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Abstract

We start by presenting a reduced-form multiple default type of model and derive ab-
stract results on the influence of a state variable X on credit spreads, when both the
intensity and the loss quota distribution are driven by X. The aim is to apply the results
to a concrete real life situation, namely, to the influence of macroeconomic risks on credit
spreads term structures.

There has been increasing support in the empirical literature that both the probability
of default (PD) and the loss given default (LGD) are correlated and driven by macro-
economic variables. Paradoxically, there has been very little effort from the theoretical
literature to develop credit risk models that would include this possibility. A possible jus-
tification has to do with the increase in complexity this leads to, even for the “treatable”
default intensity models.

The goal of this paper is to develop the theoretical framework needed to handle this
situation and, through numerical simulation, understand the impact on credit risk term
structures of the macroeconomic risks. In the proposed model the state of the economy is
modeled trough the dynamics of a market index, that enters directly on the functional form
of both the intensity of default λ and the distribution of the loss quota q given default.
Given this setup, we are able to make periods of economic depression, periods of higher
default intensity as well as periods where low recovery is more likely, producing a business
cycle effect. Furthermore, we allow for the possibility of an index volatility that depends
negatively on the index level and show that, when we include this realistic feature, the
impacts on the credit spread term structure are emphasized.
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1 Introduction

Recent empirical studies show that there is a significant systematic risk component in default-
able credit spreads. See Frye (2000a), Frye (2000b), Frye (2003), Altman, Resti, and Sironi
(2004), Düllmann and Trapp (2000) or Elton and Gruber (2004). The model underlying the
Basel II internal ratings-based capital calculation (see Basel Committee (2003) and Wilde (2001)
measures credit portfolio losses only, that is, portfolio losses that are due to external influences
and hence cannot be diversified away. This gives us an illustration of what are the main con-
cerns in practice and point out the need of a realistic model for systematic risk. The purpose
of this study is to present a reduced-form multiple default model1, that analyzes the influence
of macroeconomic risks on the credit spread’s term structure at the firm level.

The current theoretical literature considers models where only the default intensity, or equiva-
lently, the probability of default (PD) is dependent on a state variable assuming that the loss
given default (LGD) is either fixed or at least independent of default intensities. See Wil-
son (1997), Saunders (1999), JP Morgan (1997), Gordy (2000), or Schönbucher (2001). We
take that analysis one step ahead and consider the situation in which the same state variable
influences both PD and LGD, making these two quantities dependent of one another.

Both PD and LGD are key in accessing expected capital losses and measuring the exposure of
portfolios of defaultable instruments to credit risk. In accessing capital at risk it is of extreme
importance not to ignore the interdependence between PD and LGD, since this would lead to
underestimation of the true risk beard by portfolio holders.

Eventually, we are interested in the case where our state variable is a representation of macro-
economic risks. As a proxy of the macroeconomic condition we consider a market index. It is
well known that market uncertainty and its level are negatively correlated. See, for instance,
Gaspar (2001) and a recent study by Giese (2005). That is, periods of recession (low index
level) tend to be also periods of high uncertainty (high index volatility) reflecting some sort of
market panic, while periods of economic boom are perceived as safe periods and, thus, have
low uncertainty. In setting up the dynamics of the market index we incorporate this realistic
feature by allowing the index local volatility to depend negatively on the index level.

In terms of the PD and LGD, we concretely take the default intensity and the recovery (given
default) to depend on the market situation (the index level). With the PD dependence we try
to account for the fact that under bad economic periods it is reasonable to expect more defaults,
while with the LGD dependence we try to account for the fact that if the entire market is down,
the market value of any firms assets should be lower, and debt holders should recover less if a
default occurs.

The main contributions of this study can be summarized as follows.

• We derive abstract results for a multiple default reduced-form model when the default
events are modeled by a doubly stochastic marked point process (DSMPP), where both
intensity and the marks density depend on a state variable X .

• We propose a model for the influence of macroeconomic risks on credit spreads.

• Using a concrete model, we are able to simulate realistic behaviors of credit spreads term
structures.

The rest of the paper is organized as follows.
1For a review of reduced-form models and we refer to Schönbucher (2003).
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• In Section 2 we concretize our reduced-form multiple default model and justify the model-
ing choices, which involve modeling all the needed variables under the risk-neutral measure
Q. We start by describing the setup for the default-free and defaultable bond market and
we continue by deriving the abstract results. Finally, we discuss the relation between the
risk-neutral assumptions and the objective P-assumptions.

• In Section 3 we introduce the macroeconomic model, presenting the index dynamics and
justifying the assumptions about its influence of such risks on the intensity and recovery
processes using empirical facts. We derive qualitative results on the influence of the
market index on credit spreads.

• In Section 4 we give a concrete model for the intensity and recovery dependence and
simulate their impacts on credit spread term structures.

• Section 5 concludes, summarizing the main results and pointing out directions for future
research.

2 The Setup and Abstract Results

We consider a financial market living on a filtered probability space
(
Ω,F , Q, (Ft)0≤t≤T

)
where

Q is the risk-neutral probability measure.

The probability space carries a multidimensional Wiener process W and, in addition, a doubly
stochastic marked point process (DSMPP), µ(dt, dq), on a measurable mark space (E, E) to
model the default events.

The filtration (Ft)0≤t≤T is generated by W and µ, i.e. Ft = FW
t ∨ Fµ

t .

We, now, introduce the details.

2.1 Default-free bond market

We assume the existence of a liquid market for default-free zero-coupon bonds, for every possible
maturity T . We denote the price at time t of a default-free zero-coupon bond with maturity T
by p(t, T ).

In order to describe the default-free bonds market we use Heath-Jarrow-Morton (HJM) frame-
work, modeling directly, under the martingale measure Q, the dynamics of the instantaneous
forward rates, f(t, T ). There is a one-to-one correspondence between zero-coupon bond prices
and forward rates, so by assuming existence of zero-coupon bond prices for all maturities we
also guarantee existence of forward rates for all maturities. We recall the fundamental relation:

f(t, T ) = −∂ ln p(t, T )
∂T

⇔ p(t, T ) = exp

{
−

∫ T

t

f(t, s)ds

}
. (1)

Assumption 2.1. (Default-free forward rates)

The dynamics of default free forward rates, under the martingale measure Q, are given by

df(t, T ) = α(t, T )dt + σ(t, T )dWt, (2)
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with

α(t, T ) = σ(t, T )
∫ T

t

σ∗(t, s)ds. (3)

where σ(·, T ) is a row vector of regular enough adapted processes, W is a Q-Wiener process.

The default free short-rate is r(t) = f(t, T ) and the default free zero-coupon bond prices are
denoted by p(t, T ). No arbitrage and the fundamental relation in (1) give use the bond prices
dynamics as

dp(t, T )
p(t, T )

= r(t)dt + η(t, T )dW (t)

where η(t, T ) = −
∫ T

t

σ(t, s)ds.

2.2 Defaultable bonds market

In addition to the risk-free bond market mentioned above, we consider a defaultable bond
market. We assume that each company on the market issues a continuum of bonds with
maturities T .

Assumptions 2.6 below characterize the default events and the dependence of both the default
intensity and the recovery rate distribution on an abstract stochastic state variable X .

Assumption 2.2. There exist an underlying stochastic state variable X, whose dynamics under
the risk neutral measure Q are given by

dXt = αX(t, Xt)dt + σX (t, Xt)dWt (4)

where W , is the same as in (2).2

2.2.1 Concepts and Assumptions

In Assumption 2.6 we will define the basic multiple default setup. A multiple default setup
is based on the observation that whenever the obligor defaults, the company is not liquidated
but instead reorganized. The firm and its claims continue to live and operate. However, the
face value of the claims is reduced by a fraction q. Behind this model is the intuition that,
given a distress situation for the obligator’s business, the debt holders are willing to accept the
renegotiation of their claims (accepting to lose some fraction q of the face value of the claims)
in order to avoid a process of bankruptcy, which is typically costly, and allowing the firm to
continue operating.3 It is possible that a whole sequence of defaults is taking place, every time
the company reducing the face value of the debt and the bondholder accepting the conditions
of the deal.

Definition 2.3. The loss quota is the fraction by which the promised final payoff of the de-
faultable claim is reduced at each time of default. We denote the loss quota by q.

2This way we allow for the possibility that one of our factors may be related to the risk-free side of the
economy. In that case, some consistency relation must hold between (2) and (4).

3This model mimics the effect of a rescue plan as it is described in many bankruptcy codes. The old claimants
have to give up some of their claims in order to allow for rescue capital to be invested in the defaulted firm.
They are not paid out in cash (this would drain the defaulted firm of valuable liquidity) but in new defaultable
bonds of the same maturity. [Schönbucher (2003)]
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Definition 2.4. The remaining value, after all reductions in the face value of the defaultable
claim due to defaults in the time interval [0, t], is denoted V (t).

Definition 2.5. p̄(t, T ) is, at time t, the price of a defaultable zero-coupon bond with maturity
T . The payoff at time T of the bond is, thus, V (T ) the remaining part of the face value of the
bond after all reductions due to defaults in the time interval [0, T ], i.e.,

p̄(T, T ) = V (T ).

Assumption 2.6.

1. We assume that default happens at the following sequence of the stopping times τ1 < τ2 <
. . ., where τi is the time of the i-th jump of our point process.

2. At each default time τi the jump size, qi mark or loss quota, is drawn from the mark space
E = (0, 1).

3. We assume that there is no total loss at default, i.e., the loss quota qi < 1 for all i =
1, 2, · · · .

4. We assume that both:

(i) the arrivals of default times (τi)i≥1

(ii) the distribution of the loss quotas given default (qi)i≥1

depend upon our stochastic state process X.

