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1 Introduction

A curb set — mnemonic for ‘closed under rational behavior’ — is a Cartesian

product of pure-strategy sets, one for each player, that includes all best replies to

all probability distributions over the strategies in the set. Hence, if a player believes

that her opponents stick to strategies from their components of a curb set, then

her component contains all her best replies, so she’d better stick to her strategies as

well.

Curb sets and variants were introduced by Basu and Weibull (1991) and be-

came of importance in the literature on strategic adaptation in finite games, since a

variety of arguably plausible adjustment processes eventually settle down in a min-

imal (w.r.t. set inclusion) curb set; cf. Hurkens (1995), Sanchirico (1996), Young

(1998), and Fudenberg and Levine (1998). Such sets give appealing results in com-

munication games (Hurkens, 1996; Blume, 1998) and network formation games (Ga-

leotti, Goyal, and Kamphorst, 2006). For closure properties under generalizations

of the best-reply correspondence and implications for evolutionary dynamics, see

Ritzberger and Weibull (1995).

A Cartesian product of pure-strategy sets is fixed under rational behavior (furb)

if each player’s component not only contains, but is identical with the set of best

replies to all probability distributions over the set. Hence, furb sets are the natural

set-valued generalization of strict Nash equilibria. Basu and Weibull (1991) — who

refer to furb sets as ‘tight’ curb sets — show that minimal curb sets and the

product set of rationalizable strategies (Bernheim, 1984; Pearce, 1984) are important

special cases of furb sets.

Allowing for set-valued solution concepts such as curb sets and its variants

is a way to avoid the ‘epistemic criticism’ of the Nash equilibrium concept. It is

by now well-known that Nash equilibrium is not implied by players’ knowledge or

beliefs about the game and each others’ rationality; it requires additional stringent

assumptions about the consistency of players’ conjectures about each other’s actions,

assumptions that seem hard to justify; see Bernheim (1984), Pearce (1984), Aumann

and Brandenburger (1995). In particular, it requires (a) that a player with multiple

best replies is conjectured, by all other players, to pick a particular best reply,

for no better reason than to induce the others to be willing to play their parts of

the equilibrium, and (b) that players believe that others never err: they play best

replies with probability one. By contrast, closedness under rational behavior requires
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neither (a) nor (b). The purpose of this study is to define epistemic robustness in

these two respects, and to establish a precise formal link with curb sets. More

exactly, the two kinds of epistemic robustness are:

Robustness to alternative best replies: Player i may hold any belief

over opponent profiles where each opponent j chooses some best reply

to a belief for player j that player i deems possible.

Robustness to non-best replies: Player i may assign a small positive

probability to opponent profiles where not each opponent j chooses a best

reply given some belief for player j that player i deems possible.

Links with curb sets are established in Propositions 1 to 3. Roughly speaking,

robustness to alternative best replies allows player i to have arbitrary beliefs in which

all other players best-reply to whatever i deems possible, rather than pinpointing

specific best replies as in epistemic conditions for Nash equilibria (Aumann and

Brandenburger, 1995). Robustness to non-best replies allows player i to have beliefs

that assign positive, but small probability to ‘irrational’ behavior of the opponents.

The reason why the curb property implies the latter type of robustness is that if

a player i is absolutely sure that the others use strategies in a certain curb set,

then — by definition — each of his pure strategies outside the curb set is strictly

worse than some pure strategy inside it. In finite games, by continuity of expected

payoffs with respect to beliefs, this remains true if i is sufficiently sure that his fellow

players will use strategies in the curb set, i.e., if his belief assigns a sufficiently large

probability to this event (Ritzberger and Weibull, 1995).

In order to illustrate this line of reasoning, consider first the two-player game

l c

u 3, 1 1, 2

m 0, 3 2, 1

(1)

In its unique Nash equilibrium, player 1 uses her first pure strategy with probability

2/3 and player 2 uses his first pure strategy with probability 1/4. However, even

if player 1, say, would expect player 2 to play his equilibrium strategy, (1/4, 3/4),

player 1 would be indifferent between her two pure strategies. Hence, any pure or

mixed strategy would be optimal for her, under the equilibrium expectation about

player 2. For all other beliefs about her opponent’s behavior, only one of her pure
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strategies would be optimal, and likewise for player 2. The unique curb set in this

game is the full set S = S1 × S2 of pure-strategy profiles.

