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Abstract

In this paper, a unified framework for testing the adequancy of an
estimated EGARCH model is presented. The tests are Lagrange multiplier
or Lagrange multiplier type tests and include testing an EGARCH model
against a higher-order one and testing parameter constancy. Furthermore,
various existing ways of testing the EGARCH model against GARCH one
are investigated as another check of model adequancy. This is done by
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1 Introduction

Model evaluation is an important part of modelling not only for the conditional
mean models but for the conditional variance specifications as well. It is use-
ful, one could argue even necessary, to carry out an in-sample evaluation of a
volatility model before it is used for forecasting. Engle & Ng (1993), Li & Mak
(1994) and Chu (1995), to name a few examples, derived misspecification tests
for generalized autoregressive heteroskedasticity (GARCH) models. Recently,
Lundbergh & Teräsvirta (2002) presented a unified framework for testing the
adequacy of an estimated GARCH model. Their framework covers, among
other things, testing the null of no ARCH in the standardized errors, testing
symmetry against a smooth transition GARCH (STGARCH) model and a test
of parameter constancy against smoothly changing parameters.

It appears that less work has been done for the evaluation of exponential
GARCH (EGARCH) model by Nelson (1991). In fact, Nelson already sug-
gested several tests based on orthogonality conditions that the errors of the
model satisfy under the null hypothesis, but not much has happened since,
nor have Nelson’s tests been regularly applied in empirical work. In this pa-
per we continue Nelson’s work and consider a number of misspecification tests
for the EGARCH model. They are Lagrange multiplier or Lagrange multiplier
type tests and include testing an EGARCH model against a higher-order one
and testing parameter constancy. Furthermore, we investigate various ways of
testing the EGARCH model against GARCH ones as another check of model
adequacy. The literature on testing non-nested hypotheses for volatility mod-
els includes Chen & Kuan (2002), Kim, Shephard & Chib (1998) and Lee &
Brorsen (1997); see also Engle & Ng (1993) and Ling & McAleer (2000). Their
tests are considered in the present framework, and the small-sample properties
of the tests are investigated by simulation.

The plan of the paper is as follows. The model is defined in Section 2
and the estimation of parameters is discussed briefly in Section 3. Section 4
considers testing an EGARCH model against a higher order one and testing
parameter constancy. In Section 5 non-nested tests for testing EGARCH and
GARCH models against each other are discussed. Section 6 contains results of a
simulation experiment and Section 7 an empirical example. Finally, conclusion
appear in Section 8.

2 The model

Let
yt = f(wt;ϕ) + εt, t = 1, ..., T (1)

where f is at least twice continuously differentiable function of ϕ, with wt =
(1, yt−1, ..., yt−n, x1t, ..., xkt)

′. The error process is parameterized as

εt = zth
1/2
t , t = 1, ..., T (2)
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where {zt} is a sequence of independent identically distributed random variables
with zero mean and unit variance. A family of EGARCH(p,q) models may be
defined as a combination of (2) and

lnht = α0 +

q∑
j=1

gj(zt−j) +

p∑
j=1

βj lnht−j . (3)

The conditional variance is constrained to be non-negative by the assumption
that the logarithm of ht is a function of past zt’s. Equations (1) and (3) define
a class of EGARCH(p,q) models. Setting

gj(zt−j) = αjzt−j + ψj(|zt−j | −E |zt|), j = 1, ..., q, (4)

in (3) yields the EGARCH(p,q) model proposed by Nelson (1991). The over-
whelmingly most popular EGARCH model in application has been (4) with
p = q = 1. When gj(zt−j) = αj ln z

2
t−j , j = 1, ..., q, (2) and (3) define the log-

arithmic GARCH (LGARCH) model that Geweke (1986) and Pantula (1986)
proposed. The specification in (4) amounts to g(zt) being a function of both
the magnitude and sign of zt. This enables ht to respond asymmetrically to
positive and negative values of εt, which is believed to be important for exam-
ple in modelling the behaviour of stock returns. As to the distribution of zt, we
assume it to be symmetric around zero, which implies Ez3t = 0. This assumption
together with Ez3t = 0 guarantees block diagonality of the information matrix
of the log-likelihood function. Block diagonality turn allows us to concentrate
of the conditional variance function (3) without simultaneously considering (1).

3 Estimation of parameters

Before considering misspecification tests we briefly discuss parameter estima-
tion. If we complete the previous assumptions about zt by assuming normality,
the log-likelihood function of the EGARCH(p, q) model is

Lt = c− (1/2)
T∑

t=1

lnht − (1/2)
T∑

t=1

(ε2t/ht) (5)

with

lnht = α0 +

q∑
j=1

{αjzt−j + ψj(|zt−j| −E |zt|)}+

p∑
j=1

βj lnht−j . (6)

Let β = (α0, α1, ..., αq, ψ1, ..., ψq, β1, ..., βp)
′. Nelson (1991) discussed maximum

likelihood estimation under the assumption that the errors have a generalized er-
ror distribution, but we do not follow his path here. The first partial derivatives
with respect to the EGARCH parameters are

T∑
t=1

∂lt
∂β

= (1/2)
T∑

t=1

(
ε2t
ht

− 1)
∂ lnht
∂β

(7)
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where

∂ lnht
∂β

= xβt − (1/2)

q∑
j=1

{αjzt−j + ψj |zt−j |}
∂ lnht−j

∂β
+

p∑
j=1

βj
∂ lnht−j

∂β
(8)

where xβt = (1, zt−1, ..., zt−q, |zt−1|−E |zt| , ..., |zt−q|−E |zt| , lnht−1, ..., lnht−p)′.
The parameters of (1) with EGARCH errors (6) may be estimated jointly by

maximum likelihood. The normality assumption guarantees block diagonality
of the information matrix such that the off-diagonal blocks involving partial
derivatives with respect to both mean and variance parameters are null matrices.
Thus the parameters of the conditional mean defined by (1) can be estimated
separately without asymptotic loss of efficiency. This implies that maximum
likelihood estimates for the parameters in (6) can be obtained numerically from
the first-order conditions defined by setting (7) equal to zero.

