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Abstract

This paper studies a class of Markov models which consist of two components.
Typically, one of the components is observable and the other is unobservable or
‘hidden’. Conditions under which geometric ergodicity of the unobservable compo-
nent is inherited by the joint process formed of the two components are given. This
implies existence of initial values such that the joint process is strictly stationary
and f-mixing. In addition to this, conditions for the existence of moments are also
obtained and extensions to the case of nonstationary initial values are provided. All
these results are applied to a general model which includes as special cases various
first order generalized autoregressive conditional heteroskedasticity (GARCH) and
autoregressive conditional duration (ACD) models with possibly complicated non-
linear structures. The results only require mild moment assumptions and in some
cases provide necessary and sufficient conditions for geometric ergodicity.
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1 Introduction

This paper is concerned with probabilistic properties of two common classes of models,
namely generalized autoregressive conditional heteroskedasticity (GARCH) models and
autoregressive conditional duration (ACD) models. GARCH models were pioneered by
Engle (1982) and Bollerslev (1986), and have ever since been widely used to analyze
financial time series. The more recent ACD models were introduced by Engle and Russell
(1998) to model the time dimension of irregularly spaced ultra-high-frequency data.

Our study of GARCH and ACD models makes use of the theory of Markov chains.
Both GARCH and ACD models can be thought of as consisting of two components of
which one is observable (say, returns or durations) and the other is unobservable or ‘hid-
den’ (say, conditional variance or conditional expected duration). From the viewpoint
of Markov chain theory, the unobservable component can be investigated as a Markov
chain of its own in isolation from the observable component. However, it is also useful to
consider both components jointly as a single Markov chain. For instance, in the develop-
ment of statistical estimation and testing theory it is pertinent to know when the joint
process formed of the two components is, for example, stationary and has finite moments
of some order. To make such results readily available, we obtain conditions under which
the ergodicity, or more precisely, V-geometric ergodicity of the hidden process (viewed
as a Markov chain of its own) is inherited by the joint process (consisting of both the
observable and hidden components). An immediate consequence of this is that, with an
appropriate choice of initial values, the joint process is strictly stationary and S-mixing
(or absolutely regular) with certain moments existing. Building on the recent work of
Liebscher (2005) we also obtain conditions which imply S-mixing in the case of nonsta-
tionary initial values. Because interest in results of this kind may not be confined to
GARCH and ACD models they are first obtained for a very general class of Markov mod-
els defined in terms of transition probability measures. This extends the work of Liebscher
(2005) who obtained unified sufficient conditions for geometric ergodicity and S-mixing
of autoregressive models and provided an insightful discussion about their relationship.

We apply the results obtained for our general class of Markov models to a sub-class

which contains many first order GARCH and ACD models as special cases. For simplicity,



we concentrate on the leading case of first order GARCH and ACD models but allow for
more complicated nonlinear structures than in earlier literature. Our results apply to
the families of GARCH and ACD models introduced by Hentschel (1995) and Fernandes
and Grammig (2006), respectively, and thereby to several commonly used GARCH and
ACD models. Our results also apply to the integrated GARCH (IGARCH) model and
provide a rigorous proof of its short memory nature previously demonstrated by Ding
and Granger (1996) using more elementary methods. In addition to these models, the
GARCH-in-mean (GARCH-M) model as well as some GARCH and ACD models with
rather complicated nonlinear structures are also covered. For some of these models the
obtained conditions for ergodicity, mixing, and stationarity appear new.

The approach used in this paper has predecessors. Genon-Catalot, Jeantheau, and
Larédo (2000) considered a general class of Markov models referred to as a ‘hidden Markov
model’ and obtained results similar to ours for stochastic volatility models. Carrasco and
Chen (2002) attempted to generalize these results by formulating a ‘generalized hidden
Markov model” which could also be applied to GARCH and ACD models. Unfortunately,
however, this generalization appears too general to be useful. We show by a counterex-
ample that the conditions required for the generalized hidden Markov model do not nec-
essarily guarantee the validity of the ergodicity and mixing results given by Carrasco and
Chen (2002). We wish to stress, however, that this only concerns their results on the
generalized hidden Markov model. All their results on GARCH, stochastic volatility, and
ACD models still remain valid as long as their results on the generalized hidden Markov
model are corrected. Our paper presents such a correction (Proposition 1 below). An
alternative correction has recently been provided by Carrasco and Chen (2005).

As far as GARCH and ACD models are concerned, it should be mentioned that related
results on ergodicity, mixing, strict stationarity, and existence of moments have also ap-
peared in Nelson (1990), Bougerol and Picard (1992), Duan (1997), Ling (1999), Zhang,
Russell, and Tsay (2001), Carrasco and Chen (2002), Ling and McAleer (2002), Ling and
McAleer (2003), Lanne and Saikkonen (2005), Lee and Shin (2005), Francq and Zakoian
(2006), Meitz (2006), Straumann and Mikosch (2006), Cline (2006), Fernandes, Medeiros,
and Veiga (2006), Medeiros and Veiga (2006), and Kristensen (2007). Our contribution

to this work is that we show how these models can be handled in a unified framework



which also applies when very general nonlinear structures or even models, other than
GARCH and ACD models, are of interest. Even though our framework is very general it
provides necessary and sufficient conditions for geometric ergodicity in some special cases
and, similarly to Francq and Zakoian (2006), only requires mild moment assumptions.
The rest of this paper is organized as follows. Our general class of Markov models
is studied in Section 2. In Section 3 these results are specialized to a specific sub-class
of models which contains various GARCH and ACD models. Concluding remarks are

presented in Section 4. Proofs of all the results are given in an Appendix.

2 General Markov model

2.1 Definition

We motivate our general Markov model by using the standard GARCH(1,1) model

1/2
ut:ht/ Et

(1)

hi =w+ Bhi—1 + auf_l,

where g; ~ 1.i.d.(0, 1) with ¢, independent of (us, hs), s < t, and the parameters satisfy
w >0 a>0,82>0,and o+ < 1. Here u; is an observed process and h; is its
unobserved conditional variance. Substituting h; from the latter equation to the former
shows that (uy, hy) is a Markov chain. On the other hand, substituting u; from the former
equation to the latter shows that h; can be viewed as a separate Markov chain defined by
the equation h; = w + Bhi_1 + aht,lgf_l. Thus, one can use the theory of Markov chains
to study properties of either the joint process (u, hy) or of h; in isolation from the process
us. An approach like this was recently used by Carrasco and Chen (2002) who showed how
to extend results on stationarity and mixing obtained for h; to the joint process (uy, hy).
These authors also defined a ‘generalized hidden Markov model” in order to make their
approach generally applicable. We adopt the same idea and consider a general Markov
model with a structure similar to that in the GARCH(1,1) model ({l). A comprehensive
reference of the needed Markov chain theory is Meyn and Tweedie (1993) whereas Chan
(1990) provides a short review. As a further reference we mention Doukhan (1994) where

the employed concept of f—mixing and its relation to other mixing concepts are discussed.
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Consider two stochastic processes, Y; and X; (¢t = 0,1,...), taking values in mea-
surable spaces (), B())) and (X,B(X)), respectively. Suppose the joint process 7, =
(Y, X;) is a (time homogeneous) Markov chain on (Z,B(Z)), where Z =) x X and
B(Z2)=B(Y x X),and let P}(z,A) =Pr(Z,€ A| Zy==2),2z€ Z, Ac B(2), signify its
n-step transition probability measure (P}(-,-) = Pz(-,-) and similarly for other transition
probability measures). As in the generalized hidden Markov model of Carrasco and Chen
(2002) (conditions (ii) and (iii) of their Definition 3) we now assume that, for all ¢ > 1, the
conditional distribution of Y; given (X, Y; 1, Xy 1,...,Ys, Xo) only depends on X; and
that the conditional distribution of Y; given X; = = does not depend on ¢. Let 7y |x (- | z)
signify this conditional probability distribution. As in the proof of Proposition 4(i) of Car-
rasco and Chen (2002) we can then write P} (z,dz) = Pr(dy | dz, Zy = z) Pr (dx | Zy = 2)
where z = (y,x) and the former factor of the product can be replaced by 7y |x (dy | x).
In the aforementioned proof, Carrasco and Chen (2002) use the assumption that X, is
an (unobserved) stationary Markov chain (condition (i) of their Definition 3) and replace
the latter factor by P% (z,dx), the n—step transition probability measure of X;. How-
ever, this replacement is problematic in GARCH models, for example. Although h; in
the GARCH(1,1) model () can be treated as a Markov chain of its own this Markov
chain is not identical to the latter component of the joint process (uy, h;). Specifically,
given an initial value (ug, hg), the joint process implies that h; = w + Bho + qu? whereas
hi = w + Bho + ahge? results when h; is treated as a separate Markov chain. Thus,
if the joint process (uy, h;) is the Markov chain considered, the conditional probability
distribution of h; also depends on the initial value ug, not only on hy.