Adding a third pure strategy to each player in this example, we obtain the two-

player game
l c r

u 3, 1 1, 2 0, 0

m 0, 3 2, 1 0, 0

d 5, 0 0, 0 6, 4

(2)

Clearly the strategy profile x∗ = (x∗1, x
∗
2) =

((
2
3 ,

1
3 , 0
)
,
(

1
4 ,

3
4 , 0
))

is a Nash equilib-

rium (indeed a perfect and proper equilibrium). However, if player 2 expects 1 to

play x∗1, then 2 is indifferent between his pure strategies l and c, and if 1 assigns equal

probability to these two pure strategies of player 2, then 1 will play the unique best

reply d, a pure strategy outside the support of the equilibrium. Moreover, if player 2

expects 1 to reason this way, then 2 will play r. By contrast, the pure-strategy profile

(d, r) is a strict equilibrium. In this equilibrium, no player has any alternative best

reply and each equilibrium strategy remains optimal also under some uncertainty

as to the other player’s action. In this game, all pure strategies are rationalizable,

S = S1 × S2 is a furb set, and the game’s unique minimal curb set and unique

minimal furb set is T = {d} × {r}. Unlike the support {u,m} × {l, c} of the Nash

equilibrium x∗, the set T is robust to all alternative best-replies and to a ‘small dose’

of non-best replies.

Given such robustness to alternative best replies, it is natural to follow, for

instance, Asheim (2006) and Brandenburger, Friedenberg, and Keisler (2008), and

model players as having beliefs about the opponents without assuming that they

choose specific subsets of their best reply sets. Letting each player be characterized

by his or her type, defined by a probability distribution over profiles of opponent

strategy-type pairs, allows this. In particular, a player’s type does not specify his

or her choice as in Aumann and Brandenburger (1995).

Our results can be heuristically described as follows. Proposition 1 establishes

that any curb set can be characterized by a set of choice profiles associated with

a Cartesian product Y of type sets that allow for any mutual belief (robustness

to alternative best replies) in which it is sufficiently likely (robustness to non-best

replies) that the others have types from Y and behave rationally. While curb sets

allow for other beliefs as well, Proposition 2 shows that furb sets have the same

epistemic robustness property, but, in addition, ‘irrational’ beliefs are absent. A
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furb set is characterized by a subset of types for each player, a subset that is

identical with the set of types for which the player p-believes, for all p sufficiently

close to 1, that each opponent is rational and holds a belief determined by a type

in her type subset. The result reported in Proposition 3 is different in nature.

It establishes that minimal curb sets provide lower bounds, in terms of strategy

subsets, for what can be epistemically robust: no proper subset of a minimal curb

set is epistemically robust. More precisely, Proposition 3 establishes that such a

Cartesian product of type sets, one for each player, violates robustness to alternative

best replies if the Cartesian product of the associated union of choice sets that the

individual type sets give rise to — all rational choices under the corresponding beliefs

— does not coincide with the smallest curb set that includes it.

Our epistemic approach follows, e.g., Asheim (2006) and Brandenburger, Frieden-

berg, and Keisler (2008) by not letting player types determine strategy choices.

Moreover, we consider complete epistemic models. In these respects, our modeling

differs from that of Aumann and Brandenburger’s (1995) characterization of Nash

equilibrium. In its motivation in terms of epistemic robustness of solution concepts

and in its use of p-belief, the present approach is related to Tercieux’s (2006) anal-

ysis. His epistemic approach, however, is completely different from ours. Starting

from a two-player game, he introduces a Bayesian game where payoff functions are

perturbations of the original ones and he investigates which equilibria are robust

to this kind of perturbation. By studying the robustness of non-equilibrium con-

cepts in terms of mutual belief, our analysis is related to Zambrano (2008). The

latter, however, restricts attention to rationalizability and probability-1 beliefs. His

main result follows from our Proposition 2. Also Hu (2007) restricts attention to

rationalizability, but allows for p-beliefs, where p < 1. In his games, the compact

strategy sets are permitted to be infinite. By contrast, our analysis is restricted to

finite games, but under the weaker condition of mutual, rather than Hu’s common,

p-belief of opponent rationality and of opponents’ types belonging to given type sets.

