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Abstract

Behavioral economics provides several motivations for the common observation that
agents appear somewhat unwilling to deviate from recent choices. More recent choices
can be more salient than other choices, or more readily available in the agent’s mind.
Alternatively, agents may have formed habits, use rules of thumb, or lock in on certain
modes of behavior as a result of learning by doing. This paper provides discrete-time
adjustment processes for strategic games in which players display precisely such a bias
towards recent choices. In addition, players choose best replies to beliefs supported by
observed play in the recent past, in line with much of the literature on learning. These

processes eventually settle down in the minimal prep sets of Voorneveld (2004, 2005).
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1. Introduction

The behavioral economics literature provides several motivations for the common ob-
servation that agents appear somewhat unwilling to deviate from their recent choices. For
instance, Tversky and Kahneman (1982, p. 11) mention the bias towards recent choices
as an example of the availability bias, the ease with which instances come to mind. Simi-
larly, Schelling (1960) has argued that players, when indifferent between strategies, choose
the most salient strategy. In combination with the recency effect, i.e., the cognitive bias
resulting from disproportionate salience of recent stimuli or observations (cf. Miller and
Campbell, 1959), this may explain why agents appear to have a preference for recent
choices. Other motivations include models for agents displaying defaulting behavior or
inertia (cf. Vega-Redondo, 1993, 1995, Madrian and Shea, 2001), the formation of habits
(cf. Young, 1998), the use of rules of thumb (cf. Ellison and Fudenberg, 1993), or the
locking in on certain modes of behavior due to learning by doing (cf. Grossman et al.,
1977) or, as Joosten et al. (1995) express it: unlearning by not doing.

This paper provides a number of discrete-time adjustment processes for mixed exten-
sions of finite strategic games in which players display precisely such a bias towards recent
choices. Apart from this behavioral assumption, the assumptions underlying the adap-
tive processes in this paper are in conformance with much of the literature on learning
(cf. Hurkens, 1995, Fudenberg and Levine, 1998, and Young, 1998): players choose best
replies to beliefs that are supported by observed play in the recent past. The purpose of
this paper is to show that these behaviorally plausible models of adaptive play eventually
settle down in so-called minimal prep sets, thus providing a dynamic motivation for such
sets.

Minimal prep sets (‘prep’ is short for ‘preparation’) were introduced and studied in a
static framework in Voorneveld (2004, 2005). This set-valued solution concept for strategic
games combines a standard rationality condition, stating that the set of recommended
strategies to each player must contain at least one best reply to whatever belief he may
have that is consistent with the recommendations to the other players, with players’ aim
at simplicity, which encourages them to maintain a set of strategies that is as small as

possible. This discerns minimal prep sets from (a) minimal curb sets (Basu and Weibull,



1991), which are product sets of pure strategies containing not just some, but all best
responses against beliefs restricted to the recommendations to the remaining players, and
(b) persistent retracts (Kalai and Samet, 1984), which also require the recommendations
to each player to contain at least one best reply to beliefs in a small neighborhood of the
beliefs restricted to the recommendations to the other players. Voorneveld (2004, 2005)
contains a general existence proof and a detailed comparison of minimal prep sets with
Nash equilibria, rationalizability, minimal curb sets, and persistent retracts. Tercieux
and Voorneveld (2005) show that minimal prep sets provide sharp predictions in many
economic applications, including potential games, congestion games, and supermodular
games, even in cases where curb sets have no cutting power whatsoever and simply consist
of the entire strategy space. This paper thus complements this literature by providing a
dynamic motivation for minimal prep sets.

To have play converge to a minimal prep set, players have to somehow ‘coordinate’ on
playing actions from the same minimal prep set. The literature on salience offers some
clues on how this coordination process may proceed. Sugden (1995) argues that players
need to choose a common probability distribution over their strategies to maximize their
expected utility. In our framework, a common pool of probability distributions is provided
by the connection between the beliefs of players to which they best-reply and opponents’
recent play which induces some coherence in the actions of the players. Moreover, all
players always choose the most recent best reply if there are multiple best replies to a
given belief. An alternative way of viewing this is provided by Crawford and Haller (1990,
p. 577) who speculate that “[..] players begin by searching for a pair of actions to serve as
a coordination precedent and then use this precedent to maintain coordination. In effect,
they use asymmetric history to “label” actions that cannot be distinguished at the start”.
Our process does exactly that.

The work that is closest in spirit to our analysis is that of Hurkens (1995). In both his
work and in the current paper, convergence to a set-valued solution concept is established,
firstly, for discrete-time adjustment processes characterized by conditions on transition
probabilities (zero or positive), secondly, for all finite games, (in contrast with e.g. Young
(1998), who restricts attention to the special class of weakly acyclic games), and, thirdly,

for all memory lengths exceeding a certain lower bound. The main difference between



this paper and Hurkens (1995) is that in the latter paper, players choose arbitrary best
replies to their beliefs, whereas our players stick to recent best replies.

The outline of this paper is as follows. We recall definitions in Section 2. The evolution
of play is discussed in Section 3. Section 4 contains the convergence theorem and explains
the steps towards the proof. In Section 5, we discuss our assumptions. Most proofs are

contained in the appendix.

2. Preliminaries

Weak set inclusion is denoted by C, strict set inclusion by C. The number of elements
in a finite set S is denoted by |S|. For n € N, the n-fold cartesian product xS is
denoted by S™.

A game is a tuple G = (N, (4;)ien, (4i)ien), where N is a nonempty, finite set of
players, each player i € N has a nonempty, finite set A; of pure strategies/actions and a
von Neumann-Morgenstern utility function u; : A — R on the set of pure strategy profiles
A = X;en A;. Let X; be a nonempty subset of A;. The set of mixed strategies of player
i € N with support in X; is denoted by A(X;). Payoffs are extended to mixed strategies
in the usual way. Let i € N and let a_; € Xjen i3 A(A;) be a belief? of player i. The set

BRZ‘(O./_Z‘) = {CLZ‘ - Az | Vbi - Az : Ui(a,i,Oé_i) Z ui(bi,a_i)}

is the set of pure best responses of player ¢ against a_;.