Given that at each default time τi the final claim amount is reduced by a loss quota qi to (1−qi)
times what it was before, we obtain

V (t) =
∏

τi≤t

(1 − qi), (5)

where qi is the stochastic marker to the default time τi.

According to risk-neutral valuation, the price at time t, of the defaultable bond with maturity
T equals to

p̄(t, T ) = EQ
[
e−

∫ T
t

rsdsV (T )
∣∣∣Ft

]
.

or, equivalently,
p̄(t, T ) = p(t, T )ET [V (T )| Ft] , (6)

where ET [ ·| Ft] denote conditional expectation under the T -forward measure.

Definition 2.7. We define the instantaneous defaultable forward rate, f̄(t, T ), similarly to its
risk-free equivalent

f̄(t, T ) = −
∂

∂T
ln p̄(t, T ). (7)

The defaultable short rate is defined as r̄(t) = f̄(t, t).
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Using the above definition we also have

p̄(t, T ) = V (t) exp

{
−

∫ T

t

f̄(t, s)ds

}
, (8)

where recall that p̄(t, t) = V (t) and V (t) is given in (5).

Definition 2.8. The short credit spread s(t) is defined as the difference between the defaultable
and non-defaultable short rates

s(t) = r̄(t) − r(t).

Definition 2.9. The forward credit spread s(t, T ) is defined as the difference between the
defaultable short rate and non-defaultable forward rates

s(t, T ) = f̄(t, T ) − f(t, T ).

2.2.2 Existence of intensity

We start by giving the abstract definitions of a Marked Poisson Point Process, a Cox Process
and our Doubly Stochastic Marked Poisson Process (DSMPP). To introduce the definitions we
need first to define the following filtrations.

Notation 1. (Filtrations)

• We call the filtration generated by W (t) the background filtration
(
FW

t

)
t≥0

, and

GW =
∨

t≥0

FW
t ,

is the information set containing all future and past background information.

In our setup it will be assumed that all the default-free processes are adapted to
(
FW

t

)
t≥0

.

• The full filtration is reached by combining
(
FW

t

)
t≥0

and the filtration (Fµ
t )t≥0 which is

generated by MPP µ
Ft = FW

t ∨ Fµ
t .

• We define the filtration generated by all the information concerning the background
process X , and our only past information on our MPP µ

GW
t = GW ∨ Fµ

t .

Definition 2.10. (DSMPP)

• We call the Marked Point Process µ̂ an Fµ
t - Marked Poisson Process if there exists a

deterministic measure ν̂ on R+ × E such that

P (µ̂((s, t] × B) = k |Fµ
s ) =

(ν̂((s, t] × B))k

k!
e−ν̂((s,t]×B), a.s., B ∈ E.
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• We call a counting process N = (Tn) adapted to right-continuous filtration a GW
t - Cox

Process if there is an GW -measurable random measure ν satisfying

P
(
N(s, t] = k

∣∣GW
s

)
=

(ν((s, t]))k

k!
e−ν((s,t]), a.s k ∈ N .

• We call the Marked Point Process µ an GW
t - DSMPP if there exists a GW -measurable

random measure ν on R+ × E such that

P
(
µ((s, t] × B) = k

∣∣GW
s

)
=

(ν((s, t] × B))k

k!
e−ν((s,t]×B), a.s., B ∈ E.

Our goal is to construct a Marked Point Process such that its compensator is allowed to depend
on our stochastic state variable X (which in general means that its conditional default distrib-
ution as well as intensity are both allowed to depend on Xt), and conditional on the realization
of the state variable it is GW

t -DSMPP. In other words, we want to prove the existence of MPP
such that its compensator ν is allowed to depended on our stochastic state variable X , so we
can write

ν(dt, dq, ω) = ν(t, dq, Xt), Q − a.s. (9)

We define the compensated point process µ̃(dt, dq) as

µ̃(dt, dq) = µ(dt, dq) − ν(t, dq, Xt).

The following Theorem shows that the DSMPP with compensator of the form (9) exists.

Theorem 2.11.

Assume that ν admits intensity and define ν(dt, dq, Xt) = Mt(dq, Xt)dt, Q−a.s where Mt(dq, x)
is a deterministic measure on E for any fixed x and t.

Let ν̂(dt, dq) = mt(dq)dt be a deterministic compensator for some Marked Poisson Process µ̂.
Assume that:

(i) M(t, dq, x) is measurable w.r.t. GW

(ii) M(t, dq, x) is absolutely continuous w.r.t. m(t, dq) on E, that is,

Mt(dq, x) << mt(dq)

Then, there exists a GW
t -DSMPP µ, such that its compensator is of the form (9).

Proof. We fix
(
Ω,F , P, (Ft)0≤t≤T

)
and a Marked Point Process µ with the compensator

ν̂(dt, dq) = mt(dq)dt

and, as before, GW
t = GW ∨ Fµ

t .

Since Mt(x, dq) is absolutely continuous w.r.t mt(dq) on E , then according to the Radon-
Nikodym Theorem for every t there exists a E ×GW -measurable nonnegative function ϕt(q, x),
ϕ : E × R+ → R+, such that

M(t, x, A) =
∫

A

ϕ(t, q, x)m(t, dq), for all A ∈ E
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or
M(t, x, dq) = ϕ(t, q, x)m(t, dq).

We define the process Lt as
{

dLt = Lt−
∫

E {ϕ(t, q, Xt) − 1} {µ̂(dt, dq) − mt(dq)dt}

L0 = 1.

We notice that ϕ(t, q, Xt) ∈ GW
0 . Define the new measure on GW

t , 0 ≤ t ≤ T as

dQ = LtdP

According to the Girsanov transformation the Q-compensator of the new process is exactly

ν(dt, dq) = ν̂(dt, dq)(1 + ϕt(q, Xt) − 1) = ϕt(q, Xt)mt(dq)dt = Mt(dq, Xt)dt.

First, we would like to show that the Q-distribution of ν is the same as the P-distribution. We
note that GW

0 = GW and that
dQ
dP

∣∣∣GW
0

= L0 = 1 ,

thus, P = Q on GW
0 .

Second, we would like to show that

P
(
µ((s, t] × B) = k

∣∣GW
s

)
=

(ν((s, t] × B))k

k!
e−ν((s,t]×B), a.s., B ∈ E. (10)

We prove (10) using characteristic functions. Define the stochastic process

Yt =
∫ t

0

∫

E

qµ̂(dt, dq).

Changing the measure we obtain that

EQ [
eiuYt

∣∣GW
0

]
= EP [

Lte
iuYt

∣∣GW
0

]
.

Define Zt = Lte
iuYt , then the dynamics of Zt is

dZt = Lt

∫

E

{
eiu(Yt−+q) − eiuYt−

}
µ(dt, dq)

+Lt−eiuYt

∫

E

(ϕ(t, q, Xt) − 1) {µ̂(dt, dq) − mt(dq)dt}

+
∫

E

Lt−(ϕ(t, q, Xt) − 1)
{
eiu(Yt−+q) − eiuYt−

}
µ̂(dt, dq)

=
∫

E

Zt−ϕ(t, q, Xt)mt(dq)(eiuq − 1)dt +
∫

E

Zt−(eiuq − 1)ϕ(t, q, Xt)µ̃(dt, dq)

+
∫

E

Zt−(ϕ(t, q, Xt) − 1)µ̃(dt, dq)

where µ̃ = µ̂(dt, dq) − mt(dq).

9



We notice also that Z0 = 1, then

Zt = 1 +
∫ t

0

∫

E

Zs−ϕ(s, q, Xs)mt(dq)(eiuq − 1)ds +
∫ t

0

. . . µ̃(ds, dq)

= 1 +
∫ t

0

∫

E

Zs−(eiuq − 1)Ms(dq, Xs)ds +
∫ t

0

. . . µ̃(ds, dq).

Denote ξt = EP [
Zt| GW

0

]
, then

ξt = 1 +
∫ t

0

∫

E

ξs(eiuq − 1)Ms(dq, Xs)ds.

thus since ξt does not depend on q and Ms(dq, Xs) is GW
0 -measurable

ξt = e
∫

t
0

∫
E

(eiuq−1)Ms(dq,Xs)ds,

Note that ν(dt, dq, Xt) = Mt(dq, Xt)dt is GW measurable.

The result follows from the fact that the characteristic function of the process

Ȳt =
∫ t

0

∫

E

qµ̄(dt, dq)

where µ̄ is a Market Poisson Process with compensator ν̄(t, dq) is given by

E
[
eiuȲt

]
= exp

{∫ t

0

∫

E

(eiuq − 1)ν̄(t, dq)
}

.

�

In our application we would like to model separately the dependence of the intensity process
and of the loss quota distribution on our state variable X . This allows us, not only to include
empirically observed facts in both quantities but it also makes the interpretation of the results
more straightforward. To model the loss quota distribution, in the context of our DSMPP, we
need the notion of a stochastic kernel.

Definition 2.12. K is a stochastic kernel from R+ to E, i.e. from (R+,B+) to (E, E), if it is
a mapping from R+ × E into R+ such that:

• K(·, A) is measurable for all A ∈ E

• K(t, ·) is a measure on E ∀t

If K(t, E) = 1, then the kernel is called a probability distribution.

In our case K will be stochastic only to the extent that X is stochastic. That is, conditional
on the state variable realization we will have a deterministic loss quota distribution.

The ideal construction procedure can then be described as follows.

Remark 2.13. Construction procedure We construct our DSMPP µ as follows.