The remainder of the paper is organized as follows. Section 2 contains the game

theoretic and epistemic definitions used. Section 3 gives the characterizations of

variants of curb sets. Proofs of the propositions are provided in the appendix.
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2 The model

2.1 Game theoretic definitions

Consider a finite normal-form game 〈N, (Si)i∈N , (ui)i∈N 〉, where N = {1, . . . , n}
is the non-empty and finite set of players. Each player i ∈ N has a non-empty,

finite set of pure strategies Si and a payoff function ui : S → R defined on the set

S := S1 × · · · × Sn of pure-strategy profiles. For any player i, let S−i := ×j 6=iSj .

It is over this set of other players’ pure-strategy combinations that player i will

form his or her probabilistic beliefs. These beliefs may, but need not be product

measures over the other player’s pure-strategy sets. We extend the domain of the

payoff functions to probability distributions over pure strategies as usual.

For later convenience, we here introduce some notation. For an arbitrary Polish

(separable and completely metrizable) space F , let M(F ) denote the set of Borel

probability measures on F , endowed with the topology of weak convergence. For

each player i ∈ N , pure strategy si ∈ Si, and probabilistic belief σ−i ∈ M(S−i),

write

ui(si, σ−i) :=
∑

s−i∈S−i

σ−i(s−i)ui(si, s−i).

Define i’s best-reply correspondence βi : M(S−i) → 2Si as follows: For all σ−i ∈
M(S−i),

βi(σ−i) := {si ∈ Si | ui(si, σ−i) ≥ ui(s′i, σ−i) ∀s′i ∈ Si} .

Let S := {X ∈ 2S | ∅ 6= X = X1 × · · · × Xn} denote the collection of non-

empty Cartesian products of subsets of the players’ strategy sets. For X ∈ S we

abuse notation slightly by writing, for each i ∈ N , βi(M(X−i)) as βi(X−i). Let

β(X) := β1(X−1) × · · · × βn(X−n). Each constituent set βi(X−i) ⊆ Si in this

Cartesian product is the set of best replies of player i to all probabilistic beliefs over

the others’ strategy choices X−i ⊆ S−i.

Following Basu and Weibull (1991), a set X ∈ S is:

closed under rational behavior (curb) if β(X) ⊆ X;

fixed under rational behavior (furb) if β(X) = X;

minimal curb (mc) if it is curb and does not properly contain another

one: β(X) ⊆ X and there is no X ′ ∈ S with X ′ ⊂ X and β(X ′) ⊆ X ′.

Basu and Weibull (1991) call a furb set a ‘tight’ curb set. The reversed inclusion,

X ⊆ β(X), is sometimes referred to as the ‘best response property’ (Pearce, 1984,
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p. 1033). It is shown in Basu and Weibull (1991, Prop. 1 and 2) that an mc set

exists, that all mc sets are furb, and that the product set of rationalizable strategies

is the game’s largest furb set. While Basu and Weibull (1991) require that players

believe that others’ strategy choices are statistically independent, σ−i ∈ ×j 6=iM(Sj),

we here allow players to believe that others’ strategy choices are correlated, σ−i ∈
M(S−i).1 Thus, in games with more than two players, the present definition of

curb is somewhat more demanding than that in Basu and Weibull (1991), in the

sense that we require closedness under a wider space of beliefs. Hence, the present

definition may, in some games with more than two players, lead to larger mc sets.2

2.2 Epistemic definitions

For each i ∈ N , denote by Ti player i’s non-empty Polish space of types. The state

space is defined by

Ω := S × T ,

where T := T1 × · · · × Tn. For each player i ∈ N , write Ωi := Si × Ti and Ω−i :=

S−i × T−i, where T−i := ×j 6=iTj . To each type ti ∈ Ti of every player i, there

corresponds a Borel probability measure µi(ti) ∈M(Ω−i) over Ω−i. For each player

i, we thus have the player’s pure-strategy set Si, type space Ti and a mapping µi :

Ti →M(Ω−i) that to each of i’s types ti assigns a probabilistic belief, µi(ti), over the

others’ strategy choices and types. The structure (S1, . . . , Sn, T1, . . . , Tn, µ1, . . . , µn)

is called an S-based (interactive) probability structure. Assume that for each i ∈ N :

• µi is onto: all Borel probability measures on Ω−i are represented in Ti. A

probability structure with this property is called complete.

• Ti is compact.

• µi is continuous.

An adaptation of the proof of Brandenburger, Friedenberg, and Keisler (2008, Propo-

sition 7.2) establishes the existence of such a complete probability structure.3

1Our results carry over — with minor modifications in the proofs — to the case of independent

strategies.

