic
theory.

As an example, consider the STR model (3) and (4) and assume K = 1
in (4). It is a special case of (17) where 72 = ¢ and

G(v1,¢8) = (1 +exp{—7(s, —c)}) "7 > 0. (23)

When v; = 0, G(v,¢;5) = 1/2. The first-order Taylor expansion of the
transition function around v; = 0 is

T(msse) = (1/2) = (m/4) (st — ¢) + Ba(m; 1) (24)
Substituting (24) for (23) in (17) yields, after reparameterization,
ye = (05) 2e+(0)) zese + €7 (25)

where ¢ = 7151 such that g_b; # 0. The transformed null hypothesis is thus
Hj, : ¢; = 0. Under this hypothesis and assuming that Es?zz} exists, the
resulting LM statistic has an asymptotic x? distribution with m degrees of
freedom. This computationally simple test also has power against SR model,
but Hansen’s test that is designed directly against that alternative, is of
course the more powerful of the two.

3.2 Building STR models

The STR model nests a linear regression model and is not identified when
the data-generating process is the linear model. For this reason, a natural
first step in building STR models is testing linearity against STR. There
exists a data-based modelling strategy that consists of the three stages al-
ready mentioned: specification, estimation, and evaluation. It is described,
among others, in Terédsvirta (1998), see also van Dijk, Teréisvirta and Franses
(2002) or Terdisvirta (2004). Specification consists of testing linearity and,
if rejected, determining the transition variable s;. This is done using testing
linearity against STR models with different transition variables. In the uni-
variate case, determining the transition variable amounts to choosing the lag
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Yi—a- The decision to select the type of the STR model (LSTR1 or LSTR2) is
also made at the specification stage and is based on the results of a short se-
quence of tests within an auxiliary regression that is used for testing linearity;
see Terdisvirta (1998) for details.

Specification is partly intertwined with estimation, because the model
may be reduced by setting coefficients to zero according to some rule and re-
estimating the reduced model. This implies that one begins with a large STR
model and then continues 'from general to specific’. At the evaluation stage
the estimated STR model is subjected to misspecification tests such as tests
of no error autocorrelation, no autoregressive conditional heteroskedasticity,
no remaining nonlinearity and parameter constancy. The tests are described
in Terdsvirta (1998). A model that passes the in-sample tests can be used
for out-of-sample forecasting.

The presence of unidentified nuisance parameters is also a problem in
misspecification testing. The alternatives to the STR model in tests of no
remaining nonlinearity and parameter constancy are not identified when the
null hypothesis is valid. The identification problem is again circumvented
using a Taylor series expansion. In fact, the linearity test applied at the
specification stage can be viewed as a special case of the misspecification test
of no remaining nonlinearity.

It may be mentioned that Medeiros, Ter#isvirta and Rech (in press) con-
structed a similar strategy for modelling with neural networks. There the
specification stage involves, except testing linearity, selecting the variables
and the number of hidden units. Terdsvirta, Lin and Granger (1993) pre-
sented a linearity test against the neural network model using the Taylor
series expansion idea; for a different approach, see Lee, White and Granger
(1993).

In some forecasting experiments, STAR models have been fitted to data
without first testing linearity, and assuming the structure of the model known
in advance. As already discussed, this should lead to forecasts that are
inferior to forecasts obtained from models that have been specified using data.
The reason is that if the data-generating process is linear, the parameters
of the STR or STAR model are not estimated consistently. This in turn
must have a negative effect on forecasts, compared to models obtained by a
specification strategy in which linearity is tested before attempting to build
an STR or STAR model.

3.3 Building switching regression models

The switching regression model shares with the STR model the property that
it nests a linear regression model and is not identified when the nested model
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generates the observations. This suggests that a first step in specifying the
switching regression model or the threshold autoregressive model should be
testing linearity. In other words, one would begin by choosing between one
and two regimes in (6). When this is done, it is usually assumed that the
error variances in different regimes are the same: o7 = 0%, j=1,...,7.

More generally, the specification stage consists of selecting both the switch-
ing variable s; and determining the number of regimes. There are several ways
of determining the number of regimes. Hansen (1999) suggested a sequen-
tial testing approach to the problem. He discussed the SETAR model, but
his considerations apply to the multivariate model as well. Hansen (1999)
suggested a likelihood ratio test for this situation and showed how inference
can be conducted using an empirical null distribution of the test statistic
generated by the bootstrap. Applied sequentially and starting from a lin-
ear model, Hansen’s empirical-distribution based likelihood ratio test can in
principle be used for selecting the number of regimes in a SETAR model.

The test has excellent size and power properties as a linearity test, but
it does not always work as well as a sequential test in the SETAR case.
Suppose that the true model has three regimes, and Hansen’s test is used for
testing two regimes against three. Then it may happen that the estimated
model with two regimes generates explosive realizations, although the data-
generating process with three regimes is stationary. This causes problems in
bootstrapping the test statistic under the null hypothesis. If the model is a
static switching regression model, this problem does not occur.

Gonzalo and Pitarakis (2002) designed a technique based on model selec-
tion criteria. The number of regimes is chosen sequentially. Expanding the
model by adding another regime is discontinued when the value of the model
selection criterion, such as BIC, does not decrease any more. A drawback
of this technique is that the significance level of each individual comparison
(j regimes vs. j + 1) is a function of the size of the model and cannot be
controlled by the model builder. This is due to the fact that the size of
the penalty in the model selection criterion is a function of the number of
parameters in the two models under comparison.

Recently, Strikholm and Ter#isvirta (2005) suggested approximating the
threshold autoregressive model by a multiple STAR model with a large fixed
value for the slope parameter . The idea is then to first apply the linearity
test and then the test of no remaining nonlinearity sequentially to find the
number of regimes. This gives the modeller an approximate control over
the significance level, and the technique appears to work reasonably well
in simulations. Selecting the switching variable s; can be incorporated into
every one of these three approaches; see, for example, Hansen (1999).

Estimation of parameters is carried out by forming a grid of values for
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the threshold parameter, estimating the remaining parameters conditionally
on this value for each value in the grid and minimizing the sum of squared
€rrors.

The likelihood ratio test of Hansen (1999) can be regarded as a misspeci-
fication test of the estimated model. The estimated model can also be tested
following the suggestion by Eitrheim and Terdsvirta (1996) that is related
to the ideas in Strikholm and Ter#isvirta (2005). One can re-estimate the
threshold autoregressive model as a STAR model with a large fixed v and
apply misspecification tests developed for the STAR model. Naturally, in
this case there is no asymptotic distribution theory for these tests but they
may nevertheless serve as useful indicators of misspecification. Tong (1990,
Section 5.6) discusses ways of checking the adequacy of estimated nonlinear
models that also apply to SETAR models.

3.4 Building Markov-switching regression models

The MS regression model has a structure similar to the previous models in
the sense that it nests a linear model, and the model is not identified under
linearity. In that case the transition probabilities are unidentified nuisance
parameters. The first stage of building MS regression models should therefore
be testing linearity. Nevertheless, this is very rarely the case in practice. An
obvious reason is that testing linearity against the MS-AR alternative is
computationally demanding. Applying the general theory of Hansen (1996)
to this testing problem would require more computations than it does when
the alternative is a threshold autoregressive model. Garcia (1998) offers an
alternative that is computationally less demanding but does not appear to
be in common use. Most practitioners fix the number of regimes in advance,
and the most common choice appears to be two regimes. For an exception
to this practice, see Li and Xu (2002).

