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Abstract. In the original model of pure price competition, Bertrand
(1883), firms have linear cost functions. For any number n ≥ 2 of identical
such price-setting firms, the unique equilibrium price equal the firms’ (constant)
marginal cost. This paper provides a generalization of Bertrand’s model from
linear to convex cost functions. I analyze pure price competition both in a static
setting - where the firms interact once and for all - and in dynamic setting -
where they interact repeatedly over an indefinite future. Sufficient conditions
are given for the existence of Nash equilibrium in the static setting and for
subgame perfect equilibrium in the dynamic setting, and the equilibrium sets
are characterized. It is shown that there typically exists a whole interval of
equilibrium prices both in the static and dynamic setting. Firms may earn
sizable profits and equilibrium profits may be increasing in their production
costs.
Keyword: Bertrand competition.
JEL-code: D43.

1. Introduction

In the original model due to Joseph Bertrand (1883), firms have linear cost func-
tions. For any number of identical such price-setting firms, the unique equilibrium
price equal the firms’ (constant and common) marginal cost. Hence, under pure
competition, already two competitors is enough to obtain the perfectly competitive
outcome, despite the fact that each firm has a lot of market power; the slightest uni-
lateral price cut will rob all competitors of their entire demand. Francis Edgeworth
(1925) pointed out that, except in the case of linear costs, there are serious existence

∗I thank Cedric Argenton, Patrick Rey, Jean-Pierre Ponssard, Marcus Salomonsson and Yannick
Viossat for helpful comments to earlier drafts.
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PRICE COMPETITION AND CONVEX COSTS 2

problems in Bertrand’s model of pure price competition if marginal costs are not con-
stant. Edgeworth proposed, in particular, a stark modification of Bertrand’s model
in which firms have zero marginal cost and a fixed capacity. He showed that, un-
less demand is highly elastic, pure-strategy equilibrium may then fail to exist. Eric
Maskin (1986) and Beth Allen and Martin Hellwig (1986) showed that mixed strategy
equilibria may nevertheless exist. However, mixed equilibria in price competition do
not appear convincing as models of many real-life market interactions. For although
price-setting is a common practice, most firms do not appear to use randomization
devices when setting their prices.1 Given the prevalence of price setting, models of
pure-strategy equilibrium in price competition are called for.
This paper provides a generalization of Bertrand’s model from linear to convex cost

functions. More exactly, I here analyze price competition in a homogeneous product
market among a fixed number of price-setting firms. Each firm is characterized by
its (continuous, non-decreasing and convex) cost function. Two distinct settings
are analyzed. The first is a one-shot interaction in which all firms simultaneously
set their prices and where each firm is committed to serve the demand it faces.
Such commitment is mandated in some regulated industries, such as electricity and
telephone, and is sometimes supported by consumer protection laws. Consumers
observe all prices and buy only from those sellers who ask the lowest price. In the
second setting studied here, this interaction is repeated an infinite number of times,
with demand regenerated anew each period.
The main results are as follows. First, sufficient conditions are given for the

existence of Nash equilibrium in the first setting and for subgame perfect equilibrium
in the second. Second, it is shown that, unlike in the classical case of linear cost
functions, the equilibrium outcome is not necessarily competitive. While marginal-
cost pricing indeed may be a Nash equilibrium, typically there exists a whole interval
of Nash equilibrium prices, both above and below the marginal-cost price. The
intuition is that with strictly convex costs, price undercutting is less profitable than
with linear costs–since serving the whole market is more than proportionately costly
than serving a fraction thereof. Hence, also prices above marginal cost are possible
in equilibrium. Thirdly, by way of comparative static analysis in two cases, it is
shown that firms’ equilibrium profits in the one-shot interaction may increase when
their production costs go up. This is true even if they price at marginal cost. The
intuition is again convexity: the marginal cost may rise more than average cost.