2We also note that a pure strategy is a best reply to some belief σ−i ∈M(S−i) if and only if it

is not strictly dominated (by any pure or mixed strategy). This follows from Lemma 3 in Pearce

(1984), which, in turn, is closely related to Lemma 3.2.1 in van Damme (1983).

3The exact result we use is Proposition 6.1 in an earlier working paper version (Brandenburger,

Friedenberg, and Keisler, 2004). The existence of a complete probability structure can also be
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For each i ∈ N , denote by si(ω) and ti(ω) i’s strategy and type in state ω ∈ Ω.

In other words, si : Ω → Si is the projection of the state space to i’s strategy set,

assigning to each state ω ∈ Ω the strategy si = si(ω) that i uses in that state.

Likewise, ti : Ω→ Ti is the projection of the state space to i’s type space. For each

player i ∈ N and positive probability p ∈ (0, 1], the p-belief operator Bp
i maps each

event (Borel-measurable subset of the state space) E ⊆ Ω to the set of states where

player i’s type attaches at least probability p to E:

Bp
i (E) := {ω ∈ Ω | µi(ti(ω))(Eωi) ≥ p} ,

where Eωi := {ω−i ∈ Ω−i | (ωi, ω−i) ∈ E}. This is the same belief operator as in Hu

(2007). One may interpret Bp
i (E) as the event ‘player i believes E with probability

at least p’. For all p ∈ (0, 1], Bp
i satisfies Bp

i (∅) = ∅, Bp
i (Ω) = Ω, Bp

i (E′) ⊆ Bp
i (E′′)

if E′ ⊆ E′′ (monotonicity), and Bp
i (E) = E if E = proj Ωi

E × Ω−i. The last

property means that each player i always p-believes his own strategy-type pair, for

any positive probability p. Since also Bp
i (E) = proj Ωi B

p
i (E) × Ω−i for all events

E ⊆ Ω, each operator Bp
i satisfies both positive (Bp

i (E) ⊆ Bp
i (Bp

i (E))) and negative

introspection (¬Bp
i (E) ⊆ Bp

i (¬Bp
i (E)). For all p ∈ (0, 1], Bp

i violates the truth

axiom, meaning that the requirement that Bp
i (E) ⊆ E need not be satisfied for all

E ⊆ Ω. In the special case p = 1, we have Bp
i (E′) ∩ Bp

i (E′′) ⊆ Bp
i (E′ ∩ E′′) for all

E′, E′′ ⊆ Ω.

Define i’s choice correspondence Ci : Ti → 2Si as follows: For each of i’s types

ti ∈ Ti,

Ci(ti) := βi(margS−i
µi(ti))

consists of i’s best replies when player i is of type ti. Let T denote the collection of

non-empty Cartesian products of subsets of the players’ type spaces:

T := {Y ∈ 2T | ∅ 6= Y = Y1 × · · · × Yn}.

For any such set Y ∈ T and player i ∈ N , write Ci(Yi) :=
⋃

ti∈Yi
Ci(ti) and C(Y ) :=

C1(Y1) × · · · × Cn(Yn). In other words, these are the choices and choice profiles

associated with Y . If Y ∈ T and i ∈ N , write

[Yi] := {ω ∈ Ω | ti(ω) ∈ Yi}.

This is the event that player i is of a type in the subset Yi. Likewise, write [Y ] :=⋂
i∈N [Yi] for the event that the type profile is in Y . Finally, for each player i ∈ N ,

established by constructing a universal state space (cf. Mertens and Zamir, 1985).
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write [Ri] for the event that player i uses a best reply:

[Ri] := {ω ∈ Ω | si(ω) ∈ Ci(ti(ω))}.

One may interpret the event [Ri] as ‘i is rational’.

3 Epistemic robustness

This section contains epistemic characterizations of curb and furb sets. Proposi-

tion 1 below stresses the robustness both to alternative best replies and to non-best

replies of curb sets. A set of choice profiles associated with a Cartesian product

Y of type sets with the robustness properties that it allows for any mutual belief

according to which it is sufficiently likely that the others have types from Y and

behave rationally is a curb set. Conversely, any curb set includes a set of choice

profiles associated with a Cartesian product Y of type sets with these robustness

properties.

Denote, for each i ∈ N and Xi ⊆ Si the pre-image (upper inverse) of Xi under

player i’s best response correspondence by

β−1
i (Xi) := {σ−i ∈M(S−i) | βi(σ−i) ⊆ Xi} .