1. We specify our Wiener driven stochastic state variable X.

10



2. We specify the intensity λ(t, Xt) as a function of our state variable.

3. We specify the instantaneous conditional loss quota distribution as a function of the state
variable K(t, dq, Xt).

4. Finally, we construct the stochastic compensator ν

ν(dt, dq, Xt) = K(t, dq, Xt)λ(t, Xt)dt, (11)

A compensator representation as in (11) has the additional advantage of satisfying a needed
consistency requirement. Indeed, it allows us to value credit derivatives that do not depend on
recovery in a consistent way with those that do depend upon recovery. Without the separation
result we would have to model at once the whole compensator Mt(dq, Xt), which is not very
intuitive and we would not know how to derive in a consistent way key ingredients that depend
exclusively upon λ(t, Xt), like the implied survival probability, the price default digital payoffs
or the price defaultable bonds with zero recovery.

Before we go on to the abstract results, we note that Theorem 2.11 suffices to guarantee the
existence of a DSMPP µ with a compensator of the form (11), as we can simply set

Mt(dq, Xt) = K(t, dq, Xt)λ(t, Xt),

and notice that Mt(dq, x) is a measure for fixed t and x.

2.3 Abstract results

In this section we derive the main results concerning the short and forward credit spreads given
the setup above.

Proposition 2.14. Consider a T -defaultable claim X . For the purpose of computing expecta-
tions, and in particular its price at time t ≤ T

EQ
t

[
e
∫

T
t

rsdsV (T )X
]
,

it is equivalent to use the following two dynamics for the remaining value process

(i)

dV (t)
V (t−)

= −
∫ 1

0

qµ(dt, dq) (12)

V (t) = v,

(ii)

dV (t)
V (t−)

= −qe(t−, Xt−)dNt (13)

V (t) = v .

where µ is a DSMPP with compensator ν(t, Xt) = λ(t, Xt)K(t, dq, Xt)dt, N is a Cox process
with intensity λ(t, Xt) and we define

qe(t, Xt) =
∫ 1

0

K(t, dq, Xt) .

11



Proof. Using the V dynamics in (i) we get,

EQ
[
e−

∫ T
t

rsdsV (T )X
∣∣∣Ft

]
=

= V (t) EQ
[
e−

∫
T
t

rsdsX
∣∣∣Ft

]

︸ ︷︷ ︸
π(t,X )

−EQ

[
e−

∫
T
t

rsds

∫ T

t

∫ 1

0

qVs−µ(dq, ds)X

∣∣∣∣∣Ft

]

= V (t)π(t,X ) − EQ

[
EQ

[
e−

∫ T
t

rsds

∫ T

t

∫ 1

0

qVs−µ(dq, ds)X

∣∣∣∣∣ G
W
t

]∣∣∣∣∣Ft

]

= V (t)π(t,X ) − EQ

[
e−

∫
T
t

rsdsEQ

[∫ T

t

∫ 1

0

qVs−µ(dq, ds)X

∣∣∣∣∣ G
W
t

]∣∣∣∣∣Ft

]

= V (t)π(t,X ) − EQ

[
e−

∫
T
t

rsds

∫ T

t

Vs−

{∫ 1

0

qK(s, dq, Xs)
}

λ(s, Xs)dsX

∣∣∣∣∣Ft

]

= V (t)π(t,X ) − EQ

[
e−

∫ T
t

rsds

∫ T

t

Vs−qe(s, Xs)λ(s, Xs)dsX

∣∣∣∣∣Ft

]

Using the V dynamics in (ii) we get,

EQ
[
e−

∫ T
t

rsdsV (T )X
∣∣∣Ft

]
=

= V (t) EQ
[
e−

∫
T
t

rsdsX
∣∣∣Ft

]

︸ ︷︷ ︸
π(t,X )

−EQ

[
e−

∫
T
t

rsds

∫ T

t

Vs−qe(s, Xs)dN(s)X

∣∣∣∣∣Ft

]

= V (t)π(t,X ) − EQ

[
EQ

[
e−

∫ T
t

rsds

∫ T

t

Vs−qe(s, Xs)dN(s)X

∣∣∣∣∣G
W
t

]∣∣∣∣∣Ft

]

= V (t)π(t,X ) − EQ

[
e−

∫ T
t

rsdsEQ

[∫ T

t

Vs−qe(s, Xs)dN(s)X

∣∣∣∣∣G
W
t

]∣∣∣∣∣Ft

]

= V (t)π(t,X ) − EQ

[
e−

∫
T
t

rsds

∫ T

t

Vs−qe(s, Xs)λ(s, Xs)dsX

∣∣∣∣∣Ft

]

The results follows from comparing the final expressions on both cases. �

Proposition 2.15. Given Assumption 2.6, and under the martingale measure Q.

1. The short credit spreads, s(t), have the following functional form

s(t) = λ(t, Xt)qe(t, Xt) > 0 (14)

where

qe(t, Xt) =
∫ 1

0

qK(t, dq, Xt)

can be interpreted as the locally expected loss quota (which is positive for q > 0).

12



2. Then the forward credit spread s(t, T ) takes the form

s(t, T ) =
EQ

t

[
{r(T ) + λ(T, XT )qe(T, XT )} e−

∫
T
t
{r(s)+λ(s,Xs)qe(s,Xs)}ds

]

EQ
t

[
e−

∫
T
t
{r(s)+λ(s,Xs)qe(s,Xs)}ds

] −f(t, T ) (15)

Proof. The time t price of the defaultable zero-coupon bond with maturity T is equal to

p̄(t, T ) = EQ
[
e−

∫
T
t

rsdsV (T )
∣∣∣Ft

]
, (16)

where V (T ) is the residual of the face value after multiple defaults up to time T .

Making use of Proposition 2.14, instead of dV (t)
V (t−) = −

∫ 1

0
qµ(dt, dq) with our DSMPP µ (these

dynamics follow directly from (5)), we use

dV (t)
V (t−)

= −qe(t−, Xt−)dNt

where N is the Cox process with intensity λ(t, Xt).

For every fixed t, define Z(u) as follows

Z(u) = e
∫ u

t
qe(s,Xs)λ(s,Xs)dsV (u).

We note that then the dynamics of Z(u) take the form

dZ(u) = −Zu−qe(u−, Xu−) {dNu − λ(u, Xu)du} , u ≥ t, t-fixed

and Z(u) is a Q-martingale conditional on the filtration FW
t . Thus,

EQ [
Z(T )| FW

t

]
= Z(t).

The price of a defaultable bond is then can be found as

p̄(t, T ) = EQ
[
e−

∫ T
t

rsdsV (T )
∣∣∣Ft

]
= EQ

[
e−

∫ T
t

rsdse−
∫ T

t
qe(s,Xs)λ(s,Xs)dsZ(T )

∣∣∣Ft

]

= EQ
[
EQ

[
e−

∫
T
t

rsdse−
∫

T
t

qe(s,Xs)λ(s,Xs)dsZ(T )
∣∣∣GW

t

]∣∣∣Ft

]

= EQ
[
e−

∫
T
t

rsdse−
∫

T
t

qe(s,Xs)λ(s,Xs)dsEQ [
Z(T )| GW

t

]∣∣∣Ft

]

= EQ
[
e−

∫ T
t

rsdse−
∫ T

t
qe(s,Xs)λ(s,Xs)dsZ(t)

∣∣∣Ft

]

= V (t)EQ
[
e−

∫
T
t

r(s)dse−
∫

T
t

qe(s,Xs)λ(s,Xs)ds
∣∣∣Ft

]

= V (t)EQ
[
e−

∫ T
t
{r(s)+qe(s,Xs)λ(s,Xs)}ds

∣∣∣Ft

]
.

Using the basic relations between defaultable bond prices and defaultable forward rates in (7)
we can, thus, write

f̄(t, T ) =
EQ

t

[
{r(T ) + λ(T, XT )qe(T, XT )} e−

∫ T
t
{r(s)+λ(s,Xs)qe(s,Xs)}ds

]

EQ
t

[
e−

∫
T
t

{r(s)+λ(s,Xs)qe(s,Xs)}ds
] . (17)

Finally using that f̄(t, t) = r̄(t) in the above expression we obtain

r̄(t, rt, Xt) = r(t) + qe(t, Xt)λ(t, Xt).

The result follow from s(t) = r̄(t) − r(t) and s(t, T ) = f̄(t, T ) − f(t, T ). �
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From the proof of the previous Proposition results also a nice formulation for the defaultable
bond prices.

Corollary 2.16. Under the conditions of Proposition 2.15 we have

p̄(t, T ) = V (t)EQ
t

[
e−

∫
T
t

r̄sds
]

. (18)

It is obvious from (15) that the expression of the forward credit spread looks quite messy. This
happens because we choose to present it under the martingale measure Q. The next lemma
give us two simpler representations at the cost of using forward measures.

Lemma 2.17. The forward credit spread, s(t, T ), has the following representation, equivalent
to (15)

(i)

s(t, T ) = −
∂

∂T
ln

(
ET

t [V (T )]
)

where ET
t [·] stands for expectation under the T -forward measure.

(ii)
s(t, T ) = ĒT

t [r̄(T )] − ET
t [r(T )] .

where ĒT
t · stands for expectation under the measure Q̄T where we have

LT =
dQ̄T

dQ
=

V (0)e−
∫

T
0 rs+λ(s,Xs)qe(s,Xs)ds

p̄(0, T )
on FT .

Proof. To prove (i) we note that

p̄(t, T ) = EQ
t

[
e−

∫ T
t

r(u)duV (T )
]

= p(t, T )ET
t [V (T )] .

From the definition of the forward defaultable rate and the forward credit spread we also have

p̄(t, T ) = V (t)e−
∫ T

t
f̄(t,u)du

= V (t)e−
∫ T

t
f(t,u)due−

∫ T
t

s(t,u)du = V (t)p(t, T )e−
∫ T

t
s(t,u)du.