Fix a game G = (N, (A;)ien, (wi)ien). A prep set (Voorneveld, 2004) is a nonempty
product set X = X;eny X; C A of pure-strategy profiles such that for each i € N and each
belief a_; of player ¢ with support in X_;, the set X; contains at least one best response

of player i against his belief:
Vi € N, VOd,i S X jeN\{i} A(Xj) : BRZ(C(,Z) N XZ 7é (Z)

A prep set X is minimal if no prep set is a proper subset of X. Establishing existence
of minimal prep sets in finite games is simple: the entire pure-strategy space A is a prep

set. Hence the collection of prep sets is nonempty, finite (since A is finite) and partially

2Beliefs are thus profiles of mixed strategies: correlation is not allowed.
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ordered by set inclusion. Consequently, a minimal prep set exists. See Voorneveld (2004,
Thm. 3.2) for a general existence result.

In our adaptive processes, a game G = (N, (A;)ien, (ui)ien) is played once every period
in discrete time. A history (of play) is a sequence h = (a', ..., a%) € AL of some arbitrary

length L € N; whose leftmost element
((h):=a' € A

is interpreted as the action profile chosen in the previous period according to history h,
with ¢;(h) := a} € A; the action played by i € N. Generally, the k-th element from the
left is the action profile a* € A chosen k € N periods ago.

A successor of h = (a',...,a%) is a history obtained after one more period of play,
a history b’ = (b',0?,...,bE"1) obtained from h by appending a new leftmost element:
becAandbtF =a*forallk=2,...,L+1.

Fix a history h = (a',...,a") and a player i € N. The set of actions chosen by i
during the previous k € {1,..., L} rounds of history h is denoted by

pz(hvk) = {CL%,... ak

y Yy S

Assuming that all players’ actions were chosen at least once in history h, the order
oin : {1,...,|Ail} — A; of player i’s actions in history h is defined as follows: his first
encountered action is 0,5 (1) := a; and for k = 2,...,|A;|, the k-th encountered action is

oip(k) :=a withm =min{n=1,...,L | a? ¢ {o;n(1),...,00n(k—1)}}.

Example 2.1 Consider a two-player game with N = {1,2} and action spaces A; =
{T, B}, Ay = {L, R}. Consider the history

h = ((T7 R)7 (Ba R)7 (BvL))

of length three. Then ¢(h) = (T, R). The set of actions player 1 chose during the
most recent two periods is pi(h,2) = {7, B}, whereas py(h,2) = {R}. As to orders,

player 1’s action T is encountered first, then B, so 01,(1) = T,01,(2) = B. Similarly,
027]1(1) = R, 027}1(2) = L. <



3. Adaptive play
3.1.  State space

This section presents a class of Markov chains that models adaptive play with a bias
towards choices from the recent past. A game G = (N, (A;)ien, (u;)ien) is played once
every period in discrete time. In line with much of the literature on learning models
(cf. Hurkens, 1995, Fudenberg and Levine, 1998, Young, 1998), players choose, at each
moment in time, best replies to beliefs supported by a limited horizon of observed past
play of fixed length 7' € N.3

Consequently, we define the state space H to consist of all histories h = (a!,...,a%)

satisfying the following two conditions:

(i) their length is at least T', i.e., h € Ugen x> AF, and

(i) h is sufficiently “rich”, in the sense that all players’ actions were chosen at least

once before:

Vi € N,Va; € A;, Ik € {1,...,L} : a¥ = a;. (1)

The latter assures that the ‘most recent’ best reply to a belief is well-defined, which
we use in our behavioral assumption of bias towards recent choices (P2 in Section 3.2).

Relaxations of this and other assumptions are discussed in Section 5.
3.2. Transition probabilities

Having defined the set H of states, we proceed to transition probability functions
P: Hx H — [0,1], where P(h,h') is the probability of moving from state h € H to state
h' € H in one period and ), P(h,h') = 1 for all h € H.

A player’s beliefs are based on observed play in the past T" € N periods. That is,
for each state h € H, if the sequence of action profiles played in the past T periods is
(a',...,a’) € AT then player i’s beliefs are drawn from a probability measure Pl (ar,....a™)

over the set of beliefs (with its standard topology and Borel o-algebra)

XemiyA{aj, -, a5 }) = XjemAlp;(h, T))

30ur adjustment processes are defined for a fixed game G and memory length T'; to simplify notation,

indices G and T are suppressed.



with support in the product set of actions chosen in the previous 1" periods.

Moreover, given such a belief a_; € Xjen i3A(p;(h,T)), we assume that player ¢
always chooses the most recent best reply to a_;. Players thus have a bias towards recent
choices.

Together, the probability distributions P(; 41, .7y), fixing for each player i € N and
")

account of recent play (a!,...,a’) € AT the way beliefs are drawn, and the assump-

tion that players are biased towards recent choices, determine the transition probabilities
P(h,1) € [0,1] for each pair of states (h,h') € H x H.

Let & denote the class of transition probability functions P achieved in this way, with
P(h,h') > 0 if and only if states h, h’ € H satisfy conditions P1 and P2 in Fig. 1. Con-
dition P1 is standard for discrete-time processes, stating that between time periods, the
game is played once: the process moves from a history A to one of its successors h'. Condi-
tion P2 states, first of all, that the process P is a best-reply process: the action ¢;(h’) € A;
chosen by each player : € N is a best reply to some belief a_; about the remaining play-
ers’ behavior based on recent experience, i.e., with support in X en 3 A(pj(h,T)). In
addition, it models the bias towards recent choices: each player ¢ € N chooses his most

recent, best reply to his belief a_;.

P1 | I/ is a successor of h := (a',...,a");

P2 | For each player i € N, ¢;(h’) is the most recent best reply to some
belief a_; € X en i3 A(p;(h,T)). Formally:
L:(W) = af, where k = min{m € N | BR;(a_;) N{a},...,a"} # 0}.

Figure 1: For P € &, P(h,h') > 0 iff h, b’ € H satistfy P1 and P2.