Under sufficient regularity conditions, the maximum likelihood estimators
can be expected to be consistent and asymptotically normal. It appears, how-
ever, that these conditions have not yet been verified in the present situation.
Verifying them in the GARCH case has been a demanding task, and things
do not appear to be any easier in the case of EGARCH models. In what fol-
lows, it is assumed that the maximum likelihood estimators are consistent and
asymptotically normal.

It is seen from (8) that parameter estimation implies a number of recursions,
and starting-values for parameters are therefore necessary. Nelson (1991) dis-
cussed the role of starting-values and concluded that in his simulations the use
of other starting-values than the unconditional mean of lnht very rapidly led to
values of ht obtained by starting from the estimate of E lnht.

4 Evaluation of EGARCH models

4.1 Testing against a higher-order EGARCH model

In this section our starting-point is that the parameters of the EGARCH(p,q)
model have been estimated by maximum likelihood, assuming that the errors
are standard normal and independent. If, in addition to independence, it is only
assumed that Ezt = 0, Ez2t = 1 and Ez3t = 0, the estimators are quasi maximum
likelihood estimators. First we consider testing an EGARCH(p,q) model against
a higher-order model, either an EGARCH(p+ r,q) or EGARCH(p,q+ r), r > 0.
This is analogous to Bollerslev’s test of GARCH(p,q) against GARCH(p+ r,q)
or GARCH(p,q + r), r > 0. Consider now an augmented version of model (2),

εt = zth
1/2
t g

1/2
t (9)

where

ln gt =
r∑

j=1

{αq+jzt−q−j + ψq+j(|zt−q−j | −E |zt|)} (10)
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The null hypothesis H0 : (αj , ψj) = (0, 0), j = q + 1, ..., q + r. Under this
hypothesis, gt ≡ 1, and the model collapses into a EGARCH(p,q). Assume
now that the alternative H1 : at least one ψj �= 0, j = q + 1, ..., q + r. The
log-likelihood function of the model is

LT = c− (1/2)
T∑

t=1

(lnht + ln gt)− (1/2)
T∑

t=1

[ε2t/(htgt)]. (11)

Let βr = (αq+1, ..., αq+r, ψq+1, ..., ψq+r)
′. The block of the score vector con-

taining the partial derivatives with respect to βr has the form

∂LT

∂βr

= (1/2)
T∑

t=1

(
ε2t
htgt

− 1)
∂ ln gt
∂βr

(12)

where

∂ ln gt
∂βr

= xβ
r
t − (1/2)

r∑
j=1

{αjzt−q−j + ψj(|zt−q−j | −E |zt|)}
∂ ln gt−q−j

∂βr

(13)

with xβ
r
t = (zt−q−1, |zt−q−1| − E |zt| , ..., zt−q−r, |zt−q−r| −E |zt|)

′. Let ĥt and

∂ ln ĥt/∂β be the conditional variance ht and ∂ lnht/∂β, respectively, estimated
under H0, and let

v̂t = (|̂εt−q−1| /ĥt−q−1, ..., |̂εt−q−r| /ĥt−q−r, ε̂t−q−1/ĥt−q−1, ..., ε̂t−q−r/ĥt−q−r)
′.

Assume, furthermore, that 1-
∑p

j=1 βjL
j has its roots outside the unit circle.

This, together with the assumption of normality for zt, guarantees that εt has
all moments see Nelson (1991) and He, Teräsvirta & Malmsten (2002). Thus
the moment conditions required for the asymptotic distribution theory of the
LM test statistic are satisfied. The LM test can be carried out in the TR2 form
as follows:

1. Estimate the parameters of the EGARCH(p,q) model and compute the

squared standardized residuals ε̂2t /ĥt − 1, t = 1, ..., T , and the ”residual

sum of squares” SSR∗

0 =
∑T

t=1(̂ε
2
t/ĥt − 1)2.

2. Regress ε̂2t /ĥt − 1 on ∂ ln ĥt/∂β and v̂t and compute the sum of squared
residuals, SSR∗

1.

3. Compute the value of the test statistic

LMaddEGARCH = T
SSR∗

0 − SSR
∗

1

SSR∗

0

(14)

that has an asymptotic χ2 distribution with 2r degrees of freedom under
the null hypothesis.
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If the normality assumption does not hold, this distribution theory is not
valid. Nevertheless, it is possible to robustify the test against non-normal errors
following Wooldridge (1991). Assuming that E |εt|

3 <∞, the robust version of
the test is carried out as follows:

1. Regress v̂t on ∂ ln ĥt/∂β, and compute the (2r×1) residual vectors rt,
t = 1, ..., T .

2. Regress 1 on (̂ε2t/ĥt−1)rt and compute the residual sum of squares SSR∗

from that regression. The test statistic is

LMaddEGARCH−R = T − SSR∗ (15)

and has an asymptotic χ2 distribution with 2r degrees of freedom under
the null hypothesis.

When p = q = 0, the test collapses into a test of no EARCH against
EARCH(r). The test against H1 : "at least one βj �= 0, j = q + 1, ..., q + r", is
constructed analogously by redefining vector v̂t. Note that when p = q = 0, the
corresponding test would be meaningless.