Estimation of Markov-switching models is more complicated than esti-
mation of models described in previous sections. This is because the model
contains two unobservable processes: the Markov chain indicating the regime
and the error process ¢;. Hamilton (1993) and Hamilton (1994, Chapter 22),
among others, discussed maximum likelihood estimation of parameters in
this framework.

Misspecification tests exist for the evaluation of Markov-switching mod-
els. The tests proposed in Hamilton (1996) are Lagrange multiplier tests.
If the model is a regression model, a test may be constructed for testing
whether there is autocorrelation or ARCH effects in the process or whether
a higher-order Markov chain would be necessary to adequately characterize
the dynamic behaviour of the switching process.
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Breunig, Najarian and Pagan (2003) consider other types of tests and
give examples of their use. These include consistency tests for finding out
whether assumptions made in constructing the Markov-switching model are
compatible with the data. Furthermore, they discuss encompassing tests
that are used to check whether a parameter of some auxiliary model can be
encompassed by the estimated Markov-switching model. The authors also
emphasize the use of informal graphical methods in checking the validity of
the specification. These methods can be applied to other nonlinear models
as well.

4 Forecasting with nonlinear models

4.1 Analytical point forecasts

For some nonlinear models, forecasts for more than one period ahead can be
obtained analytically. This is true for many nonlinear moving average mod-
els that are linear in parameters. As an example, consider the asymmetric
moving average model (16), assume that it is invertible, and set ¢ = 2 for
simplicity. The optimal point forecast one period ahead equals

Y1t = E{ye1| Fe} = p 4 Orep + Oagpq + 11 (gp > 0)ey + ol (4-1 > 0)g4q
and two periods ahead
Yerolt = E{yrpo| Fe} = p+ Oses + 01EI(gr41 > 0)ery1 + 2l (e > 0)ey.

For example, if &; ~ nid(0,0?), then EI(g; > 0)g; = (02/2)/7/2. For more
than two periods ahead, the forecast is simply the unconditional mean of y, :

Eyt =u-+ <w1 + wQ)E[(fft > O)Et

exactly as in the case of a linear MA(2) model.

Another nonlinear model from which forecasts can be obtained using an-
alytical expressions is the Markov-switching model. Consider model (8) and
suppose that the exogenous variables are generated by the following linear
model:

Xip1 = AXy + My (26)

The conditional expectation of y;,1, given the information up until ¢ from
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(8), has the form

E{yii1lxi, wi} = E[Z{ywrl‘xtawt; St+1 = JH Pr{sii1 = jlxe, Wi}

J=1

.,
/ /
= E :pj,t+1(0‘1ijt + a2jwt>
Jj=1

where p; ;1= Pr{s;11 = j|x;, W}, is the conditional probability of the process
being in state j at time ¢+ 1 given the past observable information. Then the
forecast of 441 given x, and w; and involving the forecasts of p; .1 becomes

Yrr1)t = ij,t+1|t(a/1jAXt + ab;wy). (27)
=1

In (27), pjis1e = Pr{se1 = j|xi, Wi} is a forecast of p;;11 from p2+1|t =p,P
where p; = (P14, ..., pry) with p;; = Pr{s, = j|x¢,w,}, j = 1,...,r, and
P =[p;;] is the matrix of transition probabilities defined in (9).

Generally, the forecast for h > 2 steps ahead has the following form

T
h *
Yirhlt = ij,t+h|t(0/1jA X¢ + O/2jwt+h—1)
j=1
where the forecasts p;;,n; of the regime probabilities are obtained from the
relationship P2+h|t = P;Ph with pyine = (pl,t+h|ta ~-'>pr,t+h\t)/ and wy,, | =

(yt+h—1|tu ceo Y10ty Yty -oey yt—p+h—1)/7 h > 2.
As a simple example, consider the first-order autoregressive MS or SCAR

model with two regimes

2

Yr = Z(%J’ + G1jye-1) (st = J) + & (28)

Jj=1

where &; ~ nid(0, 0?). From (28) it follows that the one-step-ahead forecast
equals
yere = E{uialu} = piPoo + PPy

where ¢; = (1, ¢j2)', j = 0, 1. For two steps ahead, one obtains

Yol = p,P’¢o + p;P2¢1yt+1|t
= piP%¢0 + (PiP?01) (PP %) + (P/P%¢1) (Pi P )y
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Generally, the h-step ahead forecast, h > 2, has the form

h—2 ¢

Yerne = PP o + Z(Hpéph_j¢1)péph_i_l¢o

i=0 j=0
h
+ ([ [piPé0)e-
j=1

Thus all forecasts can be obtained analytically by a sequence of linear oper-
ations. This is a direct consequence of the fact that the regimes in (8) are
linear in parameters. If they were not, the situation would be different. This
would also be the case if the exogenous variables were generated by a nonlin-
ear process instead of the linear model (26). Forecasting in such situations
will be considered next.

4.2 Numerical techniques in forecasting

Forecasting for more than one period ahead with nonlinear models such as
the STR or SR model requires numerical techniques. Granger and Terésvirta
(1993, Chapter 9), Lundbergh and Terésvirta (2002), Franses and van Dijk
(2000) and Fan and Yao (2003), among others, discuss ways of obtaining such
forecasts. In the following discussion, it is assumed that the nonlinear model
is correctly specified. In practice, this is not the case. Recursive forecasting
that will be considered here may therefore lead to rather inaccurate forecasts
if the model is badly misspecified. Evaluation of estimated models by mis-
specification tests and other means before forecasting with them is therefore
important.
Consider the following simple nonlinear model

= g(x¢-1;6) + & (29)

where ¢; ~ iid(0, 0?) and x; is a (k x 1) vector of exogenous variables. Fore-
casting one period ahead does not pose any problem, for the forecast

Y1t = E(yes1|xe) = 9(x4:0).

We bypass an extra complication by assuming that ¢ is known, which means
that the uncertainty from the estimation of parameters is ignored. Forecast-
ing two steps ahead is already a more complicated affair because we have to
work out E(y;42|x:). Suppose we can forecast x;,1 from the linear first-order
vector autoregressive model

Xir1 = AXy + N (30)
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where 1, = (N4, .., Mie)’ ~ 1id(O0, Zn). The one-step-ahead forecast of x;,1 is
X¢y1)¢ = Axy. This yields

Yirop = E(yralxe) = Eg(Axy + 14415 0)

/ / (A, + 7113 O)AF (s, - 2) (31)

which is a k-fold integral and where F'(1y,...,7;) is the joint cumulative dis-
tribution function of 7. Even in the simple case where x; = (Y, ..., Yt—p+1)’
one has to integrate out the error term ¢, from the expected value E(y;i2|x:).
It is possible, however, to ignore the error term and just use

yts+2|t = g(X¢41150)

which Tong (1990) calls the ’skeleton’ forecast. This method, while easy to
apply, yields, however, a biased forecast for ;.. It may lead to substantial
losses of efficiency; see Lin and Granger (1994) for simulation evidence of
this.

On the other hand, numerical integration of (31) is tedious. Granger and
Terésvirta (1993) call this method of obtaining the forecast the exact method,
as opposed to two numerical techniques that can be used to approximate
the integral in (31). One of them is based on simulation, the other one
on bootstrapping the residuals {7;} of the estimated equation (30) or the
residuals {£;} of the estimated model (29) in the univariate case. In the latter
case the parameter estimates thus do have a role to play, but the additional
uncertainty of the forecasts arising from the estimation of the model is not
accounted for.