Proposition 1 Let X ∈ S.

(a) If there exist p ∈ (0, 1] and Y ∈ T such that C(Y ) = X and, for each i ∈ N
and each p ∈ [p, 1],

Bp
i

(⋂
j 6=i

(
[Rj ] ∩ [Yj ]

))
⊆ [Yi] , (3)

then X is a curb set.

(b) If X ∈ S is a curb set, then there exist p ∈ (0, 1) and Y ∈ T such that

C(Y ) = ×i∈Nβi(β−1
i (Xi)) and, for each i ∈ N and each p ∈ [p, 1], inclusion

(3) holds.

We note that (a) applies to p = 1, in which case the hypothesis is simply that

Y ∈ T is such that C(Y ) = X and (3) holds for p = 1. In the appendix we also

prove the claim that if p ∈ (0, 1] and Y ∈ T are such that C(Y ) = X and (3) holds

for all i ∈ N , then X is a p-best response set in the sense of Tercieux (2006).

The following result shows that also furb sets can be characterized by these

robustness properties.
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Proposition 2 X ∈ S is a furb set if and only if there exists a p ∈ (0, 1) such

that for each p ∈ [p, 1] there exists a Y p ∈ T with C(Y p) = X and, for each i ∈ N ,

Bp
i

(⋂
j 6=i

(
[Rj ] ∩ [Y p

j ]
))

= [Y p
i ] . (4)

Observe that the set Y p above is chosen in such a way that also higher order be-

liefs conform with the players choosing in X. As an important corollary, Proposition

2 characterizes the set of rationalizable strategy profiles (Bernheim, 1984; Pearce,

1984), since this is the game’s largest furb set (Basu and Weibull, 1991), without

involving any explicit assumption of common belief of rationality; only mutual p-

belief of rationality and type sets are assumed. Thus, Proposition 2 generalizes the

main result of Zambrano (2008) to p-belief for p sufficiently close to 1. Proposition

2 also applies to mc sets, as these sets are furb.

To illustrate our final result, consider the Nash equilibrium x∗ in game (2) in

the introduction. This equilibrium corresponds to a type profile (t1, t2) where t1
assigns probability 1/4 to (l, t2) and probability 3/4 to (c, t2), and where t2 assigns

probability 2/3 to (u, t1) and probability 1/3 to (m, t1). We have that C({t1, t2}) =

{u,m} × {l, c}, while S is the smallest curb set that includes C({t1, t2}). The

following result shows that C({t1, t2}) is not epistemically robust since it does not

coincide with the smallest curb set that includes it. By contrast, for the type

profile (t′1, t
′
2) where t′1 assigns probability 1 to (r, t′2) and t′2 assigns probability 1

to (d, t′1) we have that C({t′1, t′2}) = {(d, r)} coincides with the smallest curb set

that includes it. Thus, the strict equilibrium (d, r) to which (t′1, t
′
2) corresponds is

epistemically robust.

Proposition 3 Let Y ∈ T and let X ∈ S be the smallest curb set satisfying

C(Y ) ⊆ X. Then X = C
(⋃

k∈N Y (k)
)
, where Y (0) := Y , and for each k ∈ N and

i ∈ N ,

[Yi(k)] := [Yi(k − 1)] ∪B1
i

(⋂
j 6=i

(
[Rj ] ∩ [Yj(k − 1)]

))
. (5)

Proposition 3 presumes that for each set X ∈ S, there is a unique smallest curb

set X ′ ∈ S with X ⊆ X ′ (that is, X ′ is a subset of all other curb sets X ′′, if any,

with X ⊆ X ′′). This presumption is met in all finite games, since the collection of

curb sets containing a given set X ∈ S is non-empty and finite, and the intersection

of two curb sets containing X is again a curb set containing X.

Proposition 3 checks robustness to alternative best replies by including all be-

liefs over the opponents’ best replies, and any beliefs over opponents’ types that has
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such beliefs over their opponents, and so on. We may, for example, start with any

Nash equilibrium and assume that, at some type profile t ∈ T , there is common

1-belief of the event that all players believe that all the others play according to this

equilibrium. However, these equilibrium beliefs are not robust, unless the equilib-

rium is strict. Otherwise, if all beliefs over the opponents’ best replies are included,

and any beliefs over opponents’ types that has such beliefs over their opponents are

included, and so on, then the resulting Cartesian product of type sets correspond

to the smallest curb set that contains the Nash equilibrium that was our point of

departure.

