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tober 2004, revised De
ember 2005 and April 2007Abstra
tThis paper studies a 
lass of Markov models whi
h 
onsist of two 
omponents.Typi
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omponents is observable and the other is unobservable or`hidden'. Conditions under whi
h geometri
 ergodi
ity of the unobservable 
ompo-nent is inherited by the joint pro
ess formed of the two 
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e of initial values su
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onditional heteroskedasti
ity (GARCH) andautoregressive 
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1 Introdu
tionThis paper is 
on
erned with probabilisti
 properties of two 
ommon 
lasses of models,namely generalized autoregressive 
onditional heteroskedasti
ity (GARCH) models andautoregressive 
onditional duration (ACD) models. GARCH models were pioneered byEngle (1982) and Bollerslev (1986), and have ever sin
e been widely used to analyze�nan
ial time series. The more re
ent ACD models were introdu
ed by Engle and Russell(1998) to model the time dimension of irregularly spa
ed ultra-high-frequen
y data.Our study of GARCH and ACD models makes use of the theory of Markov 
hains.Both GARCH and ACD models 
an be thought of as 
onsisting of two 
omponents ofwhi
h one is observable (say, returns or durations) and the other is unobservable or `hid-den' (say, 
onditional varian
e or 
onditional expe
ted duration). From the viewpointof Markov 
hain theory, the unobservable 
omponent 
an be investigated as a Markov
hain of its own in isolation from the observable 
omponent. However, it is also useful to
onsider both 
omponents jointly as a single Markov 
hain. For instan
e, in the develop-ment of statisti
al estimation and testing theory it is pertinent to know when the jointpro
ess formed of the two 
omponents is, for example, stationary and has �nite momentsof some order. To make su
h results readily available, we obtain 
onditions under whi
hthe ergodi
ity, or more pre
isely, V �geometri
 ergodi
ity of the hidden pro
ess (viewedas a Markov 
hain of its own) is inherited by the joint pro
ess (
onsisting of both theobservable and hidden 
omponents). An immediate 
onsequen
e of this is that, with anappropriate 
hoi
e of initial values, the joint pro
ess is stri
tly stationary and β�mixing(or absolutely regular) with 
ertain moments existing. Building on the re
ent work ofLiebs
her (2005) we also obtain 
onditions whi
h imply β�mixing in the 
ase of nonsta-tionary initial values. Be
ause interest in results of this kind may not be 
on�ned toGARCH and ACD models they are �rst obtained for a very general 
lass of Markov mod-els de�ned in terms of transition probability measures. This extends the work of Liebs
her(2005) who obtained uni�ed su�
ient 
onditions for geometri
 ergodi
ity and β�mixingof autoregressive models and provided an insightful dis
ussion about their relationship.We apply the results obtained for our general 
lass of Markov models to a sub-
lasswhi
h 
ontains many �rst order GARCH and ACD models as spe
ial 
ases. For simpli
ity,2