Finally, for each k € N, let P*: H x H — [0, 1] denote the k-step transition probabil-
ities of our Markov process with transition probability function P € £, so that P! = P
and P¥ = Po P* ! for all k > 1.



4. Convergence and steps towards the proof

This section presents the main result of this paper. Theorem 4.1 states, for each game
G and adjustment process in the class &, that if behavior is based on recent experience
of sufficient length T, then play will eventually settle down within a minimal prep set.
The steps of the proof are briefly explained in this section; the proof itself is contained in
the Appendix.

Given a game G and an adjustment process P € &, we say that the process eventually
settles down in a minimal prep set if the probability that the process after k steps is in a

state h € H where

e the most recently played action profile lies in a minimal prep set:

((h) € X for some minimal prep set X of G

e all future action profiles remain inside X:

((h") € X whenever P"(h,h') > 0 for some n € N,/ € H,

converges to one as k goes to infinity.

Theorem 4.1 Let G = (N, (A;)ien, (wi)ien) be a game. Let the horizon T € N of recent
past play on which beliefs are based satisfy

TZmaX{ZMi\—|N|+l,2|A1|,.--72|An|}, (2)

1EN

where n = |N|. If P € &, then play eventually settles down in a minimal prep set of G.

In his convergence result, Hurkens (1995, p. 314) uses as a lower bound on memory
length the number
K= ;w — [N|+ 1+ max|A],
which is strictly larger than our bound in (2) under the standard assumption that |A;| > 2
for all i € N. He states, however, that his bound is not tight (ibid, p. 313, line 6).

The proof of Theorem 4.1 proceeds in four steps:
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Step 1: Let hy € H. The process moves with positive probability in 7" — 1 steps to a
state h; € H where the product set X;enp;(ho,T) C A of actions played in the past T’
periods is a prep set.

The intuition behind this result is as follows. If, for some state ¢ € H and some
k < T, the product set X;cnpi(g,k) is a prep set, then players choose with positive
probability actions from this prep set for T"— k periods in a row. If on the other hand,
Xienpi(g, k) is not a prep set, then there is a nonempty set of players i € N with a
belief o ; € X jen i3 A(p;(g, k)) over play in the past k periods to which p;(g, k) does not
contain a best reply. In that case, one can construct a sequence of states g1, go,... € H
with g1 = g, P(gk, gr+1) > 0 for all k = 1,2,..., such that the sequence of product sets
XienDi(gr, k) is strictly increasing w.r.t. set inclusion (see lemma A.1 in the Appendix).
All these sets are contained in the finite set A, of action profiles which is prep set. Since
there are only finitely many actions, the sequence reaches, after a finite number of steps,
a state gx € H where X;enpi(gx, K) is a prep set. From that state onwards, players
choose with positive probability actions from the prep set for T'— K periods in a row.
Step 2: From state hq, the process moves with positive probability in a finite number of
steps to a state hy € H where X := X;enp;i(ho, T) is a minimal prep set.?

Technically, the proof of this step proceeds as follows. Let X = X;enX; € Xienpi(hy,T)
be a minimal prep set. The proof of this step relies on the fact that one can — under
some conditions — perform so-called neighbor switches: from a state h € H, the process
moves with positive probability in T" steps to a state h’ € H whose horizon of recent past
play is identical to the one in h, except that two neighboring actions of some player have
changed places (see Lemma A.6). As all permutations of a finite set can be obtained by
a chain of such neighbor switches, the process moves with positive probability from state
hy to a state h' where, for each player i € N, p;(I,|X;|) = X;, i.e. the |X;| most recent
actions of each player i are exactly those in his component of the minimal prep set X.

Then it is easy to show that the process moves with positive probability to a state ho

4Some intuition for this result is provided by the work of Sugden (1995): as all players share the same
behavioral bias (‘play the most recent best reply to your current belief’), and as there is some coherence
between players’ actions (beliefs are based on recent past play), players manage to ‘coordinate’ on the

same minimal prep set.



within a finite number of steps such that x;enp;(h',T) = X is a minimal prep set.
Step 3: After reaching state ho, all action profiles that are played with positive probability
lie in X, i.e.

Vk € N,Vh € H : P*(hy,h) > 0= ((h) € X.

In hy, X;enpi(he,T) = X is a minimal prep set, which by definition contains at least
one best reply to whatever belief a player may have about other players’ choices from
X. Hence, by induction, the actions from minimal prep set X will always be fresher in
players’ recollection of past play than actions outside X, so that to any belief that each
player ¢ may have on opponents’ play, there is an action in X; that is the most recent
best reply. Hence, from state ho onwards, players ¢« € N only choose actions from Xj.
Step 4: Starting from an arbitrary history hg, steps 1 and 2 show that there is a positive
probability of proceeding to a history hs in a finite number of steps, after which play settles
down in a minimal prep set, i.e., a positive probability of proceeding to an absorbing set
of states in a finitely many steps. Since the initial history was chosen arbitrarily, this

eventually happens with probability one, finishing the proof.

5. Discussion of assumptions

5.1.  Modifying the assumption on prior play

To guarantee that the most recent best reply to a given belief is well-defined, states h €
H were assumed to be such that all players’ actions were chosen at least once before; see
(1). This innocuous assumption is the discrete-time analogon of the common assumption
in continuous-time dynamics that the process starts away from the boundary, i.e., in a
strategy profile having full support. Relaxing this assumption leads to similar results. We
discuss two ways to relax this assumption.

Firstly, actions in minimal prep sets are rationalizable (Voorneveld, 2004, Prop. 3.6),
so the proof of Theorem 4.1 continues to hold if (1) is replaced by the weaker assumption
that all players’ rationalizable actions have been chosen at least once before.