4.2 Testing parameter constancy

Testing parameter constancy is important in its own right but also because
nonconstancy signals an apparent lack of covariance stationarity. Here we as-
sume that the alternative to constant parameters in the conditional variance
is that the parameters, or a subset of them, change smoothly over time. This
test may be viewed as the EGARCH counterpart of the test for parameter con-
stancy against smooth continuous change in parameters for the GARCH model
in Lundbergh & Teräsvirta (2002). Lin & Teräsvirta (1994) applied the same
idea to testing parameter constancy in the conditional mean. Consider now the
augmented model (9) where

ln gt = (π0 +

q∑
j=1

{π1jzt−j + π2j |zt−j |}+

p∑
j=1

π3j lnht−j)Gn(t; γ, c) (16)

with the transition function

Gn(t; γ, c) =

[
1 + exp(−γ

n∏
i=1

(t− ci))

]
−1

, γ > 0, c1 ≤ ... ≤ cn. (17)

In (17) γ is a slope parameter, and c = (c1, ..., cn) a location vector. Conditions
γ > 0 and c1 ≤ ... ≤ cn are identifying conditions. When γ = 0, Gn(t; γ, c) ≡
1/2. Typically in practice, n = 1 or n = 2. The former choice yields a standard
logistic function. When the slope parameter γ → ∞, (17) with n = 1 becomes a
step function whose value equals one for t > c1 and zero otherwise. This special
case represents a single structural break in the model at t = c1. When n = 2,
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(17) is symmetric about (c1 + c2)/2, and its minimum value, achieved at this
point, lies between zero and 1/2. The value of the function approaches unity as
t → ±∞. When γ → ∞, function (17) becomes a ”double step” function that
obtains value zero for c1 ≤ t ≤ c2 and unity otherwise.

In order to consider the testing problem, letGn = Gn−1/2. This transforma-
tion simplifies notation in deriving the test but does not effect the generality of
the arguments. The smooth transition alternative poses an identification prob-
lem. The null hypothesis can be expressed as H0 : γ = 0 in Gn. It can be seen
from (16) and (17) that when the null hypothesis holds π0, π1j , π2j , j = 1, ..., q,
and π3j , j = 1, ..., p, in (16) and c1, ..., cn in (17) are unidetified nuisance pa-
rameters. The standard asymptotic distribution theory is thus not available in
this situation, for a general discussion see Hansen (1996).

We circumvent the identification problem by following Luukkonen, Saikko-
nen & Teräsvirta (1988), see also Lundbergh & Teräsvirta (2002). This is done
by expanding the transition function Gn into a first-order Taylor series around
γ = 0, replacing the transition function (17) with this Taylor approximation in
(16) and rearranging terms. This results in

ln gt =
n∑

i=1

δ′ivit +R (18)

where δi = γ
∼

δi,
∼

δi �= 0, vit = tixβt, i = 1, ..., n, and R is the remainder. The
new null hypothesis based on (18) is equals δ1 = ... = δn = 0. Note that under
H0 : R = 0 so that the remainder does not affect the asymptotic distribution
theory. The test can be carried out in TR2 form via an auxiliary regression
exactly as in the previous section. Vectors vit now contains the additional
variables that appear in the auxiliary regression such that v̂t = (v′

1t, ...,v
′

nt)
′

with v̂it = tix̂βt, i = 1, ..., n. The test can easily be modified to concern only a
subset of parameters. A number of terms in the auxiliary equation now contains
trending variables. Nevertheless, applying the results of Lin & Teräsvirta (1994),
it can be shown that the asymptotic null distribution even in this case is a chi-
squared one. The number of degrees of freedom in the test statistic equals
n(p+q+1). The test can be robustified against non-normality in the same way
as the previous one.

It is also possible to construct a test against a single structural break by
adapting the test of Chu (1995) to the EGARCH case (see Hansen (1996) for
obtaining critical values), but that has not been done here.

5 Testing EGARCH against GARCH

As the GARCH model of Bollerslev (1986) and Taylor (1986) is a very popular
alternative to the EGARCH model, it would be useful in practice to also compare
the estimated EGARCH model with its GARCH counterpart in order to see if
one is to be preferred to the other. In this section we discuss three non-nested
tests for testing EGARCH and GARCH models against each other. The question
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we pose is whether or not the GARCH model characterizes some features in the
data that the EGARCH model is unable to capture. The tests can thus been
seen as misspecification tests of the EGARCH model against the GARCH model
or vice versa, depending on which one of the models is the null model. In the
GARCH(p,q) model, the conditional variance is

ht = α0 +

q∑
j=1

αjε
2
t−j +

p∑
j=1

βjht−j . (19)

A sufficient condition for the conditional variance to be positive is α0 > 0,
αj ≥ 0, j = 1, ..., q, βj ≥ 0, j = 1, ..., p. The necessary and sufficient conditions
for positivity of the conditional variance in higher-order GARCH models are
complicated; see Nelson & Cao (1992).

The standard GARCH model has been extended to characterize asymmetric
responses to shocks. The GJR-GARCH model (Glosten, Jagannathan & Runkle
(1993)) is obtained by adding

∑q
j=1 ωjI(εt−j)ε2t−j to the GARCH specification

(19) where I(εt−1) = 1 if εt−1 < 0, and I(εt−1) = 0 otherwise. A useful non-
linear version of the GJR-GARCH model is obtained by making the transition
between regimes smooth. A smooth transition GARCH (STGARCH) model
may be defined as (2) with

ht = α0 +

q∑
j=1

α1jε
2
t−j +

q∑
j=1

α2jε
2
t−jGn(εt−j ; γ, c) +

p∑
j=1

βjht−j (20)

where εt−j is the transition variable. When n = 1, G1 is the logistic function
that controls the change of the coefficient of ε2t−j from αj to αj+ωj as a function
of εt−j . In that case, letting γ → ∞ yields the GJR-GARCH model. For dis-
cussions of the STGARCH model, see Hagerud (1997), Gonzalez-Rivera (1998),
Anderson, Nam & Vahid (1999), Lanne & Saikkonen (2002) and Lundbergh &
Teräsvirta (2002). The EGARCH model does not nest these models, and next
we shall present three nonnested tests for testing EGARCH against GARCH. In
particular, we are intrested in the case where the alternative is a GJR-GARCH
model.