we 
on
entrate on the leading 
ase of �rst order GARCH and ACD models but allow formore 
ompli
ated nonlinear stru
tures than in earlier literature. Our results apply tothe families of GARCH and ACD models introdu
ed by Hents
hel (1995) and Fernandesand Grammig (2006), respe
tively, and thereby to several 
ommonly used GARCH andACD models. Our results also apply to the integrated GARCH (IGARCH) model andprovide a rigorous proof of its short memory nature previously demonstrated by Dingand Granger (1996) using more elementary methods. In addition to these models, theGARCH-in-mean (GARCH�M) model as well as some GARCH and ACD models withrather 
ompli
ated nonlinear stru
tures are also 
overed. For some of these models theobtained 
onditions for ergodi
ity, mixing, and stationarity appear new.The approa
h used in this paper has prede
essors. Genon-Catalot, Jeantheau, andLarédo (2000) 
onsidered a general 
lass of Markov models referred to as a `hidden Markovmodel' and obtained results similar to ours for sto
hasti
 volatility models. Carras
o andChen (2002) attempted to generalize these results by formulating a `generalized hiddenMarkov model' whi
h 
ould also be applied to GARCH and ACD models. Unfortunately,however, this generalization appears too general to be useful. We show by a 
ounterex-ample that the 
onditions required for the generalized hidden Markov model do not ne
-essarily guarantee the validity of the ergodi
ity and mixing results given by Carras
o andChen (2002). We wish to stress, however, that this only 
on
erns their results on thegeneralized hidden Markov model. All their results on GARCH, sto
hasti
 volatility, andACD models still remain valid as long as their results on the generalized hidden Markovmodel are 
orre
ted. Our paper presents su
h a 
orre
tion (Proposition 1 below). Analternative 
orre
tion has re
ently been provided by Carras
o and Chen (2005).As far as GARCH and ACD models are 
on
erned, it should be mentioned that relatedresults on ergodi
ity, mixing, stri
t stationarity, and existen
e of moments have also ap-peared in Nelson (1990), Bougerol and Pi
ard (1992), Duan (1997), Ling (1999), Zhang,Russell, and Tsay (2001), Carras
o and Chen (2002), Ling and M
Aleer (2002), Ling andM
Aleer (2003), Lanne and Saikkonen (2005), Lee and Shin (2005), Fran
q and Zakoïan(2006), Meitz (2006), Straumann and Mikos
h (2006), Cline (2006), Fernandes, Medeiros,and Veiga (2006), Medeiros and Veiga (2006), and Kristensen (2007). Our 
ontributionto this work is that we show how these models 
an be handled in a uni�ed framework3



whi
h also applies when very general nonlinear stru
tures or even models, other thanGARCH and ACD models, are of interest. Even though our framework is very general itprovides ne
essary and su�
ient 
onditions for geometri
 ergodi
ity in some spe
ial 
asesand, similarly to Fran
q and Zakoïan (2006), only requires mild moment assumptions.The rest of this paper is organized as follows. Our general 
lass of Markov modelsis studied in Se
tion 2. In Se
tion 3 these results are spe
ialized to a spe
i�
 sub-
lassof models whi
h 
ontains various GARCH and ACD models. Con
luding remarks arepresented in Se
tion 4. Proofs of all the results are given in an Appendix.2 General Markov model2.1 De�nitionWe motivate our general Markov model by using the standard GARCH(1,1) model
ut = h

1/2
t εt

ht = ω + βht−1 + αu2
t−1,

(1)where εt ∼ i.i.d.(0, 1) with εt independent of (us, hs), s < t, and the parameters satisfy
ω > 0, α ≥ 0, β ≥ 0, and α + β < 1. Here ut is an observed pro
ess and ht is itsunobserved 
onditional varian
e. Substituting ht from the latter equation to the formershows that (ut, ht) is a Markov 
hain. On the other hand, substituting ut from the formerequation to the latter shows that ht 
an be viewed as a separate Markov 
hain de�ned bythe equation ht = ω + βht−1 + αht−1ε

2
t−1. Thus, one 
an use the theory of Markov 
hainsto study properties of either the joint pro
ess (ut, ht) or of ht in isolation from the pro
ess

ut. An approa
h like this was re
ently used by Carras
o and Chen (2002) who showed howto extend results on stationarity and mixing obtained for ht to the joint pro
ess (ut, ht).These authors also de�ned a `generalized hidden Markov model' in order to make theirapproa
h generally appli
able. We adopt the same idea and 
onsider a general Markovmodel with a stru
ture similar to that in the GARCH(1,1) model (1). A 
omprehensivereferen
e of the needed Markov 
hain theory is Meyn and Tweedie (1993) whereas Chan(1990) provides a short review. As a further referen
e we mention Doukhan (1994) wherethe employed 
on
ept of β�mixing and its relation to other mixing 
on
epts are dis
ussed.4



Consider two sto
hasti
 pro
esses, Yt and Xt (t = 0, 1, . . .), taking values in mea-surable spa
es (Y ,B(Y)) and (X ,B(X )), respe
tively. Suppose the joint pro
ess Zt =