Comparing we realize V (t)e−
∫ T

t
s(t,u)du = ET

t [V (T )], differentiating w.r.t. T and solving for
s(t, T ) we get

s(t, T ) =
∂

∂T
ln

(
V (t)

ET
t [V (T )]

)
=

∂

∂T
ln(V (t))

︸ ︷︷ ︸
0

− ∂

∂T
ln

(
ET

t [V (T )]
)
.

To prove (ii) we start by noting that it is a well known fact that for the risk-free rates f(t, T ) =
ET

t [r(T )].4

Thus, it remains to show that
f̄(t, T ) = ĒT

t [r̄(T )] .

4See Björk (2004) for further details.
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Using r̄(t) = r(t) + qe(t, Xt)λ(t, Xt), equation (17) becomes

f̄(t, T ) =
EQ

t

[
r̄(T )e−

∫ T
t
{r(s)+λ(s,Xs)qe(s,Xs)}ds

]

EQ
t

[
e−

∫
T
t
{r(s)+λ(s,Xs)qe(s,Xs)}ds

] .

Since p̄(t,T )
V (t) = EQ

[
e−

∫
T
t

{r(s)+qe(s,Xs)λ(s,Xs)}ds
∣∣∣Ft

]
we have

f̄(t, T )
p̄(t, T )
V (t)

= EQ
t

[
r̄(T )e−

∫
T
t

{r(s)+λ(s,Xs)qe(s,Xs)}ds
]

.

For the r.h.s the following holds

EQ
t

[
r̄(T )e−

∫
T
t
{r(s)+λ(s,Xs)qe(s,Xs)}ds

]
=

= EQ
t


r̄(T )

V (0)e−
∫ T
0 {r(s)+λ(s,Xs)qe(s,Xs)}ds

p̄(0, T )︸ ︷︷ ︸
LT




e
∫ t
0 {r(s)+λ(s,Xs)qe(s,Xs)}dsp̄(0, T )

V (0)

= ĒT
t r(T )EQ

t

[
LT

] e
∫

t
0 {r(s)+λ(s,Xs)qe(s,Xs)}dsp̄(0, T )

V (0)

= ĒT
t r(T )EQ

t

[
e−

∫
T
t

{r(s)+λ(s,Xs)qe(s,Xs)}ds
]

=
p̄(t, T )
V (t)

ĒT
t [r(T )]

Where we define LT = V (0)e−
∫T
0 {r(s)+λ(s,Xs)qe(s,Xs)}ds

p̄(0,T ) on FT .

Comparing with the l.h.s we get f̄(t, T ) = ĒT
t r̄(T ). �

2.4 On the market price of jump risk

We now note that the setup has been defined under the martingale measure Q. Now we specify
the implicit assumption on the market price of jump risk that will allows us to extrapolate from
our objective intuitions (P-intuitions) when setting up a concrete model later on.

In order to see the connections between the intensities under the different measures we recall
the appropriate Girsanov theorem 5.

Theorem 2.18. (Girsanov for DSMPP)
Let (Ω,F ,F, Q) be a filtered probability space which supports Q-Brownian motion W (t) and a
marked point process µ(dt, dq), where the marker q is drawn from the mark space X = [0, 1].
The Q-compensator is assumed to take the form ν(dt, dq) = K(t, dq)λ(t)dt under Q. Here λ is
the Q-intensity of the arrivals of the point process and K(t, dq) is the Q-conditional distribution
of the marker. Let h be a predictable process and φt(q), φt(q) > −1 a predictable function with
the properties ∫ t

0

‖h‖2ds < ∞,

∫ t

0

∫

X

|φt(q)|K(s, dq)λ(s)ds < ∞.

5See, for example, Björk (2004) or Schönbucher (2003).
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Define the process L(t) by




dL(t)
L(t−)

= h(t)dW (t) +
∫

X
φ(t) {µ(dt, dq) − ν(dt, dq)}

L(0) = 1
.

Define the probability measure P as follows

dP
dQ

= L(t) on Ft ∀t > 0.

Then:

1. The process WP is a Brownian motion and

dWP (t) = dW (t) − h(t)dt.

2. The predictable compensator under P is as follows

νP (dt, dq) = (1 + φt(q))ν(dt, dq). (19)

φt(q) in (19) is the market price of jump risk and, in principle, is stochastic φt(q, ω, X).

The following Lemma shows that in the case when Girsanov kernels are deterministic the
measure transformation does not affect K and gives us the relationship between the intensities
of default under P and under Q.

Lemma 2.19. Assume that the market price of jump risk, φ in (19) is a deterministic function
of time. That is

φt(q, ω) = φ(t) . (20)

Then,

1. The Q-default intensity, λ, relates to the P-default intensity λP , by

λP (t, r, I) = λ(t, r, I)(1 + φ(t)) (21)

2. The Q-loss quota distribution, conditional on default, Kt(dq), equals to the conditional on
default loss quota distribution under P, KP

t (dq).

Proof. The predictable compensator takes the form

ν(dt, dq) = Mt(dq)dt = λ(t)K(t, dq)dt,

where
λ(t) = Mt(E), K(t, dq) =

Mt(dq)
Mt(E)

From the Girsanov theorem we obtain that under P

MP
t (dq) = Mt(dq)(1 + φ(t))

λP (t) =
∫

E

(1 + φ(t))Mt(dq)
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Thus is case if φ(t) is deterministic and does not depend on q we see that

λP
t = (1 + φ(t))Mt(E) = (1 + φ(t))λ(t) (22)

KP
t (dq) =

(1 + φ(t))Mt(dq)∫
E(1 + φ(t))Mt(dq)

=
Mt(dq)∫
E Mt(dq)

= Kt(dq). (23)

�

We see that, in this case, the conditional distribution of the loss quota remains unchanged while
intensity changes according to (22), i.e. multiplied by a deterministic function of time. This
also means that once we have specified the influence of the state variable X under Q we have
also specified its influence under the objective measure (up to some deterministic factor in the
case of the intensity process λ).

Obviously it is discussable if assuming (20) is a very strong restriction or not. For this study
we assume it is not so we can use our objective intuitions in setting up the applied model for
macroeconomic risks. Nonetheless, the unhappy reader, can also interpret all our results as
only Q-results.

3 The Macroeconomic Risks

3.1 Setup

We model the systematic risk of an economy by considering what we call a market index, and
we deal with both the situation when this market index is the price of an important traded
asset in the economy and when it is not the price of any traded asset.

An example of an index that is the price of a traded asset is, say, oil price. Indices, like a stock
market indices or any other type of indices, on the other hand, are examples of indices that are
not prices of traded assets. We consider the two possibilities at all times.

It is rather well-known that the market index’ volatility (for example S&P500) seem to increase
when the market as a whole is depressed (low values of the index) and, on the contrary, the
volatility decreases when the market index is high (see Gaspar (2001)). In order to account for
this fact, we make market index volatility dependent on the index level.

Assumption 3.1. (Market Index)
Under the martingale measure Q, the market index I, satisfies the following stochastic differ-
ential equation (SDE)

• When I is the price of a traded asset

dIt = r(t)Itdt + γ(t, It)ItdW (t)

• When I is not the price of a traded asset

dIt = ζ(t)Itdt + γ(t, It)ItdW (t),

where r is the short rate, γ is a row-vector, W is a Q-Wiener process.

Furthermore, for each entry γi, the following holds
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(i)
∂γi

∂I
(t, I) < 0 . (24)

The property (i) in (24) represents the empirically observed fact that periods when the market
as a whole is depressed are periods with higher volatility, while booms are associated with low
volatilities.

Since in our setup it would be wrong to consider I independent of the risk-free short rate r
(at least under the risk neutral measure Q), and we cannot ignore its influence, we can also
consider r as one of the factors.

We will now present explicitly the dependence between the default intensities and the loss quota
distribution on the factors. The results from the abstract section can be immediately used with

X =
[
I
r

]
.

Finally, it is also reasonable to assume that firms less sensitive to systematic risks will suffer
less in terms of an increase in their default intensities, than firms more sensitive. We, thus,
introduce a measure of sensitivity to systematic risk, ε, ε ∈ [0, 1].

Assumption 3.2. (The default Intensity)
The intensity is a deterministic function of (t, r, I, ε). Furthermore, we have

(ii)
λ(t, r, I, 0) = λ̄ λ̄ ∈ R+ (25)

(iii)
∂λ(t, r, I, ε)

∂ε
> 0 , (26)

(iv)
∂λ(t, r, I, ε)

∂I
< 0 , (27)

(v)
∂λ(t, r, I, ε)

∂r
> 0 . (28)

Assumption 3.2 is based on the intuition that if a firm’s financial situation is strong enough,
then it should not really matter if the market is in a boom or in a depression. That is, firms
that are financially solid should be much less sensitive to the market situation than firms in less
solid financial situation. One can also see the parameter ε as a measure of credit worthiness
of a firm. Firms with high credit worthiness typically tend to be less sensitive to the business
cycle influence than firms with less credit worthiness.

If this is so, then it makes sense to have properties (ii) and (iii) in (25) and (26), respectively.

Properties (iv) and (v) (eq (27),(28)) tell us that if the default intensity depends upon macro-
economic variables, then the PD is higher in depressions or periods of high risk-free interest
rates, and lower in booms or periods with low risk-free interest rates. The influence of the
index value has to do with the increase in uncertainty in depressions, while the influence of the
short rate is related to the increase in the difficulty of refinancing existent debt when the cost
of borrowing money is higher (if a firm can only borrow money at high costs the PD is higher).
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Assumption 3.3. (Loss Quota)
The conditional distribution of loss quota is a deterministic function of (t, r, I). K is a stochastic
kernel from R+ × R+ × R+ → [0, 1] for any realization of (t, r, I)

We denote the cumulative distribution function of loss quota conditional on default as K̃

K̃(t, r, I, x) =
∫ x

0

K(t, r, I, dq),
∫ 1

0

K(t, r, I, dq) = 1, ∀t, r, I

with the following properties

K̃(t, r, I1, x) ≥ K̃(t, r, I2, x), if I1 ≥ I2, ∀x ∈ R ,

K̃(t, r1, I, x) ≤ K̃(t, r2, I, x), if r1 ≥ r2, ∀x ∈ R .