5.1 The encompassing test

In this subsection we consider an LM test suggested in Engle & Ng (1993). It is
based on a minimal nesting model; see Mizon & Richard (1986). The idea is to
construct model that encompasses both alternatives. Thus, decomposing lnht
into two components

lnht = lnkt + ln gt (21)

where kt = θ′
zt and gt = exp(φ′

xt) both kt and gt are functions of lags of
ht, zt is a k × 1 and xt is a m × 1 vector of explanatory variables, and θ

and φ are parameter vectors, yields such a model. Equation (21) shows that
the model is another special case of the augmented EGARCH model (9). This
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model is the smallest model which encompasses both the EGARCH and GARCH
models and can be used for testing EGARCH and GARCH models against
each other. For example, if lnkt = α∗zt−1 + ψ

∗ |zt−1| + β
∗ lnht−1 and ln gt =

ln(α0 + α1ε
2
t−1 + ω1I(εt−1)ε

2
t−1 + β1ht−1), then the model encompassing the

EGARCH(1,1) and GJR-GARCH(1,1) ones is

lnht = α∗zt−1 + ψ
∗ |zt−1|+ β

∗ lnht−1

+ln(α0 + α1ε
2
t−1 + ω1I(εt−1)ε

2
t−1 + β1ht−1) (22)

Setting α1 = ω1 = β1 = 0 yields the EGARCH(1,1) model. On the other
hand, α∗ = ψ∗ = β∗ = 0 corresponds to the GJR-GARCH(1,1) model. A test
of the latter restrictions can also been seen as a misspecification test of the
GJR-GARCH model against the EGARCH model. Considering the former case
implies the null hypothesis H0 : α1 = ω1 = β1 = 0. The relevant block of the
score vector evaluated under H0 has the form

∂LT

∂βr

|H0
= (1/2)

T∑
t=1

(
ε̂2t

ĥt
− 1)

∂ ln gt
∂βr

|H0
(23)

where
∂ ln gt
∂βr

|H0
=

1

ĥt
(ε̂2t−1, I(ε̂t−1)ε̂

2
t−1, ĥt−1)

′ (24)

and βr = (α1, ω, β1)
′. Using previous notation, v̂t = (ε̂2t−1/ĥt, I(ε̂t−1)ε̂

2
t−1/ĥt,

ĥt−1/ĥt)
′ in the auxiliary TR2 regression. Test statistic (14) has an asymptotic

χ2 distribution with three degrees of freedom when the null hypothesis is valid.
The test can be robustified against non-normal errors in the same way as the
tests in Section 4. It should be noted that when the null hypothesis is rejected,
the rejection is against the encompassing model and not the GJR-GARCH one.

5.2 The Pseudo-Score Test

In this subsection we briefly describe a competing test suggested by Chen &
Kuan (2002). It is based on the finite sample counterpart of the pseudo-true
score, the limit of the expected value of the score function from the alternative
model, where the expectation is taken with respect to the null model. Suppose
that the null model is a EGARCH model, whereas the alternative model is a
GARCH model. Then the pseudo-true score function is

PSGARCH = lim
T→∞

EEGARCH(θ)
1

2T

T∑
t=1

(
ε2t
ht

− 1)
∂ lnht
∂β

(25)

where EEGARCH(θ) denotes the expectation taken with respect to the EGARCH
model. When the GARCH model is the correct one, expectation (25) equals
zero. The test can be constructed by checking if the estimate of (25) is suf-
ficiently close to zero. As shown in Chen & Kuan (2002) the finite sample
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counterpart of the pseudo-true score equals

P̂SGARCH =
1

2

T∑
t=1

(ĥEGARCH,t − ĥt)

ĥt
∂ ln ĥt/∂β (26)

where ĥEGARCH,t is the estimate of the conditional variance under the EGARCH
model. The test statistic is

CK = TP̂S
′

GARCHΩ̂
−P̂SGARCH (27)

where Ω̂ is a consistent estimator of the information matrix Ω , and Ω̂
− is its

generalized inverse. The test statistic is asymptotically distributed as chi-square
with r degrees of freedom when the null hypothesis is true, where r is the rank
of Ω̂ . Note that Ω is not of full rank. In our simulations we estimate Ω using
the estimate of cov(P̂SGARCH) given in Chen & Kuan (2000).

5.3 Simulated likelihood ratio statistic

Our remaining test is the one proposed by Lee & Brorsen (1997) and Kim et al.
(1998). The latter authors suggested it for testing the GARCH model against
the autoregressive stochastic volatility model or vice versa. The test is based
on the log likelihood ratio

LR = LT (θ̂GARCH)− LT (θ̂EGARCH) (28)

where LT (θ̂GARCH) and LT (θ̂EGARCH) are the maximized log-likelihood func-
tion under the GARCH model and under the EGARCH model, respectively.
The asymptotic distribution of LR under the hypothesis that the EGARCH
model is the true model or under the hypothesis that the GARCH model is the
true one is unknown and an empirical distribution is constructed by simulation.
Under the assumption that the EGARCH model is true and that its parameter
vector is θ̂EGARCH , we generate N time series from the "true" model. For
each simulated series we estimate the parameters of the GARCH and EGARCH
models and record the value of LRi, i = 1, ...,N . The resulting values of LRi

are a sample from the exact distribution of LR under the EGARCH model.
This gives us the critical value LRα of the test to which LR is compared. If
LR > LRα the null hypothesis is rejected. For a general discussion of Monte
Carlo tests of this type; see Ripley (1987).

6 Simulation experiment

The above distribution theory is asymptotic, and we have to find out how our
tests behave in finite samples. This is done by simulation. For all simulations
we used the following data generating process (DGP)

yt = εt

εt = zth
1/2
t (29)
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where the definition of the conditional variance ht depends on the test statistic
to be simulated. Under the null hypothesis ht is the conditional variance of
the standard EGARCH(1,1) model (4) with p = q = 1. The random numbers,
zt, have been generated by the random number generator in GAUSS 3.2. The
distribution for the random numbers sampled is either standard normal or a
standardized (unit variance) generalized error GED(ν) distribution, see Nelson
(1991). In the latter case, parameter ν is chosen such that the kurtosis Ez4t = 5.
The first 1000 observations of each generated series have been discarded to
avoid initialization effects. Size experiments are performed with series of 1000
and 3000 observations. The empirical power of the tests is investigated using
series of 1000 observations. We use 1000 replications in each experiment. Both
the normality-based and the robust version of each test are considered.