(Yt, Xt) is a (time homogeneous) Markov 
hain on (Z,B(Z)) , where Z = Y × X and
B(Z) = B(Y × X ), and let P n

Z (z, A) = Pr (Zn ∈ A | Z0 = z), z ∈ Z, A ∈ B(Z), signify its
n�step transition probability measure (P 1

Z(·, ·) = PZ(·, ·) and similarly for other transitionprobability measures). As in the generalized hidden Markov model of Carras
o and Chen(2002) (
onditions (ii) and (iii) of their De�nition 3) we now assume that, for all t ≥ 1, the
onditional distribution of Yt given (Xt, Yt−1, Xt−1, . . . , Y0, X0) only depends on Xt andthat the 
onditional distribution of Yt given Xt = x does not depend on t. Let πY |X (· | x)signify this 
onditional probability distribution. As in the proof of Proposition 4(i) of Car-ras
o and Chen (2002) we 
an then write P n
Z (z, dz) = Pr(dy | dx, Z0 = z)Pr (dx | Z0 = z)where z = (y, x) and the former fa
tor of the produ
t 
an be repla
ed by πY |X (dy | x).In the aforementioned proof, Carras
o and Chen (2002) use the assumption that Xt isan (unobserved) stationary Markov 
hain (
ondition (i) of their De�nition 3) and repla
ethe latter fa
tor by P n

X (x, dx), the n�step transition probability measure of Xt. How-ever, this repla
ement is problemati
 in GARCH models, for example. Although ht inthe GARCH(1,1) model (1) 
an be treated as a Markov 
hain of its own this Markov
hain is not identi
al to the latter 
omponent of the joint pro
ess (ut, ht). Spe
i�
ally,given an initial value (u0, h0), the joint pro
ess implies that h1 = ω + βh0 + αu2
0 whereas

h1 = ω + βh0 + αh0ε
2
0 results when ht is treated as a separate Markov 
hain. Thus,if the joint pro
ess (ut, ht) is the Markov 
hain 
onsidered, the 
onditional probabilitydistribution of h1 also depends on the initial value u0, not only on h0.Motivated by the pre
eding dis
ussion we denote P̃ n

X (z, ·) = Pr (Xn ∈ · | Z0 = z) and
on
lude that
P n

Z (z, dz) = πY |X (dy | x) P̃ n
X (z, dx) . (2)As noti
ed above, the dependen
e of the latter fa
tor on the right hand side on the initialvalue y is in
onvenient. Fortunately, however, this matter 
an be handled (at least) inGARCH models. To see this, 
onsider again the GARCH(1,1) model (1) and the relatedtwo-dimensional Markov 
hain. Given the initial value (u0, h0), the joint pro
ess impliesthat h1 = ω + βh0 + αu2

0 and, as 
an be easily 
he
ked, h2 = ω + βh̃0 + αh̃0ε
2
1 where

h̃0 = ω + βh0 + αu2
0. On the other hand, when ht is treated as a separate Markov 
hain,5



h1 = ω + βh0 + αh0ε
2
0 is obtained. Thus, the generation me
hanism of h2 (based on thetwo-dimensional Markov 
hain) is entirely similar to that of h1 obtained when ht is treatedas a separate Markov 
hain. Only the initial value h̃0 that appears in h2 is de�ned in aspe
ial way. This 
learly extends to larger values of t so that, apart from the de�nitionof the initial value, the generation me
hanism of ht (t ≥ 2) based on the two-dimensionalMarkov 
hain (ut, ht) is identi
al to that of ht−1 obtained when ht is analyzed separately.Using the above dis
ussion on the GARCH(1,1) model (1) as a pattern we now repla
ethe probability measure P̃ n

X (z, ·) in (2) by a 
ounterpart whi
h, for some j ≥ 0, 
an betreated as an (n − j)�step transition probability measure of a separate Markov 
hain on
(X ,B(X )). We state the following assumption.Assumption 1 Let Zt = (Yt, Xt) (t = 0, 1, . . .) be a Markov 
hain on (Z,B(Z)) where
Z = Y × X and B(Z) = B(Y × X ). Assume the following 
onditions.(a) For all n ≥ 1 the n�step transition probability measure of Zt 
an be expressed inthe form (2) where πY |X (· | x) is the 
onditional probability distribution of Yt given