Appendix

Proof of Proposition 1. Part (a). By assumption, there is a Y ∈ T with

C(Y ) = X such that for each i ∈ N , B1
i

(⋂
j 6=i

(
[Rj ] ∩ [Yj ]

))
⊆ [Yi].

Fix i ∈ N , and consider any σ−i ∈ M(X−i). Since C(Y ) = X, it follows that,

for each s−i ∈ S−i with σ−i(s−i) > 0, there exists t−i ∈ Y−i such that, for all j 6= i,

sj ∈ Cj(tj). Hence, since the probability structure is complete, there exists a

ω ∈ B1
i

(⋂
j 6=i

(
[Rj ] ∩ [Yj ]

))
⊆ [Yi]

with margS−i
µi(ti(ω)) = σ−i. So

βi(X−i) := βi(M(X−i)) ⊆
⋃

ti∈Yi

βi(margS−i
µi(ti)) := Ci(Yi) = Xi .

Since this holds for all i ∈ N , X is a curb set.

Part (b). Assume that X ∈ S is a curb set, i.e., X satisfies β(X) ⊆ X.

Define Y ∈ T by taking, for each i ∈ N , Yi := {ti ∈ Ti | Ci(ti) ⊆ Xi}. Since

the probability structure is complete, it follows that Ci(Yi) = βi(β−1
i (Xi)). For

notational convenience, write X ′i = βi(β−1
i (Xi)) and X ′ = ×i∈NX

′
i. Since the game

is finite, there is, for each player i ∈ N , a pi ∈ (0, 1) such that βi(σ−i) ⊆ βi(X ′−i)

for all σ−i ∈M(S−i) with σ−i(X ′−i) ≥ pi. Let p = max{p1, . . . , pn}.
We first show that β(X ′) ⊆ X ′. By definition, X ′ ⊆ X, so for each i ∈ N :

M(X ′−i) ⊆ M(X−i). Moreover, as β(X) ⊆ X and, for each i ∈ N , βi(Xi) :=

βi(M(X−i)), it follows that M(X−i) ⊆ β−1
i (Xi). Hence, for each i ∈ N ,

βi(X ′i) := βi(M(X ′−i)) ⊆ βi(M(X−i)) ⊆ βi(β−1
i (Xi)) = X ′i .
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For all p ∈ [p, 1] and i ∈ N , we have that

Bp
i

(⋂
j 6=i

([Rj ] ∩ [Yj ])
)

= Bp
i

(⋂
j 6=i
{ω ∈ Ω | sj(ω) ∈ Cj(tj(ω)) ⊆ X ′j}

)
⊆

{
ω ∈ Ω | µi(ti(ω)){ω−i ∈ Ω−i | for all j 6= i, sj(ω) ∈ X ′j} ≥ p

}
⊆ {ω ∈ Ω | margS−i

µi(ti(ω))(X ′−i) ≥ p}

⊆ {ω ∈ Ω | Ci(ti(ω)) ⊆ βi(X ′−i)}

⊆ {ω ∈ Ω | Ci(ti(ω)) ⊆ X ′−i} = [Yi],

using β(X ′) ⊆ X ′.

For X ∈ S and p ∈ (0, 1], write, for each i ∈ N ,

βp
i (X−i) := {si ∈ Si | ∃σ−i ∈M(S−i) with σ−i(X−i) ≥ p

such that ui(si, σ−i) ≥ ui(s′i, σ−i) ∀s′i ∈ Si} .

Let βp(X) := βp
1(X−1)× · · · × βp

n(X−n). Following Tercieux (2006), a set X ∈ S is

a p-best response set if βp(X) ⊆ X.

Claim: Let X ∈ S and p ∈ (0, 1]. If Y ∈ T is such that C(Y ) = X and (3) holds

for each i ∈ N , then X is a p-best response set.

Proof. By assumption, there is a Y ∈ T with C(Y ) = X such that for each

i ∈ N , Bp
i

(⋂
j 6=i

(
[Rj ] ∩ [Yj ]

))
⊆ [Yi].