That is

(vi)
∂K̃(t, r, I, x)

∂I
> 0 , (29)

(vii)
∂K̃(t, r, I, x)

∂r
≤ 0 . (30)

For fixed (t, r), K̃(t, r, I, x) stochastically dominates all the conditional distributions with pa-
rameter I, such that I ≤ I and, for fixed (t, I) K̃(t, r, I, x) stochastically dominates all the
conditional distributions with parameter r̄, such that r̄ ≥ r.

Property (vi) in (29) can be justified by the following argument. Given that default has occured
and the debt holders are negotiating their loss quota so that the firm is able to continue operating
(assumption underlying any multi-default model), it seems reasonable that if the firms assets
are worth less they are willing to give in more (higher loss quota) since they would not get
that much in case of bankruptcy anyway. In addition bankruptcy costs tend to be higher in
depression periods, emphasizing this effect.

As to the risk-free interest rate, the argument for property (vii) in (30) is harder to support,
so it is our opinion it is reasonable to assume ∂K̃(t,r,I,x)

∂r ≤ 0, which includes the possibility of
no influence. However, if we assume that there exists an impact, then we argue that it should
be in the direction of higher interest rates leading to a decrease in the probability of lower loss
quotas. In high interest rate periods debt holders have better side options to invest there money
and are willing to give in less.

From the stochastic dominance assumption above we can now infer the impacts on the expected
loss quota.

Lemma 3.4. Given Assumption 3.3, the following relations hold for the expected value

qe(r, I) =
∫ 1

0

qK(r, I, dq),

(viii)
∂qe(r, I)

∂I
< 0 , (31)
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(ix)
∂qe(r, I)

∂r
≥ 0 . (32)

Proof. The proof is similar to both properties and is a consequence of (vi)⇒(viii) and (vii)⇒(ix).
We show it for the index value case.

qe(r, I) =
∫ 1

0

qK(r, I, dq) =
∫ 1

0

qdK̃(t, r, I, q).

Integrating by parts we get
∫ 1

0

qdK̃(t, r, I, q) = qK̃(t, r, I, q)
∣∣1
0
−

∫ 1

0

K̃(t, r, I, q)dq

= q K̃(t, r, I, 1)︸ ︷︷ ︸
1

−q K̃(t, r, I, 0)︸ ︷︷ ︸
0

−
∫ 1

0

K̃(t, r, I, q)dq

= q −
∫ 1

0

K̃(t, r, I, q)dq .

The results follows from differentiating this last expression w.r.t I and using the property (vi)

∂qe(r, I)
∂I

= −
∫ 1

0

∂K̃(t, r, I, q)
∂I︸ ︷︷ ︸

>0,∀q

dq < 0 .

The same argument will work for the interest rate r. �

Remark 3.5. (Tractability)
We note that besides the above mentioned properties K, conditional on the state variable infor-
mation, must be the distribution of a random variable taking values in (0, 1), and the intensity
λ must be always positive. It is, thus, extremely hard to find a treatable model where these two
facts together with properties (i)-(ix) are satisfied.

In particular, we have found that no model of affine or quadratic spreads6 will verify all the
above properties.

Given these tractability difficulties we go on with the analysis and draw qualitative results of
the influence of the market index on credit spreads.

3.2 Credit spreads term structures

Using the abstract result on Proposition 2.15 and Assumptions 3.2 and 3.3 we can study the

impacts of our macroeconomic variables X =
[
I
r

]
on the short spread s(t).

Remark 3.6. Given the results in Proposition 2.15, Assumption 3.2 and Lemma 3.4, the short
credit spread can be rewritten as a function of (t, r, I, ε) and

s(t, r, I, ε) = λ(t, r, I, ε)qe(t, r, I) . (33)

6Outside the class of affine or quadratic spread models it is basically impossible to find closed-form solutions.
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Furthermore we have

s(t, r, I, 0) = λ̄qe(t, r, I) ,
∂s(t, r, I, ε)

∂ε
=

∂λ(t, r, I, ε)
∂ε︸ ︷︷ ︸
>0

qe(t, r, I) > 0 ,

∂s(t, r, I, ε)
∂I

=
∂λ(t, r, I, ε)

∂I︸ ︷︷ ︸
<0

qe(t, r, I) + λ(t, r, I, ε)
∂qe(t, r, I)

∂I︸ ︷︷ ︸
<0

< 0 ,

∂s(t, r, I, ε)
∂r

=
∂λ(t, r, I, ε)

∂r︸ ︷︷ ︸
>0

qe(t, r, I) + λ(t, r, I, ε)
∂qe(t, r, I)

∂r︸ ︷︷ ︸
≥0

> 0 .

We note that given a concrete functional form for the intensity λ, and the loss quota distribution
and, thus, qe the above effects on the short spread can actually be quantified. Unfortunately,
this is not going to be the situation when dealing with forward credit spreads.

Before, however, we move on to forward credit spreads, we derive the dynamics by of the short
credit spread under Q.

Proposition 3.7. The dynamics of the short credit spread under Q is, in short hand notation,
as follows

ds̄ =
(

∂s

∂t
+

∂s

∂r
a(t) +

∂s

∂I
γ(It)It +

1
2

∂2s

∂r2
b2(t) +

1
2

∂2s

∂I2
γ2(It)I2

t +
∂2s

∂I∂r
b(t)γ(It)It

)
dt

+σs(t)dWt

where

a(t) =
∂f(t, T )

∂T

∣∣
T=t

+ α(t, t)

b(t) = σ(t, t)

σs(t) =
∂s

∂r
b(t) +

∂s

∂I
γ(It)It . (34)

where α(t, T ) and σ(t, T ) are the drift and the volatility of the forward risk-free interest rates
in (2) and the usual HJM drift condition in (3) holds.

Proof. We apply Itô formula to equation (33).

In addition to the Itô formula we just need to deduce the dynamics of the risk-free short rate
r, from the dynamics of the forward interest rate in (2). We recall r(t) = f(t, t) and it is easy
to show that 7

dr(t) =
(

∂f(t, T )
∂T

∣∣
T=t

+ α(t, t)
)

dt + σ(t, t)dWt .

�
7For a proof of this result see Björk (2004).
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Without a concrete functional form of the intensity and loss quota distribution, there is not
much one can say about the dynamics of the short spread. Except, perhaps that since ∂s

∂I < 0
and ∂s

∂r ≥ 0 (recall Remark 3.6) we see that increases in the volatility of the index lead to
decreases in the volatility of the short spread, while increases in the volatility of the short rate
r lead to increases in its volatility. Consequences to the drift cannot be drawn from Assumptions
3.2 and 3.3 alone.

Remark 3.8. (P considerations)
The same qualitative relations would still hold under the objective probability measure P as long
as the market price of jump risk is positive, which seems reasonable.

As to forward spreads s(t, T ), given that we could only obtain expressions in terms of expecta-
tions that have to be numerically evaluated, there little one can say.

In the next section we propose a way to model all the needed functions and show the simulation
results.

4 A concrete model

In this section we illustrate the theoretical results previously derived using a “toy model”.

Our purposes are that of highlighting the importance of considering the dependence between
recovery and intensity of default, by showing that the results obtained are substantial, and of
showing the applicability of our results, rather than that of being as realistic as we could.

For that reason, when setting up our model, we do it as simple as possible with the advantage of
getting more tractable formulas and a better understanding about what is driving the simulation
results.

The theoretical results apply, obviously, to the general case treated above and many more
examples could have been considered.

In order to have a concrete model we need to:

• Establish the dependence of the volatility of the index γ, on the index level.

• Provide the intensity functional form for λ, in terms of (t, r, I, ε).

• Decide on a distribution for the loss quota q for all possible (t, r, I).

In our toy model we take the risk-free rate, r, as constant and abstain from considerations
about the risk-free interest rates term structure. This is not realistic, but is also not harmful
to our goal of understanding the impact of spreads.

I is supposed to be the price of a traded asset. To consider non a non-traded asset, we would
need further considerations in terms of the market price of index risk.

For simplicity we also take all functions to be time homogenous, the extention to non time
homogeneous functions is straightforward.

Given these simplifications, to have a completely specified model to simulate we need to we de-
fine a function γ(I) for the index volatility, a function λ(I, ε) for the intensity and, a distribution
function K(dq, I) for the loss quota.
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4.1 Choosing the market index volatility γ

We start by defining a concrete volatility for the index γ(I). As stated in Assumption 3.1 we
would like to the index volatility inversely related to the index level.

We start by defining a ratio which relates the current value of the index to its long-run trend
value. Let us define

m(I) =
Ī

I
,

where Ī is a priori given and can be interpreted as the long-run trend value of the market index.

The above ratio measures how close or far away from the long-run trend value parameter, Ī , the
current value of the index I is. Intuitively, it seems reasonable to make the volatility dependent
on some relative value of the index, instead on its absolute value. Ī will be assumed to grow at
the risk-free rate over time.

Reasonable levels for m(I) typically range from 0.7 and 1.3. We note that the higher the current
level of the index the lower is m(I), i.e.

∂m

∂I
= − Ī

I2
< 0 .

That is, a value of, say, m = 0.7 refers to a bull market while m = 1.3 refers to a bear market.

Based on the above ratio we now define the volatility of index as a function of our moneyness
level m in the following way

γ(I) = γ̄ (m(I))
1
2 ∀I, γ̄ ∈ R+ . (35)

In accordance with Assumption 3.1, the higher the current value of the index the lower is the
index volatility γ,

∂γ(I)
∂I

= γ̄
1
2︸︷︷︸

>0

[m(I)]−
1
2

︸ ︷︷ ︸
>0

∂m(I)
∂I︸ ︷︷ ︸
<0

< 0 ∀I > 0 .