Xt = x.(b) There exist a fun
tion λ : Z → X , an integer j ≥ 0, and a transition probabilitymeasure PX(·, ·) of a Markov 
hain on (X ,B(X )) su
h that, for all n > j, P̃ n
X (z, ·) =

P n−j
X (x̃, ·) where x̃ = x̃(z) = λ(z).It is impli
it in Assumption 1(a) that 
onditions (ii) and (iii) de�ning the generalizedhidden Markov model of Carras
o and Chen (2002) are satis�ed. Furthermore, when Xt isviewed as a part of the joint pro
ess (Yt, Xt) its transition probability measure is assumedto agree with the transition probability measure of a separate Markov 
hain on (X ,B(X ))with suitably de�ned initial values. However, Xt is not ne
essarily a Markov 
hain be
auseits transition probabilities may depend on the initial value of the joint pro
ess (Yt, Xt).Therefore, 
ondition (i) of De�nition 3 of Carras
o and Chen (2002) need not hold (noteven without the word `stationary').Assumption 1 is more restri
tive than required for the generalized hidden Markovmodel of Carras
o and Chen (2002). To demonstrate the need of su
h a restri
tion, we6



use a model whi
h is a spe
ial 
ase of Example 1 of Carras
o and Chen (2002). Thus, let
εt be a sequen
e of n.i.d.(0, 1) random variables and 
onsider the model

Yt = εt + ε2t

Xt = εt,
(3)

t = 1, 2, . . .. The model is extended for t = 0 by assuming that Y0 and X0 are independentof ea
h other and of {εt, t ≥ 1} with standard normal distributions. Clearly, Xt is astationary, geometri
ally ergodi
, and β�mixing Markov 
hain. It is also straightforwardto verify that the 
onditions required for the generalized hidden Markov model of Carras
oand Chen (2002) are satis�ed and, by Proposition 4 of that paper, the joint pro
ess (Yt, Xt)should be a geometri
ally ergodi
 and β�mixing Markov 
hain. This, however, is not the
ase. Be
ause Cov(Yt, Y2t) = Cov(ε2t, ε2t) = 1 for all t ≥ 1 the pro
ess Yt is not strongmixing and, hen
e, not β�mixing (
f. Proposition 1, p. 4, and Theorem 3, p. 9, in Doukhan(1994)). Also, the 
onditional distribution of (Yt, Xt) given its past is not a fun
tion of
(Yt−1, Xt−1) only and, therefore, (Yt, Xt) is not a (geometri
ally ergodi
) Markov 
hain.An important requirement in Assumption 1 is that the joint pro
ess (Yt, Xt) is aMarkov 
hain be
ause then models like (3) are ruled out.1 It is straightforward to 
he
kthat Assumption 1 holds for the GARCH(1,1) model (1) with j = 1, the fun
tion λ givenby λ (u, h) = ω + βh + αu2, πY |X (· | x) the 
onditional distribution of ut given ht, and
PX(·, ·) the transition probability measure asso
iated with ht viewed as a separate Markov
hain. The GARCH(1,1) model (1) is a spe
ial 
ase of the model

Yt = Fy(Xt, ζt) (4)
Xt = Fx (Xt−1, Yt−1) , (5)where ζt is an i.i.d. error term independent of (Ys, Xs) , s < t, and the random ve
tors

Yt, Xt, and ζt take values on some subsets of Eu
lidean spa
es equipped with Borel sigma�elds. As in the GARCH(1,1) model (1) it 
an be seen that the joint pro
ess (Yt, Xt) is a1Re
ently, Carras
o and Chen (2005) have 
orre
ted their original de�nition of the generalized hiddenMarkov model in a way slightly di�erent from our Assumption 1. When this 
orre
ted de�nition is usedundesirable models su
h as (3) are ruled out and all the results in Carras
o and Chen (2002), in
ludingProposition 4, remain valid. 7