1For an analysis of so-called Edgeworth cycles as perfect Markov equilibria involving randomiza-
tion, see Maskin and Tiole (1988). Noel (2004) reports empirical support for such phenomena.
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Hence, producers’ and consumers may disagree as to the desirability of technological
progress. Fourthly, the set of subgame perfect equilibrium prices is characterized
and it is shown how the subgame perfection condition is nested in a simple way with
the condition for Nash equilibrium in the one-shot game. Thus, insights from the
static Nash equilibrium analysis can readily be carried over to the dynamic case.
This is not the first study of pure-strategy equilibrium among price-setting firms

with convex costs. Grossman (1981) and Hart (1985) developed so-called supply
function equilibria, that is competition between firms that simultaneously commit
to whole supply schedules, that is, functions that assign a price to each possible
quantity supplied. Such models have a plethora of equilibria and many of these
rely on non-credible threats. Klemperer and Meyer (1989) generalize this set-up to
stochastic demand. They model a one-shot interaction between two identical firms,
and provide sufficient conditions for the existence and uniqueness of Nash equilibria.
Dastidar (1995) analyzes one-shot interaction among price-setting firms, just as here,
and provides conditions for the existence of Nash equilibria. See also Vives (1999),
who briefly discuss one-shot interaction among identical price-setting firms. However,
I have found no reference to pure-strategy equilibria in repeated interaction between
price-setting firms with convex costs. This paper is intentionally short and restricted
to certain relatively simple questions within the given framework. The purpose is
to stimulate more research and debate about the nature of price competition, both
from a positive and normative perspective. More complicated questions and many
relevant extensions have to be left for future work.
The paper is organized as follows. Section 2 provides the model, section 3 gives an

analysis of the one-shot interaction and section 4 of the infinitely repeated interaction.
Welfare aspects are studied in section 5, section 6 elaborates a parametric specification
of the model, and section 7 suggests directions for future research.

2. The model

Suppose there are n firms in a market for a homogenous good. The market operates
over an infinite sequence of time periods, t = 0, 1, 2, .... Aggregate demand in each
period is given by a continuous and non-increasing demand function D : R+ → R+
with limp→+∞D (p) = 0.
All firms simultaneously set their prices at the beginning of each period and are

committed to provide the quantity demanded at that price during the period. Let
pit ≥ 0 be firm i0s price in period t. All consumers observe all posted prices and buy
from the firm(s) with the lowest price. The lowest price in any period will be called
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the market price in that period,

pt = min{p1t, ..., pnt}. (1)

If more than one firm posts the market price, then sales are split equally between
these. Firm i produces the good at cost Ci (qi), where qi is its output quantity, and
where Ci : R+ → R+ is continuous, non-decreasing and convex. All firms are risk
neutral and discount future profits by the same discount factor δ ∈ (0, 1) between
successive market periods. Resale is not possible. The good is non-storable.
For each firm i, let its profit function πi : R+ → R be defined by

πi (p) =
1

n
pD (p)− Ci

∙
1

n
D (p)

¸
. (2)

This is the profit that the firm will make in a period when all firms post the same
price p. The industry profit function is defined as the sum of all firms’ profits when
they all post the same price in a period:

Π (p) =
nX
i=1

πi (p) = pD (p)−
nX
i=1

Ci

∙
1

n
D (p)

¸
. (3)

For each firm i, let its monopolistic profit function π̂i : R+ → R be defined by

π̂i (p) = pD (p)− Ci [D (p)] .

This is the profit that the firm would make in a period were it to post the price p
while all other firms post higher prices. By Jensen’s inequality,

Ci

∙
1

n
D (p)

¸
≤ 1

n
Ci [D (p)] +

µ
1− 1

n

¶
Ci (0) .