Figure 1 shows us two possible paths for the index process, one assuming γ to be just a constant
and the other where the index volatility depends on the index level as in (35).

4.2 Choosing default intensities and the loss quota distribution

4.2.1 Default intensity

Having defined the index volatility we now define the intensity function

λ(I, ε) = λ̄ [m(I)]ε =
λ̄

γ̄
[m(I)]ε−

1
2 γ(I) for λ̄ ∈ R + and ε ∈ [0, 1] .

We note that with this modelization we can interpret the intensity function as a function of the
index level or, if we prefer, as a function of the index volatility. One can argue that the intensity
should not be affected by index level, but instead by its volatility since it is the volatility that
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Figure 1: Two paths for the index level and volatility. The same noise was used for both cases, and
we took Ī = 10000 and I0 = 10000. Case 1: constant volatility γ = 0.2, the index process is the full
line. Case 2: stochastic volatility as in (35), the index process is the dotted line.

represents the “risk”. The above definition includes the two possibilities.

∂λ

∂I
= λ̄ε︸︷︷︸

>0

(m(I))ε−1

︸ ︷︷ ︸
>0

∂m(I)
∂I︸ ︷︷ ︸
<0

< 0

∂λ

∂γ
=

λ̄

γ̄︸︷︷︸
>0

[m(I)]ε−
1
2

︸ ︷︷ ︸
>0

> 0.

Figure 2 show the functions λ(I) and γ(I) for different values of m(I).

4.2.2 Loss quota q

Finally, we need to decide on our loss quota distribution.

As before we will make use of our m ratio in setting up the distribution of the loss process
which we will consider to belong to the Beta class. We start by recalling some basic properties
of the beta distribution.
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Figure 2: (a) : γ(I) for different levels of m(I) vs naive constant volatility γ̄ = 0.2. (b):λ(I), for
different levels of m(I) and different ε = 0, 1/16, 1/4, 1/2, λ̄ = 0.05.

Remark 4.1. The beta density function is given by

f(x) =
1

B(a, b)
xa−1(1 − x)b−11(0,1)(x)

where a > 0, b > 0 and B(a, b) is the beta function:

B(a, b)
∫ 1

0

xa−1(1 − x)b−1ds .

Furthermore, we have

E [X ] =
a

a + b
= µ VarX =

ab

(a + b + 1)(a + b)2
E [(X − µ)r] =

B(r + a, b)
B(a, b)

In our concrete application, for any fixed value of I , we choose

q ∼ Beta (2m(I), 2) i.e. a = 2m(I) and b = 2 , (36)

which is consistent with the desired properties referred in Assumption 3.3.

Thus,

K̃(q, I) =
1

B(2m(I), 2)

∫ q

0

x2m(I)−1(1 − x)dx .

Figure 3 shows us the loss quota density and its cumulative distribution function for three
different values of m(I): m = 0.7 representing a bull market, m = 1 for the case where the
market is at its long run level, and m = 1.3 representing a bear market.

The next properties, follow from the properties of the Beta distribution:

• The expected loss is given by

qe(I) = E [q(I)] =
m(I)

1 + m(I)
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Figure 3: Density and Cumulative distribution functions of loss quota for m = 1.3,m = 1,m = 0.7

•
∂qe(I)

∂I
=

∂m(I)
∂I

(1 + m(I))2
< 0

Furthermore

– if default occurs exactly at the long-run level the loss expected quota is exactly 1/2;

– if default occurs when the index level is “high” (m < 1) one expects to recover more,
expected loss quota decreases;

– if default occurs when the index level is “low” (m > 1) one expects to recover less,
expected loss quota increases.

Figure 4 bellow shows both possible realizations of the loss quota (drawn from the beta density
with the appropriate mean for each m) (stars), the expected loss quota levels for different values
of m (full line) in contrast with the naive approach of taking q̄ = 1

2 (dotted line).

Before we go on we illustrate as well a possible relation between the intensity and the recovery
process (1 − q) and the intensity λ. Figure 5 shows the scatter plot λ versus one possible
recovery realization for different levels of the index.

4.3 Simulation Results

In our simulations we use the Monte Carlo method where the step size is equivalent to one
trading day (we do 250 steps per year) and all simulations concern 5000 paths. The same noise
matrix is used for all scenarios and cases so that the values obtained can actually be compared
(discretization errors would be in the same direction for all scenarios).

The spreads with zero maturity correspond to the short spread, for all other maturities corre-
spond to the forward spread.

Table 1 let us the reference parameters, while Table 2 characterize all possible scenarios.
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Figure 5: Scatter plot of intensity versus possible recovery realization for different values of m.
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REFERENCE PARAMETERS

Maturities (T ) From days up to 5 years
Risk-free interest rate 5%

m(I)





Case A: bull market 0.7
Case B: normal market 1.0
Case C: bear market 1.3

Long-run index value 10.000e0.5∗T

Fixed index volatility (γ̄) 20%
Fixed intensity value (λ̄) 5%
Fixed recovery value ( q̄ = 1

2 ) 50%

Table 1: Reference values for the parameters in the model.

DIFFERENT SCENARIOS

Scenario Index Volatility Intensity Recovery
(1) F F F
(2) S F F
(3) F F S
(4) S F S
(5) F S F
(6) S S F
(7) F S S
(8) S S S

Table 2: Basic reference scenarios for simulations. F= Fixed, S= Stochastic.

4.3.1 Credit spreads

We start by looking into short spread dynamics.

Figure 6 presents three possible paths for the short spread under each scenario. Obviously,
three paths are not representative in any sense, still we belive the intuition is nice and we chose
paths with different characteristics. In (a) the market index decreases over time, leading to an
increase of the short spreads. In (b) we have a mixed path and in (c) the index value ends up
increasing leading to a reduction in the short spreads. From the analysis of this figure, we can
conclude that allowing for some stochasticity either in the intensity process or in the expected
loss quota lead to similar short spread dynamics and that it is the combined effect that really
makes the difference.

In any of the presented paths, if just one of the effects would be considered, the short spreads
do not oscillate more than 1% bellow or above the naive 2.5%, while for the combined effect
the variation can be as large as 4% (in the case of path (a) and quite often above 2%.

Figure 7 give us the terms structure of credit spreads for three possible market situation: a bull
market (where we took m = 0.7 for the initial point), a normal market (initially m = 1) and a
bear market (at the beginning m = 1.3).

28



SHORT SPREAD DYNAMICS
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Figure 6: Three possible paths for the short spread, s(t), dynamics.

29



As expected, as long as the market index is allowed to have any influence either on the PDs
or on the LGD the forward spread TS is not flat. It naturally increases with the maturity
and its level is lower than 2.5% in bull markets and higher in bear markets. As in Figure
6 the effect of the index on the intensity alone or on recovery alone is of the same order of
magnitude. The intensity seems, however, to have a more pronounced effect on the slope over
time. Nonetheless, the big difference results from the combined effect, specially when to that
we associate the impact of the negative relation between the index level and its volatility. Note
that scenario (8) give us the highest or the lowest term structure in all circumstances.

Table 3 give us some figures for these spreads at some maturities.

4.3.2 Prices of credit securities

The pricing of many credit derivatives can be made by computing what is know as key building
blocks. See for instance Schönbucher (2003) or Gaspar and Schmidt (2005).

Those building blocks are:

• The price of a zero-coupon defaultable bond with maturity t, under zero recovery,

p̄o(t, T ) = EQ
t

[
e−

∫
T
t

r(u)+λ(u)du
]

.

• The price at time t of a zero-coupon defaultable bonds with maturity T under non-zero
recovery, in our case,

p̄(t, T ) = EQ
t

[
e−

∫
T
t

r(u)+λ(u)qe(u)du
]

.

• The implied survival probabilities during the interval [t, T ]

prob(t, T ) = EQ
t

[
e−

∫ T
t

r(u)+λ(u)qe(u)du
]

.

• The price of a default digital payoff of 1 at default time, if default occurs in the interval
[t, T ]

digital =
∫ T

t

e(t, s)ds

where
e(t, T ) = EQ

t

[
λ(T )e−

∫ T
t

r(u)+λ(u)du
]

.

Tables 3 (b) and 4 (a),(b),(c) show us the values of all these key quantities for various scenarios
and different possible maturities.

Looking into Table 3 (b) the first thing that should be highlighted is that, even for low maturities
there is a difference in the prices produced by naive scenarios (1),(2), scenarios where just the
PD or the LGD is depended on the index level ((3),(4) for the LGD and (5),(6) for the PD), and
the scenarios were we consider the combined effect. We note that for the bull and bear market
case the difference in pricing is already evident for the bonds with approximately one month to
maturity (T = 0.1) and that with a maturity of 5 years the underpricing of the naive model can
be of up to 5% in a bull market, and up to 10% in a bear market situation. In normal market
situations the difference between the scenarios are slope differences with an overall tendency to
overprice by the naive model if in reality the market index affects the PD, the LGD or both.
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FORWARD SPREADS
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Figure 7: Forward spreads for all scenarios, under three possible market conditions.
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Table 3: Credit Spreads for several maturities T = 0, 0.1, 0.5, 1, 1.5, 2, 3, 5. For T = 0 it is the short
spread, for all others the forward spread.
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Table 4: (a) Prices of zero-recovery, zero-coupon bond prices for several maturities (top table). (b)
Implied survival probabilities in the interval [t, T ] for several maturities. (c) Price of a digital payoff at
default if it occurs in the interval [t, T ]. Three different market conditions: bull, normal and bear.
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In Table 4 the quantities presented do not depend upon recovery (recall the building blocks
equations), so all our scenarios reduce to three possibilities: constant intensity (case of scenarios
(1)(2)(3)(4)), intensity dependent on the index that has or constant volatility (scenarios (5)(7)),
or stochastic volatility (scenarios (6)(8)). In Table 4 (a), we see that the naive model can lead
to underprice in bull markets also when we consider defaultable zero recovery bonds, and
overpricing in bear markets. The dimension of these misspricings is similar to the misspricing
in the previous table.