Motivated by the preceding discussion we denote P (z,-) = Pr(X, € - | Zo = z) and
conclude that

Py (2,dz) = my|x (dy | ) Pl (z,dz) . (2)
As noticed above, the dependence of the latter factor on the right hand side on the initial
value y is inconvenient. Fortunately, however, this matter can be handled (at least) in
GARCH models. To see this, consider again the GARCH(1,1) model ({l) and the related
two-dimensional Markov chain. Given the initial value (ug, ho), the joint process implies
that hy = w + Bho + au? and, as can be easily checked, hy = w + Bho + ahge? where

EO = w + Bho + au?. On the other hand, when h, is treated as a separate Markov chain,
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hy = w + Bhy + aheed is obtained. Thus, the generation mechanism of hy (based on the
two-dimensional Markov chain) is entirely similar to that of h; obtained when h; is treated
as a separate Markov chain. Only the initial value %0 that appears in hy is defined in a
special way. This clearly extends to larger values of ¢ so that, apart from the definition
of the initial value, the generation mechanism of h; (¢ > 2) based on the two-dimensional
Markov chain (uy, hy) is identical to that of h;_; obtained when h; is analyzed separately.

Using the above discussion on the GARCH(1,1) model ([Il) as a pattern we now replace
the probability measure ﬁ}} (z,-) in (@) by a counterpart which, for some j > 0, can be
treated as an (n — j)-step transition probability measure of a separate Markov chain on

(X,B(X)). We state the following assumption.

Assumption 1 Let Z, = (Y3, Xy) (t = 0,1,...) be a Markov chain on (Z,B(Z2)) where
Z=YxX and B(Z) =B(Y x X). Assume the following conditions.

(a) For all n > 1 the n-step transition probability measure of Z; can be expressed in
the form (3) where my|x (- | ) is the conditional probability distribution of Y, given
Xt =X.

(b) There exist a function \ : Z — X, an integer j > 0, and a transition probability
measure Px (-, -) of a Markov chain on (X, B(X)) such that, for alln > j, P (z,-) =
Py (Z,-) where T = T(2) = \(2).

It is implicit in Assumption [[(a) that conditions (ii) and (iii) defining the generalized
hidden Markov model of Carrasco and Chen (2002) are satisfied. Furthermore, when X is
viewed as a part of the joint process (Y;, X;) its transition probability measure is assumed
to agree with the transition probability measure of a separate Markov chain on (X, B(X))
with suitably defined initial values. However, X, is not necessarily a Markov chain because
its transition probabilities may depend on the initial value of the joint process (Y, X;).
Therefore, condition (i) of Definition 3 of Carrasco and Chen (2002) need not hold (not
even without the word ‘stationary’).

Assumption [ is more restrictive than required for the generalized hidden Markov

model of Carrasco and Chen (2002). To demonstrate the need of such a restriction, we



use a model which is a special case of Example 1 of Carrasco and Chen (2002). Thus, let
e be a sequence of n.i.d.(0, 1) random variables and consider the model
Yi=cer+eun

(3)
Xi = &,

t=1,2,.... The model is extended for ¢ = 0 by assuming that Y, and X, are independent
of each other and of {g;, ¢t > 1} with standard normal distributions. Clearly, X, is a
stationary, geometrically ergodic, and S-mixing Markov chain. It is also straightforward
to verify that the conditions required for the generalized hidden Markov model of Carrasco
and Chen (2002) are satisfied and, by Proposition 4 of that paper, the joint process (Y3, X})
should be a geometrically ergodic and -mixing Markov chain. This, however, is not the
case. Because Cov(Yy,Ys) = Cov(ey,e9) = 1 for all ¢ > 1 the process Y; is not strong
mixing and, hence, not f—mixing (cf. Proposition 1, p. 4, and Theorem 3, p. 9, in Doukhan
(1994)). Also, the conditional distribution of (Y3, X;) given its past is not a function of
(Yi—1, Xi—1) only and, therefore, (Y;, X;) is not a (geometrically ergodic) Markov chain.
An important requirement in Assumption [ is that the joint process (Y;, X;) is a
Markov chain because then models like (B]) are ruled outﬂ It is straightforward to check
that Assumption [ holds for the GARCH(1,1) model ([l) with j = 1, the function A given
by A(u,h) = w + Bh + au®, my|x (- | ) the conditional distribution of u; given h;, and
Px (-, ) the transition probability measure associated with h; viewed as a separate Markov

chain. The GARCH(1,1) model ([I) is a special case of the model

Y, = Fy(XtaCt) (4)
Xy = Fp(Xi1,Y), (5)

where (; is an i.i.d. error term independent of (Y, X;), s < t, and the random vectors
Y;, X;, and (; take values on some subsets of Euclidean spaces equipped with Borel sigma

fields. As in the GARCH(1,1) model () it can be seen that the joint process (Y;, X;) is a

'Recently, Carrasco and Chen (2005) have corrected their original definition of the generalized hidden
Markov model in a way slightly different from our Assumption 1. When this corrected definition is used
undesirable models such as (@) are ruled out and all the results in Carrasco and Chen (2002), including

Proposition 4, remain valid.



Markov chain and that (; and X, are independent with the latter having the representation
de
X = B (Xe1, Fy(Xe1,61) < Ga(Xih, Goa). (6)

Thus, X; can be viewed as a Markov chain of its own and studied in isolation from
Y;. Verifying that Assumption [ is satisfied for the model [ )-(H) with A () = F, (-) is

straightforward but somewhat technical. Details are therefore deferred to the Appendix.

2.2 Geometric ergodicity

We shall now show that Assumption [0l guarantees that ergodicity and mixing of the
component process X; are inherited by the joint process Z;. We use the V-geometric

ergodicity of a Markov chain defined as follows (see Meyn and Tweedie (1993, p. 356)).

Definition 1 The Markov chain Z; is V —geometrically ergodic if there exist a real valued
function V1 Z — [1,00), a probability measure w7 on B(Z), and constants o < 1 and

M, < oo (depending on z) such that

sup
vilv| <V

/ P} (z,dw)v(w) — / Wz(dw)v(w)‘ < o"M, forallz€ Z and alln > 1. (7)
z z

The definition also assumes that the function V' is integrable with respect to the prob-
ability measure mz. When condition () holds we also say that the transition probability
measure Py (-,-) is V—geometrically ergodic and similarly for other transition probabil-
ity measures such as Px (-,-). Note that the first integral in () equals the conditional
expectation Ev (Z,) | Zy = z|.

The weakest form of V—geometric ergodicity is obtained when V'(-) = 1 in which case
the Markov chain Z; is said to be geometrically ergodic. Geometric ergodicity entails that
the n—step transition probability measure P} (z,-) converges at a geometric rate to the
probability measure 7mz(-) with respect to the total variation norm for all z € Z. The
probability measure 75 is often referred to as the stationary probability measure of Z,.
The reason is that geometric ergodicity implies stationarity of Z; if the initial value Z,
is distributed according to the probability measure 7, (see Meyn and Tweedie (1993, p.
230-231)). A convenient feature of V-geometric ergodicity is that it automatically shows

the existence of the expectation of [, 7z (dw)v(w) for all v such that |v(-)| < V(-).
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The following proposition establishes the V-geometric ergodicity of Z;.

Proposition 1 Suppose that the Markov chain Z, = (Y, Xy) satisfies Assumption D and
that the transition probability measure Px (-, ) is Vx —geometrically ergodic. Then Z; is V-~
geometrically ergodic for any function Vy : Z — [1,00) such that fy Tyix (dy | ) Vz(y,x) <

cVx(x) for all x € X and some ¢ < co.

The condition imposed on the function V; in Proposition [l is automatically satisfied
for V; (y,z) = Vx (x), although more useful results can be obtained with other choices
of V. However, even this special case shows that the geometric ergodicity of Px(-,-) is
inherited by Z; and, when initialized from its stationary distribution, Z; is stationary and
B-mixing with geometrically decaying mixing numbers (see Meyn and Tweedie (1993, pp.
230-231) and Doukhan (1994, p. 4 and 89)). Thus, Proposition [l provides us with results
similar to those stated in Proposition 4 of Carrasco and Chen (2002).