Markov 
hain and that ζt and Xt are independent with the latter having the representation
Xt = Fx (Xt−1, Fy(Xt−1, ζt−1))

def
= Gx(Xt−1, ζt−1). (6)Thus, Xt 
an be viewed as a Markov 
hain of its own and studied in isolation from

Yt. Verifying that Assumption 1 is satis�ed for the model (4)�(5) with λ (·) = Fx (·) isstraightforward but somewhat te
hni
al. Details are therefore deferred to the Appendix.2.2 Geometri
 ergodi
ityWe shall now show that Assumption 1 guarantees that ergodi
ity and mixing of the
omponent pro
ess Xt are inherited by the joint pro
ess Zt. We use the V �geometri
ergodi
ity of a Markov 
hain de�ned as follows (see Meyn and Tweedie (1993, p. 356)).De�nition 1 The Markov 
hain Zt is V �geometri
ally ergodi
 if there exist a real valuedfun
tion V : Z → [1,∞), a probability measure πZ on B(Z), and 
onstants ̺ < 1 and
Mz < ∞ (depending on z) su
h that

sup
v:|v|≤V

∣∣∣∣
∫

Z

P n
Z (z, dw) v(w) −

∫

Z

πZ(dw)v(w)

∣∣∣∣ ≤ ̺nMz for all z ∈ Z and all n ≥ 1. (7)The de�nition also assumes that the fun
tion V is integrable with respe
t to the prob-ability measure πZ . When 
ondition (7) holds we also say that the transition probabilitymeasure PZ (·, ·) is V �geometri
ally ergodi
 and similarly for other transition probabil-ity measures su
h as PX (·, ·). Note that the �rst integral in (7) equals the 
onditionalexpe
tation E[v (Zn) | Z0 = z].The weakest form of V �geometri
 ergodi
ity is obtained when V (·) ≡ 1 in whi
h 
asethe Markov 
hain Zt is said to be geometri
ally ergodi
. Geometri
 ergodi
ity entails thatthe n�step transition probability measure P n
Z (z, ·) 
onverges at a geometri
 rate to theprobability measure πZ(·) with respe
t to the total variation norm for all z ∈ Z. Theprobability measure πZ is often referred to as the stationary probability measure of Zt.The reason is that geometri
 ergodi
ity implies stationarity of Zt if the initial value Z0is distributed a

ording to the probability measure πZ (see Meyn and Tweedie (1993, p.230�231)). A 
onvenient feature of V �geometri
 ergodi
ity is that it automati
ally showsthe existen
e of the expe
tation of ∫

Z
πZ(dw)v(w) for all v su
h that |v(·)| ≤ V (·).8



The following proposition establishes the V �geometri
 ergodi
ity of Zt.Proposition 1 Suppose that the Markov 
hain Zt = (Yt, Xt) satis�es Assumption 1 andthat the transition probability measure PX(·, ·) is VX�geometri
ally ergodi
. Then Zt is VZ�geometri
ally ergodi
 for any fun
tion VZ : Z → [1,∞) su
h that ∫
Y