6.1 Evaluation of EGARCH models

6.1.1 Testing against a higher-order EGARCH model

First, we consider the test against a higher-order EGARCH model. We define
a DGP such that the conditional variance follows a symmetric EGARCH(2,2)
process. Thus,

lnht = −0.00127 + 0.11605(|zt−1| −E |zt−1|)}+ 0.95 lnht−1 +

+ψ2(|zt−2| −E |zt−2|) + β2 lnht−2. (30)

The values of ψ2 and β2 are chosen being varied in simulations. The moment
structure of the EGARCH(p,q) model has been worked out in He (2000). For
ψ2 = β2 = 0 the DGP reduces to a symmetric EGARCH(1,1) model. In the
simulations these tests were all computed with a singel parameter in the alter-
native. That is, for different values of ψ2 we choose v̂t = (|̂εt−2| /ĥt−2). For

different values of β2 we choose v̂t = ln ĥt−2. The asymptotic null distribution
is thus χ2(1). The actual rejection frequencies based on the significant level 0.05
under the asymptotic distribution are reported.

The results of both size and power simulations can be found in Table 1.
They indicate that both test is well sized for T = 1000. When the errors are
normal, the nonrobust test is somewhat more powerful than the robust one.
When the error distribution is a GED(5) one, the robust test is more powerful
than the nonrobust one. A tentative recommendation would be to always use
the robustified test unless there is strong evidence of the errors being normally
distributed.

6.1.2 Testing parameter constancy

We consider two cases of parameter nonconstancy for the symmetric EGARCH(1,1)
model: the DGP is a EGARCH with either (a) a single or (b) double structural
break in the intercept. Our test is computed using n = 1 in case (a), and n = 2
in case (b).
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We consider the following symmetric models with a break in the constant
term

lnht = −0.00127 + 0.11605(|zt−1| −E |zt−1|) + 0.95 lnht−1,

(a) t < ηT, (b) t < η1T, t > η2T,

lnht = −0.03593 + 0.11605(|zt−1| −E |zt−1|) + 0.95 lnht−1,

(a) t � ηT, (b) η1T ≤ t ≤ η2T (31)

where T is the sample size and 0 ≤ η, η1, η2 ≤ 1. The parameters under the null
hypothesis are chosen to mimic one of the sets of parameter values considered in
Engle & Ng (1993), see below. In the simulation experiment, the unconditional
variance is halved at ηT and η1T . Even if only the intercept changes in (31), we
assume that under the alternative, the break affects all three parameters. The
asymptotic null distribution is thus χ2(3).

The results of both size and power simulations can be found in Table 2.
They indicate that both tests are somewhat oversized for T = 1000 but well-
sized for T = 3000. When the errors are normal, the nonrobust test is more
powerful than the robust one for both a single and a double structural break
in the intercept. When the error distribution is a GED(5) one, the robust test
is more powerful than the nonrobust one. A tentative recommendation would
be similar to the previous one: use the robustified test unless there is strong
evidence favouring normal errors.

6.2 Testing EGARCH against GARCH

In this section we consider the small-sample performance of the nonnested tests
of testing EGARCH against GARCH. First we consider symmetric, then asym-
metric models.

6.2.1 Symmetric models

We consider six pairs of parameter vectors for the GARCH(1,1) and the sym-
metric EGARCH(1,1) model. They can be found in Table 3. For GARCH,
α1 + β1 is the exponential decay rate of the autocorrelations of squared ob-
servations, which has been used as a measure for persistence in volatility. We
choose three different values of the persistence. Engle & Ng (1993) used the
same values in their simulation experiments. The three parameters, α0,α1 and
β1, are selected such that the unconditional variance Eε2t equals unity but the
kurtosis equals either 6 or 12. These parameter values are obtained from the
analytic expressions of the second moment, the kurtosis and the autocorrelation
function of squared observations of a family of GARCH models with normal or
t distributed errors that are available in He & Teräsvirta (1999). This family
includes the GJR-GARCH model.

The parameter values for the EGARCH model are chosen to be as compa-
rable with the ones for the GARCH models as possible. Thus, β is set equal
to α1 + β1 in the corresponding GARCH model, as β controls the decay of the
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autocorrelation function of the squared observations in the EGARCH model.
Note, however, that while the decay rate of the autocorrelation of ε2t in the
GARCH(1,1) model equals α1 + β1, it only approaches β from below with in-
creasing lag length in the EGARCH(1,1) model. Parameters α0 and ψ are
chosen such that the unconditional variance and the kurtosis are the same in
both models as well. This can be done using the analytic expressions for the rel-
evant moments of the EGARCH(1,1) model in He et al. (2002). The parameters
of the EGARCH model (31) under the null hypothesis are chosen to mimic one
of the sets of GARCH parameter values considered in Engle & Ng (1993). They
can be found in Table 3. In simulating the LR statistic we use 99 replications
to construct the empirical null distribution.

A general result valid for all our simulation experiments is that the size of
both the encompassing test and the simulated LR test is close to the nominal
size already at T = 1000, see Tables 4 and 5. As to the pseudo-score statistic,
it is oversized even for T = 3000. This is due to the estimated matrix Ω̂. In our
experiment the rank of the (3×3) matrix Ω equals two, but the estimated matrix

Ω̂ is not seriously ill-conditioned. This causes the test statistic to be oversized.
In fact, assuming rank equal to three, that is, using the χ2(3) distribution
instead of χ2(2) as the null distribution, would not be such a bad idea for
T = 1000. The test would be conservative (undersized), but not overly so.

The case of α1 + β1 = 1 in the GARCH model has received attention in the
literature. Engle & Bollerslev (1986) called the model with this restriction the

integrated GARCH (IGARCH) model. The behaviour of α̂1+ β̂1 when the true
model is GARCH(1,1) with α1+β1 < 1 has also received attention. In that case
there is a substantial probability of estimating this persistence parameter to be
greater than one when T is small; see Shephard (1996). Figure 1 contains the

estimated density of α̂1+β̂1 when the true model is a symmetric EGARCH(1,1).
If we generate data from a stationary EGARCH(1,1) model with normal errors
and fit a GARCH(1,1) model with normal errors to the observations, there is

a large probability of ’finding IGARCH’, that is, ending up with α̂1 + β̂1 ≥ 1.
Furthermore, this probability increases with the sample size. Lamoureux &
Lastrapes (1990) obtained a similar result when they generated data with a
GARCH(1,1) model with a structural break, but here the DGP is a constant-
parameter stationary EGARCH model. In simulating the LR statistic we only
use the replications with α̂1 + β̂1 < 1. We discard the rest and add new ones
until there are 1000 replications in each experiment.