While Proposition [l makes it possible to apply limit theorems developed for Markov
chains to functions of Z; regardless of initial values (see Meyn and Tweedie (1993, Chapter
17)), these theorems are not directly applicable when functions of (Z;, Z; 1, ..., Z;) are
of interest (such functions are met, for instance, in the estimation theory of GARCH
models, see e.g. Straumann and Mikosch (2006, Sections 6 and 7)). In such cases other
limit theorems can be useful. Our next result gives sufficient conditions for Z; to be
[—mixing. This result holds for a wide class of nonstationary initial values and provides
the needed prerequisite for using limit theorems developed for near epoch dependent
functions of mixing processes (see Davidson (1994, Sections 20.6 and 24.4) for such limit
theorems and Francq and Zakoian (2006) for a related discussion on the usefulness of limit
theorems developed for mixing processes). We use a subscript in the expectation operator
to indicate the initial distribution of the chain with respect to which the expectation is

taken.

Proposition 2 Let the assumptions of Proposition 1 be satisfied and the function Vz
be as required in Proposition 1. Furthermore, let wx(-) signify the stationary probability

measure related to a Markov chain with transition probability measure Px(-,-). Suppose



that (a) there exist constants 0 < 1 and R < oo such that

sup
viv|<Vx

[ Py dwyow - | wX<dw>v<w>' < " RVx(2) ()

forallz € X and alln > 1, (b) E,[Vx (A Xo, Ys))] < 0o where u is the distribution of the
initial value Zy = (Yo, Xo), and (¢) [} myix (dy | 2) Vx(AN(z,y)) < Vx(x) for allz € X

and some ¢ < co. Then Z; is B—mixing with geometrically decaying mizing numbers.

This proposition is based on recent results of Liebscher (2005) which highlight relations
between S—mixing and geometric ergodicity. To be able to apply these results we need
assumptions not needed in the case of stationary initial values. Our assumption (a) is
slightly stronger than Vx—geometric ergodicity of Px (-, -), but is implied by the so-called
drift criterion which is a standard tool used to obtain geometric ergodicity (see Meyn
and Tweedie (1993, Theorem 15.0.1)). A counterpart of our third assumption (c) was
already needed in Proposition [[l This assumption is not very restrictive either in that it
is automatically satisfied by the general model (H#)—(H) and, therefore, by models we are

mainly interested in. We state this as a lemma.
Lemma 1 Condition (c) of Proposition @ is redundant for the model ({f)—(3).

Assumptions (a) and (c) also imply that Z; is V —geometrically ergodic with V(-) =
Vx (A(+)) and, for this case, the argument given in Meyn and Tweedie (1993, discussion
following Theorem 16.1.5) could be employed to establish the strong mixing of Z,. This
argument assumes condition (b) and suggests that it is also necessary in our case.

It may also be noted that the conditions of Proposition ] ensure finiteness of certain
moments. For instance, it is straightforward to establish that sup,.; E,[v (Z;)] < oo for
any function v such that |v(-)| < Vz(+), and that these moments converge to the ones

taken with respect to the stationary distribution 7, at a geometric rate.

3 GARCH and ACD models

As in Carrasco and Chen (2002), Propositions [l and Bl can be applied to first order
GARCH models. In addition to various GARCH(1,1) models Carrasco and Chen (2002)
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also considered higher-order GARCH models as well as examples of ACD models and
autoregressive stochastic volatility models. We do not consider stochastic volatility models
because for them similar results can be found in Genon-Catalot, Jeantheau, and Larédo
(2000). However, as an extension of previous work we present both GARCH models and
ACD models as special cases of a general model which even includes the GARCH-M
model. As far as we know, these are the first results on geometric ergodicity and mixing
obtained for the GARCH-M model (for the ARCH-M model similar results were obtained
by Masry and Tjgstheim (1995)).

We consider a special case of the model #)-([E) with Y; and X, real valued and X

positive. Specifically, the model is defined by

Vi = fn(Xe) + f2(Xi)e (9)
Xi = fur(Xic1) + for(YVier — fin (Ximq), Xioa), (10)

where the ¢, are i.i.d. and independent of (Y;, Xy), s < ¢, and fy1, fy2, fo1, and fyo are
Borel measurable functions to be described in detail shortly. The analog of equation ()

is obtained by substituting Y; ; from (@) into (I0), yielding

Xy = for(Xio1) + fao(fra(Xim1)e—1, Xi1). (11)

A model formulated in this way incorporates various GARCH and ACD models. In the
GARCH context, f,; is the conditional mean function whereas f,» is used to model the
conditional variance. In the ACD context, f,o represents the conditional mean of Y; and
fn is omitted. Concrete examples will be given later.

For the development of our theory we make the following assumptions.
Assumption 2

(a) The i.i.d. random variables e; have a probability density function ¢.(-) supported on
(g,00) and bounded away from zero on compact subsets of (g,00). Here either e = 0

or € = —OQ.

(b) The functions f,1 : Ry — Ry and fuo : (g,00) x Ry — R are bounded on bounded

subsets of their domains and, for some f > 0, infoer, ue(eo0) (for(2) + fo2(u, 7)) = f.

11



(¢) There exists a real number a € [0,00) such that f.1(z) < ax + o(x) as x — 0.

(d) The function f.o satisfies the following three conditions.

(dy) There ezists an unbounded interval of Ry which is, for all x > 0, contained in

the image set f.o((g, 00), ).

(dy) For all x > 0, the function fuo(-,x) is continuous from the right (or alterna-

tively, continuous from the left).

(d3) There exists a real number R > 0 such that, for u > R and all x > 0, fuo(u, )
15 continuous and monotonically increasing, and the related inverse function

foo (v, 1) has a partial derivative Of 5 (v, x)/0v which is bounded away from

zero on compact subsets of its domain.

(e) There exists a Borel measurable function b : (g,00) — Ry, nonconstant and contin-
uous on some open set, and a real number ¢ € [0,00) such that fyo(fye(x)er,x) <

zb(e)) + ¢ for all z € R, Furthermore, E[b(,)] < oo for some k € R

(f) The function f, : Ry — Ry is bounded on bounded subsets of its domain and

bounded away from zero on [f,c0).

Assumption P(a) is satisfied in most applications. The case £ = 0 is typical in ACD
models, while in GARCH models ¢ = —oo0. Restricting £ to these two values is not
essential for the development of the theory, but from a practical point of view there is
little need for generalizing this. In AssumptionsP(b) and (f) the functions f,1, fi2, and fyo
are assumed to be bounded on bounded subsets of their domains, while in Assumptions
B(a), (b), (d), and (f) the functions ¢., fo1 + fuz, Ofss (v,2)/Ov, and f,z, respectively, are
assumed to be suitably bounded away from zero. These assumptions are hardly restrictive
in practice. Especially the latter assumptions, though, suggest that some attention needs
to be paid to the definitions of these functions.

Assumption 2(b) also ensures that the process X, is always positive. Note that there
is more than one way to define the functions f,; and f,» without violating equations ()

and (). In most cases it is natural to choose the functions f,; and f,o such that both
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of them are always positive. However, as a subsequent example shows, it is useful to be
more flexible and only require that the sum f,; + f,o is positive.

The conditions restricting the functions f;; and f;» in Assumptions B(c) and (e),
respectively, essentially restrict X; to depend on its past value at most in a linear fashion
when arbitrarily large past values are of concern. This will be crucial in proving the
geometric ergodicity of X;. Similar assumptions have also been used in previous proofs for
geometric ergodicity (see Lanne and Saikkonen (2005) for both Assumption P(c) and (e)
and Masry and Tjgstheim (1995), Lu (1998), and Lu and Jiang (2001), among others for
Assumption Pl(c)). Further conditions on the constant a, the function b(-), and moments
of the random variables £; will be imposed later. It will prove beneficial to have the values
of the constant a and the function b(-) as small as possible.

Due to the very general nonlinear structure we wish to accommodate for, the conditions
imposed on the function f,5 in Assumption P(d) are on the whole somewhat involved. The
validity of these conditions can still be straightforwardly checked for many GARCH and
ACD models, as our subsequent examples show. Often one can also use the following

simple lemma (whose proof is omitted) to verify Assumptions 2l(d;), (dz), and (d3).

Lemma 2 Suppose the function f.o has range R, (instead of R) and that, for all x >
0, the function fuo(-,x) is (1) surjective, (2) continuous, and (3) both monotonically
increasing and continuously differentiable on (I,00), where | > 0. Then Assumptions

B(dy), (dz), and (ds) hold.