πY |X (dy | x) VZ(y, x) ≤

cVX(x) for all x ∈ X and some c < ∞.The 
ondition imposed on the fun
tion VZ in Proposition 1 is automati
ally satis�edfor VZ (y, x) = VX (x), although more useful results 
an be obtained with other 
hoi
esof VZ . However, even this spe
ial 
ase shows that the geometri
 ergodi
ity of PX(·, ·) isinherited by Zt and, when initialized from its stationary distribution, Zt is stationary and
β�mixing with geometri
ally de
aying mixing numbers (see Meyn and Tweedie (1993, pp.230�231) and Doukhan (1994, p. 4 and 89)). Thus, Proposition 1 provides us with resultssimilar to those stated in Proposition 4 of Carras
o and Chen (2002).While Proposition 1 makes it possible to apply limit theorems developed for Markov
hains to fun
tions of Zt regardless of initial values (see Meyn and Tweedie (1993, Chapter17)), these theorems are not dire
tly appli
able when fun
tions of (Zt, Zt−1, ..., Z1) areof interest (su
h fun
tions are met, for instan
e, in the estimation theory of GARCHmodels, see e.g. Straumann and Mikos
h (2006, Se
tions 6 and 7)). In su
h 
ases otherlimit theorems 
an be useful. Our next result gives su�
ient 
onditions for Zt to be
β�mixing. This result holds for a wide 
lass of nonstationary initial values and providesthe needed prerequisite for using limit theorems developed for near epo
h dependentfun
tions of mixing pro
esses (see Davidson (1994, Se
tions 20.6 and 24.4) for su
h limittheorems and Fran
q and Zakoïan (2006) for a related dis
ussion on the usefulness of limittheorems developed for mixing pro
esses). We use a subs
ript in the expe
tation operatorto indi
ate the initial distribution of the 
hain with respe
t to whi
h the expe
tation istaken.Proposition 2 Let the assumptions of Proposition 1 be satis�ed and the fun
tion VZbe as required in Proposition 1. Furthermore, let πX(·) signify the stationary probabilitymeasure related to a Markov 
hain with transition probability measure PX(·, ·). Suppose

9



that (a) there exist 
onstants ̺ < 1 and R < ∞ su
h that
sup

v:|v|≤VX

∣∣∣∣
∫

X

P n
X (x, dw) v(w) −

∫

X

πX(dw)v(w)

∣∣∣∣ ≤ ̺nRVX(x) (8)for all x ∈ X and all n ≥ 1, (b) Eµ[VX(λ(X0, Y0))] < ∞ where µ is the distribution of theinitial value Z0 = (Y0, X0), and (
) ∫
Y

πY |X (dy | x) VX(λ(x, y)) ≤ cVX(x) for all x ∈ Xand some c < ∞. Then Zt is β�mixing with geometri
ally de
aying mixing numbers.This proposition is based on re
ent results of Liebs
her (2005) whi
h highlight relationsbetween β�mixing and geometri
 ergodi
ity. To be able to apply these results we needassumptions not needed in the 
ase of stationary initial values. Our assumption (a) isslightly stronger than VX−geometri
 ergodi
ity of PX (·, ·), but is implied by the so-
alleddrift 
riterion whi
h is a standard tool used to obtain geometri
 ergodi
ity (see Meynand Tweedie (1993, Theorem 15.0.1)). A 
ounterpart of our third assumption (
) wasalready needed in Proposition 1. This assumption is not very restri
tive either in that itis automati
ally satis�ed by the general model (4)�(5) and, therefore, by models we aremainly interested in. We state this as a lemma.Lemma 1 Condition (
) of Proposition 2 is redundant for the model (4)�(5).Assumptions (a) and (
) also imply that Zt is V −geometri
ally ergodi
 with V (·) =

VX (λ(·)) and, for this 
ase, the argument given in Meyn and Tweedie (1993, dis
ussionfollowing Theorem 16.1.5) 
ould be employed to establish the strong mixing of Zt. Thisargument assumes 
ondition (b) and suggests that it is also ne
essary in our 
ase.It may also be noted that the 
onditions of Proposition 2 ensure �niteness of 
ertainmoments. For instan
e, it is straightforward to establish that supt≥1 Eµ[v (Zt)] < ∞ forany fun
tion v su
h that |v (·) | ≤ VZ (·), and that these moments 
onverge to the onestaken with respe
t to the stationary distribution πZ at a geometri
 rate.3 GARCH and ACD modelsAs in Carras
o and Chen (2002), Propositions 1 and 2 
an be applied to �rst orderGARCH models. In addition to various GARCH(1,1) models Carras
o and Chen (2002)10