Another result valid for all our simulations is that the simulated LR test
is more powerful than the encompassing test, see Table 6. Because of the size
problems, the power of the pseudo-score test is not comparable. For all tests,
the power is higher for models with low than with high persistence.

We use the EGARCH model (31) under the null hypothesis and the corre-
sponding GARCH model in the simulation experiments of the robust version
of the tests. They can be found in Table 3. Because of size problems, the be-
haviour of the pseudo-score test is not investigated. Our results indicate that
the nonrobust version of the simulated LR test is undersized when the error
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distribution is a GED, see Table 7. The robust version of the encompassing
test is undersized for T = 1000 but well-sized for T = 3000, see Table 8.

In Table 9 we report the result of the power simulations. When the errors
are normal, the robust tests perform as well as the nonrobust ones. When the
error distribution is a GED, the robust tests are always more powerful than the
nonrobust ones. The simulated LR test is more powerful than the encompassing
test.

6.2.2 Asymmetric models

We now turn to asymmetric models. We add the asymmetric component φzt−1

to four of the symmetric EGARCH models assuming φ = −0.04. The asym-
metry introduced through φ tends to increase kurtosis and, at the same time,
reduce the the first-order autocorrelation of squared observations. We choose
α0 and ψ such that the unconditional variance equals unity and the kurtosis is
6 or 12 even here. The parameter values of the asymmetric EGARCH models
are reported in Table 3. We use the reduction in the first-order autocorrelation
of squared observations, in percentage, due to the asymmetry as an additional
condition to identify the sets of parameters in the GJR-GARCH model. The
corresponding GJR-GARCH models are also found in Table 3.

The results in the asymmetric case are similar to the symmetric case. The
probability of finding GJR-IGARCH model in which α1+β1+ω1/2 = 1when the
observations have been generated by an EGARCH(1,1) model is quite large, see
Figure 2. The size of the encompassing test is close to the nominal size already
at T = 1000, see Table 10. As to the pseudo-score statistic, it is oversized in the
case of asymmetric models for T = 3000; see Table 11. In Table 12 we report
result of the power simulations. Note that the results appearing in the tables
are not based on size-adjusted tests. For both tests, the power is higher for
models with low than the ones with high persistence.

A conclusion of our simulations is that the simulated LR is more powerful
than the encompassing test. The pseudo-score test in the form applied in this
paper cannot be recommended because of the size problems pointed out.

7 Empirical example

In this section we apply our tests to daily return series of the 29 most actively
traded stocks in Stockholm stock exchange. The list of stocks appears in Table
16 together with information about the length of the series. The period inves-
tigated ends April 24, 2001. The return series are continuously compounded
returns calculated from the closing prices obtained from Datastream.

In Table 13 we report results of the test against a higher-order model. There
is some evidence of a need for an EGARCH(1,2) model. The p-value of the
test lies between 0.01 and 0.05 in 13 cases out of 29, but there is only one
occasion in which it does not exceed 0.01. An EGARCH(2,1) model is not a
likely alternative. As a whole it seems that the need for higher-order EGARCH
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models is not very strong. Table 14 containes results of the parameter constancy
test. In almost about half of the cases, there is strong evidence of time-varying
parameters. It seems that nonconstancy of the intercept is often a strong reason
for rejection. This suggests that the unconditional variance of the series changes
over time. The dynamic behaviour of the conditional variance may be less prone
to change in time.

Turning to choosing between EGARCH and GARCH, Table 15 contains re-
sults based on the robust version of the encompassing test and the simulated
LR test for testing GJR-GARCH(1,1) and EGARCH(1,1) models against each
other. They indicate that both models fit the data more or less equally well. In
most cases there is no clear difference between the models. The encompassing
test does not reject either model in 16 cases. The simulated LR test does not
reject either model in 9 cases. It is rare that both models are rejected simul-
taneously. For the encompassing test this happens only once. The EGARCH
model is rejected more often than the GJR-GARCH model. Because of the size
problems, the pseudo-score test is not applied to these series.

The main conclusion of the empirical example is that there is substantial
evidence for parameter nonconstancy. Rejections, measured in p-values, are
generally weaker for the other tests applied to the estimated models.

8 Conclusions

In this paper we consider misspecification tests for an EGARCH(p,q) model. We
derive two new misspecification tests for an EGARCH model. Since both test
statistics are asymptotically χ2-distributed under the null hypothesis, possible
misspecification of an EGARCH model can be detected at low computational
cost. Because the tests of an EGARCH model against a higher-order EGARCH
model and testing parameter constancy are parametric, the alternative may be
estimated if the null hypothesis is rejected. This is useful for a model builder
who wants to find out possible weakness of estimated specification. It may also
give him/her useful ideas of how the model could be further improved. These
tests may be viewed as the EGARCH counterpart of the tests for the GARCH
model in Lundbergh & Teräsvirta (2002).

Furthermore, we investigate various way of testing the EGARCH model
against GARCH ones as another check of model adequacy. Our simulations
show that the simulated LR test is more powerful than the encompassing test
and that the size of the test may be a problem in applying the pseudo-score
test.

Finally, the simulation results indicate that in practice, the robust versions
of our tests should be preferred to nonrobust ones. They can be recommended as
standard tools when it comes to testing the adequacy of an estimated EGARCH
(p,q) model.
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Tables

Table 1: Empirical p-values of the nonrobust and robustified test against higher-
order model when the observations have been generated from model (30) using
normal and GED(5) errors, for 1000 and 3000 observations, based on 1000
replications. The nominal significance level equals 0.05.