Assumption (d) enables us to prove our results without knowing anything about,
not even existence of, the conditional density of X; given X; ; = x. In previous proofs
of geometric ergodicity it has been quite typical to make explicit use of this conditional
density and its properties (cf., e.g., Lu (1998) and Lanne and Saikkonen (2005)). While
often straightforward this approach can sometimes be rather awkward to use and then
our general conditions can be very convenient.

As indicated in the Introduction, our assumptions cover nonlinear specifications not
covered by related previous studies. For instance, Carrasco and Chen (2002) and Strau-
mann and Mikosch (2006) both give conditions for the ergodicity of rather general classes

of GARCH models which, however, do not contain some of the nonlinear models to be
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discussed below. In particular, some smooth transition GARCH models (see Example 4
below) in which f,; and/or f,o in ([l are nonlinear functions of X; ; cannot be han-
dled in the framework of Carrasco and Chen (2002). The framework of Straumann and
Mikosch (2006) is similar to ours in that nonlinear functions of a very general form are
employed but these functions are restricted by a Lipschitz condition. Even though this
condition works well in several cases it rules out models covered by our Assumption
For instance, discontinuous models such as threshold-type GARCH models (see Example
3 below) are ruled out (some of them are covered by Carrasco and Chen (2002)) and the
same is true for some smooth transition GARCH models.

As discussed in the context of the more general model (#l)—(H), X; can be viewed as a
separate Markov chain generated by (1) and with the associated transition probability
measure defining the counterpart of Px(-,-) in Assumption [l The following theorem
shows that, from this perspective, X, is VV—geometrically ergodic, as required for its coun-

terpart in Proposition [1

Theorem 1 Consider X; as a Markov chain generated by (I1) and, in addition to As-
sumption @, suppose that E [(a + b(et))k] < 1. Then X; is Vx—geometrically ergodic with

The moment condition assumed in Theorem [0 is convenient in the proof and it also
enables us to obtain explicit results about existence of moments. However, if one is only
interested in proving geometric ergodicity an alternative condition, based on the following

result, can be employed.

Lemma 3 Suppose that (1) E [b(e;)*] < oo for some k € Ry and (2) E [In(a + b(e;))] <
0. Then there exists a ko € (0,k) such that E [(a + b(e,))™] < 1.

The result of this lemma can be justified by following the arguments in Remark 2.9
of Basrak, Davis, and Mikosch (2002). Condition (1) was already used in Assumption
P(e) whereas condition (2) is an analog of the necessary and sufficient condition for the
stationarity of the conventional GARCH(1,1) process obtained by Nelson (1990) and
extended to a class of GARCH(1,1) models by Francq and Zakoian (2006, Theorem 2)
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and Meitz (2006). If condition (2) is used in Theorem Minstead of E [(a + b(e;))*] < 1 we
can conclude the (1 + xko)fgeometric ergodicity of X, for some kqy € (0, k) but the precise
value of ky cannot be determined. An analog of the result of Lemma Bl is also employed
by Francq and Zakoian (2006, Theorem 3) to prove the geometric ergodicity of a class
of GARCH(1,1) models (see the beginning of step (iii) in the proof of their Lemma 2).
Their proof also assumes an analog of condition (1) of Lemma B which is not required to
obtain stationarity (see the aforementioned references). As a final remark of Lemma B we
note that condition (2) is implied by E [(a + b(e;))*] <1 (k > 0), as Jensen’s inequality
shows.

To be able to apply Proposition[lland obtain useful results for the joint process (Y3, X}),
concrete assumptions about the functions f,; and f o are needed. In most applications
of GARCH or ACD models, the function f,» is assumed to be a power function, that
is, fya(z) = z'/¢ for some positive real number d. This is also the assumption we will
make. In the context of ACD models, the function f,; is always assumed to be 0. In
GARCH models, the most common specification for the ‘in-mean part’ has also been
a power function, say f,i1(xz) = po + '/ for some positive real number e. We will
assume slightly less, only dominance by such a function. The following theorem gives an

ergodicity result for the joint process (Y;, X;) for these cases.

Theorem 2 Suppose that the assumptions of Theorem [ are satisfied and that fyo(z) =
2V where d € Ry. (a) If fu(z) =0 and E|e|*] < oo, where k is as in Assumption [,
then Z, is Vz—geometrically ergodic with Vz(y,z) = 1+ |y|%* + 2*. (b) If |f1(z)] <

|5t | min{d,e}k

o + /e, where e € Ry, o, p1 >0, E] | < o0, and k is as in Assumption [3,

then Z, is Vz—geometrically ergodic with Vy(y,x) = 1 + |y[mnidetk 1 gk,

As already noted after Proposition [, the Vx—geometric ergodicity of X, implies the
V—geometric ergodicity of Z;, with V(y,z) = Vx(z). A drawback of this choice of the
function V' is that nothing can be concluded about the moments of Y;. The usefulness
of being able to use a more general choice of the function V' becomes clear in Theorem
where results on the existence of moments of the stationary distribution of Y; are also
obtained. If the conditions of Lemma B are used instead of the moment condition of

Theorem [0, the conclusions of Theorem [ hold with an unknown k¢ € (0, k). In this case,
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part (b) of the theorem establishes geometric ergodicity in GARCH-M models under mild
moment conditions.
Our next result applies Proposition Pl and provides conditions which guarantee that

the joint process (Y;, X;) is f—mixing.

Theorem 3 Suppose that the assumptions of Theorems [ and @(a) (or [@(b)) are sat-
isfied, and that Z, is initialized from Zy = (Yo, Xo) with a distribution u such that
E,[Vx(Fy(Xo,Y0))] < oo, where F, (-,-) denotes the function on the right hand side of
(I0). Then Z, is f—mizing with geometrically decaying mizing numbers.

In summary, Theorems [[H3 establish the VV—geometric ergodicity and S—mixing for the
general model defined by equations (@) and () or equation ([[II). Existence of moments
also readily follows from the stated conditions (in particular, sup,, E,[|V;|*] < co (or
sup,» B, [|Yy[™"1%*] < 00), and sup,», E,[X[] < oo, and these moments converge to the
ones taken with respect to the stationary distribution 7 at a geometric rate).

Concrete examples where Theorems [[H3 apply are discussed now. Depending on which
formulation has been more common in the literature, the structure of each model is
described by using either equation () or equation ([[Il). For convenience, all the examples
are summarized in Tables 1 and 2 where choices of the relevant functions and constants
assumed in the preceding results are also provided. Because typical choices of the function
f,n were already discussed fy; (-) = 0 is here assumed, so only GARCH and ACD models
are considered. The validity of Assumption ] can be rather straightforwardly verified for
most of the considered models (see, however, some remarks in Examples 3 and 4 below).
The form the condition E [(a +b(s;))*] < 1 of Theorem [0 takes in these cases is also
displayed in Table 1 with £ = 1. The parameter restrictions implied by this condition
agree in each case with the corresponding conditions reported in earlier literature. The
weaker log-moment condition of Lemma Bl sufficing for geometric ergodicity is also given

in Table 1.

Example 1 (The GARCH-family of Hentschel (1995) and the ACD-family
of Fernandes and Grammig (2006)). Consider the family of GARCH models of
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Hentschel (1995), which can be written as (see eq. (A.2) and (A.3) of Hentschel (1995))

Y, = o454
o7 = w+ (A f"(gr-1) + B)a, (12)

fleir) = lermr = 0| = cer1 — D),

where we assume that b € R, |c¢| < 1, and the remaining parameters take positive valuesH
Defining X; = o} we arrive at a formulation written in the form of (@) and (1) as
Y, = th/’\st and X; = w + aAX;_1f"(e,-1) + fX;—1. In addition to the conventional
linear GARCH model, this family also nests several other popular GARCH models (see
Hentschel (1995) for a list). For brevity, the abbreviation BC-GARCH model is used in
Tables 1 and 2 (here BC is due to the Box-Cox transformation). Fernandes and Grammig
(2006) consider a family of ACD models analogous to Hentschel’s family of GARCH
models. This family can be defined with exactly the same equations ().