also 
onsidered higher-order GARCH models as well as examples of ACD models andautoregressive sto
hasti
 volatility models. We do not 
onsider sto
hasti
 volatility modelsbe
ause for them similar results 
an be found in Genon-Catalot, Jeantheau, and Larédo(2000). However, as an extension of previous work we present both GARCH models andACD models as spe
ial 
ases of a general model whi
h even in
ludes the GARCH�Mmodel. As far as we know, these are the �rst results on geometri
 ergodi
ity and mixingobtained for the GARCH�M model (for the ARCH�M model similar results were obtainedby Masry and Tjøstheim (1995)).We 
onsider a spe
ial 
ase of the model (4)�(5) with Yt and Xt real valued and Xtpositive. Spe
i�
ally, the model is de�ned by
Yt = fy1(Xt) + fy2(Xt)εt (9)
Xt = fx1(Xt−1) + fx2(Yt−1 − fy1(Xt−1), Xt−1), (10)where the εt are i.i.d. and independent of (Ys, Xs), s < t, and fy1, fy2, fx1, and fx2 areBorel measurable fun
tions to be des
ribed in detail shortly. The analog of equation (6)is obtained by substituting Yt−1 from (9) into (10), yielding
Xt = fx1(Xt−1) + fx2(fy2(Xt−1)εt−1, Xt−1). (11)A model formulated in this way in
orporates various GARCH and ACD models. In theGARCH 
ontext, fy1 is the 
onditional mean fun
tion whereas fy2 is used to model the
onditional varian
e. In the ACD 
ontext, fy2 represents the 
onditional mean of Yt and

fy1 is omitted. Con
rete examples will be given later.For the development of our theory we make the following assumptions.Assumption 2(a) The i.i.d. random variables εt have a probability density fun
tion φε(·) supported on
(ε,∞) and bounded away from zero on 
ompa
t subsets of (ε,∞). Here either ε = 0or ε = −∞.(b) The fun
tions fx1 : R+ → R+ and fx2 : (ε,∞) × R+ → R are bounded on boundedsubsets of their domains and, for some f > 0, infx∈R+,u∈(ε,∞) (fx1(x) + fx2(u, x))=f .11



(
) There exists a real number a ∈ [0,∞) su
h that fx1(x) ≤ ax + o(x) as x → ∞.(d) The fun
tion fx2 satis�es the following three 
onditions.(d1) There exists an unbounded interval of R+ whi
h is, for all x > 0, 
ontained inthe image set fx2((ε,∞), x).(d2) For all x > 0, the fun
tion fx2(·, x) is 
ontinuous from the right (or alterna-tively, 
ontinuous from the left).(d3) There exists a real number R > 0 su
h that, for u > R and all x > 0, fx2(u, x)is 
ontinuous and monotoni
ally in
reasing, and the related inverse fun
tion
f−1

x2 (v, x) has a partial derivative ∂f−1
x2 (v, x)/∂v whi
h is bounded away fromzero on 
ompa
t subsets of its domain.(e) There exists a Borel measurable fun
tion b : (ε,∞) → R+, non
onstant and 
ontin-uous on some open set, and a real number c ∈ [0,∞) su
h that fx2(fy2(x)εt, x) ≤

xb (εt) + c for all x ∈ R+. Furthermore, E[b (εt)
k] < ∞ for some k ∈ R+.(f) The fun
tion fy2 : R+ → R+ is bounded on bounded subsets of its domain andbounded away from zero on [f,∞).Assumption 2(a) is satis�ed in most appli
ations. The 
ase ε = 0 is typi
al in ACDmodels, while in GARCH models ε = −∞. Restri
ting ε to these two values is notessential for the development of the theory, but from a pra
ti
al point of view there islittle need for generalizing this. In Assumptions 2(b) and (f) the fun
tions fx1, fx2, and fy2are assumed to be bounded on bounded subsets of their domains, while in Assumptions2(a), (b), (d), and (f) the fun
tions φε, fx1 + fx2, ∂f−1

x2 (v, x)/∂v, and fy2, respe
tively, areassumed to be suitably bounded away from zero. These assumptions are hardly restri
tivein pra
ti
e. Espe
ially the latter assumptions, though, suggest that some attention needsto be paid to the de�nitions of these fun
tions.Assumption 2(b) also ensures that the pro
ess Xt is always positive. Note that thereis more than one way to de�ne the fun
tions fx1 and fx2 without violating equations (10)and (11). In most 
ases it is natural to 
hoose the fun
tions fx1 and fx2 su
h that both12