Error distribution Normal(0,1) GED(5)
ψ2 −β2 T Nonrobust Robustified Nonrobust Robustified

0 0 1000 4.3 4.2 4.6 4.9
0 0 3000 5.2 4.7 5.0 4.7
0.1 0 1000 5.5 5.4 6.9 18.8
0.2 0 1000 13.5 10.6 11.9 25.8
0 0.1 1000 6.2 6.1 5.3 18.3

Table 2: Empirical p-values of the nonrobust and robustified parameter con-
stancy test when the observations have been generated from model (31) using
normal and GED(5) errors, for 1000 and 3000 observations, based on 1000 repli-
cations. The nominal significance level equals 0.05.
Error distribution Normal(0,1) GED(5)
η η1 η2 T Nonrobust Robustified Nonrobust Robustified

1 − − 1000 8.2 7.4 6.8 6.2
1 − − 3000 6.6 5.3 6.6 5.5
0.25 − − 1000 55.8 50.8 32.7 36.0
0.5 − − 1000 80.8 75.9 54.3 59.2
− 0.333 0.667 1000 31.2 23.5 16.2 25.7
− 0.25 0.75 1000 63.4 57.4 32.1 45.2
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Table 3: This table reports the DGP’s in the simulations. The first six pairs of
parameters are the symmetric models in the simulation experiment. The next
four are the asymmetric models. The last pair is for the simulation experiments
of the robust version of the tests.

GARCH EGARCH
Model α0 α1 β ω Model −α∗

0 ψ β∗ −φ

G1 0.01 0.0705 0.9195 - E1 0.0033 0.1876 0.99 -
G2 0.01 0.0864 0.9036 - E2 0.0065 0.2614 0.99 -
G3 0.05 0.1561 0.7939 - E3 0.0155 0.3974 0.95 -
G4 0.05 0.1912 0.7588 - E4 0.0299 0.5453 0.95 -
G5 0.2 0.3 0.5 - E5 0.0565 0.7095 0.8 -
G6 0.2 0.3674 0.4326 - E6 0.1064 0.9555 0.8 -
GJR1 0.01 0.0422 0.9251 0.0453 asE1 0.0032 0.1731 0.99 0.04
GJR2 0.01 0.0562 0.9112 0.0495 asE2 0.0064 0.2504 0.99 0.04
GJR3 0.05 0.1202 0.7986 0.0624 asE3 0.0154 0.3891 0.95 0.04
GJR4 0.05 0.1515 0.8036 0.0698 asE4 0.0297 0.5383 0.95 0.04
RG 0.05 0.05 0.9 - RE 0.0013 0.1161 0.95 -

Table 4: Empirical p-values from size simulations of three tests of testing sym-
metric EGARCH(1,1) against GARCH(1,1) and vice versa, 1000 observations,
based on 1000 replications. The nominal significance level equals 0.05 and 0.1.

Simulated LR Engle-Ng Pseudo-Score
True model 5% 10% 5% 10% 5% 10%

G1 5.7 11.2 5.0 9.6 6.1 13.0
G2 5.6 10.6 4.8 9.7 6.4 13.0
G3 5.7 11.4 4.4 9.6 8.4 15.1
G4 5.9 11.7 4.9 9.5 8.1 16.1
G5 5.6 11.1 4.8 9.4 7.4 17.1
G6 5.1 10.7 4.5 8.8 8.4 16.4
E1 5.5 11.1 5.4 10.5 6.5 13.1
E2 4.8 9.7 5.7 11.0 7.0 14.2
E3 5.9 12.0 4.8 10.0 9.4 15.4
E4 5.4 10.5 5.0 10.1 9.8 16.0
E5 5.1 9.9 5.3 10.1 11.0 18.3
E6 5.0 9.7 4.9 9.6 11.0 17.7
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Table 5: Empirical p-values from size simulations of two tests of testing sym-
metric EGARCH(1,1) against GARCH(1,1) and vice versa, 3000 observations,
based on 1000 replications. The nominal significance level equals 0.05 and 0.1.

Engle-Ng Pseudo-Score
True model 5% 10% 5% 10%

G1 5.2 9.8 5.7 11.4
G2 4.9 10.0 5.2 11.7
G3 5.1 9.7 5.5 11.6
G4 5.3 10.1 6.2 11.7
G5 5.1 10.2 7.4 15.5
G6 4.1 10.0 7.8 15.6
E1 5.2 10.4 6.0 13.0
E2 5.1 10.3 7.7 15.5
E3 4.5 9.6 6.6 13.8
E4 5.8 10.3 7.0 13.9
E5 4.4 9.3 5.9 12.6
E6 4.7 10.0 5.3 13.2

Table 6: Empirical p-values from power simulations of three tests of testing
symmetric EGARCH(1,1) against GARCH(1,1) and vice versa, 1000 observa-
tions, based on 1000 replications. The nominal significance level equals 0.05 and
0.1.

Simulated LR Engle-Ng Pseudo-Score
True model 5% 10% 5% 10% 5% 10%

G1 42.3 53.8 13.2 22.2 21.9 33.2
G2 45.8 57.2 12.4 20.7 26.0 39.3
G3 56.7 68.4 22.2 34.0 64.5 76.2
G4 65.8 74.2 25.0 37.9 89.3 93.8
G5 87.2 97.3 57.3 71.4 21.9 33.2
G6 94.1 99.1 74.7 84.9 26.0 39.3
E1 48.0 61.4 17.4 26.0 20.0 29.8
E2 39.0 51.8 20.7 32.8 24.9 38.6
E3 69.9 80.7 26.1 35.0 44.4 57.8
E4 71.7 79.1 30.3 40.7 61.1 70.8
E5 89.4 99.1 43.2 53.4 64.5 76.2
E6 97.8 99.4 51.0 61.1 89.3 93.8
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Table 7: Empirical p-values from size simulations of two tests, nonrobust and ro-
bust version, of testing symmetric EGARCH(1,1) against GARCH(1,1) and vice
versa, 1000 observations, based on 1000 replications. The nominal significance
level equals 0.05.