Hence,
π̂i (p) ≤ nπi (p) + (n− 1)Ci (0)

for each firm i and any price p. In particular, π̂i (p) ≤ nπi (p) in the absence of fixed
costs, and π̂i (p) = nπi (p) in the classical case of constant average and marginal cost
(Ci linear).
Throughout this study, I make two assumptions with regard to the functions πi

and π̂i. The first assumption is that each function π̂i is quasi-concave and obtains
its maximum at a finite price:
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[C1] ∀i: π̂i is quasi-concave with P̂i = argmaxp≥0 π̂i (p) non-empty.

In other words, each firm’s profit function is unimodal and its monopoly price
finite. Let p̂ be the minimal such monopoly price across all firms: p̂ = min∪iP̂i.2

Heuristically, p̂ is the monopoly price of the “largest” firm. It follows from [C1] that
all functions π̂i are non-decreasing on [0, p̂], a property that turns out to be analyti-
cally convenient. The second assumption is that there exist prices, not exceeding p̂,
at which the industry profit is positive:

[C2] Π (p) > 0 for some p ∈ [0, p̂].

This set-up contains the classical Bertrand model as a special case and has the
Bertrand-Edgeworth model as a limiting case, with the important proviso that here
firms are, by assumption, committed to serve the demand they face. The classical
Bertrand model–constant marginal and average costs–here corresponds to all cost
functions being linear: Ci (q) ≡ ciq for some ci ≥ 0. In order to obtain Edgeworth’s
model–zero marginal cost up to a certain capacity and thereafter infinite cost–first
let the cost function of each producer i be

Ci (q) ≡ ki + c ·max {0, q −Ki} , (4)

for some fixed costs ki ≥ 0 and capacities Ki > 0. Edgeworth’s model is reached in
the limit as c→ +∞.

3. One-shot interaction

Suppose that the interaction takes place only once. Suppose also that each firm has
the option of leaving the market. Let the value of this outside option to each firm
be normalized to zero. A pure strategy for a firm is a pair (si, pi) ∈ {0, 1} × R+,
where si = 1 means that firm i stays in the market. The total number of firms that
participate in the market is thus m =

P
si. We here investigate Nash equilibria in

which all firms participate in the market and they all set the same price.
The set of such “symmetric” equilibria is characterized by two conditions. First,

each firm’s profit should not be below its’ outside option, and, secondly, unilateral
price under-cutting should be unprofitable:

πi (p) ≥ max {0, vi (p)} ∀i, (5)

2Each of the constituent sets is closed and bounded from below. Being finitely many, their union
is also closed and bounded from below and hence contains its infimum.
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where
vi (p) = sup

p0<p
π̂i (p

0) = max
p0∈[0,p]

π̂i (p
0) (6)

defines a continuous function vi : R+ → R.3 A price p satisfying condition (5) will
be called a (symmetric Nash) equilibrium price, and the (possibly empty) set of such
prices will be denoted PNE ⊂ R+.
Equilibrium prices above the minimal individualistic monopoly price are impos-

sible, so the focus of the equilibrium analysis is, without loss of generality, on prices
in the interval [0, p̂]. Formally:

Lemma 1. PNE ∩ (p̂,+∞) = ∅.

Proof : Let firm i be such that p̂i = p̂ and suppose that all firms price at some
price p > p̂. Then firm i produces and sells a quantity qi < D (p). By assumption,
D is continuous with limp→+∞D (p) = 0. Hence, there exists a price p∗ > p such
that D (p∗) = qi. It follows that

π̂i (p
∗) = p∗qi − Ci (qi) > pqi − Ci (qi) .

However, by definition, π̂i (p̂) ≥ π̂i (p
∗). Moreover, p̂ < p, so firm i can make a

profitable unilateral deviation to p̂ < p. Hence, p /∈ PNE. End of proof.

It follows from [C1] that a price p ∈ [0, p̂] is an equilibrium price if and only if it
delivers a profit to each firm that weakly exceeds the profit that the firm would have
earned had it served the whole market at that price:4

Proposition 1. p ∈ PNE if and only if πi (p) ≥ max {0, π̂i (p)} ∀i.