Secondly, suppose we allow for the possibility that best replies to some beliefs may

not have been played before. This implies that the ‘most recent best reply’ to a given

10



belief need not exist. To obtain a well-defined process that models a behavioral bias
towards recent ‘best’ actions, one may proceed as follows. Consider an arbitrary state
h = (a',...,a") € H', where H = Ugenxsr AX is the collection of histories with
length L greater than or equal to the lower bound 7" on memory length, i.e. we drop
condition (1) on the state space. As usual, let each player i € N draw a belief a_; €
X jen\{iyA(p;(h, T)) over recent past play from a probability distribution P(; ,1 .7 and

assume that ¢ responds by playing the most recent utility maximizing action from the set

{a},... aF} of actions chosen in the past, i.e., the action af with
k = min {m e{l,...,L} | u(a") = max ui(ai,oz_,-)}. (3)
a;i€{a},...,al}

As in our initial class & of processes, the probability distributions P; 41, ,7)) and the
bias towards recent choices in (3), determine the transition probabilities P(h, k') € [0, 1]
for each pair of histories h,h’ € H’. If the transition probability P(h,h’) is positive,
then h,h’ € H satisfy conditions P1 and P2’ in Fig. 2. Let &’ denote the class of
transition probability functions P achieved in this way, with P(h,h’) > 0 if and only if
states h, h' € H' satisfy conditions P1 and P2’ in Fig. 2.

P1 | A’ is a successor of h:= (a',...,al);

P2’ | For each player i € N, ¢;(h') is the most recent utility maximizing action among

the past actions {a},...,a’} to some belief a_; € X jen (i3 A(p;(h, T)). Formally:

0;(W) = a¥, where k = min {m €{l,..., L} [wi(a") = max,,crer, a1y wilai, oz,i)}.

7

Figure 2: For P € &' P(h,h') > 0 iff h, i’ € H' satisfy P1 and P2’.

Since {a},...,aF} may be a proper subset of A;, the utility maximizing action from
this subset could be a suboptimal reply to the belief a_; € X enmi3A(X;) or a best
reply that is not contained in a minimal prep set. Consequently, the process need not
convergence to a minimal prep set of the underlying game. It does, however, converge to

a minimal prep set of a subgame:

Proposition 5.1 Let G = (N, (A;)ien, (u;)ien) be a game and let T € N. Let P € &'
and let hg = (b, ...,bY) € H' be an initial state. If the horizon T € N of recent past play is

11



sufficiently large, then play eventually settles down in a minimal prep set of the subgame
G = (N,({b},..., b} )ien, (u;)ien), where u; is player i’s payoff function restricted to

1 L
XiEN{bia"-vbi .

Proof. By P2, given an initial state hy = (b',...,b%) € H’, all chosen action profiles
in future states by lie in x;en {b},...,bF} € A. The adjustment process with transition
matrix P € & for the original game G then reduces to a best-reply process in & of the
subgame G’: the full-support condition (1) is satisfied by restricting the strategy space
to Xien {bi,...,bF} and choosing actions according to P2’ coincides with choosing the
most recent best reply to their beliefs in the subgame G’. Applying Theorem 4.1 to the
subgame G’, we find that the process with transition matrix P € £’ and initial state

ho € H' converges to a minimal prep set of the subgame G'. 0

5.2.  Allowing for other behavioral biases

To show that processes from & eventually settle down in minimal prep sets, the proof
of steps 1 and 2 of Theorem 4.1 (see Appendix) uses that certain transition probabilities
are positive to show that the process can move from any initial state hyg € H in a finite
number of steps to a state hy € H where X;cnpi(ha,T) is a minimal prep set. The proof
of step 3 uses that certain transition probabilities are zero to show that each player —
once such a state hy is reached — continues to play action profiles from the minimal
prep set. We motivated these conditions on the transition probabilities by assuming that
players always choose the most recent best reply to a certain belief. However, any class
of adjustment process that respects these conditions on the sign will converge to minimal
prep sets. Hence, one can easily extend the class of adjustment processes that converge
to minimal prep sets.

Consider the more general adjustment process in which, rather than choosing the
most recent best reply to beliefs drawn from recent past play, each player ¢ € N chooses

a response according to a probability distribution (mixed strategy)
Rin € A(4A))
depending on (1) the account (a, ..., a’) of recent past play, and (2) the order in which

12



the players’ actions appear in h. That is, for each pair of states h = (a!,...,a%),g =

(b',...,b%) € H:

(a',...;a") = (b',...,0")

= Rip =R, forallie N. (4)
Oip = 0;g forallie N

Example 5.2 In processes from the class &2, the probability that ¢ € N in state h =
(a',...,a") € H chooses action a; € A; equals the probability of drawing a belief to which

a; is the most recent best reply:

Ri,h<ai) = P(z (al,...,aT)) ({a—z € XjieN\{i }A(p](h T)) - af}) )
where k =min{m =1,...,L: BR;(a_;)N{a},...,a"} # 0}. Q

The collection of functions R = (R; 1 )ien nen determines, for each pair of states h, b’ € H,
the transition probability Pg(h,h’) € [0,1]. If Pr(h,h') > 0, then A’ is a successor of h
(property P1 in Fig 1) and

w(h, 1) = HRM

iEN

is the probability of the players choosing action profile ¢(h'). Let 2 denote the collection
of such transition probability functions {Pr : H x H — [0,1] | R = (R, p)ienhen} With
the following two properties: for each pair of histories h, h' € H,

() if P1 and P2 hold, then Pg(h,h’) > 0.

(B) if the product set of actions played during the most recent k& > T rounds of A is a
minimal prep set, play settles down within this set. Formally, if X := x;cnpi(h, k)
is a minimal prep set for some k > T and Pg(h,h’) > 0, then x;enpi(h/, k+1) = X,
ie., ((h) e X.

Proposition 5.3 Let G = (N, (Ai)ien, (4i)ien) be a game and let T € N. Then & C .
Moreover, if Pr € P and the horizon T € N of recent past play is sufficiently large, then

play eventually settles down in a minimal prep set of G.