The simulation approach requires that a distributional assumption is
made about the errors 7;. One draws a sample of N independent error
vectors {77t P1r s Ty +)} from this distribution and computes the Monte Carlo

forecast
N

MG = (/NS g(xesn + 113 0). (32)

=1

The bootstrap forecast is similar to (32) and has the form

Np
yhap = (1/Ng) > g + 711013 6) (33)
=1

where the errors {ﬁti)l, . ﬁff )} have been obtained by drawing them from
the set of estimated residuals of model (30) with replacement. The difference
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between (32) and (33) is that the former is based on an assumption about
the distribution of 7,1, whereas the latter does not make use of a distribu-
tional assumption. It requires, however, that the error vectors are assumed
independent.

This generalizes to longer forecast horizons: For example,

Yersit = E(Yrsslx) = BE{g(Xiy2;0)[x: }
= E{g(Axys1 + mei2; 0)|x} = Eg(Ax, + Any g+ g2 0)

/ /<2> /(1) /(1) X + Anyyq + ig2; 6)

XdF(nl )" 777k 7771 9 777](3))

which is a 2k-fold integral. Calculation of this expectation by numerical
integration may be a huge task, but simulation and bootstrap approaches
are applicable. In the general case where one forecasts h steps ahead and
wants to obtain the forecasts by simulation, one generates the random vari-
ables ngl, ...,nt(_?h, 1 = 1,..., N, and sequentially computes N forecasts for
Yit1)ts -+ Yehlt, B > 2. These are combined to a single point forecast for each
of the time-points by simple averaging as in (32). Bootstrap-based forecasts
can be computed in an analogous fashion.

If the model is univariate, the principles do not change. Consider, for
simplicity, the following stable first-order autoregressive model

Y = 9(ye—1;0) + & (34)

where {g;} is a sequence of independent, identically distributed errors such
that Ee; = 0 and Ec? = o2, In that case,

Yeqolt = Elg(yi11;0) + erqalye] = Eg(g(ye; 0) + €141 0)

_ / 9(g(ye: 0) + £); 0)dF () (35)

3

The only important difference between (31) and (35) is that in the latter
case, the error term that has to be integrated out is the error term of the
autoregressive model (34). In the former case, the corresponding error term
is the error term of the vector process (30), and the error term of (29) need
not be simulated. For an example of a univariate case, see Lundbergh and
Teridsvirta (2002).

It should be mentioned that there is an old strand of literature on forecast-
ing from nonlinear static simultaneous-equation models in which the tech-
niques just presented are discussed and applied. The structural equations of
the model have the form

f(y:,x,,0)= ¢ (36)
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where f is an n x 1 vector of functions of the n endogenous variables y;, x; is
a vector of exogenous variables, {¢;} a sequence of independent error vectors,
and 6 the vector of parameters. It is assumed that (36) implicitly defines a
unique inverse relationship

i = g(er, %, 0).

There may not exist a closed form for g or the conditional mean and co-
variance matrix of y,. Given x; = x°, the task is to forecast y,. Different as-
sumptions on &; lead to skeleton or ”deterministic” forecasts, exact or ”closed
form” forecasts, or Monte Carlo forecasts; see Brown and Mariano (1984).
The order of bias in these forecasts has been a topic of discussion, and Brown
and Mariano showed that the order of bias in skeleton forecasts is O(1).

4.3 Forecasting using recursion formulas

It is also possible to compute forecasts numerically applying the Chapman-
Kolmogorov equation that can be used for obtaining forecasts recursively by
numerical integration. Consider the following stationary first-order nonlinear
autoregressive model

Y = k(ye-1;0) + &

where {g;} is a sequence of iid(0,02) variables and that the conditional
densities of the vy, are well-defined. Then a special case of the Chapman-
Kolmogorov equation has the form, see for example Tong (1990, p. 346) or
Franses and van Dijk (2000, p. 119-120)

£ esnle) = / " Pl f Gy g, (37)

From (37) it follows that

Yi+ht = E{yt+h|yt} = / E{yt+h|yt+1}f(yt+1|yt)dyt+1 (38)

which shows how E{y;.4|y;} may be obtained recursively. Consider the case
h = 2. It should be noted that in (38), f(ys1lyr) = 9(yer1 — k(yi;0)) =
g(€¢41). In order to calculate f(y;1n|y:), one has to make an appropriate as-
sumption about the error distribution g(e;11). Since E{y12|yei1} = k(yis1;0),
the forecast

Yiyo|t = E{yt+2’yt} = / k(ytJrl; 9)9(?Jt+1 - k(yt; 9))dyt+1 (39)
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is obtained from (39) by numerical integration. For h > 2, one has to make
use of both (38) and (39) . First, write

E{yesslye} = / k(ye+2; 0) f (Yre2lye) dyeso (40)
then obtain f(y;io|y;) from (37) where h = 2 and

S Weralyir1) = 9Wev2 — k(yes1;0)).

Finally, the forecast is obtained from (40) by numerical integration.

It is seen that this method is computationally demanding for large values
of h. Simplifications to alleviate the computational burden exist, see De
Gooijer and De Bruin (1998). The latter authors consider forecasting with
SETAR models with the normal forecasting error (NFE) method. As an
example, take the first-order SETAR model

Y = (o1 + an1yr—1+e1e) (-1 < ¢) + (o2 + Qraye—1+e2t) L (ye—1 > ¢)  (41)

where {e;;} ~ nid(0,0?), j = 1,2. For the SETAR model (41), the one-step-
ahead minimum mean-square error forecast has the form

Yer1e = E{yerlye < e} (ye < ¢) + E{yepalys > e} (ye > )

where E{y;1|y < ¢} = aor + anyr and E{yi1|ye > ¢} = aoa + a12y:. The
corresponding forecast variance

Ut2+1|t =0 1(y, <)+ o3l(y > ).

From (41) it follows that the distribution of y,,; given y; is normal with mean
Yr+11¢ and variance o7 e Accordingly for A > 2, the conditional distribution
of y;1n given 4,41 is normal with mean ag; + a11y,41—1 and variance a% for
Yerh—1 < ¢, and mean oz + a2y 1p—1 and variance ag for y; n_1 > c. Let
Zevh-1lt = (€ = Yeyn-1t)/Tt4n—11p Where af+h_1|t is the variance predicted for
time ¢ 4+ h — 1. De Gooijer and De Bruin (1998) show that the h-steps ahead
forecast can be approximated by the following recursive formula

Yernit = (01 + 011Yipn—1)0) @ (zen—11¢) + (o2 + Q12¥ern—1)¢) P(—Ze4h-1)t)

— (11 — a21)0t 110204 n-111) (42)

where ®(z) is the cumulative distribution function of a standard normal
variable x and ¢(z) is the density function of x. The recursive formula for
forecasting the variance is not reproduced here. The first two terms weight
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the regimes together: the weights are equal for y;1,_1; = c. The third term
is a ”correction term” that depends on the persistence of the regimes and
the error variances. This technique can be generalized to higher-order SE-
TAR models. De Gooijer and De Bruin (1998) report that the NFE method
performs well when compared to the exact method described above, at least
in the case where the error variances are relatively small. They recommend
the method as being very quick and easy to apply.

It may be expected, however, that the use of the methods described in
this subsection will lose in popularity when increased computational power
makes the simulation-based approach both quick and cheap to use.