Re-arranging the terms in the inequality, we obtain the following equivalent con-
dition:

nCi

∙
1

n
D (p)

¸
≤ pD (p) ≤ n

n− 1

µ
Ci [D (p)]− Ci

∙
1

n
D (p)

¸¶
∀i. (7)

The following result establishes existence of equilibrium in the special case of
identical firms without fixed costs. Indeed, it goes beyond that claim and establishes
the existence of a zero-profit equilibrium in that case.

3The second equality in this equation follows by continuity of π̂i, and the claimed continuity of
the value function vi follows from Berge’s maximum theorem.

4By [C1], each function π̂i is non-decreasing on [0, p̂], so vi (p) = π̂i (p) for all p ≤ p̂.
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Proposition 2. If firms are identical with C (0) = 0, then ∃p0 ∈ PNE with π (p0) =

0.

Proof: According to [C2], Π (p) > 0 for some p ∈ [0, p̂]. Since Π (0) = −nC (0) ≤
0 and Π is continuous, there exists a p0 ∈ [0, p) such that Π (p0) = − (n− 1)C (0).
But then p0D (p0) = nC [D (p0) /n]−(n− 1)C (0) ≤ C [D (p0)] by Jensen’s inequality
applied to C. Hence, π̂ (p0) ≤ 0 and thus p0 ∈ PNE if C (0) = 0. End of proof.

In the classical Bertrand model, the condition for symmetric Nash equilibrium
boils down to p = ci for all i. Such equilibria thus exist if and only if firms are
identical, and the unique symmetric equilibrium price then equals the common con-
stant marginal cost. In order to relate to the Bertrand-Edgeworth model, consider
a duopoly with identical firms with cost functions as in equation (4). It is easily
verified from the above analysis that any price p such that K < D (p) ≤ 2K then is
a symmetric Nash equilibrium price, granted k is low enough and c high enough:

π ≥ π̂ ⇔ c ≥ pD (p)

2 (D (p)−K)
,

and π ≥ 0 if and only if pD (p) ≥ 2k. In the limit as c→ +∞, the inequality π ≥ π̂

is met. Hence, then any price p such that K < D (p) ≤ 2K and pD (p) ≥ 2k is a
symmetric Nash equilibrium price.

4. Infinitely repeated interaction

Suppose that the oligopoly faces the same demand function D in each period. We
here consider the possibility for prices p ∈ [0, p̂] above the one-shot Nash equilibrium
prices to be sustainable in subgame perfect equilibrium in the infinitely repeated
game by trigger strategies of the following sort: all firms initially ask the price p and
continue to do so as long as all firms quote this price. In the wake of any unilateral
price deviation, all firms switch to a price p∗ < p that is a symmetric Nash equilibrium
price in the stage game. Such a trigger-strategy profile constitutes a subgame perfect
equilibrium if and only if for all i:

πi(p) ≥ 0 and vi(p) +
δ

1− δ
πi (p

∗) ≤ πi(p)

1− δ
, (8)

where p∗ ∈ PNE, vi is defined in equation (6), and where πi (p∗) ≤ πi(p) for all i since
p∗ < p ≤ p̂. The quantity on the left-hand side is the present value of the profit to
a firm that undercuts the collusive price optimally. Let the set of prices p ∈ [p∗, p̂]
satisfying (8), for some p∗ ∈ PNE be denoted P SPE (δ). In force of assumption [C1],
vi(p) = π̂ (p) and hence
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Proposition 3. Suppose δ ∈ (0, 1), p∗ ∈ PNE and p ∈ [p∗, p̂]. Then p ∈ PSPE (δ) if
and only if

πi(p) ≥ max {0, (1− δ) π̂i(p) + δπi (p
∗)} ∀i. (9)

As is the case more generally, all Nash equilibrium prices in the one-shot game
are subgame perfect, for all δ (p∗ = p). It follows from assumption [C2] that if firms
are identical with no fixed costs, then p∗ can be taken to result in zero profits to all
firms and this is also the “harshest” trigger strategy possible, so