Fix i ∈ N and consider any σ−i ∈M(S−i) with σ−i(X−i) ≥ p. Since C(Y ) = X,

it follows that, for each s−i ∈ X−i, there exists t−i ∈ Y−i such that sj ∈ Cj(tj) for

all j 6= i. Hence, since the probability structure is complete, there exists a

ω ∈ Bp
i

(⋂
j 6=i

(
[Rj ] ∩ [Yj ]

))
⊆ [Yi]

with margS−i
µi(ti(ω)) = σ−i. So, by definition of βp

i (X−i):

βp
i (X−i) ⊆

⋃
ti∈Yi

βi(margS−i
µi(ti)) := Ci(Yi) = Xi .

Since this holds for all i ∈ N , X is a p-best response set.

Proof of Proposition 2. (If) By assumption, there is a Y ∈ T with C(Y ) = X

such that for all i ∈ N , B1
i

(⋂
j 6=i

(
[Rj ] ∩ [Yj ]

))
= [Yi].
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Fix i ∈ N . Since C(Y ) = X, and the probability structure is complete, there

exists a

ω ∈ B1
i

(⋂
j 6=i

(
[Rj ] ∩ [Yj ]

))
= [Yi]

with margS−i
µi(ti(ω)) = σ−i if and only if σ−i ∈M(X−i). So

βi(X−i) := βi(M(X−i)) =
⋃

ti∈Yi

βi(margS−i
µi(ti)) := Ci(Yi) = Xi .

Since this holds for all i ∈ N , X is a furb set.

(Only if) Assume that X ∈ S satisfies X = β(X). Since the game is finite,

there exists, for each player i ∈ N , a pi ∈ (0, 1) such that βi(σ−i) ⊆ βi(X−i) if

σ−i(X−i) ≥ pi. Let p = max{p1, . . . , pn}.
For each p ∈ [p, 1], construct the sequence of Cartesian products of type subsets

〈Y p(k)〉k as follows: For each i ∈ N , let Y p
i (0) = {ti ∈ Ti | Ci(ti) ⊆ Xi}. The

correspondence Ci : Ti ⇒ Si is upper hemi-continuous. Thus Y p
i (0) ⊆ Ti is closed,

and, since Ti is compact, so is Y p
i (0). There exists a closed set Y p

i (1) ⊆ Ti such that

[Y p
i (1)] = Bp

i

(⋂
j 6=i

(
[Rj ] ∩ [Y p

j (0)]
))

.

It follows that Y p
i (1) ⊆ Y p

i (0). Since Y p
i (0) is compact, so is Y p

i (1). By induction,

[Y p
i (k)] = Bp

i

(⋂
j 6=i

(
[Rj ] ∩ [Y p

j (k − 1)]
))

. (6)

defines, for each player i, a decreasing chain 〈Y p
i (k)〉k of compact and non-empty

subsets: Y p
i (k + 1) ⊆ Y p

i (k) for all k. By the finite-intersection property, Y p
i :=⋂

k∈N Y
p
i (k) is a non-empty and compact subset of Ti. For each k, let Y p(k) =

×i∈NY
p
i (k) and let Y p :=

⋂
k∈N Y

p(k). Again, these are non-empty and compact

sets.

Next, C(Y p(0)) = β (X), since the probability structure is complete. Since X is

furb, we thus have C(Y p(0)) = X. For each i ∈ N ,

[Y p
i (1)] ⊆ {ω ∈ Ω | margS−i

µi(ti(ω))(X−i) ≥ p} ,

implying that Ci(Y
p
i (1)) ⊆ βi(X−i) = X−i by the construction of p. Moreover,

since the probability structure is complete, for each i ∈ N and σ−i ∈ M(X−i),

there exists ω ∈ [Y p
i (1)] = Bp

i

(⋂
j 6=i([Rj ] ∩ [Y p

j (0)])
)

with margS−i
µi(ti(ω)) = σ−i,

implying that Ci(Y
p
i (1)) ⊇ βi(X−i) = X−i. Hence, Ci(Y

p
i (1)) = βi(X−i) = Xi. By

induction, it holds for all k ∈ N that C(Y p(k)) = β(X) = X . Since 〈Y p
i (k)〉k is a

decreasing chain, we also have that C(Y p) ⊆ X. The converse inclusion follows by

13



upper hemi-continuity of the correspondence C. To see this, suppose that xo ∈ X
but xo /∈ C (Y p). Since xo ∈ X, xo ∈ C (Y p (k)) for all k. By the Axiom of Choice:

for each k there exists a yk ∈ Y p (k) such that (yk, x
o) ∈ graph (C). By the Bolzano-

Weierstrass Theorem, we can extract a convergent subsequence for which yk → yo,

where yo ∈ Y p, since Y p is closed. Moreover, since the correspondence C is closed-

valued and u.h.c., with S compact (it is in fact finite), graph (C) ⊆ T × S is closed,

and thus (yo, xo) ∈ graph (C), contradicting the hypothesis that xo /∈ C (Y p). This

establishes the claim that C(Y p) ⊆ X.