When looking into survival probabilities (Table4 (b)) the scenarios considering the index influ-
ence show less probability of surviving in bear markets than in bull markets, with a difference
up to 7% already in the 5-year maturity. This indicates that using the naive model could lead
to a possible overestimation of the true survival probabilities in bear markets and underesti-
mate in bull markets. As in most of the previous tables, the dimension of the errors tend to be
considerably bigger in bear markets than in bull markets. In the case of survival probability the
overestimation can go up to 5% in bear markets in contrast with the up to 2% in bull markets.
Finally, in Table 4 (c) we have the price if a digital payoff of 1 at default time. As before the
differences to the naive model are more drastic in bear markets and can be considered quite
drastic, specially, if one takes in consideration that an horizon of 5 years is quite short and all
the impacts are likely to increase for higher maturities as we will see in the next section.

In Section 4.4 we run some maturity related robustness checks and draw the readers attention
to what we consider to be interesting aspects related to the sensitivity parameter ε (assumed
constant up to now) and possible tracking of credit spreads term structures by market volatili-
ties.

4.4 Additional Considerations

4.4.1 Higher maturities

In this section we increase the maturity horizon we look at, and analyze to which extent our
results hold. Table 5 presents forward spreads and defaultable bonds for several maturities,
while Table 6 presents zero recovery bond prices implied survival probabilities and the price of
default digital payoff of 1. First of all we can clearly see that for all the three scenarios survival
probabilities decrease significantly with the increase in the horizon T . If we increase the horizon
from 5 to 15 years, in the stochastic volatility scenario the survival probability decreases almost
by 40% for the bull market and up to 50% in case of the bear market. This is a realistic feature
of our model in our opinion since at the longer time horizons when the market is in the recession
and firms are known to be sensitive to the fluctuations of the market, the probability of default
is quite high.

Moreover, it is also interesting to notice that although in case of the bull market stochastic
volatility scenario yields higher survival probabilities at all the maturities, the difference in
survival probabilities is much less at the higher maturities. For the case of the bear market, on
the contrary, survival probabilities are lower for the stochastic volatility case, and the differ-
ence in the survival probabilities between the stochastic volatility and naive scenarios is more
pronounced. In contrast to the bull market the difference increases by approximately 5% with
the increase of the investment horizon from 5 to 15 years.

Overall the results are of the same nature as before with one interesting additional result for
the long end of the forward spreads term structure.
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Figure 8: Forward spreads for all scenarios, under three possible market conditions and higher maturity
values T = 5, 6, 7, 8, 10, 12, 15, 10. 35



From Figure 8 we see that when we consider the dependence of both PD and LGD and the
negative relation the index level and volatility (scenario (8)), the TS seems to converge faster
to its long-run level. In fact, for maturities higher than 15 years the TS of this scenario are
relatively flat. Thus, the forward credit spreads are most sensitive to the influence of the market
index at the relatively shorter maturities, and somewhere at maturity of around 15 years the
credit spreads become relatively more flat and less sensitive to the market index, moving in fact
closer to each other.

4.4.2 Ratings and different sensitivities

We now look into the parameter ε in

λ(I, ε) = λ̄ [m(I)]ε ,

which is a measure of the sensitivity of a firms PD to the market situation.

The intuition comes from the fact the PD of high credit worthiness firms should depend much
less on market oscillation than that of less credit worthiness firms more sensitive to business
cycles. In this sense different ε parameters could represent the term structure of firms with
different rating levels.

In the following we consider three different values for epsilon: high ε = 1/2, medium ε = 1/4
and low ε = 1/16.8

Figure 9 and Tables 7 and 8 show the simulation results for the different ε values, under normal
market conditions. The key feature that results from considering different sensitivities is that
the TS of less sensitive firms have smaller TS slope. This is particularly obvious for scenarios
(7)(8) when the index influence both PD and LGD and less obvious when it affects only one of
them.

Thus, from a practical point of view it is more important to take into account the correlation
with the market index when considering a portfolio of securities with low credit rating. We
believe that the value of the portfolio will fluctuate significantly together with the business
cycle. The effect will be even more pronounced for the low credit rating firms and especially in
case of the stochastic volatility index specification.

4.4.3 Using implied ATM volatilities as credit spread trackers

An interesting side effect of our model, when we take the index volatility to be stochastic and
negatively related to the index level, is that short spread dynamics can be quite well tracked
by observing the index volatility. See Figure 10 with 3 possible volatility paths and compare
to the short spread evolution for the same paths on Figure 6.

If the (spot) volatility seems to be a good tracker of the short spread, then implied volatilities of
options with higher maturities may be good trackers of the forward spread TS. All this results
from the negative correlation between the index level and its volatility.

This gives some fundamental reasoning for using implied volatilities of options on indices as
predictors of the forward spread term structure and is in line with what seems to be real
life common practice among traders who typically use at-the-money (ATM) volatility term
structures in predicting forward credit spreads. For example, Collin-Dufresne, Goldstein, and

8The case of total insensitivity, or ε = 0, is always considered since in scenarios (1)(2)(3)(4) λ(I, ε) = λ̄.
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Table 5: (a) Credit Spreads and (b)Price of defaultable bond with recovery for several higher maturities
T = 5, 6, 7, 8, 10, 12, 15, 20.
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Table 6: (a) Prices of zero-recovery, zero-coupon bond prices for several maturities (top table).
(b)Implied survival probabilities in the interval [t, T ] for several maturities. (c) Price of a digital
payoff at default if it occurs in the interval [t, T ].
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FORWARD SPREADS - Different market Sensitivities
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Figure 9: Forward spreads for all scenarios, under normal market conditions. For three different values
of ε: high ε = 1

2
, medium ε = 1

4
and low ε = 1

16
.