4.4 Accounting for estimation uncertainty

In Sections 4.1 and 4.2 it is assumed that the parameters are known. In
practice, the unknown parameters are replaced by their estimates and re-
cursive forecasts are obtained using these estimates. There are two ways of
accounting for parameter uncertainty. It may be assumed that the (quasi)
maximum likelihood estimator 8 of the parameter vector # has an asymptotic
normal distribution, that is,

VT(@ - 6) 2 N0, :).

One then draws a new estimate from the N(a, T‘li) distribution and repeats
the forecasting exercise with them. For recursive forecasting in Section 4.2
this means repeating the calculations in (32) M times. Confidence intervals
for forecasts can then be calculated from the M N individual forecasts. An-
other possibility is to re-estimate the parameters using data generated from
the original estimated model by bootstrapping the residuals, call the esti-
mated model Mp. The residuals of Mp are then used to recalculate (33),
and this procedure is repeated M times. This is a computationally intensive
procedure and, besides, because the estimated models have to be evaluated
(for example, explosive ones have to be discarded, so they do not distort the
results), the total effort is substantial. When the forecasts are obtained an-
alytically as in Section 4.1, the computational burden is less heavy because
the replications to generate (32) or (33) are avoided.

4.5 Interval and density forecasts

Interval and density forecasts are obtained as a by-product of computing
forecasts numerically. The replications form an empirical distribution that
can be appropriately smoothed to give a smooth forecast density. For surveys,
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see Corradi and Swanson (2006) and Tay and Wallis (2002). As already
mentioned, forecast densities obtained from nonlinear economic models may
be asymmetric, which policy makers may find interesting. For example, if
a density forecast of inflation is asymmetric suggesting that the error of the
point forecast is more likely to be positive than negative, this may cause
a policy response different from the opposite situation where the error is
more likely to be negative than positive. The density may even be bi- or
multimodal, although this may not be very likely in macroeconomic time
series. For an example, see Lundbergh and Teridsvirta (2002), where the
density forecast for the Australian unemployment rate four quarters ahead
from an estimated STAR model, reported in Skalin and Terésvirta (2002),
shows some bimodality.

Density forecasts may be conveniently presented using fan charts; see
Wallis (1999) and Lundbergh and Tersisvirta (2002) for examples. There are
two ways of constructing fan charts. One, applied in Wallis (1999), is to base
them on interquantile ranges. The other is to use highest density regions, see
Hyndman (1996). The choice between these two depends on the forecaster’s
loss function. Note, however, that bi- or multimodal density forecasts are
only visible in fan charts based on highest density regions.

Typically, the interval and density forecasts do not account for the es-
timation uncertainty, but see Corradi and Swanson (2006). Extending the
considerations to do that when forecasting with nonlinear models would often
be computationally very demanding. The reason is that estimating parame-
ters of nonlinear models requires care (starting-values, convergence, etc.), and
therefore simulations or bootstrapping involved could in many cases demand
a large amount of both computational and human resources.

4.6 Combining forecasts

Forecast combination is a relevant topic in linear as well as in nonlinear
forecasting. Combining nonlinear forecasts with forecasts from a linear model
may sometimes lead to series of forecasts that are more robust (contain fewer
extreme predictions) than forecasts from the nonlinear model. Following
Granger and Bates (1969), the composite point forecast from models M; and
M, is given by

~12) _ ) ~2)
Yoy = (1= A)Gynpe + MU e (43)

where A, 0 < A\; < 1, is the weight of the h-periods-ahead forecast @ffh| , of
Yean- Suppose that the multi-period forecasts from these models are obtained
numerically following the technique presented in Section 4.2. The same ran-

dom numbers can be used to generate both forecasts, and combining the
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forecasts simply amounts to combining each realization from the two mod-
els. This means that each one of the N pairs of simulated forecasts from
the two models is weighted into a single forecast using weights \; (model
M) and 1 — A; (model M;). The empirical distribution of the N weighted
forecasts is the combined density forecast from which one easily obtains the
corresponding point forecast by averaging as discussed in Section 4.2.

Note that the weighting schemes themselves may be nonlinear functions
of the past performance. This form of nonlinearity in forecasting is not
discussed here, but see Deutsch, Granger and Terésvirta (1994) for an appli-
cation. The K-mean clustering approach to combining forecasts in Aiolfi and
Timmermann (in press) is another example of a nonlinear weighting scheme.
A detailed discussion of forecast combination and weighting schemes pro-
posed in the literature can be found in Timmermann (2006).

4.7 Different models for different forecast horizons?

Multistep forecasting was discussed in Section 4.2 where it was argued that
for most nonlinear models, multi-period forecasts have to be obtained numer-
ically. While this is not nowadays computationally demanding, there may be
other reasons for opting for analytically generated forecasts. They become
obvious if one gives up the idea that the model assumed to generate the ob-
servations is the data-generating process. As already mentioned, if the model
is misspecified, the forecasts from such a model are not likely to have any
optimality properties, and another misspecified model may do a better job.
The situation is illuminated by an example from Bhansali (2002). Suppose
that at time T" we want to forecast yr,o from

Yr = QY1 + & (44)

where Ee; = 0 and Ece,_; = 0,j # 0. Furthermore, yr is assumed known.
Then yri1r = ayr and yrior = a’yr, where o®yr is the minimum mean
square error forecast of yr,o, under the condition that (44) be the data-
generating process. If this condition is not valid, the situation changes. It is
also possible to forecast yr o directly from the model estimated by regress-
ing vy, on y;_o, the (theoretical) outcome being . toir = P2YT where py =
corr(ys, yi—2). When model (44) is misspecified, y7., 5 obtained by the direct
method may be preferred to yr o7 in a linear least squares sense. The mean
square errors of these two forecasts are equal if and only if a? = p,, that is,
when the data-generating process is a linear AR(1)-process.

When this idea is applied to nonlinear models, the direct method has
the advantage that no numerical generation of forecasts is necessary. The
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forecasts can be produced exactly as in the one-step-ahead case. A disad-
vantage is that a separate model has to be specified and estimated for each
forecast horizon. Besides, these models are also misspecifications of the data-
generating process. In their extensive studies of forecasting macroeconomic
series with linear and nonlinear models, Stock and Watson (1999) and Mar-
cellino (2002) have used this method. The interval and density forecasts
obtained this way may sometimes differ from the ones generated recursively
as discussed in Section 4.2. In forecasting more than one period ahead, the
recursive techniques allow asymmetric forecast densities. On the other hand,
if the error distribution of the ’direct forecast’ model is assumed symmet-
ric around zero, density forecasts from such a model will also be symmetric
densities.

Which one of the two approaches produces more accurate point forecasts
is an empirical matter. Lin and Granger (1994) study this question by simu-
lation. Two nonlinear models, the first-order STAR and the sign model, are
used to generate the data. The forecasts are generated in three ways. First,
they are obtained from the estimated model assuming that the specification
was known. Second, a neural network model is fitted to the generated series
and the forecasts produced with it. Third, the forecasts are generated from a
nonparametric model fitted to the series. The focus is on forecasting two pe-
riods ahead. On the one hand, the forecast accuracy measured by the mean
square forecast error deteriorates compared to the iterative methods (32) and
(33) when the forecasts two periods ahead are obtained from a ’direct’ STAR
or sign model, i.e., from a model in which the first lag is replaced by a sec-
ond lag. On the other hand, the direct method works much better when the
model used to produce the forecasts is a neural network or a nonparametric
model.