13



Proof. Let P € &. By Example 5.2, there are functions R = (R, p,)ien nen such that
P = Pg. Conditions («) and () follow trivially from P1 and P2 in the definition of 2.
Conclude that P € 2. The proof of Theorem 4.1 (see Appendix) applies with minor
changes to Pgr as well:

— condition («) guarantees that steps 1 and 2 hold without change,

— condition () guarantees that step 3 holds without change,

— by (4), there are only finitely many different functions in R = (R, )iennen, S0 the

equivalence relation in step 4 is well-defined and there are again finitely many equivalence

classes; hence, also step 4 holds. O

The set inclusion in Proposition 5.3 is strict. One easily finds processes in 7 \ & by

letting players choose more freely among recent best replies:

Example 5.4 For h = (a!,...,a*) € H and i € N, let Y;(h) C A; denote the nonempty

set of actions which are the most recent best reply to some belief over recent past play:

a; € Y;(h) & 3a_; € xjempnAw;(h,T)) : a; = af, where
k=min{m=1,...,L| BRi(a_;)N{a},...,a"} # 0}.

To make sure that condition () holds, R;; must assign positive probability to each action
in Y;(h). But player i can choose more freely among recent best replies, not just the most
recent ones. Let

Zi(h) = BRi(x jen\(yAp;(h,T))) N pi(h,T)

be the set of all of i’s best replies to beliefs over X ;en (4p;(h,T’) during the horizon of
recent past play. Fix a probability distribution over A; whose support is Y;(h) U Z;(h).
For the purpose of illustration, we take a simple uniform distribution:®

1/1Y;(h) U Z;(h)| if a; € Yi(h) U Z;(h),

Vai € Al : Ri,h(ai) = (5)
0 otherwise.

5 Alternatively, one could for instance assign higher probability to the most recent best replies in Y;(h)

than to less recent best replies in Z;(h) \ Y;(h).
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With R = (Ri)iennen as in (5), it follows easily that Pr € 2. Condition (4) is satisfied
because Y;(h) = Y;(g) and Z;(h) = Z;(g) whenever states h,g € H satisfy the conditions
in (4). Condition («) is satisfied since each ¢ € N assigns positive probability to the
actions in Y;(h). Also condition (/) is satisfied: if X := X;enpi(h, k) is a minimal prep
set for some k > T, then Y;(h) C X; and Z;(h) C p;(h,T) C X; for all i € N. Hence,
using (5), 4;(h') € Yi(h) U Z;(h) C X, for all i € N, i.e., ¢(h') € X. Finally, since the
process also assigns positive probability to possible other recent best replies over observed

past play during the last T' rounds, Pr ¢ 2. N

6. Discussion

The purpose of this paper was to study discrete-time best-response processes with an
intuitively appealing bias towards recent actions. Such processes were shown to settle
down in minimal prep sets. Several modifications of these processes were discussed in
the previous section. There remain, of course, interesting directions for future research,

including studying the effect of:

- random perturbations in the processes described above by introducing mistake prob-

abilities or experimentation as in Young (1998),

- introducing players with different levels of sophistication as in Milgrom and Roberts

(1991),
- other types of behavioral biases.

Hurkens (1995) already takes up the first two directions in variants of his model. To avoid
too much overlap of ideas, we therefore choose not to treat them here. One observation
might be useful. Following the discussion in Hurkens (1995, p. 326), one can show that the
introduction of perturbations adds little cutting power in two-player games. In contrast
with Young’s perturbed processes, for instance, this will not lead to a distinction between
payoff- or risk-dominant outcomes.

The third direction is the least traditional and therefore the most challenging, but it

lies outside the scope of the current paper. We cannot possibly do justice to the long list
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of choice biases discussed in the behavioral economics literature. Whether other types of
biases than the type discussed here give rise to convergence to other solution concepts, is

an avenue for further research.
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A. Appendix: Proof of Theorem 4.1

Fix a game G = (N, (A;)ien, (4;)ien), length T € N of recent past play with 7' >
max{) .y |Ai| — |N|+1,2|Aq],...,2|A,|}, where n = |N|, and an adjustment process
with transition probability function P € &2. We start with some additional notation. Fix
an arbitrary history h = (a',...,a’) € H and player i € N.

The action player i chose in h a number of ¢ € {1,...,T} periods ago is denoted by

ai(h'v t) - af
and the action player ¢ chose in h exactly T periods ago is denoted by
7(h) = al = a;(h,T).

Action a; € p;(h,T) is blocked in h if there is no belief a_; € X jem ;3 A(pj(h, T)) against
which it is the most recent best reply.

Finally, player ¢ chose action a; € p;(h,T) during the past 7" rounds with frequency
fi(h,ai) = ‘{t € {1, e ,T} . az(h,t) = CLz}|

We now prove the four steps of Theorem 4.1. In Section A.1 step 1 is proven. Sec-
tions A.2, A.3, and A.4 provide the building blocks for the proof of step 2, which is proven
together with step 3 and 4 in Section A.5.
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A.1.  Proof of step 1

Step 1: Let hy € H. The process moves with positive probability in 7" — 1 steps to a
state hy € H where the product set X;enpi(h1,T) C A of actions played in the past T'

periods is a prep set. The proof uses the following lemma:
Lemma A.1 Consider state h = (a*,...,a*) € H and a number t € {1,...,T —1}.

(a) Suppose that X;enpi(h,t) C A is not a prep set. Then the process moves with

positive probability to a successor h' € H where
XiENpi(ha t) C XiGNpi(hlat + 1) (6)

(b) Suppose that x;enpi(h,t) C A is a prep set. Then the process moves with positive

probability to a successor h' € H where
Xienpi(h,t) = Xienpi(W', t 4+ 1). (7)

Proof. (a): Since x;enpi(h,t) C A is not a prep set, there is a nonempty set S C N of
players i € N with a belief a*; € x;en iy A(p;(h,t)) over the play in the past ¢ periods
to which p;(h,t) does not contain a best reply: BR;(a*;) Npi(h,t) = 0. Fix such a belief
o, for each 7 € S and let b; € A; be the most recently played best reply to a*, in h:

b; = a¥, where k = min{m € N | BR;(a*,) N {a;,...,a"} # 0}.