39



T
(1

)(
2)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

0
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%

0.
1

2
.5

0
0

0
%

2
.5

0
2

5
%

2
.5

0
2

5
%

2
.5

0
3

8
%

2
.5

0
3

8
%

2
.5

0
8

8
%

2
.5

0
8

8
%

0.
5

2
.5

0
0

0
%

2
.5

1
2

4
%

2
.5

1
2

6
%

2
.5

1
8

9
%

2
.5

1
9

3
%

2
.5

4
4

0
%

2
.5

4
5

0
%

1
2

.5
0

0
0

%
2

.5
2

4
6

%
2

.5
2

4
7

%
2

.5
3

7
6

%
2

.5
3

8
6

%
2

.5
8

6
9

%
2

.5
8

9
4

%

1.
5

2
.5

0
0

0
%

2
.5

3
6

2
%

2
.5

3
7

8
%

2
.5

5
7

3
%

2
.5

6
1

2
%

2
.6

3
2

7
%

2
.6

4
1

6
%

2
2

.5
0

0
0

%
2

.5
4

7
9

%
2

.5
4

9
2

%
2

.5
7

5
5

%
2

.5
8

1
6

%
2

.6
7

3
6

%
2

.6
8

7
5

%

3
2

.5
0

0
0

%
2

.5
7

0
0

%
2

.5
7

3
6

%
2

.6
1

4
2

%
2

.6
3

0
0

%
2

.7
6

0
6

%
2

.7
9

5
3

%

5
2

.5
0

0
0

%
2

.6
1

2
1

%
2

.6
1

4
5

%
2

.6
8

3
6

%
2

.7
1

7
8

%
2

.9
0

8
2

%
2

.9
7

6
9

%

T
(1

)(
2)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

0
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%

0.
1

2
.5

0
0

0
%

2
.5

0
2

5
%

2
.5

0
2

5
%

2
.5

0
1

6
%

2
.5

0
1

6
%

2
.5

0
5

4
%

2
.5

0
5

3
%

0.
5

2
.5

0
0

0
%

2
.5

1
2

4
%

2
.5

1
2

6
%

2
.5

0
7

9
%

2
.5

0
8

0
%

2
.5

2
6

6
%

2
.5

2
7

1
%

1
2

.5
0

0
0

%
2

.5
2

4
6

%
2

.5
2

4
7

%
2

.5
1

5
7

%
2

.5
1

6
0

%
2

.5
5

2
5

%
2

.5
5

3
5

%

1.
5

2
.5

0
0

0
%

2
.5

3
6

2
%

2
.5

3
7

8
%

2
.5

2
3

6
%

2
.5

2
5

2
%

2
.5

7
9

2
%

2
.5

8
3

7
%

2
2

.5
0

0
0

%
2

.5
4

7
9

%
2

.5
4

9
2

%
2

.5
3

1
3

%
2

.5
3

3
5

%
2

.6
0

3
8

%
2

.6
0

9
9

%

3
2

.5
0

0
0

%
2

.5
7

0
0

%
2

.5
7

3
6

%
2

.5
4

7
1

%
2

.5
5

2
7

%
2

.6
5

4
4

%
2

.6
6

9
7

%

5
2

.5
0

0
0

%
2

.6
1

2
1

%
2

.6
1

4
5

%
2

.5
7

6
8

%
2

.5
8

7
9

%
2

.7
4

3
3

%
2

.7
7

0
1

%

T
(1

)(
2)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

0
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%
2

.5
0

0
0

%

0.
1

2
.5

0
0

0
%

2
.5

0
2

5
%

2
.5

0
2

5
%

2
.5

0
0

3
%

2
.5

0
0

3
%

2
.5

0
3

2
%

2
.5

0
3

2
%

0.
5

2
.5

0
0

0
%

2
.5

1
2

4
%

2
.5

1
2

6
%

2
.5

0
1

7
%

2
.5

0
1

7
%

2
.5

1
5

6
%

2
.5

1
5

9
%

1
2

.5
0

0
0

%
2

.5
2

4
6

%
2

.5
2

4
7

%
2

.5
0

3
3

%
2

.5
0

3
4

%
2

.5
3

1
0

%
2

.5
3

1
3

%

1.
5

2
.5

0
0

0
%

2
.5

3
6

2
%

2
.5

3
7

8
%

2
.5

0
5

0
%

2
.5

0
5

3
%

2
.5

4
6

0
%

2
.5

4
8

2
%

2
2

.5
0

0
0

%
2

.5
4

7
9

%
2

.5
4

9
2

%
2

.5
0

6
7

%
2

.5
0

7
0

%
2

.5
6

0
6

%
2

.5
6

2
9

%

3
2

.5
0

0
0

%
2

.5
7

0
0

%
2

.5
7

3
6

%
2

.5
1

0
0

%
2

.5
1 1

0
%

2
.5

8
9

1
%

2
.5

9
5

1
%

5
2

.5
0

0
0

%
2

.6
1

2
1

%
2

.6
1

4
5

%
2

.5
1

6
5

%
2

.5
1

8
4

%
2

.6
4

1
9

%
2

.6
4

9
1

%

L
o

w

(a
) 

  S
P

R
E

A
D

S

H
ig

h

M
ed

iu
m

T
(1

)(
2)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

0.
1

0
.9

9
2

4
0

.9
9

2
4

0
.9

9
2

4
0

.9
9

2
4

0
.9

9
2

4
0

.9
9

2
4

0
.9

9
2

4

0.
5

0
.9

6
3

1
0

.9
6

3
1

0
.9

6
3

1
0

.9
6

3
1

0
.9

6
3

1
0

.9
6

3
0

0
.9

6
3

0

1
0

.9
2

7
7

0
.9

2
7

5
0

.9
2

7
5

0
.9

2
7

5
0

.9
2

7
5

0
.9

2
7

2
0

.9
2

7
2

1.
5

0
.8

9
3

5
0

.8
9

3
3

0
.8

9
3

3
0

.8
9

3
1

0
.8

9
3

1
0

.8
9

2
6

0
.8

9
2

6

2
0

.8
6

0
6

0
.8

6
0

2
0

.8
6

0
2

0
.8

6
0

0
0

.8
5

9
9

0
.8

5
9

1
0

.8
5

9
0

3
0

.7
9

8
4

0
.7

9
7

6
0

.7
9

7
5

0
.7

9
7

1
0

.7
9

7
0

0
.7

9
5

3
0

.7
9

5
0

5
0

.6
8

7
2

0
.6

8
5

2
0

.6
8

5
2

0
.6

8
4

0
0

.6
8

3
6

0
.6

8
0

0
0

.6
7

9
2

T
(1

)(
2)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

0.
1

0
.9

9
2

4
0

.9
9

2
4

0
.9

9
2

4
0

.9
9

2
4

0
.9

9
2

4
0

.9
9

2
4

0
.9

9
2

4

0.
5

0
.9

6
3

1
0

.9
6

3
1

0
.9

6
3

1
0

.9
6

3
1

0
.9

6
3

1
0

.9
6

3
0

0
.9

6
3

0

1
0

.9
2

7
7

0
.9

2
7

5
0

.9
2

7
5

0
.9

2
7

6
0

.9
2

7
6

0
.9

2
7

4
0

.9
2

7
4

1.
5

0
.8

9
3

5
0

.8
9

3
3

0
.8

9
3

3
0

.8
9

3
4

0
.8

9
3

3
0

.8
9

3
0

0
.8

9
3

0

2
0

.8
6

0
6

0
.8

6
0

2
0

.8
6

0
2

0
.8

6
0

4
0

.8
6

0
3

0
.8

5
9

7
0

.8
5

9
7

3
0

.7
9

8
4

0
.7

9
7

6
0

.7
9

7
5

0
.7

9
7

9
0

.7
9

7
8

0
.7

9
6

6
0

.7
9

6
4

5
0

.6
8

7
2

0
.6

8
5

2
0

.6
8

5
2

0
.6

8
5

9
0

.6
8

5
8

0
.6

8
2

9
0

.6
8

2
6

T
(1

)(
2)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

0.
1

0
.9

9
2

4
0

.9
9

2
4

0
.9

9
2

4
0

.9
9

2
4

0
.9

9
2

4
0

.9
9

2
4

0
.9

9
2

4

0.
5

0
.9

6
3

1
0

.9
6

3
1

0
.9

6
3

1
0

.9
6

3
1

0
.9

6
3

1
0

.9
6

3
1

0
.9

6
3

1

1
0

.9
2

7
7

0
.9

2
7

5
0

.9
2

7
5

0
.9

2
7

6
0

.9
2

7
6

0
.9

2
7

5
0

.9
2

7
5

1.
5

0
.8

9
3

5
0

.8
9

3
3

0
.8

9
3

3
0

.8
9

3
5

0
.8

9
3

5
0

.8
9

3
2

0
.8

9
3

2

2
0

.8
6

0
6

0
.8

6
0

2
0

.8
6

0
2

0
.8

6
0

6
0

.8
6

0
6

0
.8

6
0

1
0

.8
6

0
1

3
0

.7
9

8
4

0
.7

9
7

6
0

.7
9

7
5

0
.7

9
8

3
0

.7
9

8
3

0
.7

9
7

4
0

.7
9

7
3

5
0

.6
8

7
2

0
.6

8
5

2
0

.6
8

5
2

0
.6

8
6

9
0

.6
8

6
9

0
.6

8
4

7
0

.6
8

4
6

(b
) 

  Z
E

R
O

-C
O

U
P

O
N

 D
E

F A
U

L T
A

B
L

E
 B

O
N

D
S

 W
/ R

E
C

O
V

E
R

Y

H
ig

h

M
ed

iu
m

L
o

w

Table 7: (a) Credit Spreads and (b)Price of defaultable bond with recovery for several maturities and
three different values of ε: high ε = 1

2
, medium ε = 1

4
and low ε = 1
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Table 8: (a) Prices of zero-recovery, zero-coupon bond prices for several maturities (top table).
(b)Implied survival probabilities in the interval [t, T ] for several maturities. (c) Price of a digital
payoff at default if it occurs in the interval [t, T ]. Three different values of ε: high ε = 1

2
, medium ε = 1

4

and low ε = 1
16

. Higher maturities and three different market conditions: bull, normal and bear.
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VOLATILITY TRACKERS
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Figure 10: Volatility paths corresponding to the spot spread paths in Figure 6.

Martin (2001) investigated the determinants of credit spread changes. They showed that credit
spreads are mostly driven by a single common factor and showed that implied volatilities of
index options contain important information for credit spreads9.

5 Conclusions and future research

We propose a concrete reduced-form model where both the PD and LGD are dependent on
a macroeconomic index. Furthermore, during depressions both the PD and the LGD increase
(the reverse happens during booms). Finally, depressions are periods of higher market volatility,
whiles booms are periods with low volatility.

By simulation we show that many of the realistic features of our model depend upon:

(i) the fact that both PD and LGD are driven by the same factors,

(ii) the negative relation of the index level and its volatility.

These two aspects together, unfortunately, make the model untractable, from an analytical
point of view. Still this may be the right price to pay given all the behaviors it captures. The
main realistic features captured by our model can be summarized as follows:

9Recent papers (see e.g. Cremers, Dreissen, and Weinbaum (2004)) start using measures of volatility and
skewness that are based on individual stock options to explain credit spreads on corporate bonds. Implied
volatilities of individual options are shown to contain important information for credit spreads. They showed
that those implied volatilities improve on both implied volatilities of index options. However, in our framework
we can not model this feature since the reduced models do not allow to model stock and corporate bonds
together.
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• The difference between short spreads in bull versus bear markets can be up to three times
more than the difference produced by models that consider the market influence in the
PD or LGD only [mainly property (i)].

• Faster convergence to long-run levels, originating flat TS for maturities higher than 15
years [properties (i) and (ii)].

• Market volatility track quite well the short credit spread dynamics, suggesting that the TS
of ATM implied volatilities of index options may do the same for forward credit spreads
[mainly property (ii)].

It seems clear to us, that a model that has both characteristic (i) and (ii) will not allow for
closed-form solutions. We would, nonetheless, like to finish the paper with a positive note
related to future research.

Given the tractability drawback, and since one must rely on numerical simulations, the ideal
would be to model the intensity and the distribution of the loss quota as realistic as possible
(this may involve different functional forms and different market price of jump risk assumption).
A study of the credit TS shapes observed in the market can be of help in defining such functional
forms. Calibration of our “toy model” or other more complex model to market data seems to be
another obvious next step. In addition to the single firm, this framework could also be extended
to several firms and help dealing with portfolio credit risk issues. For portfolio credit risk the
interdependence between PD and LGD is likely to have a much more relevant impact than at
the individual firm level. Indeed, portfolio losses depend upon both quantities and the fact
that periods when default is more likely may also be periods when recovery is lower, suggest
caution is using naive models to establish bank reserves and related precautionary measures.
Finally, our last comment on volatility trackers may help in constructing the bridge connecting
the equity and credit markets and deserves being further investigated.
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Schönbucher, P. J. (2003). Credit derivatives pricing models - models, pricing and implemen-
tation. JWS.

Wilde, T. (2001). IRB approach explained. Risk 14 (5), 87–90.

Wilson, T. (1997). Portfolio credit risk. Risk 10 (9-10), 111–117, 56–61.

44