A recent large-scale empirical study by Marcellino, Stock and Watson
(2004) addresses the question of choosing an appropriate approach in a linear
framework, using 171 monthly US macroeconomic time series and forecast
horizons up to 24 months. The conclusion is that obtaining the multi-step
forecasts from a single model is preferable to the use of direct models. This is
true in particular for longer forecast horizons. A comparable study involving
nonlinear time series models does not as yet seem to be available.
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5 Forecast accuracy

5.1 Comparing point forecasts

A frequently-asked question in forecasting with nonlinear models has been
whether they perform better than linear models. While many economic phe-
nomena and models are nonlinear, they may be satisfactorily approximated
by a linear model, and this makes the question relevant. A number of crite-
ria, such as the root mean square forecast error (RMSFE) or mean absolute
error (MAE), have been applied for the purpose. It is also possible to test
the null hypothesis that the forecasting performance of two models, measured
in RMSFE or MAE or some other forecast error based criterion, is equally
good against a one-sided alternative. This can be done for example by ap-
plying the Diebold-Mariano (DM) test; see Diebold and Mariano (1995) and
Harvey, Leybourne and Newbold (1997). The test is not available, however,
when one of the models nests the other. The reason is that when the data
are generated from the smaller model, the forecasts are identical when the
parameters are known. In this case the asymptotic distribution theory for
the DM statistic no longer holds.

This problem is present in comparing linear and many nonlinear models,
such as the STAR, SETAR or MS (SCAR) model, albeit in a different form.
These models nest a linear model, but the nesting model is not identified
when the smaller model has generated the observations. Thus, if the para-
meter uncertainty is accounted for, the asymptotic distribution of the DM
statistic may depend on unknown nuisance parameters, and the standard
distribution theory does not apply.

Solutions to the problem of nested models are discussed in detail in West
(2006), and here the attention is merely drawn to two approaches. Recently,
Corradi and Swanson (2002, 2004) have considered what they call a generic
test of predictive accuracy. The forecasting performance of two models, a
linear model (Mg) nested in a nonlinear model and the nonlinear model (M),
is under test. Following Corradi and Swanson (2004), define the models as
follows:

Mo : Yy = ¢o + O1Yi—1 + €0t

where (¢o, ¢1)" = arg ming, ¢,)caEg(1r — do — ¢1y¢—1). The alternative has
the form

Mi: = do() + d1(Mye1 + d2(7)G (Wi ) + ene (45)
where, setting ¢(v) = (¢o(7), 01(7), ¢2(7))’,

P(v) = argmin¢(7)€‘1>(’y) Eg(y: — do(7) — 01(V)ye—1 — ¢2(7)G (W5 7))
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Furthermore, v € I" is a d x 1 vector of nuisance parameters and I' a compact
subset of R?. The loss function is the same as the one used in the forecast
comparison: for example the mean square error. The logistic function (4)
may serve as an example of the nonlinear function G(wy; ) in (45) .

The null hypothesis equals Hy : Eg(eo4+1) = Eg(e1.441), and the alterna-
tive is Hy : Eg(c0+41) > Eg(€14+1). The null hypothesis corresponds to equal
forecasting accuracy, which is achieved if ¢o(y) = 0 for all y € T". This allows
restating the hypotheses as follows:

Hy:¢o(y)=0forallyel (46)
Hy : ¢o(y) # 0 for at least one vy € T'.

Under this null hypothesis,
Eg'(c0,441)G(wi;y) =0 forally € T (47)

where 5 8 5
! € ) !
g (50,t) =% = J (17yt—1aG(Wt—1§7)) .

- 850,75 ¢ - _850,15
For example,if g(¢) = €2, then 0g/0s = 2e. The values of G(wy;) are ob-
tained using a sufficiently fine grid. Now, equation (47) suggests a conditional
moment test of type Bierens (1990) for testing (46). Let

T
o1 = (¢o, 1) = arg glelg T ;9(% — o — P1Ys—1)

and define €y s 10 = Yrs1 — gggyt where y, = (1), for t =T, T+1,....,T — 1.
The test statistic is

Mp = / mp(y)*w(y)dy (48)
r
where
T+P-1
mp(y) =T"? Z G (Eot+11t) G (2, 7)
=T

and the absolutely continuous weight function w(vy) > 0 with [, w(y)dy = 1.
The (nonstandard) asymptotic distribution theory for Mp is discussed in
Corradi and Swanson (2002).

Statistic (48) does not answer the same question as the DM statistic. The
latter can be used for investigating whether a given nonlinear model yields
more accurate forecasts than a linear model not nested in it. The former
answers a different question: ”Does a given family of nonlinear models have
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a property such that one-step-ahead forecasts from models belonging to this
family are more accurate than the corresponding forecasts from a linear model
nested in it?”

Some forecasters who apply nonlinear models that nest a linear model
begin by testing linearity against their nonlinear model. This practice is often
encouraged; see, for example, Teréisvirta (1998). If one rejects the linearity
hypothesis, then one should also reject (46) , and an out-of-sample test would
thus appear redundant. In practice it is possible, however, that (46) is not
rejected although linearity is. This may be the case if the nonlinear model
is misspecified, or there is a structural break or smooth parameter change in
the prediction period, or this period is so short that the test is not sufficiently
powerful. The role of out-of-sample tests in forecast evaluation compared to
in-sample tests has been discussed in Inoue and Kilian (2004).

If one wants to consider the original question which the Diebold-Mariano
test was designed to answer, a new test, recently developed by Giacomini
and White (2003), is available. This is a test of conditional forecasting abil-
ity as opposed to most other tests including the Diebold-Mariano statistic
that are tests of unconditional forecasting ability. The test is constructed
under the assumption that the forecasts are obtained using a moving data
window: the number of observations in the sample used for estimation does
not increase over time. It is operational under rather mild conditions that
allow heteroskedasticity. Suppose that there are two models M; and M, such
that

M; yt:f(j)(wt;ﬁj)+5jt,j:1,2

where {¢;;} is a martingale difference sequence with respect to the informa-
tion set F;_1. The null hypothesis is

EHGetr Yorrs frond) = Gorr (Yprs Fod)}Fen] = 0 (49)

where g7 (Yiir, ﬂ,ﬁﬁ ) is the loss function, f(”ft) is the T-periods-ahead forecast
for v, from model j estimated from the observations t —m—+1, ..., t. Assume
now that there exist T" observations, t = 1, ..., T, and that forecasting is begun
at t = tg > m. Then there will be Ty, = T — 7 — ty forecasts available for
testing the null hypothesis.

Carrying out the test requires a test function h; which is a p x 1 vector.
Under the null hypothesis, owing to the martingale difference property of the
loss function difference,

Eh;Agi . =0

for all F-measurable p x 1 vectors h;. Bierens (1990) used a similar idea
(Agi+, replaced by a function of the error term ¢;) to construct a general
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model misspecification test. The choice of test function h, is left to the user,
and the power of the test depends on it. Assume now that 7 = 1. The GW
test statistic has the form

To To
Stom = To(Ty Z h Age ) Qo (Ty Z hiAger) (50)
t=to t=to
where QTO =Tt ZtTitO (Agii-)?hsh) is a consistent estimator of the covari-
ance matrix E(Agy,)?hh]. When 7 > 1, Oy, has to be modified to ac-
count for correlation in the forecast errors; see Giacomini and White (2003).
Under the null hypothesis (49), the GW statistic (50) has an asymptotic
x2-distribution with p degrees of freedom.

The GW test has not yet been applied to comparing the forecast ability of
a linear model and a nonlinear model nested in it. Two things are important
in applications. First, the estimation is based on a rolling window, but the
size of the window may vary over time. Second, the outcome of the test
depends on the choice of the test function h;. Elements of h; not correlated
with Ag;,, have a negative effect on the power of the test.