Applying the result of Theorem [0 with & = 1 to the conventional linear GARCH
model gives the condition o + 3 < 1 for (1 + x)—geometric ergodicity of the conditional
variance process. This agrees with the necessary and sufficient condition for second order
stationarity (of Y;) obtained by Bollerslev (1986). If we only assume that & > 0 and
E[In(8+ ae})] < 0, LemmaB and Theorem [ give the (1 + 2*9)-geometric ergodicity for
some 0 < ky < k. Here the condition E [In (3 + ae?)] < 0 agrees with the necessary and
sufficient condition for the (strict) stationarity and geometric ergodicity of the conditional
variance process obtained in Nelson (1990) and Francq and Zakoian (2006, Theorem 3
and Remark 3), respectively. More generally, one can similarly conclude that in the
general model ([2) the condition E [In (8 + aAf”(g,-1))] < 0 is necessary and sufficient
for geometric ergodicity (the necessity can be demonstrated as in Francq and Zakoian
(2006, second part of Theorem 2)). Thus, even though our model accommodates very
general forms of nonlinearity we can obtain good results in this special case. In particular,
the moment conditions we need are mild and comparable to those in Francq and Zakoian
(2006) although our assumptions about the distribution of the innovation process ¢; are

stronger than assumed in that paper.

2Hentschel (1995) also considers a slightly different formulation which includes the case A = 0. We do

not discuss this case.
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Example 2 (The integrated GARCH model). Choosing f*(g;_1) = &7 |, e\ = 1—0,
and A\ = 2 shows that the IGARCH model is a special case of the BC-GARCH model.
In the case of the IGARCH model, we also assume that E [¢?] = 1 regardless of the value
of k, an assumption also made by Nelson (1990). As in that paper one can then see that
condition (2) of Lemma B, that is, £ [In(8+ (1 — ) &})] < 0, is automatically satisfied.
Thus, in the IGARCH model the conditional variance process is (1 + xko)fgeometrically
ergodic with some positive ky. Using Theorem P we can even say more about the value of
ko. Unlike in all other models we have to assume that the condition E [(a + b(e))*] < 1
only holds for k < 1. Then, because E[a+ b(e;)] = E[8+ (1 — 3) €?] = 1, strict concavity
and Jensen’s inequality give E[(a + b(g;))*] < (Ela + b(g;)])* = 1 for 0 < k < 1. Thus,
for the IGARCH model Theorem Pl applies with & < 1 and d = 2 implying that the
above mentioned (1 + xko)fgeometric ergodicity holds for any ky < 1. Consequently, Y;
has finite moments of orders smaller than 2. This is consistent with the well-known fact
that the IGARCH process (that is Y;) has a strictly stationary but not a second order
stationary solution (see Nelson (1990)). Previously, properties of the IGARCH process
were also studied by Ding and Granger (1996) who demonstrated its short memory nature
by showing that an ‘approximate’ autocorrelation function of Y;? decays to zero at a
geometric rate. Our Theorem Bl makes this point more rigorous by showing that the

process Y; is f-mixing with geometrically decaying mixing numbers.

Example 3 (Threshold models). A popular non-linear GARCH model is the GJR~
GARCH model of Glosten, Jaganathan, and Runkle (1993), where the equation corre-
sponding to [[M) is X; = w+ (v +a*1 (Y, > 0))Y;2, + X,_. Here 1(-) is the indicator
function. The GJR-GARCH model is an example of threshold GARCH (or TGARCH)
models studied more generally by Ling (1999, Theorems 4.1 and 4.2) and Lee and Shin

(2005, Example 5). In a simple first order version of this model, the equation correspond-

ing to () is given by

Xt:wj—i_ajyf—l—i—ﬁth—l) if )/t—l € [rj—lyrj)7 .] = ]-7“‘a<]a (13)
where —oo = 19 < r; < --- < ry = oo are the threshold values, and the remaining
parameters satisfy w; > 0, a; > 0, and 3; > 0. Replacing Y;2, with Y;_; and ro = —o0
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with ro = 0 in this definition one obtains the threshold ACD (or TACD) model of Zhang,
Russell, and Tsay (2001).

Verifying the validity of Assumption P for TGARCH and TACD models is more in-
volved than for the preceding models. Details are therefore presented in the Appendix.
Here we only mention that it is convenient to express the model in a form in which the
counterpart of the function f,5 can take negative values. Note also that in this case the
expression a + b(e;) appearing in Theorem [l and Lemma B takes a somewhat complicated
form (see the Appendix). In Table 1 we therefore report parameter restrictions which
imply the validity of the condition E [(a + b(e;))¥] < 1 of Theorem [ and the condition
Eln(a+b(e:))] < 0 of Lemma

For the TGARCH model our results improve on those in Ling (1999, Theorems 4.1
and 4.2) and Lee and Shin (2005, Example 5) where only the existence of a stationary
solution of the model is established but the uniqueness and ergodicity of this solution
are not obtained. Although our framework is quite general and not exclusively designed
for threshold models, the parameter restriction obtained from our Theorem [ still agrees
with the conditions given in these previous papers when J = 2, and, when J > 2, it even
provides an improvement. In these papers it is also assumed that the chain (Y;, X;) is weak
Feller (see Meyn and Tweedie (1993, p. 127)), a continuity assumption not satisfied by all
TGARCH models and not required by our results. For the TACD model the condition
obtained from Theorem [1 coincides with the sufficient condition for geometric ergodicity
obtained by Zhang, Russell, and Tsay (2001). Finally, our Lemma B provides sufficient
conditions for geometric ergodicity that are strictly weaker than the conditions reported

both for the TGARCH and the TACD model in the aforementioned earlier papers

Example 4 (Smooth transition models). Smooth transition GARCH models were
introduced by Hagerud (1996) and Gonzalez-Rivera (1998), and discussed by Lundbergh
and Terdsvirta (2002) and Lanne and Saikkonen (2005), while the ACD analogs were
introduced by Meitz and Terdsvirta (2006). To obtain a general framework covering all

these models, let G; and G5 be functions with range [0,1], and w > 0, & > 0, § > 0,

3For the TGARCH model an even better condition has recently been obtained by Cline (2006). How-
ever, this condition is quite complicated and obtaining an explicit condition in terms of the model parame-

ters appears difficult, and therefore simulation or numerical methods may be necessary for its application.
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W >0, w+w" >0, a+a*>0,and §+ §* > 0. In the GARCH variant, the equation

corresponding to () takes the form
Xe=w+aV2l + X1+ (W + Y2 )G (Vi) + (0 + 57Xi1) Go(Xim1).-

The ACD variant is otherwise similar except that on the right hand side Y, is twice
replaced by Y; 1] For Assumption 2(dy) to be satisfied we need to assume that the
function GG is continuous from the left (or from the right). This, however, is not restrictive,
because in practice GGy is usually continuous. A sufficient condition for Assumption 2(d3)
to hold is that for large values of y the function G (y) is differentiable and G} (y) = o (y2)
as y — oo. This condition is satisfied in the two typical examples where G is the
cumulative distribution function of the logistic distribution or normal distribution. For
the function Go much less needs to be assumed. For convenience, we may assume that the
limit lim, . G2(x) exists, in which case the constant a in Table 2 has the stated form.
Note that to satisfy the Lipschitz condition required in Proposition 3.1 of Straumann
and Mikosch (2006), rather complicated restrictions need to be imposed on the model
parameters and on the functions GGy and GG5. These restrictions are also quite stringent.
For instance, models in which the function G5 has a continuous derivative attaining a value
large enough at some point are ruled out. Such models can still satisfy our Assumption
Conditions for geometric ergodicity obtained from Theorem [[l and Lemma [l are reported

in Table 1, and the latter are an improvement compared to previously reported conditions.

As indicated earlier, the validity of Assumption 2(d) is relatively straightforward to
check even for rather complicated nonlinear models. At least for some of the models
discussed above alternative approaches, which require deriving the conditional density of
X, given X;_ 1 = x and checking that it has suitable properties, can be cumbersome. This
may be the case, for instance, if one has a smooth transition GARCH model with the

function GG; not monotonically increasing.

4Note that this model is not general enough to cover the recent smooth transition GARCH and ACD
models of Medeiros and Veiga (2006) and Fernandes, Medeiros, and Veiga (2006). Because these models
are nested in (@) and () they could be analyzed in our framework but at the cost of making the example

more complex.
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4 Conclusion

In this paper we have studied a general Markov model which contains an observable and
an unobservable or hidden component. We gave conditions under which the V' —geometric
ergodicity of the hidden component viewed as a Markov chain of its own is inherited by
the joint process formed of the two components. Conditions for f-mixing and existence
of moments for the joint process were also obtained.