Normal(0,1) t(7) or GED(5)
Engle-Ng Simulated LR Engle-Ng Simulated LR

True model Nonr. Robust Nonr. Robust Nonr. Robust Nonr. Robust

RG 4.8 4.6 5.5 5.9 3.3 3.1 2.3 5.4
RE 4.4 4.5 5.8 6.0 3.6 3.3 2.1 5.9

Table 8: Empirical p-values from size simulations of two tests, nonrobust and ro-
bust version, of testing symmetric EGARCH(1,1) against GARCH(1,1) and vice
versa, 3000 observations, based on 1000 replications. The nominal significance
level equals 0.05.

Normal(0,1) t(7) or GED(5)
Engle-Ng Engle-Ng

True model Nonr. Robust Nonr. Robust

RG 4.9 4.6 4.1 5.0
RE 4.2 4.2 3.2 4.3

Table 9: Empirical p-values from power simulations of two tests, nonrobust
and robust version, of testing symmetric EGARCH(1,1) against GARCH(1,1)
and vice versa, 1000 observations, based on 1000 replications. The nominal
significance level equals 0.05.

Normal(0,1) t(7) or GED(5)
Engle-Ng Simulated LR Engle-Ng Simulated LR

True model Nonr. Robust. Nonr. Robust. Nonr. Robust. Nonr. Robust

RG 43.9 37.9 50.1 53.1 19.6 14.8 13.6 40.2
RE 20.2 25.1 45.3 43.2 17.0 23.4 23.8 48.8

Table 10: Empirical p-values from size simulations of two tests of testing
EGARCH(1,1) against GJR-GARCH(1,1) and vice versa, 1000 observations,
based on 1000 replications. The nominal significance level equals 0.05 and 0.1.

Engle-Ng Pseudo-Score
True model 5% 10% 5% 10%

GJR1 5.8 11.4 11.3 19.0
GJR2 5.7 10.8 11.9 19.0
GJR3 5.8 11.3 10.8 19.3
GJR4 6.4 11.7 12.9 21.8
asE1 5.8 11.8 7.8 16.6
asE2 5.7 11.0 7.6 14.9
asE3 5.6 11.2 10.4 18.3
asE4 5.2 10.7 10.5 18.4
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Table 11: Empirical p-values from size simulations of two tests of testing
EGARCH(1,1) against GJR-GARCH(1,1) and vice versa, 3000 observations,
based on 1000 replications. The nominal significance level equals 0.05 and 0.1.

Engle-Ng Pseudo-Score
True model 5% 10% 5% 10%

GJR1 5.7 10.7 5.8 12.4
GJR2 5.5 10.4 7.7 14.0
GJR3 5.6 10.4 7.4 13.6
GJR4 5.7 10.6 8.4 16.3
asE1 5.6 11.2 4.3 10.0
asE2 5.4 10.6 5.7 12.2
asE3 5.4 10.7 5.7 12.1
asE4 5.0 10.2 5.8 12.4

Table 12: Empirical p-values from power simulations of two tests of testing
EGARCH(1,1) against GJR-GARCH(1,1) and vice versa, 1000 observations,
based on 1000 replications. The nominal significance level equals 0.05 and 0.1.

Engle-Ng Pseudo-Score
True model 5% 10% 5% 10%

GJR1 23.2 34.7 19.8 31.1
GJR2 20.5 32.0 26.0 37.2
GJR3 30.2 45.0 43.1 55.2
GJR4 34.9 50.4 62.5 73.0
asE1 20.1 36.1 11.8 21.1
asE2 24.1 39.4 14.1 22.4
asE3 32.7 44.4 19.1 29.6
asE4 41.3 53.1 22.1 34.2

Table 13: Rejection frequencies of the robust version of the test against a higher-
order model.

p ≤ 0.01 0.01 < p ≤ 0.05 0.05 < p ≤ 0.1 p > 0.1

EGARCH(2,1) 0 0 2 27
EGARCH(1,2) 1 12 10 6

Table 14: Rejection frequencies of the robust version of the parameter constancy
test with n=2.

p ≤ 0.001 0.001 < p ≤ 0.01 0.01 < p ≤ 0.1 p > 0.1

Intercept parameter 9 3 7 10
All four parameters 12 2 7 8
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Table 15: Rejection frequencies of the EGARCH(1,1) and GJR-GARCH(1,1)
models from the encompassing test and the simulated LR (between brackets)
test for the 29 series. 1 simulation of the LR test do not converge.

H0 :EGARCH

p ≤ 0.01 0.01<p≤0.05 p > 0.05
∑

p ≤ 0.01 1(0) 1(0) 2(2) 4(2)
H0 :GARCH 0.01<p≤0.05 0(0) 0(1) 0(4) 0(5)

p > 0.05 6(6) 3(6) 16(9) 25(21)∑
7(6) 4(7) 18(15) 29(28)

Table 16: This table lists the 29 stocks investigated. The column labeled "T",
reports the number of observations.

y T
ABB 3717
Assa A. 1617
Assi D. 1769
Astra 3591
Atlas C. 2915
Autoliv 1690
Electrolux 4577
Ericsson 4576
FSB 1470
Gambro 2454
Holmen 4568
Industriv. 2061
Investor 4146
Nokia 2907
OMG 2084
Pharmacia 1370
Sandvik 4576
Scania 1268
Securitas 2461
Skandia 4566
SEB 2984
Skanska 4337
SKF 4578
SSAB 2963
Stora 3263
SCA 4576
SHB 2612
Sw. Match 1239
VOLVO 5324
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Figure 1: Estimated density of α̂1 + β̂1 for the GARCH model when DGP is
the symmetric EGARCH model. Upper panel, left: E5, upper panel, right: E6,
middle panel, left: E3, middle panel, right: E4, lower panel, left: E1, lower
panel, right: E2. Number of observations 1000 (solid) and 3000 (dashed).
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Figure 2: Estimated density of α̂1+ β̂1+ ω̂/2 for the GJR-GARCH model when
DGP is the EGARCH model. Upper panel, left: asE3, upper panel, right: asE4,
lower panel, left: asE1, lower panel, right: asE2. Number of observations 1000
(solid) and 3000 (dashed).
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