An important advantage with the GW test is that it can be applied to
comparing methods for forecasting and not only models. The asymptotic
distribution theory covers the situation where the specification of the model
or models changes over time, which has sometimes been the case in practice.
Swanson and White (1995,1997a,b) allow the specification to switch between
a linear and a neural network model. In Terdsvirta et al. (2005), switches
between linear on the one hand and nonlinear specifications such as the AR-
NN and STAR model on the other are an essential part of their forecasting
exercise.

6 Lessons from a simulation study

Building nonlinear time series models is generally more difficult than con-
structing linear models. A main reason for building nonlinear models for
forecasting must therefore be that they are expected to forecast better than
linear models. It is not certain, however, that this is so. Many studies, some
of which will be discussed later, indicate that in forecasting macroeconomic
series, nonlinear models may not forecast better than linear ones. In this
section we point out that sometimes this may be the case even when the
nonlinear model is the data-generating process.

As an example, we briefly review a simulation study in Lundbergh and
Terssvirta (2002). The authors generate 10° observations from the following
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Figure 1 A realization of 2000 observations from model (51)
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LSTAR model
Y, = —0.19 4+ 0.38(1 + exp{—10y,_1 }) ™" + 0.9y;_; + 0.4e, (51)

where {g;} ~ nid(0,1). Model (51) may also be viewed as a special case of
the neural network model (11) with a linear unit and a single hidden unit.
The model has the property that the realization of 10° observations tends
to fluctuate long periods around a local mean, either around —1.9 or 1.9.
Occasionally, but not often, it switches from one ’regime’ to the other, and
the switches are relatively rapid. This is seen from Figure 1 that contains a
realization of 2000 observations from (51).

The authors fit the model with the same parameters as in (51) to a
large number of subseries of 1000 observations, estimate the parameters,
and forecast recursively up to 20 periods ahead. The results are compared
to forecasts obtained from first-order linear autoregressive models fitted to
the same subseries. The measure of accuracy is the relative efficiency (RE)
measure of Mincer and Zarnowitz (1969), that is, the ratio of the RMSFEs
of the two forecasts. It turns out that the forecasts from the LSTAR model
are more efficient than the ones from the linear model: the RE measure
moves from about 0.96 (one period ahead forecasts) to about 0.85 (20 periods
ahead). The forecasts are also obtained assuming that the parameters are
known: in that case the RE measure lies below 0.8 (20 periods ahead), so
having to estimate the parameters affects the forecast accuracy as may be
expected.

This is in fact not surprising, because the data-generating process is an
LSTAR model. The authors were also interested in knowing how well this
model forecasts when there is a large change in the value of the realization.
This is defined as a change of at least equal to 0.2 in the absolute value of
the transition function of (51). It is a rare occasion and occurs only in about

35



0.6% of the observations. The question was posed, because Montgomery,
Zarnowitz, Tsay and Tiao (1998) had shown that the nonlinear models of the
US unemployment rate they considered performed better than the linear AR
model when the unemployment increased rapidly but not elsewhere. Thus
it was deemed interesting to study the occurrence of this phenomenon by
simulation.

The results showed that the LSTAR model was better than the AR(1)
model. The authors, however, also applied another benchmark, the first-
order AR model for the differenced series, the ARI(1,1) model. This model
was chosen as a benchmark because in the subseries of 1000 observations
ending when a large change was observed, the unit root hypothesis, when
tested using the augmented Dickey-Fuller test, was rarely rejected. A look
at Figure 1 helps one understand why this is the case. Against the ARI(1,1)
benchmark, the RE of the estimated LSTAR model was 0.95 at best, when
forecasting three periods ahead, but RE exceeded unity for forecast horizons
longer than 13 periods. There are at least two reasons for this outcome.
First, since a large change in the series is a rare event, there is not very much
evidence in the subseries of 1000 observations about the nonlinearity. Here,
the difference between RE of the estimated model and the corresponding
measure for the known model was greater than in the previous case, and RE
of the latter model remained below unity for all forecast horizons. Second, as
argued in Clements and Hendry (1999), differencing helps construct models
that adapt more quickly to large shifts in the series than models built on
undifferenced data. This adaptability is demonstrated in the experiment of
Lundbergh and Terésvirta (2002). A very basic example emphasizing the
same thing can be found in Hendry and Clements (2003).

These results also show that a model builder who begins his task by test-
ing the unit root hypothesis may often end up with a model that is quite
different from the one obtained by someone beginning by first testing linear-
ity. In the present case, the latter course is perfectly defendable, because
the data-generating process is stationary. The prevailing paradigm, testing
the unit root hypothesis first, may thus not always be appropriate when the
possibility of a nonlinear data-generating process cannot be excluded. For a
discussion of the relationship between unit roots and nonlinearity; see Elliott
(in press).
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7 Empirical forecast comparisons

7.1 Relevant issues

The purpose of many empirical economic forecast comparisons involving non-
linear models is to find out whether, for a given time series or a set of series,
nonlinear models yield more accurate forecasts than linear models. In many
cases, the answer appears to be negative, even when the nonlinear model
in question fits the data better than the corresponding linear model. Rea-
sons for this outcome have been discussed in the literature. One argument
put forward is that nonlinear models may sometimes explain features in the
data that do not occur very frequently. If these features are not present in
the series during the period to be forecast, then there is no gain from us-
ing nonlinear models for generating the forecasts. This may be the case at
least when the number of out-of-sample forecasts is relatively small; see for
example Terésvirta and Anderson (1992) for discussion.

Essentially the same argument is that the nonlinear model can only be ex-
pected to forecast better than a linear one in particular regimes. For example,
a nonlinear model may be useful in forecasting the volume of industrial pro-
duction in recessions but not expansions. Montgomery et al. (1998) forecast
the quarterly US unemployment rate using a two-regime threshold autore-
gressive model (7) and a two-regime Markov switching autoregressive model
(8) . Both models, the SETAR model in particular, yield more accurate fore-
casts than the linear model when the forecasting origin lies in the recession.
If it lies in the expansion, both models, now the MS-model in particular, per-
form clearly less well than the linear AR model. Considering Wolf’s sunspot
numbers, another nonlinear series, Tong and Moeanaddin (1988) showed that
the values at the troughs of the sunspot cycle were forecast more accurately
from a SETAR than from a linear model, whereas the reverse was true for the
values around the peaks. An explanation to this finding may be that there is
more variation over time in the height of the peaks than in the bottom value
of the troughs.

Another potential reason for inferior performance of nonlinear models
compared to linear ones is overfitting. A small example highlighting this
possibility can be found in Granger and Terésvirta (1991). The authors
generated data from an STR model and fitted both a projection pursuit re-
gression model (see Friedman and Stuetzle, 1981) and a linear model to the
simulated series. When nonlinearity was strong (the error variance small),
the projection pursuit approach led to more accurate forecasts than the lin-
ear model. When the evidence of nonlinearity was weak (the error variance
large), the projection pursuit model overfitted, and the forecasts of the linear
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model were more accurate than the ones produced by the projection pursuit
model. Careful modelling, including testing linearity before fitting a nonlin-
ear model as discussed in Section 3, reduces the likelihood of overfitting.