Proposition 4. Suppose firms are identical, C (0) = 0, δ ∈ (0, 1) and p ∈ [0, p̂].
Then p ∈ P SPE (δ) if and only if

π (p) ≥ (1− δ)max {0, π̂ (p)} . (10)

Proof: By proposition 2, there exists a price p0 ∈ PNE with π (p0) = 0. Setting
p∗ = p0 in (9) shows that (10) is sufficient for p ∈ P SPE (δ). Secondly, assume that
p ∈ P SPE (δ). Then (9) holds for some p∗ ∈ PNE such that πi (p∗) ≤ πi(p) for all i.
But then it also hold for p0 ∈ PNE since π (p0) = 0 ≤ πi (p) for all p ∈ PNE. End of
proof.

We note the similarity between the condition (??) for Nash equilibrium in the
one-shot game and the condition (10) in the infinitely repeated game, in the case of
identical firms: the only difference being the factor 1− δ ∈ (0, 1).
We also note that a necessary condition for (10) to hold is:

δ ≥ 1− π(p)

π̂(p)
.

In the absence of fixed costs, convexity of C gives

π(p)

π̂(p)
=

pD (p)− nC [D (p) /n]

npD (p)− nC [D (p)]
≥ pD (p)− C [D (p)]

npD (p)− nC [D (p)]
=
1

n
.

Hence, collusion is then “easier” than in the classical case of linear costs in the sense
that the range of discount factors δ satisfying the subgame perfection condition,
ceteris paribus, is a superset of that in the linear case. This is intuitively evident:
the deviating firm serves the whole market and hence has a more than proportionally
increased cost to deliver the demanded quantity if its cost function is strictly convex.
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5. Welfare

Having studied conditions for a market price to be a symmetric Nash equilibrium
in a one-shot interaction as well as in the infinitely repeated game with discounting,
I turn to the question of efficiency. For this purpose, define social welfare, at any
price p quoted by all firms, as the sum of consumer surplus and firms’ profits. Thus,
W (p) = S (p) +Π (p), where Π is defined in equation (3) and

S (p) =

Z +∞

p

D (x) dx.

It should be noted that this definition is restrictive and applies best in situations
when firms are quite similar. For it is focused on situations in which all firms are
active in the market, whether or not some firms make losses and whether or not it
would be socially desirable to shut some firms.
However, staying with the function W as our social welfare function, it follows

that, if the cost functions are differentiable, then a necessary condition for a common
price p > 0 to be socially optimal is the first-order condition W 0 (p) = 0, where

W 0 (p) =

Ã
p− 1

n

nX
i=1

C 0
i [D (p) /n]

!
D0 (p)

Hence, grantedD0 (p) 6= 0, a necessary condition for efficiency is pricing at the average
marginal cost :

p =
1

n

nX
i=1

C 0
i [D (p) /n] . (11)

This is a fixed-point equation in p. For convex cost functions, the right-hand side
is non-increasing in p. Hence, there then exists at most one solution. If, moreover,
C 0 and D are continuous functions, then existence is guaranteed. When a solution
to equation (11) exists, it will be denoted pmc.

6. A parametric specification

Suppose that demand is “linear” (more precisely, piece-wise affine):

D (p) = max {0, 1− p} ,

and that firms have cost functions of the polynomial form

Ci (q) = ki + ciq + γiq
2/2,
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where ki, γi ≥ 0 and 0 ≤ ci < 1 for all i. Let c̄ =
P

i ci/n and γ̄ =
P

i γi/n. Hence,
for each producer i, ki is its fixed cost and ci + γiq its marginal cost when operating
at any output level q ≥ 0.
The monopoly price for firm i (were it alone in the market) is

p̂i =
ci + γi + 1

γi + 2
.