7

For each i € N\ S, let b; € p;(h,t) be the most recent best reply to an arbitrary belief
over play in the past t periods. Such a best reply exists by definition of S. By P1 and P2,
the process moves with positive probability from state h to successor b/ = (b,a',. .., a%).
Now (6) holds by construction: if ¢ € N \ S, then b; € p;(h,t), so p;(h,t) = p;(W,t + 1),
and if ¢ € S, then b; & p;(h,t), so p;(h,t) C pi(h,t) U{b;} = pi(h',t +1).

(b): Fix, for each i € N, a belief a_; € X en i3 A(pj(h,t)) over the play in the past
t periods. Since X;enp;(h,t) is a prep set, there is an action b; € p;(h,t) which is the
most recent best reply to this belief. By P1 and P2, the process moves with positive
probability from h to ' = (b,a',... al). Since b; € p;(h,t) for all i € N, it follows that
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pi(h',t 4+ 1) = pi(h,t), so (7) holds. O

Applying Lemma A.1 T — 1 times, one can construct a sequence ¢y, ..., gr in H with

gri=hoandforall k=1,...,T — 1. P(gy,grr1) > 0 and

XienDi(grs k) C XienDi(grs1:, k + 1),

with strict inclusion if X;enpi(gx, k) is not a prep set and equality otherwise. The sequence
of product sets x;cnpi(gr, k) in A can increase strictly during at most >,y |A:i] — | V|
steps: the action space A is a prep set containing ) . |A4;| actions; X;enp;(g1,1) captures
|N| of them, and in each step at least one action is added until a prep set is reached.
Hence, the sequence has to reach, after K < ).\ |A4;| — |N| steps, a state gx41 € H
where X;enpi(gri1, K + 1) is a prep set®. In the final T — K — 1 steps, we proceed to a

state gr, where

XienDi(gr, T) = Xienpi(gr—1, T — 1) = -+ = Xienpi(gr+1, K + 1)
remains a prep set. Taking h; := g finishes the proof of step 1.
A.2.  States without blocked actions

In this section, we show that from a state h € H such that x;enp;(h,T) is a prep
set, the process moves with positive probability within a finite number of steps to a state
h' € H where X;enpi(h,T) C Xienpi(h,T) is a prep set without blocked actions. This
is established in Lemma A.3, using Lemma A.2. Furthermore, in Remark A.4 we show
that when considering a sequence gy, ..., gk such that, forall k = 1,..., K, X;enpi(gx, T)
is a prep set and X;enpi(g1,T) 2 -+ 2 Xienpi(9x,T), we can assume without loss of
generality that none of the states (gx)r=1,.. x contains a blocked action. We use this result

in the lemmata discussed in the next subsections.

Lemma A.2 Let h € H be such that X;enp;(h,T) is a prep set. For each player i € N,
define B;(h) € pi(h,T) as follows:

6This motivates the lower bound L := 3",y [4;] — [N| 41 on T in (2): reaching a prep set can take
L — 1 steps; recalling the added actions and those in g; can consequently take a memory length L + 1.

The same reasoning applies to other adjustment processes in the literature; cf. Hurkens (1995, p. 314).
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o if 7;(h) is blocked, let B;(h) € pi(h,T) be an arbitrary non-blocked action.
o if 7;(h) is not blocked, let 5;(h) = 1;(h).

Set I = (B(h); h), with B(h) = (B:(h))icx- Then:

P(h,h) > 0 (8)
Xienpi(W,T) € Xienpi(h,T) (9)
Xienpi(h',T) is a prep set. (10)

Proof. For all i € N, §;(h) € p;(h,T) is not blocked by definition: there is a belief
a_; € XjemyA(pj(h,T)) against which 3;(h) is the most recent best reply. By P1 and
P2, (8) holds. Since 5;(h) € p;i(h,T) for all i € N, (9) holds. To prove (10), let i € N
and a_; € Xjem(3Ap; (W, T)). To show: BR;(a_;) Npi(h,T) # 0. By construction,
pi(R',T) equals either p;(h,T) or, if 7;(h) was blocked and chosen only once in the most
recent T periods of history h, p;(h,T) \ {m(h)}. Consequently, p;(h',T) still contains a
best reply to every belief over X jcn i3 A(p;(h,T)), in particular to every belief over the
subset X jen (i3 A(p; (M, T)). O

Claim (9) means that we weakly decrease the pool of feasible beliefs in going from h to
h' = (B(h); h). This implies that if a; := 7;(h) was blocked in h, but was chosen more
than once in the last T rounds of h, i.e., if a; € p;(h’,T), then it remains blocked:

if a; := 7;(h) was blocked in h and a; € p;(h/,T), then it is blocked in A’ (11)

By definition, blocked actions are not chosen in going from h to A’. Thus, if an action
is blocked in h, it is either no longer contained in x;enp;(h’,T), in which case (9) holds
with strict inclusion, or it remains blocked in A’ by (11), but lies further back in players’
memory. Hence, repeated application of Lemma A.2 to the sequence g1, g2, ... in H with
g1 = hand for all k € N: g1 = (8(gr); gr), yields that a blocked action disappears from
memory in at most 7" steps, in which case the product set of recent actions has become

strictly smaller in the weakly decreasing sequence

XieNpi(glvT) 2 XieNpi(g2aT) D

19



By (10), the product set remains a prep set. Since there are only finitely many prep sets,

it follows that we eventually reach a state gp without blocked actions. This proves:

Lemma A.3 Let h € H be such that X;enpi(h,T) is a prep set. Either h contains no
blocked actions, or the process moves with positive probability in a finite number of steps
to a state h' € H where Xienpi(h',T) C Xienpi(h,T) is a prep set and h' contains no

blocked actions.