It remains to prove that equation (4) holds for each i ∈ N . Fix i ∈ N , and let

Ek =
⋂

j 6=i

(
[Rj ] ∩ [Y p

j (k)]
)

and E =
⋂

j 6=i

(
[Rj ] ∩ [Y p

j ]
)
.

Since, for each j ∈ N , 〈Y p
j (k)〉k is a decreasing chain with limit Y p

j , it follows that

〈Ek〉k is a decreasing chain with limit E.

To show Bp
i (E) ⊆ [Y p

i ], note that by (6) and monotonicity of Bp
i , we have, for

each k ∈ N, that

Bp
i (E) ⊆ Bp

i (Ek−1) = [Y p
i (k)] .

As the inclusion holds for all k ∈ N:

Bp
i (E) ⊆

⋂
k∈N

[Y p
i (k)] = [Y p

i ] .

To show Bp
i (E) ⊇ [Y p

i ], assume that ω ∈ [Y p
i ].4 This implies that ω ∈ [Y p

i (k)]

for all k, and, using (6): ω ∈ Bp
i (Ek) for all k. Since Ek = Ωi × projΩ−i

Ek, we have

that Eωi
k = projΩ−i

Ek. It follows that

µi(ti(ω))(projΩ−i
Ek) ≥ p for all k .

Thus, since 〈Ek〉k is a decreasing chain with limit E,

µi(ti(ω))(projΩ−i
E) ≥ p .

Since E = Ωi × projΩ−i
E, we have that Eωi = projΩ−i

E. Hence, the inequality

implies that ω ∈ Bp
i (E).

Proof of Proposition 3. Assume that X ∈ S is the minimal curb set

containing C(Y ): (i) C(Y ) ⊆ X and β(X) ⊆ X and (ii) there exists no X ′ ∈ S with

4We thank Itai Arieli for suggesting this proof of the reversed inclusion, shorter than our original

proof. A proof of both inclusions can also be based on property (8) of Monderer and Samet (1989).
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C(Y ) ⊆ X ′ and β(X ′) ⊆ X ′ ⊂ X. Consider the sequence of Cartesian products

of type subsets 〈Y (k)〉k defined recursively in (5), for some Y (0) ∈ T satisfying

C(Y (0)) ⊆ X.

We first show, by induction, that C(Y (k)) ⊆ X for all k ∈ N. By assumption,

Y (0) ∈ T satisfies this condition. Assume that C(Y (k − 1)) ⊆ X for some k ∈ N,

and fix i ∈ N . Then, ∀j 6= i, βj(margS−j
µj(tj(ω))) ⊆ Xj if ω ∈ [Yj(k − 1)] and

sj(ω) ∈ Xj if, in addition, ω ∈ [Rj ]. Hence, if ω ∈ B1
i

(⋂
j 6=i

(
[Rj ] ∩ [Yj(k − 1)]

))
,

then margS−i
µi(ti(ω)) ∈ M(X−i) and Ci(ti(ω)) ⊆ βi(X−i) ⊆ X−i. Since this holds

for all i ∈ N , we have C(Y (k)) ⊆ X. This completes the induction.

Secondly, since the sequence 〈Y (k)〉k is non-decreasing and C(·) is monotonic

w.r.t. set inclusion, and the game is finite, there exist a k′ ∈ N and someX ′ ⊆ X such

that C(Y (k)) = X ′ for all k ≥ k′. Let k > k′ and consider any player i ∈ N . Since

the probability structure is complete, there exists, for each σ−i ∈ M(X ′−i) a state

ω ∈ [Yi(k)] with margS−i
µi(ti(ω)) = σ−i, implying that βi(X ′−i) ⊆ Ci(Yi(k)) = X ′i.

Since this holds for all i ∈ N , β(X ′) ⊆ X ′. Therefore, if X ′ ⊂ X would hold,

then this would contradict that there exists no X ′ ∈ S with C(Y ) ⊆ X ′ such that

β(X ′) ⊆ X ′ ⊂ X. Hence, X = C
(⋃

k∈N Y (k)
)
.
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