From the discussion in Section 6 it is also clear that in some cases, when
the time series are short, having to estimate the parameters as opposed to
knowing them will erase the edge that a correctly specified nonlinear model
has compared to a linear approximation. Another possibility is that even
if linearity is rejected when tested, the nonlinear model fitted to the time
series is misspecified to the extent that its forecasting performance does not
match the performance of a linear model containing the same variables. This
situation is even more likely to occur if a nonlinear model nesting a linear
one is fitted to the data without first testing linearity.

Finally, Dacco and Satchell (1999) showed that in regime-switching mod-
els, the possibility of misclassifying an observation when forecasting may lead
to the forecasts on the average being inferior to the one from a linear model,
although a regime-switching model known to the forecaster generates the
data. The criterion for forecast accuracy is the mean squared forecast error.
The authors give analytic conditions for this to be the case and do it using
simple Markov-switching and SETAR models as examples.

7.2 Comparing linear and nonlinear models

Comparisons of the forecasting performance of linear and nonlinear models
have often included only a limited number of models and time series. To take
an example, Montgomery et al. (1998) considered forecasts of the quarterly
US civilian employment series from a univariate Markov-switching model of
type (8) and a SETAR model. They separated expansions and contractions
from each other and concluded that SETAR and Markov-switching models
are useful in forecasting recessions, whereas they do not perform better than
linear models during expansions. Clements and Krolzig (1998) study the
forecasts from the Markov-switching autoregressive model of type (10) and
a threshold autoregressive model when the series to be forecast is the quar-
terly US gross national product. The main conclusion of their study was
that nonlinear models do not forecast better than linear ones when the cri-
terion is the RMSFE. Similar conclusions were reached by Siliverstovs and
van Dijk (2003), Boero and Marrocu (2002) and Sarantis (1999) for a variety
of nonlinear models and economic time series. Bradley and Jansen (2004)
obtained this outcome for a US excess stock return series, whereas there was
evidence that nonlinear models, including a STAR model, yield more accu-
rate forecasts for industrial production than the linear autoregressive model.
Kilian and Taylor (2003) concluded that in forecasting nominal exchange
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rates, ESTAR models are superior to the random walk model, but only at
long horizons, 2-3 years.

The RMSFE is a rather "academic” criterion for comparing forecasts.
Granger and Pesaran (2000) emphasize the use of economic criteria that are
based on the loss function of the forecaster. The loss function, in turn, is
related to the decision problem at hand; for more discussion, see Granger
and Machina (2006) . In such comparisons, forecasts from nonlinear models
may fare better than in RMSFE comparisons. Satchell and Timmermann
(1995) focussed on two loss functions: the MSFE and a payoff criterion
based on the economic value of the forecast (forecasting the direction of
change). When the MSFE increases, the probability of correctly forecasting
the direction decreases if the forecast and the forecast error are independent.
The authors showed that this need not be true when the forecast and the
error are dependent of each other. They argued that this may often be the
case for forecasts from nonlinear models.

Most forecast comparisons concern univariate or single-equation models.
A recent exception is De Gooijer and Vidiella-i-Anguera (2004). The authors
compared the forecasting performance of two bivariate threshold autoregres-
sive models with cointegration with that of a linear bivariate vector error-
correction model using two pairs of US macroeconomic series. For forecast
comparisons, the RMSFE has to be generalized to the multivariate situation;
see De Gooijer and Vidiella-i-Anguera (2004). The results indicated that the
nonlinear models perform better than the linear one in an out-of-sample
forecast exercise.

Some authors, including De Gooijer and Vidiella-i-Anguera (2004), have
considered interval and density forecasts as well. The quality of such forecasts
has typically been evaluated internally. For example, the assumed coverage
probability of an interval forecast is compared to the observed coverage prob-
ability. This is a less than satisfactory approach when one wants to compare
interval or density forecasts from different models. Corradi and Swanson
(2006) survey tests developed for finding out which one of a set of misspec-
ified models provides the most accurate interval or density forecasts. Since
this is a very recent area of interest, there are hardly any applications yet of
these tests to nonlinear models.

7.3 Large forecast comparisons
7.3.1 Forecasting with a separate model for each forecast horizon

As discussed in Section 4, there are two ways of constructing multiperiod
forecasts. One may use a single model for each forecast horizon or construct
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a separate model for each forecast horizon. In the former alternative, gen-
erating the forecasts may be computationally demanding if the number of
variables to be forecast and the number of forecast horizons is large. In the
latter, specifying and estimating the models may require a large amount of
work, whereas forecasting is simple. In this section the focus is on a number
of large studies that involve nonlinear models and several forecast horizons
and in which separate models are constructed for each forecast horizon. Per-
haps the most extensive such study is the one by Stock and Watson (1999).
Other examples include Marcellino (2002) and Marcellino (2004). Stock and
Watson (1999) forecast 215 monthly US macroeconomic variables, whereas
Marcellino (2002) and Marcellino (2004) considered macroeconomic variables
of the countries of the European Union.

The study of Stock and Watson (1999) involved two types of nonlinear
models: a "tightly parameterized” model which was the LSTAR model of
Section 2.3 and a ”loosely parameterized” one, which was the autoregressive
neural network model. The authors experimented with two families of AR-
NN models: one with a single hidden layer, see (11), and a more general
family with two hidden layers. Various linear autoregressive models were
included as well as models of exponential smoothing. Several methods of
combining forecasts were included in comparisons. All told, the number of
models or methods to forecast each series was 63.

The models were either completely specified in advance or the number of
lags was specified using AIC or BIC. Two types of models were considered.
Either the variables were in levels:

Yt+h = fL(yta Yt—15 -+ ytprrl) + EtL

where h = 1,6 or 12, or they were in differences:

Yt+h — Yt = fD(Ayta Ayt—la ey A?Jt—p+1) + 55-

The experiment incuded several values of p. The series were forecast every
month starting after a startup period of 120 observations. The last observa-
tion in all series was 1996(12), and for most series the first observation was
1959(1). The models were re-estimated and, in the case of combined fore-
casts, the weights of the individual models recalculated every month. The
insanity filter that the authors called trimming of forecasts was applied. The
purpose of the filter was to make the process better mimic the behaviour of
a true forecaster.

The 215 time series covered most types of macroeconomic series from
production, consumption, money and credit series to stock returns. The
series that originally contained seasonality were seasonally adjusted.
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The forecasting methods were ranked according to several criteria. A gen-
eral conclusion was that the nonlinear models did not perform better than
the linear ones. In one comparison, the 63 different models and methods
were ranked on forecast performance using three different loss functions, the
absolute forecast errors raised to the power one, two, or three, and the three
forecast horizons. The best ANN forecast had rank around 10, whereas the
best STAR model typically had rank around 20. The combined forecasts
topped all rankings, and, interestingly, combined forecasts of nonlinear mod-
els only were always ranked one or two. The best linear models were better
than the STAR models and, at longer horizons than one month, better than
the ANN models. The no-change model was ranked among the bottom two
in all rankings showing that all models had at least some relevance as fore-
casting tools.

A remarkable result, already evident from the previous comments, was
that combining the forecasts from all nonlinear models generated forecasts
that were among the most accurate in rankings. They were among the top
five in 53% (models in levels) and 51% (models in differences) of all cases
when forecasting one month ahead. This was by far the highest fraction of
all methods compared. In forecasting six and twelve months ahead, these
percentages were lower but still between 30% and 34%. At these horizons,
the combinations involving all linear models had a comparable performance.
All single models were left far behind. Thus a general conclusion from the
study of Stock and Watson is that there is some exploitable nonlinearity in
the series under consideration, but that it is too diffuse to be captured by a
single nonlinear model.