Remark A.4 As part of the proof of step 2, we will establish the following: Given a state
g1 € H where x,enp;i(g1,T) is a prep set, the process moves with positive probability in
a finite number of steps to a state gx € H where X;enpi(gx,T) is a prep set with the
property that there is a minimal prep set X = X;enX; € X;enpi(g1,T) such that for each
1€ N:

pilyx, 1 Xi]) = X;, (12)

i.e., for each player i € N, the most recent | X;| actions are exactly those in i’s component of
the minimal prep set X. We do so by showing that with positive probability the process
moves through a sequence of states ¢1,¢s,...,9x such that for all k = 1,..., K — 1:

XienPi(gr, T) is a prep set and

XienPi(g1,T) 2 Xienpi(g2,T) 2 -+ 2 Xienpi(9k, T). (13)

If any of these states g contains a blocked action, we can apply Lemma A.3 to move to
a state ¢’ where X;enpi(g,T) C Xienpi(gr, T) is a prep set and ¢’ contains no blocked
actions. Then, we can resume the process to arrive at a prep set as in (12) from ¢’. Since
there are only finitely many prep sets and the prep set X;enpi(g’,T) is strictly contained
in X;enpi(gr, T'), we eventually reach — in a finite number of steps — a state from which
we can apply the process to reach a state gx with the property as in (12) without ever
encountering a state in which one of the actions is blocked. Hence: we can assume without

loss of generality that none of the states (gi)k=1,..x contains a blocked action. <
A.3.  Drag-to-front operations and frequency correction

Consider a state h € H containing no blocked actions for which x;cyp;(h,T) is a prep

set. Then, by definition (see Lemma A.2), for each i € N, §;(h) = 7;(h), the action i
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chose T periods ago. Hence, in the successor (5(h); h) = (7(h); h), this action is dragged
to the front of player ¢’s account of recent past play. For easy reference, call the transition
from h to (B(h); h) = (7(h); h) a drag-to-front operation.

Suppose some player j € N has an action a; € p;(h,T) with frequency f;(h,a;) = 1.
Since T' > 2| A;| by (2), there must be an action b; € p;(h,T') with frequency f;(h,b;) > 3.
By Remark A.4, and using drag-to-front-operations if necessary, we can assume without
loss of generality that player j chose b; exactly T periods ago: 7,;(h) = b;. For each player
i € N, define v;(h') € pi(h',T) as follows:

sy = ¢ T A (14
a; if i =j.
Set W' = (vy(h); h) with v(h) = (7;(h))ien. Recall: (1) v;(h) € p;(h,T) for all i € N, (2)
Xienpi(h,T) is a prep set, and (3) no actions in h are blocked; so each ~;(h) is the most
recent best reply to a belief a_; € Xpenm 3 A(pr(h,T)). By P1 and P2, P(h,1') > 0.
By construction, X;enpi(h',T) = Xienpi(h,T) remains a prep set. The frequency
of the actions of players i # j is unaffected: Vi € N\ {j},Ve; € ps(W,T) = pi(h,T) :
fi(W.¢;) = fi(h,¢;). For player j and ¢; € p;j(h',T) = p;(h,T):

fi(h,c5) if ¢; ¢ {a;,b;},
fi(h',c;) =19 fi(ha;) +1=2 if¢; = aj,
filh,b;) —1>2 if¢; =10y
By going from h to h’, the number of actions with frequency one has strictly decreased,
whereas there is no action with frequency larger than or equal to two whose frequency
becomes less than two.
Repeating this process, we eventually reach a state where all actions in the history of
recent past play have frequency greater than or equal to two. By Lemma A.3, we may

assume that none of its actions is blocked. This proves:

Lemma A.5 Let h € H be such that X,enp;i(h,T) is a prep set. Then the process moves
with positive probability in a finite number of steps to a state h' € H with X;enp;(W,T) C
Xienpi(h,T) such that

[C1] Xienpi(W',T) is a prep set,

21



(C2] all actions have frequency at least 2: ¥Yi € N,¥a; € p;(W',T) : fi(h,a;) > 2,
[C3] K contains no blocked actions.

A.4. Neighbor switches

If we repeatedly apply drag-to-front operations starting in a state h € H such that no
actions are blocked and X;enyp;(h,T) is a prep set, we get a sequence of states gg, g1, -+ €
H with gy := h such that for all players i € N and all t € N: ¢;(¢;) = 7:(g:-1), i.e., we get
a periodic repetition of each player’s actions.

Suppose instead that we wish to change the order” in which player i plays two neigh-
boring actions, while the others continue to play actions in their given order. For instance,
we may want to go from Fig. 3.a to Fig. 3.e, where we switched player i’s actions b and
¢, chosen 2 and 3 periods ago, respectively, keeping the order of actions of players j # 1
the same. In Fig. 3, the length of recent past play 7' is 4; actions chosen during the most
recent four periods are contained in the boxed part of the table; actions outside the boxes
have disappeared from recent past play. For instance, in Fig. 3.c, player ¢ chose c five
periods ago, d six periods ago. Since T" = 4, these actions are no longer part of recent
past play.

The idea is simple: we can use drag-to-front operations until the actions we wish to
switch are those chosen T'— 1 and T periods ago (the transition from Fig. 3.a to Fig.
3.b); in the next two periods, let players j # i continue with drag-to-front operations,
while player i chooses the actions we wish to switch in reverse order (in going from Fig.
3.b to Fig. 3.c, i chooses b instead of c, in going from the Fig. 3.c to Fig. 3.d, i chooses
c instead of b). Finally, we can use drag-to-front operations until the switched actions
are back at time slots ¢ and ¢ 4 1 in the recent past play (the transition from Fig. 3.d to
Fig. 3.e). Formally:

Lemma A.6 Let h € H satisfy [C1] to [C3]. Leti € N,t € {1,...,T —1}. Assuming

w.l.o.g. (Remark A.j}) that we encounter no blocked actions, the process moves with

TAlthough they may be related (for instance in the case of drag-to-front operations), the order in
which a player ¢« € N plays his actions is different from the way in which his actions are encountered in

a given history h, i.e., the order o;j, defined in Section 2.

22



Fig. 3.a | playeri: |a |b | c | d

player j: | a | B | ¥

Fig. 3.b | playeri: |d |a |b|c|d

player j: | 6 |a | B | v

Fig. 3.c | playeri: |[b|d|a|b|c d

player j: | v |6 |a | B |~

Fig. 3.d | playeri: |[c |b|d|a|b ¢ d

player j: | Bl v |6 |a| B v

Fig. 3.e | playere: |a|c|b|d|a b ¢ d

player j: |a | B | v |60 |a [ v

Figure 3: Switch ¢’s actions a and b, keeping those of players j # ¢ in the same order.

positive probability in T steps to a state h' € H satisfying [C1] to [C3| and in which
aj(W.k)=a;(h k) if j#i orif (j=1and k ¢ {t,t+1}), whereas a;(h',t) = a;(h,t+1)
and a;(W,t +1) = a;(h,t).