It follows that p̂i ≥ 1/2 and p̂i > ci
5 Moreover,

p̂ = min
i

ci + γi + 1

γi + 2
, (12)

with p̂ ≥ 1/2 and p̂ > mini ci. The condition (11) for marginal cost pricing gives

pmc =
nc̄+ γ̄

n+ γ̄
, (13)

and the condition (7) for symmetric Nash equilibrium prices p becomes

p ∈ ∩ni=1
∙

2n2ki
(2n+ γi) (1− p)

+
2nci + γi
2n+ γi

,
2nci + (n+ 1) γi
2n+ (n+ 1) γi

¸
. (14)

It follows by continuity that this set is non-empty if firms are sufficiently similar
and have strictly convex cost functions with sufficiently low fixed costs:

Proposition 5. There exists δ > 0 such that PNE 6= ∅ if maxi ki < δ, mini γi > δ,
maxi6=j |ci − cj| < δ and maxi6=j

¯̄
γi − γj

¯̄
< δ.

Proof: Let n be fixed. The set on the right-hand side of (14) is a closed interval
of positive length in the special case of identical firms with zero fixed costs and strict
convexity in costs:

f (c, γ, k, p) =
2n2k

(2n+ γ) (1− p)
+
2nc+ γ

2n+ γ

<
2nc+ (n+ 1) γ

2n+ (n+ 1) γ
= g (c, γ)

for k = 0, any c ∈ [0, 1), γ > 0 and p < 1. Moreover, we then also have

f (c, γ, 0, p) <
c+ γ + 1

γ + 2
= p̂.

5To see this, note that p̂i is increasing in γi, and note also that for γi = 0, p̂i is the mid-point
between ci and 1.
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any c ∈ [0, 1), γ > 0 and p < 1. Let

p+ = min {p̂, g (c, γ)} .

Clearly p+ < 1 and PNE ∩ [0, p̂] = [f (c, γ, k, p) , p+]. By continuity, f (c, γ, k, p+) <
p+ for any c ∈ [0, 1) and γ > 0, granted k > 0 is sufficiently small. The claim in the
proposition now follows by continuity of f , g and p̂, viewed as functions of parameters
ki, ci and γi. End of proof.

In the special case of linear costs (ki = γi = 0), the equilibrium condition (14)
boils down to the requirement that p = ci for all i. Hence symmetric equilibrium
then occurs only if all firms have the same marginal cost, and the equilibrium price
equals this marginal cost. By equation (13), price competition then results in a
socially efficient outcome.
However, this is in general not the case. To see this, suppose that fixed costs are

absent and all firms are identical with strictly convex cost functions. Then the mar-
ginal cost price, pmc, belongs to the interior of the interval of symmetric equilibrium
prices:

nc̄+ γ̄

n+ γ̄
∈
µ
2nc̄+ γ̄

2n+ γ̄
,
2nc̄+ (n+ 1) γ̄

2n+ (n+ 1) γ̄

¶
.

In other words, there exists a whole continuum of equilibrium prices, out of which
the marginal cost price is but one.
This algebraic analysis can be illustrated geometrically as follows. Figure 1 below

illustrates condition (10), for a firm i with ki = ci = 0 and γi = 0.2, when n = 3 and
δ = 0 (one-shot interaction). The thick curve is the graph of πi, and the thin curve
the graph of π̂i. The thick curve intersects the x-axis at p0i ≈ 0.05 and the thin curve
peaks at p̂i ≈ 0.58. The set of equilibrium prices for this firm is the small interval
where the thick curve exceeds both the thin curve and the horizontal axis, roughly
0.05 ≤ pi ≤ 0.22. If all three firms are identical, then this is also the set PNE of
equilibrium prices, and in this case the socially optimal price is pmc = 0.2/1.7 ≈ 0.12.
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Figure 1: The graphs of the two profit functions in (10).