Marcellino (2002) reported results on forecasting 480 variables represent-
ing the economies of the twelve countries of the European Monetary Union.
The monthly time series were shorter than the series in Stock and Watson
(1999), which was compensated for by a greater number of series. There were
58 models but, unlike Stock and Watson, Marcellino did not consider combin-
ing forecasts from them. In addition to linear models, neural network models
and logistic STAR models were included in the study. A novelty, compared
to Stock and Watson (1999), was that a set of time-varying autoregressive
models of type (15) was included in the comparisons.

The results were based on rankings of models’ performance measured
using loss functions based on absolute forecast errors now raised to five powers
from one to three in steps of 0.5. Neither neural network nor LSTAR models
appeared in the overall top-10. But then, both the fraction of neural network
models and LSTAR models that appeared in top-10 rankings for individual
series was greater than the same fraction for linear methods or time-varying
AR models. This, together with other results in the paper, suggests that
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nonlinear models in many cases work very well, but they can also relatively
often perform rather poorly.

Marcellino (2002) also singled out three ’key economic variables’ the
growth rate of industrial production, the unemployment rate and the infla-
tion measured by the consumer price index. Ranking models within these
three categories showed that industrial production was best forecast by linear
models. But then, in forecasting the unemployment rate, both the LSTAR
and neural network models, as well as the time-varying AR model, had top
rankings. For example, for the three-month horizon, two LSTAR models
occupied the one-two ranks for all five loss functions (other ranks were not
reported). This may not be completely surprising since many European un-
employment rate series are distinctly asymmetric; see for example Skalin and
Terdsvirta (2002) for discussion based on quarterly series. As to the inflation
rate, the results were a mixture of the ones for the other two key variables.

These studies suggest some answers to the question of whether nonlinear
models perform better than linear ones in forecasting macroeconomic series.
The results in Stock and Watson (1999) indicate that using a large number
of nonlinear models and combining forecasts from them is much better than
using single nonlinear models. It also seems that this way of exploiting non-
linearity may lead to better forecasting performance than what is achieved
by linear models. Marcellino (2002) did not consider this possibility. His re-
sults, based on individual models, suggest that nonlinear models are uneven
performers but that they can do well in some types of macroeconomic series
such as unemployment rates.

7.3.2 Forecasting with the same model for each forecast horizon

As discussed in Section 4, it is possible to obtain forecasts for several pe-
riods ahead recursively from a single model. This is the approach adopted
in Teréisvirta et al. (2005). The main question posed in that paper was
whether careful modelling improves forecast accuracy compared to models
with a fixed specification that remains unchanged over time. In the case of
nonlinear models this implied testing linearity first and choosing a nonlin-
ear model only if linearity is rejected. The lag structure of the nonlinear
model was also determined from the data. The authors considered seven
monthly macroeconomic variables of the G7 countries. They were industrial
production, unemployment, volume of exports, volume of imports, inflation,
narrow money, and short-term interest rate. Most series started in January
1960 and were available up to December 2000. The series were seasonally
adjusted with the exception of the CPI inflation and the short-term interest
rate. As in Stock and Watson (1999), the series were forecast every month.
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In order to keep the human effort and computational burdens at manageable
levels, the models were only respecified every 12 months.

The models considered were the linear autoregressive model, the LSTAR
model and the single hidden-layer feedforward neural network model. The re-
sults showed that there were series for which linearity was never rejected. Re-
jections, using LM-type tests, were somewhat more frequent against LSTAR
than against the neural network model. The interest rate series, the inflation
rate and the unemployment rate were most systematically nonlinear when
linearity was tested against STAR. In order to find out whether modelling
was a useful idea, the investigation also included a set of models with a
predetermined form and lag structure.

Results were reported for four forecast horizons: 1, 3, 6 and 12 months.
They indicated that careful modelling does improve the accuracy of forecasts
compared to selecting fixed nonlinear models. The loss function was the root
mean square error. The LSTAR model turned out to be the best model
overall, better than the linear or neural network model, which was not the
case in Stock and Watson (1999) or Marcellino (2002). The LSTAR model
did not, however, dominate the others. There were series/country pairs for
which other models performed clearly better than the STAR model. Nev-
ertheless, as in Marcellino (2002), the LSTAR model did well in forecasting
the unemployment rate.

The results on neural network models suggested the need for model eval-
uation: a closer scrutiny found some of the estimated models to be explosive,
which led to inferior multi-step forecasts. This fact emphasizes the need
for model evaluation before forecasting. For practical reasons, this phase of
model building has been neglected in large studies such as the ones discussed
in this section.

The results in Terésvirta et al. (2005) are not directly comparable to the
ones in Stock and Watson (1999) or Marcellino (2002) because the forecasts
in the former paper have been generated recursively from a single model for
all forecast horizons. The time series used in these three papers have not
been the same either. Nevertheless, put together the results strengthen the
view that nonlinear models are a useful tool in macroeconomic forecasting.

8 Final remarks

This chapter contains a presentation of a number of frequently applied non-
linear models and shows how forecasts can be generated from them. Since
such forecasts are typically obtained numerically when the same model is
used for forecasting several periods ahead, forecast generation automatically
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yields not only point but interval and density forecasts as well. The latter are
important because they contain more information than the pure point fore-
casts which, unfortunately, often are the only ones reported in publications.
It is also sometimes argued that the strength of the nonlinear forecasting lies
in density forecasts, whereas comparisons of point forecasts often show no
substantial difference in performance between individual linear and nonlinear
models. Results from large studies reported in Section 7.3 indicate that fore-
casts from linear models may be more robust than the ones from nonlinear
models. In some cases the nonlinear models clearly outperform the linear
ones, but in other occasions they may be strongly inferior to the latter.

It appears that nonlinear models may have a fair chance of generating
accurate forecasts if the number of observations for specifying the model
and estimating its parameters is large. This is due to the fact, discussed in
Lundbergh and Terisvirta (2002), that potential gains from forecasting with
nonlinear models can be strongly reduced because of parameter estimation. A
recent simulation-based paper by Psaradakis and Spagnolo (2005), where the
observations are generated by a bivariate nonlinear system, either a threshold
model or a Markov-switching one, with linear cointegration, strengthens this
impression. In some cases, even when the data-generating process is nonlinear
and the model is correctly specified, the linear model yields more accurate
forecasts than the correct nonlinear one with estimated parameters. Short
time series are thus a disadvantage, but the results also suggest that sufficient
attention should be paid to estimation techniques. This is certainly true for
neural network models that contain a large number of parameters. Recent
developments in this area include White (2006).

In the nonlinear framework, the question of iterative vs. direct forecasts
requires more research. Simulations reported in Lin and Granger (1994)
suggest that the direct method is not a useful alternative when the data-
generating process is a nonlinear model such as the STAR model, and a
direct STAR model is fitted to the data for forecasting more than one period
ahead. The direct method works better when the model used to produce the
forecasts is a neural network model. This may not be surprising because the
neural network model is a flexible functional form. Whether direct nonlinear
models generate more accurate forecasts than direct linear ones when the
data-generating process is nonlinear, is a topic for further research.

An encouraging feature is, however, that there is evidence of combination
of a large number of nonlinear models leading to point forecasts that are su-
perior to forecasts from linear models. Thus it may be concluded that while
the form of nonlinearity in macroeconomic time series may be difficult to
usefully capture with single models, there is hope for improving forecasting
accuracy by combining information from several nonlinear models. This sug-
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gests that parametric nonlinear models will remain important in forecasting
economic variables.
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