Results obtained for our general Markov model were applied to a wide class of models
which includes as special cases many first order GARCH, GARCH-M, and ACD models
with possibly complicated nonlinear structures. In some special cases our conditions for
V—geometric ergodicity were seen to agree with conditions previously shown to be neces-
sary and sufficient for stationarity and geometric ergodicity. For highly nonlinear models,
our conditions provided an improvement over previous results, whereas in the case of
GARCH-M models our results are, to the best of our knowledge, the first ones available.
As our emphasis was on allowing for nonlinearities, we only considered first order models,
which are also often found adequate in practice. Due to the very general nature of the
employed assumptions, the results obtained for these models should be straightforward to
apply. Compared to previous counterparts they appear especially convenient for models
such as smooth transition GARCH models or their ACD versions where highly nonlin-

ear structures have been considered. Extensions of our results to general higher-order

GARCH, GARCH-M, and ACD models forms an interesting topic for future research.
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GG

GARCH
ACD

GJR-GARCH

TGARCH

TACD

ST-GARCH

ST-ACD

BC-GARCH
BC-ACD

Model equations

Xi=w+ OzY?_l + BXi—1
Xi=w+aY 1 + 68X

Xi=w+ (a+a*1(Yie > 0)Y2, + BX;

X =30 (Wi + VA + B X )1(Yier € [rjo1,75)),
where —co =rg<r; <---<rj=o00
Xy =7 (wj+ oYy + 8 X1)1(Ysq € [rjo1,75)),

where 0=rg<ri <---<ry=o0

Xy =w+aY?, + X1

+(W* + a*Y2 )G (Vi) + (W™ + B X;1)Ga(Xi—1)
Xi=w+aY 1+ X1

(W + Y 1)G1 (Y1) + (W™ + 87 Xi-1)Ga(X-1)

Xy =w+ BXi_1 + arXi_1 f¥(ei-1), and V; = X, e,
Xy = w+ BXyo1 + aAXi_1 f¥(er-1), and V; = X, P,

Condition in Theorem 1 with £ =1
( Condition (2) in Lemma 3 )

( E[In(B+ ae?)] <0)
( BIn(B + ag)] <0)

a+p<1
a+p<1

atar/2+B<1 )

(El(B+ (a+a*l(e > 0))e?)] <0)
max{aq, s} + max{f, B} <1 @

( E[ln(max{f, Bs} + max{ai,as}e?)] <0 ©))
ay+3;<1@

(En(8s + ase)] <0 )

o+ max{a*,0} + 3+ B*Ga(c0) <1 @
( BIn(8 + 3*Gs(00) + (a + max{a™,0})ef)] < 0)
o +max{a*,0} + 3+ B*Ga(c0) <1 W
( E[ln(B8 + B*G2(c<) + (a + max{a*,0})e;)] < 0) @

E[B+ arfr(e)] < 1
E[f+alff(er)] <1

( Elln(B 4+ arfY(er))] <0)
( Eln(B +aXf(e))] <0)

Table 1: Summary of the discussed examples: Model equations, the form of condition E[(a 4 b(s¢))*] < 1 in Theorem 1 with & = 1, and the form of

condition Efln(a+b(e;))] < 0 in Lemma 3 (see Table 2 for the definitions of a and b(-)). Notes: () Assuming ¢; has a symmetric distribution. () This is a

condition implying the validity of E[(a + b(s;))] < 1. (¥ This is a condition implying the validity of E[(max{8:, 8} + max{a, as}e?)*] <1 (TGARCH)

or E[(8; + aje)®0] < 1 (TACD), and hence of E[(a + b(e;))*] < 1, for some kg > 0. (¥ G5(oc0) is used as a shorthand notation for lim, . Ga(z).



€¢

GARCH
ACD

GJR-GARCH
TGARCH @

TACD

ST-GARCH

ST-ACD

BC-GARCH
BC-ACD

fy2(2)

1/2

1/2

1/2

1/2

1/

1/

fe1(z) f:c2(fy2(x)57x) @
w+ Bz ay?
w+ Bz ay
w+ Bz (a+a*1(y > 0))y?
Pux S {(w) + oy + B)
L(y € [rj—1.75))} — Bz
Bz o {(wj + ajy + Bjz)
Wy € [rj1,my))} — Bz
w + Bz w*G1(y)
+(w** + B*1)Ga () +(a+ a*G1(y))y?
w + Bz w*G1(y)
+(W* + B x)Ga(7) +a+a*Gi(y))y
w+ px alxfv(e)
w + Bz adz f¥(e)

a b(e)
I6] ag?
6 ae
I6; (a+a*1(e > 0))e?
5* a*z€2

—I—maxﬁj1(€2 <rZ/M) ©)
ﬁJ Qage

+max Bj1(e < rj_y /M) O

Ié] (a + max{a*,0})e?
+63*Ga(00) W
Ié] (o + max{a*,0})e

+B*Ga(00) ¥

g aAf¥(e)
g aAfv(e)

0
max w; + 7’,% max «;
+M max 3; 3)
maxwj + 7j—1 max q;
+M max 3; )

jw*|

Table 2: Summary of the discussed examples (continued): Choices of the relevant functions and constants. The function f,1 is omitted as in every case

fy1(x) = 0. Notes: () Two different formulations, corresponding to equations (10) and (11), are used to achieve notational convenience. () For TGARCH

we denote o, = max{ai,as}, B, = max{f3, 6}, and r, = max{|r|,|rs_1|} (as in the Appendix). (®) M is a (large) constant chosen in the Appendix.

4) G2(00) is used as a shorthand notation for lim, ., Ga(x).



Appendix: Proofs

Validity of Assumption [l for the model (#)—(&). First conclude from () that the
conditional probability distribution of Y; given X; = x is defined by

myix (A ] ) = / 1(Fy(x.0) € A)P(dC), A€ B),

where 1 (-) is the indicator function and F¢(-) signifies the probability distribution of (.
Similarly, the transition probability measure of the Markov chain X, defined by (@) is

Px(e.d)= [1(Gu(e.) € AR (). A€ B(),

from which the corresponding n-step transition probability measure can be derived (cf.
Meyn and Tweedie (1993, p. 78)). To derive the probability measure P2 (-,-), let z = (y, z)
be an initial value and set zZ = Z(z) = F,(z). Then conclude from equation (B) that
X; =7z and Xy = F, (%, Fy(Z,(1)). Interpreting z = Z(z) as a function of z one obtains

P2 (z,-) from this whereas equation (@) yields X, = G, (Z,¢1), Z € X. Thus, we get

Prad) = [106.66:0.0 € 4) R (d0)
— [1GEO AR () =P (G A),  A€BR)
By induction it can be seen that P2 (z, A) = P! (3, A) for all n > 2 and, because the
validity of equation (B) is straightforward to check, it follows that Assumption [ applies
to the model defined by (H) and () with j = 1 and the function A given by A = F,. =
Proof of Proposition [Il The proof is based on ideas similar to those in the proof of
Proposition 4 of Carrasco and Chen (2002). Set 7 (-) = my|x (- | #) 7x(-) where mx(-)

signifies the stationary probability measure related to a Markov chain with transition

probability measure Px(-,-). First note that

| Vaermatds) = [ mxtin) /y Valy, 2)myix (dyl) (14)
< /X 7 (dz) eV ()

< 00,
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where we have used the assumed condition fy Vz(y, x)my | x (dy|x) < cVx(x), forallz € &,

and the Vy—geometric ergodicity of X;. Then, for every zo = (yo,z9) € Y X X and n > j,

e /y 7 (0, dz) =z (d2)] s (2)
T bV /X[ﬁ;} (20, dz) — mx (dx)} (/y Ty|x (dy | 93)8(%33))' (15)
< CU:‘iEpVX /X[P;j (Zo, dz) — mx (dz)] v ()|,

where Zo = T (29) = A(2p). Here the equality follows from () and the definition of 7 (-).
In the inequality we have used Assumption [[(b) and the fact that, for any function s with
[s()] < Vz(),

] /y rvix (dylz) s (y, 2)

< /yﬂ'YX (dy | z)|s (y, )|

IN

/y mvix (dy | 2) Vz (4, 2)
< cVx(x).