For positive δ, the thin curve is closer to the x-axis, and the diagram then shows,
likewise, the set of symmetric subgame perfect equilibrium prices in the infinitely
repeated game. For δ sufficiently large, the thin curve lies below the thick curve for
all p ∈ [p0, p̂], in which case P SPE consists of all such prices p. The dashed thin curve
is the graph of (1− δ) π̂, drawn for δ = 0.6, in which case the interval of subgame
perfect equilibrium prices is approximately [0.05, 0.47].

6.1. Comparative statics in costs. Suppose that firms are identical and price
at marginal cost. The profit to each firm is then

π (pmc) =
γ

2

µ
1− c

n+ γ

¶2
− k.

It is noteworthy that this profit is non-monotonic in γ, see Figure 3 below, showing
how the profit depends on the cost parameter γ, for k, c and n fixed. (Here k = 0,
c = 0.3 and n = 2.)
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Figure 2: Equilibrium profit as a function of the cost parameter γ.

The diagram shows how the profit increases with γ, for all γ < 2. Hence, a
general reduction in production costs, for all firms (for example due to technological
progress) may be against the firms’ profit interest. The reason is that a cost reduction
may reduce the equilibrium price so much that profits fall. Hence, for certain cost
parameters, there is a conflict of interest between consumers and the firms concerning
technological progress in the production technology of firms. It may be noted that
the property is robust in the sense that in the absence of fixed costs, equilibrium
profits are zero when costs are linear (γ = 0) but positive when costs are slightly
convex (γ > 0 and small).

6.2. Asymmetric duopoly. Consider the case of a firm with a positive fixed
cost and a positive and increasing marginal cost competing with a firm à la Bertrand,
that is, with constant marginal and average costs. Suppose, moreover, that the
second firm’s constant marginal cost is relatively high in comparison with the first:
k1 ≥ k2 = 0, c1 < c2 < 1 and γ1 > γ2 = 0. Condition (14) then pins down
the symmetric Nash equilibrium price in the one-shot game: p = c2. In symmetric
equilibrium, the profit to the first firm is

π1 (c2) =

∙
1

2
(c2 − c1)−

γ1
4
(1− c2)

¸
(1− c2)− k1 (15)
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Suppose that the cost parameters are such that π1 (c2) ≥ 0. A necessary and
sufficient condition for p = c2 to constitute a symmetric Nash equilibrium is then
that π1 (c2) ≥ π̂1 (c2), or, equivalently, that

2 (c2 − c1) ≤ 3γ1 (1− c2) . (16)

Do such parameter combinations exist? For k1 = c1 = 0, the requirement on γ1
and c2 can be re-written as

2c2
3 (1− c2)

≤ γ1 ≤
2c2
1− c2

.

In other words, the convexity of the first firm’s cost function should be moderate.
This condition is met, for instance, by γ1 = 1 and c2 = 1/2. It follows, by continuity,
that p = c2 constitutes a symmetric Nash equilibrium also for positive but sufficiently
low values of k1 and c1. For instance, for γ1 = 1 and c2 = 1/2, the requirement on k1
and c1 is k1 ≤ 1/16− c1/4.
Thus, symmetric Nash equilibria do exist for certain parameter combinations.

Moreover, for certain parameter combinations there also exists an asymmetric Nash
equilibrium, in which firm 1 sets p1 = c2 and firm 2 opts out (s2 = 0). Then
firm 1 serves the whole market and earns profits π̂1 (c2). This situation constitutes a
Nash equilibrium in the one-shot game if π̂1 (c2) ≥ 0. Note that if condition (16) is
met, then firm 1 does not earn a higher payoff in this asymmetric equilibrium–where
it is a monopolist under the threat of a competitor’s entry–than in the symmetric
duopolistic equilibrium.
Secondly, consider the effect of a change in firm 2’s marginal cost, c2, upon the

two firms’ profits in the symmetric equilibrium. While firm 2’s profit is unaffected
by such a change–its profit remains at zero–the equilibrium profit to firm 1 rises,
granted c2 is below firm 1’s monopoly price:

∂π1
∂c2

> 0⇔ c2 < p̂1 =
c1 + γ1 + 1

γ1 + 2
. (17)

Hence, for such cost parameters, a technological innovation that decreases c2, without
affecting firm 1’s cost function, would not be welcomed by firm 1, since it would
result in a lower market price and hence lower profits. This is not so surprising.
More surprising, perhaps, is the fact that this would remain true for a range of cost
parameters, even if the technological innovation were to benefit firm 1 to the same
extent (that is, by way of reducing c1 by the same amount):

∂π1
∂c1

+
∂π1
∂c2

> 0⇔ c2 <
c1 + γ1 + 1/2

γ1 + 3/2
, (18)



PRICE COMPETITION AND CONVEX COSTS 15

where the upper bound on c2 is (somewhat) lower than in (17). The condition in (18)
is met, for example, when γ1 = 1, c1 = 0 and c2 = 1/2; the parameter combination
discussed above.

7. Directions for further research

The above analysis is restrictive in many dimensions. Maybe the most apparent is its
focus on symmetric equilibria, that is, equilibria in which all firms are active in the
market. Asymmetric equilibria, where some firms opt out, as well as entry decisions
by firms, are important phenomena that should be analyzed. Of particular interest
for many applications is the case when one firm is much larger than the others. A
second restriction of the present analysis is that it does not include investment de-
cisions. What are the incentives for firms to investment in cost-reducing equipment
and technologies? The present comparative-statics analysis suggests that these in-
centives may be weak or even negative. A relevant extension of the present one-shot
interaction would thus be to consider a two-stage interaction, where firms invest in
stage one. For the sake of realism one should probably also consider non-convex
(but still continuous and non-increasing) cost functions. Such non-convexities are
said to arise in the production of electricity; before a spare generator is turned on,
marginal cost goes up and after the generator has started spinning, marginal cost
again goes down. A forth relevant extension would be to consider periodic and/or
stochastic fluctuations in demand. A fifth extension would be to include the possi-
bility of incomplete information, that is, the realistic possibility that producers often
lack precise information about each others’ costs. A sixth extension would be to con-
sider markets where sellers can choose not to serve all the demand they face. This
possibility can turn otherwise unprofitable price deviations profitable. In order to
analyze this possibility, some form of rationing scheme has to be defined. A seventh,
and final, extension of great relevance for some markets–and which goes somewhat
in the same direction as the preceding extension–would be to consider situations in
which sellers can pre-commit to whole supply schedules, that is, rules that prescribe
how much they are willing to supply at different prices (see Grossman (1981), Hart
(1985) and Klemperer and Meyer (1989)).
It is well-known that all Nash equilibria in the classic case of identical firms with

linear costs are weakly dominated; in equilibrium at least two firms set their prices
equal to marginal cost, and while that is a best reply, it is weakly dominated by
any higher price at which demand is positive. By contrast, with strictly convex
costs, Nash equilibria are generically strict; a unilateral deviation causes a profit loss.



PRICE COMPETITION AND CONVEX COSTS 16

Moreover, based on arguments from the evolutionary game theory literature one may
conjecture that only the highest Nash equilibrium price is viable in the very long
run. For the highest Nash equilibrium price both Pareto dominates (in terms of the
players, here the producers) and risk dominates (again in terms of the players) any
other symmetric Nash equilibrium price, and it is known that recurrent play of 2× 2
coordination games of this type (in large populations with boundedly rational agents
subject to perpetual strategy perturbations) leads to play of the Pareto dominant
equilibrium. To substantiate this conjecture requires a detailed analysis (including
a discretization of prices), which falls outside the scope of this short paper. If the
conjecture is correct, then the conclusion is that in the very long run, firms should
be expected to price at the maximal Nash equilibrium price, that is, well above the
perfectly competitive price.
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