Proof. For notational convenience, let a; and b; be the actions player ¢ chose t + 1 and ¢
periods ago in h, respectively. Performing 7' — ¢ — 1 drag-to-front operations, we reach a
state hy satisfying [C1] to [C3] in which a; is the action i chose T periods ago and b; the
action he chose T'— 1 periods ago.

Construct a successor hy of hy as follows: for each j € N\ {i}, set s; = 7;(hy) and set
s; = b;. Define hy = (s'; hy), where s' = (s}) en.

Construct a successor hg of hy as follows: for each j € N\ {i}, set 57 = 7;(hy) and set
s; = a;. Define hy = (5% hy), where s* = (57)en.

For players j # i, these two steps involve simple drag-to-front operations. For player
1 it involves reversing the order: in going from hy to hs, ¢ chooses b;, in going from hs to

hs, i chooses a;, rather than playing first a;, then b;.
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As X;enpi(hy, T) is a prep set and no actions are blocked in hy, it follows from P1 and
P2 that P(hy, hy) > 0. Moreover, as all actions in h have frequency at least 2, we have that
pi(h1,T) = pi(he, T) for all i € N. Hence, also X;enp;(he,T) is a prep set. By Remark
A.4 we may assume that hy contains no blocked actions. Hence, also P(hg, hs) > 0.
Moreover, it is easy to see that frequencies in hz are identical to frequencies in hq, i.e., at
least equal to 2. We can thus conclude that also hg satisfies [C1] to [C3].

In hg, the two actions that are played most recently are a; and b;, respectively. Thus,

performing ¢t — 1 drag-to-front operations leads to the desired state h’. 0

A.5.  Proof of the remaining steps

Step 2: Let hy € H be such that X;enpi(h1,T) is a prep set. The process moves with
positive probability in a finite number of steps to a state hy € H where X;enp;(he, T') is
a minimal prep set.
Proof. By Lemma A.5, the process moves with positive probability in a finite number of
steps from hy to a state g € H satisfying [C1] to [C3]. Let X = X;enX; C Xienpi(g,T)
be a minimal prep set. Assuming w.l.o.g. (Remark A.4) that from g onward we do
not encounter blocked actions, Lemma A.6 allows us to perform neighbor switches. Every
permutation of a finite set can be obtained by a chain of neighbor switches; thus, repeated
application of Lemma A.6 yields that the process moves in a finite number of steps to a
state go € H with the property that for each player i € N, p;(go, | Xi|) = X;, i.e., for each
player i € N, the most recent | X;| actions in gy are exactly those in i’s component of the
minimal prep set X.

For each k € N, let gx := ((a(gx_1, | Xi|))ien; gr—1) € H, i.e., gi is the successor of g1
obtained by letting each player i € N play the action he chose | X;| periods ago in gj_;.
Recalling that X is a minimal prep set, a simple inductive proof establishes that for all

k € N it holds that P(gx_1,gx) > 0 and for all players ¢ € N we have
pi(ge, min{|X;| + k, T}) = X;.

Set k = T to find that x;enp;(hr, T) = X. Taking hy := gr finishes the proof of step 2. [J
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Step 3: Let hy € H be such that X = X;enp;(he, T') is a minimal prep set. After reaching
hs, all action profiles that are played with positive probability lie in X:

Vk € N,Vh € H : P*(hy,h) > 0= ((h) € X. (15)

Proof. By P1 and P2, players always base beliefs on the actions played in the last T
periods and choose the most recent best reply to such beliefs. In hy, their account of
recent play X;enp;i(he,T) equals the minimal prep set X, which by definition contains
at least one best reply to whatever belief a player may have about other players’ choices
from X. Hence, by induction, the actions from minimal prep set X will always be fresher
in players’ recollection of past play than actions outside X, i.e., beliefs and best replies to
these beliefs will, by P1 and P2, always have support in X. Formally, for all £ € N and
heH:
if P*(hy,h) >0, then X;en pi(h, T+ k) =X,

and hence

XiENpi(ha T) g X.

In particular, this means ¢(h) € X, i.e., (15) holds. O

Step 4: For every state hy € H, the process eventually reaches a state hy € H satisfying
the conditions in step 2, i.e., where according to step 3 play settles down in a minimal
prep set.

Proof. Recall from Section 3.2 that in each state h € H, if the sequence of action
profiles from the past T periods is (a',...,a”) € AT, then player i’s beliefs are drawn
from a probability distribution P(; 41, ,r)). By P2, he chooses the most recent best
reply to every such belief. Thus, player i’s choice behavior is the same in two states
h=(a,...,a"),g = (b,...,b%) € H if they have the same account of recent past play,
ie. if (al,...,aT) = (b',...,bT), and the same the order in which player i’s actions are
encountered, i.e., if 0;, = 0;,. Since there are only finitely many elements in A” and N,
it follows that the set of positive transition probabilities {P(h,h’) | P(h,h') > 0} is a
finite set. Let € > 0 be its minimum.

By steps 1 to 3, it is possible, from any history hg € H, to reach a state ho, € H

in an absorbing set where play settles down in a minimal prep set in a finite number of
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steps, say k(hg) € N. By definition of equivalence, k(h) = k(hg) for all h € [ho]: the set
{k(ho) | ho € H} is finite. Let x € N be its minimum.

By definition of € and &, the probability of entering an absorbing set where play settles
down in a minimal prep set in at most x steps is at least € from any state. Hence, the
probability of not reaching an absorbing set in x steps is at most 1 —¢&”, which is less than
1. So the probability of not reaching an absorbing set in kx steps is less than or equal to

(1 — &™)k, which goes to zero as k goes to infinity. O
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