Because Px (-, -) is assumed to be Vy—geometrically ergodic the last quantity in (IH) can
be bounded by a term of the form ¢"M5,, where p < 1 and Mz, < co. Thus, the same is
true for the first quantity, implying that Z; is Vz—geometrically ergodic. m

Proof of Proposition 2. By Proposition 2.4 of Liebscher (2005), Z; is f—mixing
with geometrically decaying mixing numbers if (i) E,[Vx(A(Xo,Ys))] < oo and (ii) Z
is (Q-geometrically ergodic in the sense of Liebscher (2005) with Q(z) = Vx(A(x,y)).
Condition (i) holds by assumption (b). For condition (ii), we first need to show that
E.,[Vx(A(X3:,Y?))] < co. This is obtained from (&) by replacing Vz(z) with Vx(\(x,y))
and using assumption (c) in conjunction with the Vy—geometric ergodicity of X;. As for

the remaining part of condition (ii), notice that from (&) and (®) we find that
< ¢ sup

< p'RVx (i)

= p"RVx(A(zo,y0))

sup
s:s|<Vyz

/ (P (a0, dz) — m7(d2)]s(2)
YxX

for some p € (0,1) and R < oo (here p~/ has been absorbed into R). Considering functions
s () < 1 completes the proof of condition (ii) (see the definition of )—geometric ergodicity
in Liebscher (2005, p. 671)). m
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Proof of Lemma [Il.  Consider the model (#)—(E) and suppose the assumptions of
Proposition B are satisfied apart from (c¢). Recall that now Assumption [ holds with the
function A given by A = F,. This in conjunction with the definition of the conditional

probability distribution 7y |x (- | ) and equations (@), (@), and (@) shows that

/y myix (dy | ) Vi@, y) = BIVx(Fa(X0, Y0) | Xo = ]
= E[Vx(Gu(x,G))]
= EVx (X)) | Xi = 2]
- /X Py (2, dw) Vy (w).

For simplicity, set [, 7x (dw)Vx(w) = C and note that C' < co by the assumed Vx—geometric
ergodicity of Px (-,-). Thus, using (§) with n = 1 we find that, for all x € X,

IN

[ P aw) vi(w)

[ P ey vt - [ m(dw)VX(w)] e
< (R + C) Vx(x),

where oR + C < co. Combining the preceding inequalities yields the stated result. m

Proof of Theorem [Il. We use fi7.(-) to signify the Lebesgue measure on R and Px (-, -)
the transition probability measure obtained when X, is viewed as a separate Markov chain
generated by ([Il). Due to the imposed assumptions, the state space of X; is X = [L 00).
The proof consists of showing that X; is irreducible and aperiodic, that an appropriate
small set exists, and that the so-called drift condition is satisfied with the function Vy (for
definitions of these concepts, see Meyn and Tweedie (1993)). Irreducibility, the existence

of a small set, and aperiodicity are first proven in Lemmas Hl, Bl, and [, respectively.

Lemma 4 If the assumptions of Theorem 1 hold there exist real numbers | and | such

that (1,1) C X and the Markov chain X, is p—irreducible with ¢(-) = prep(- 0 (1,1)).
Proof. By assumption E [(a + b(e;))*] < 1. Therefore we can choose an € > 0 such that
E[(a+e+b(=))"] < 1. (16)
By Assumptions B(c) and (e) we can now choose an M, € R, such that
1
Ja2(fya(@)er, ) < xb(ey) + €% (17)
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and

for(z) < azx + %ex (18)

for z € X and x > M,. Define the sets S;c ={z € X : x> M.} and S = {z € X : 2 <
M.}. Without loss of generality M, can be chosen large enough that Ss. is nonempty.
Clearly X = Sjc U Sp.. From (I0) it follows that a + %e < 1, and hence we can without
loss of generality also assume that M, > (1 —a — 3¢) " inf I, where I denotes the interval
in Assumption B(d;) (this fact will be used later in the proof of Lemma [{).

We shall next prove the following four results:
I) Ve € Sic:3Ine€Zy : P*(x,5) >0
IT) Vo € So. : P(x, AN (L,1)) > 0 whenever pze(AN(L1)) >0
ITI) inf,cq,, Pz, AN(L,1)) > 0 whenever (AN (L,1) >0

IV) Vo € Sic: In € Zy : Pz, AN(1,1)) > 0 whenever pze(AN(L1) >0

Establishing IT and IV will complete the proof of Lemma B, while III will be used later
in the proof of Lemma

Proof of I. Let ¢t € Z, and suppose that X; ; € Si.. Using () and ([8) we find that
X, < X;_1 (a+ € + b(g,_1)) and, since both sides are positive, X¥ < XF | (a + ¢ + b(g,_1))*.

Next consider the event
O ={(a+e+ble ) <Bla+etben)] t=1,..n},

where n is a positive integer. The nonconstancy and continuity of b(-) on some open set

implies that the probability of €2, is positive for every n. Thus, on the event €2,,,
Xt <X E|(at et blem)] (19)

where by ([8) the expectation is < 1.
Now choose an arbitrary x € Sj, and denote X, = x. Using ([J) inductively we have,

for arbitrary n € Z, and on the event €2, that

Xk < gk {E [(a et b(gt,l))’f] }” (20)
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as long as X1, ..., X1 € Si. Since E[(a+ ¢+ b(,_1))*] < 1, the right-hand-side of
[20) will eventually be less than or equal to M* when n is chosen large enough, and for
such n we will have X,, € Sy.. Since the probability of the event €2, is positive for every
n, we have thus completed the proof of I.

Proof of IT and III. Since the functions f,; and f,» are bounded on bounded subsets
of their domain there exist positive and finite real numbers M; and M, such that

sup fo1(x) < M; and sup fu(R,x) < M. (21)

TES2e €S2
Define [ = max{M; + My, M. + 1}, and choose an arbitrary [ > [ (note that the fact
L > M, is used only later in the proof of Lemma [).
Now choose an arbitrary set A such that jiz.(A N (L, 1)) > 0. Furthermore, choose an
arbitrary x € Sy.. For the 1-step transition probability from x to A it holds that

P(z,A) = /_OO 1(fu1 (2) + fao (fi2(x)e,x) € A) ¢. () de

(e 9]

> [ @)+ L e e)20) € A0, () e

R/ fy2(x)
According to Assumption 2(d) fu1 (2) + fa2 (fy2 (), x) is monotonically increasing with
respect to € on the integration range, and thus, making a transformation of variables

V= le (l‘) + fo (fy2 (l‘) 8,1’), we have

fmgl(v—fxl(x),x))
P(x, A) > 1(veA) o,
@4) /{v>fw<R,x>+fm<x>} e )gb( fy2 (@)
1 0f (v = fur (x),2)
T @ 9 w
20—t} _1_0f5l0=fate).a,,
= /Am@,l)gba( fy2 (2) fy2 (2) v '

The boundedness conditions for fo1, fu2, fy2, Ofia (v,7)/0v, and ¢. imply that
1/, “10
wt o (L) L o),

Z‘ESQe,UEAm(LZ> fy2

fy2 () () v

for some positive e,, and therefore P (2, A) > e.ure(AN (1,1)). Because the set A can
clearly be replaced by A N (I,1) both IT and III are obtained from

inf Pz, AN (L1) > eupires(AN(11)). (22)

TES2e
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Proof of IV. Choose an arbitrary set A such that pze,(AN(1,1)) > 0, and an arbitrary
x € Sie. According to I, we can choose an integer n such that P"(z,Ss) > 0. Now, by

the Chapman-Kolmogorov equation (Meyn and Tweedie (1993, Theorem 3.4.2, p. 67))

P ANLD) = [ Pady)Plr AN QD)

> /S P dy) Pl AN (D)

2/ P™(z,dy)epires(AN (1,1))
526

= P"(x, Sac)ecpiren(AN (1,1))

>0,

where the first inequality follows from the fact that S,. C X', and the second inequality
follows from (Z2Z). This completes the proof of IV. m

Lemma 5 If the assumptions of Theorem 1 hold the set Sy is small.

Proof. Equation (22) shows that equation (5.14) of Meyn and Tweedie (1993) holds with

the measure e, puze(- N (1,1)). Thus, the set So. is small by the definition of a small set. m
Lemma 6 If the assumptions of Theorem 1 hold the Markov chain X, is aperiodic.
Proof. By Proposition Al.1 of Chan (1990), the aperiodicity of X; obtains if

Vo € A: (P(z, A) > 0 and P*(z, A) > 0) (23)

for some small set A such that ¢ (A) > 0. We shall show this holds with the set (I,1).
To this end, it suffices to prove that for all open subsets A of Si. and for every x € A,
P(z,A) >0 and P?(z,A) > 0. Let A be an arbitrary open subset of Si. and z € A be
arbitrary. Because z > M., we have by (IB) and (IB), that f,1(z) < (a + €) z < z, and
furthermore that z— f,1(z) > 2—(a + 3¢) = z(1—a—3¢). As M, > (1—a—3€) 'inf I, we
therefore have x — f,1(x) > inf I, where I again denotes the interval in Assumption 2l(d;).
The same assumption now implies that there exists a u such that f,1(z) + fro(u,x) = .
Hence we can also find an e € (g,00) such that f,1(z) + fie(fy2 () e, ) = 2. Since the

set A is open, we can choose a § > 0 such that (r — d,z+J) C A, and the continuity
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from the right (alternatively, continuity from the left) of f.o(-, ) ensures that for a such

J, there exists an € > ¢ (alternatively, € < ¢) such that
e € (e,€) = far(2) + faz(fy2 (x) €,2) € (x — b, 2+ 0) (24)
(alternatively, € € (€,¢)). Thus, we can conclude that

P(x,A) > P(z,(x—4d,x+90))
= Pr(fu(z) + foafy2 (¥) &r,2) € (x — 6,2+ 7))
> Pr(e € (e,2))

> 0,

where the second inequality follows from (24]) and the third from the assumed positivity
of ¢.(-). In addition, by the Chapman-Kolmogorov equation,

P?(x,A) = /){P(x,dy)P(y,A) > /( s P(z,dy)P(y, A) > 0.

Hence the assertion made is proven. Since this holds, in particular, for the set (I,1) the
condition (Z3) is established with A = (I, 1).

By Lemmal ¢ ((1,1)) > 0. To establish that the set ({,1) is small consider first the
proof of parts II and III in Lemma B but with the set So. replaced by (I,1). Repeating
the arguments in that proof we can find an €, > 0 and an open interval (I, ') such that
the transition probabilities from (I,1) to (I,1’) are positive and

inf Pz, AN, 1) > pre(AN 1) >0 (25)
ze(l,l)

whenever jire,(A N (U,1) > 0. Equation (5.14) of Meyn and Tweedie (1993) is now

satisfied with the measure €. jir.(- N (I, 1)), and thus the set ({,1) is small. =

Finishing the proof of Theorem [l
Given Lemmas @l Bl and [, it now suffices to show that condition (15.3) of Meyn and
Tweedie (1993) holds with the function Vy(z) = 1 + 2*. This in turn is the case if there

exist constants ¢; > 0 and ¢y < oo such that

E [VX(Xt) ‘ Xt,1 = .Z'] S (1 — Cl)VX(l') + CQ]_ (l’ < S2e) forallz € X. (26)
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The expectation in (28 can be written as
B[+ XF | Xy =a] =14 B |(fa(@) + fualfa(@)er1,2)*] .
Suppose first that x € Si.. As in the proof of part I of Lemma H we have

1+ FE [(le(x> + fuo(fio(x)er, x))’f] <1+ 2z*E [(a +e+ b(8t71)>k}

ak <1 —-F [(a +e+ b(gt,l))kD

1+ 2k

=(1- (14 2).

Redefining M, if necessary we can without loss of generality assume that M, > 1. Then

x> 1and 2%/(1 + 2*) > 1/2. Since E [(a +e+ b(ét,l))k} < 1, it follows that

1+ B [(fa(@) + faolf(@)er, @)
< (1 - % (1 _E [(a tet b(atl))kD) (1+ %),

Defining ¢; = 4 (1 —-F [(a +e+ b(et_l))k]) shows that (28) holds for all = € S..
Suppose now that z € Sy.. Then, by the first inequality in ([ZI) and Assumption 2(e),

1+ FE [(fm(x) + fuo(fya(@)Er1, x))’f] <1+ FE [(Ml 4+ xb(et,l))k}
<1+ FE [(Ml +ec+ Meb(etfl))ﬂ

< OQ.

Defining ¢o = 1 + E |(M; +c+ Msb(st_l))k] and noting that (1 — ¢;)V(x) is always
positive shows that (28) holds also for all x € Ss.. Since X = S;. U Sy, this completes

the proof of Vx—geometric ergodicity. =

Proof of Theorem 2l The fact that the Markov chain Z;, = (Y}, X;) satisfies Assump-

tion [ follows from the discussion after this assumption. Also, X; viewed as a separate

Markov chain is Vy—geometrically ergodic by Theorem [[I Hence, by Proposition 1, it re-

mains to be proven that [}, my x(dy|z)Vz(y, 2) < cVx () for all z € & and some ¢ < oo.
The conditional probability distribution of Y; given X; = z is

Yy — fyl(l‘)
fy2() ) W

1
(o) = o
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Thus, since Vx (z) = 1 + ¥, part (a) follows by observing that
/ Ty x(dyle)Valy, z) = L+ a* + B [Ja/%|™] < (1+2*) (1 + E [|e]™]).
y
Consider now part (b), and suppose first that d < e. Similarly as above,

/ Ty ix(dy|z)Vz(y,z) =1+ 2"+ E le/d%?t + fiu(z)|%]
y

<1+ a* 4+ Oy (B [[a %] ™] + | fn ()| ™)

<128+ O (2B [led™] + Colpug® + pi"2™/)) - (27)

for some constants C; and Cy, where we have twice used Loéve’s ¢,—inequality (see David-
son (1994, p. 140)). In @7), 2%/¢ < max{1,2*} < (1 + 2*), and hence the expression in
(D) is smaller than C3(1 + z*) for some constant C3. The case d > e can be proven in an

analogous way. m

Proof of Theorem [Bl. It was established in the proof of Theorem Pl that under current
assumptions the Markov chain Z; = (Y}, X;) satisfies the conditions of Proposition [
The validity of condition (a) of Proposition & follows from Theorem 15.0.1 of Meyn and
Tweedie (1993), because we have established the validity of their condition (15.3) in the
proof of Theorem [l (see equation (Z8l)). Condition (b) is satisfied by assumption because
in the present case A = F, whereas condition (c) is redundant by Lemma[[l The results

follow by applying Proposition P with the functions Vz from Theorem P m

Validity of Assumption 2 for TGARCH and TACD models. Consider the
TGARCH model, which, denoting R; = [r;_1,7;), can be written as

J
Xy = Z (wj + Y2 + 3;X1) 1 (Y1 € Ry).
j=1

For simplicity, denote o, = max{ay,a,}, B« = max{f, B}, and r, = max{|r|,|r;_1|}
Defining f,1(7) = B.x and foo(2'/%e, 1) = Z}]:1 (wj + ajae? + Bjz) 1 (212 € R;) — Bux
we have X; = f1(X¢—1) + fo(th_/?éft_l,Xt_l). The validity of conditions (b), (c), (ds),
and (d3) of Assumption B is rather clear. For condition (d;) it suffices to note that

lwy + ayry_1,00) C fro(lrj_1,00),2) = [ws + ayrj_1 + (B; — Bi) x,00) for all x.
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For condition (e), note that Zj;gl (ajze?) 1 (z'/% € R;) < r?maxaqy;, 23‘]:1 w;l (z'% € R)) <

max wj, and for any positive M (which is to be chosen shortly)

J-1
(Bjx) 1 (x1/25 € R;) < zmaxf;l (ze® <17)
=2
= amaxf;1 (2> <rl) [1(x < M) +1(z > M)]
< M max 3+ zmax ;1 (ze* <r?) 1(z > M)
< M max 3 + x max 3,1 (52§rf/M).
Therefore

J
faa(z?e,2) = Z (wj + ayae® + Biz) 1 (x1/25 € Rj) — Bux

j=1
< maxw; + r2 maxa; + M max 3; + r max 3;1 (52 < TE/M)

+(aqwe® + pia)l (x1/2€ € Rl) + (ayze® + Bya)1 (x1/2€ € RJ) — B

< maxwj + rf max o + M max 3; + x max 3,1 (52 < rf/M) + a,xe?

and, denoting ¢ = (maxw; + r2 max a; + M max 3;) and b (¢) = (a.e? + max ;1 (* < r?/M)),
we have established the validity of the inequality in condition (e).

It remains to be verified that the moment condition in (e) is satisfied. For this, we
next establish that, for any k > 0, if E [(a.e? + 8,)F] < 1, then Ella+b(e)] < 1
(and thus also E[b ()] < oo in condition (e)). In addition to completing the verifica-
tion of Assumption 2, this gives an easily verifiable condition which implies the valid-
ity of the moment restriction in Theorem 1. When k < 1, Loéve’s ¢,—inequality gives
El(a+b(=)"] < E[(ue} + B + E [(max 5,1 (7 < r2/M))¥] = E [(aue} + 8.)F] +
max 3 E [1 (e < r}/M)]. By choosing M sufficiently large, the last term can be made
arbitrarily small, and hence E[(a + b(;))"] < 1 for a suitable choice of M. Suppose now
that k > 1. By Minkowski’s inequality we have E[(a + b (,))"] < {(E [(a.e? + B)F])VE+
(E [(max ;1 (¢ < r?/M))*])"/*}* and, by choosing M sufficiently large, the second ex-
pectation can again be made small enough so that E[(a + b(g;))*] < 1. This completes
establishing the validity of the conditions for the TGARCH model. The required ar-
guments for the TACD model are similar, although slightly simpler, and are omitted.
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