of them are always positive. However, as a subsequent example shows, it is useful to bemore �exible and only require that the sum fx1 + fx2 is positive.The 
onditions restri
ting the fun
tions fx1 and fx2 in Assumptions 2(
) and (e),respe
tively, essentially restri
t Xt to depend on its past value at most in a linear fashionwhen arbitrarily large past values are of 
on
ern. This will be 
ru
ial in proving thegeometri
 ergodi
ity of Xt. Similar assumptions have also been used in previous proofs forgeometri
 ergodi
ity (see Lanne and Saikkonen (2005) for both Assumption 2(
) and (e)and Masry and Tjøstheim (1995), Lu (1998), and Lu and Jiang (2001), among others forAssumption 2(
)). Further 
onditions on the 
onstant a, the fun
tion b(·), and momentsof the random variables εt will be imposed later. It will prove bene�
ial to have the valuesof the 
onstant a and the fun
tion b(·) as small as possible.Due to the very general nonlinear stru
ture we wish to a

ommodate for, the 
onditionsimposed on the fun
tion fx2 in Assumption 2(d) are on the whole somewhat involved. Thevalidity of these 
onditions 
an still be straightforwardly 
he
ked for many GARCH andACD models, as our subsequent examples show. Often one 
an also use the followingsimple lemma (whose proof is omitted) to verify Assumptions 2(d1), (d2), and (d3).Lemma 2 Suppose the fun
tion fx2 has range R+ (instead of R) and that, for all x >

0, the fun
tion fx2(·, x) is (1) surje
tive, (2) 
ontinuous, and (3) both monotoni
allyin
reasing and 
ontinuously di�erentiable on (l,∞), where l ≥ 0. Then Assumptions2(d1), (d2), and (d3) hold.Assumption 2(d) enables us to prove our results without knowing anything about,not even existen
e of, the 
onditional density of Xt given Xt−1 = x. In previous proofsof geometri
 ergodi
ity it has been quite typi
al to make expli
it use of this 
onditionaldensity and its properties (
f., e.g., Lu (1998) and Lanne and Saikkonen (2005)). Whileoften straightforward this approa
h 
an sometimes be rather awkward to use and thenour general 
onditions 
an be very 
onvenient.As indi
ated in the Introdu
tion, our assumptions 
over nonlinear spe
i�
ations not
overed by related previous studies. For instan
e, Carras
o and Chen (2002) and Strau-mann and Mikos
h (2006) both give 
onditions for the ergodi
ity of rather general 
lassesof GARCH models whi
h, however, do not 
ontain some of the nonlinear models to be13



dis
ussed below. In parti
ular, some smooth transition GARCH models (see Example 4below) in whi
h fx1 and/or fx2 in (11) are nonlinear fun
tions of Xt−1 
annot be han-dled in the framework of Carras
o and Chen (2002). The framework of Straumann andMikos
h (2006) is similar to ours in that nonlinear fun
tions of a very general form areemployed but these fun
tions are restri
ted by a Lips
hitz 
ondition. Even though this
ondition works well in several 
ases it rules out models 
overed by our Assumption 2.For instan
e, dis
ontinuous models su
h as threshold-type GARCH models (see Example3 below) are ruled out (some of them are 
overed by Carras
o and Chen (2002)) and thesame is true for some smooth transition GARCH models.As dis
ussed in the 
ontext of the more general model (4)�(5), Xt 
an be viewed as aseparate Markov 
hain generated by (11) and with the asso
iated transition probabilitymeasure de�ning the 
ounterpart of PX(·, ·) in Assumption 1. The following theoremshows that, from this perspe
tive, Xt is V �geometri
ally ergodi
, as required for its 
oun-terpart in Proposition 1.Theorem 1 Consider Xt as a Markov 
hain generated by (11) and, in addition to As-sumption 2, suppose that E
[
(a + b(εt))

k
]

< 1. Then Xt is VX�geometri
ally ergodi
 with
VX(x) = 1 + xk.The moment 
ondition assumed in Theorem 1 is 
onvenient in the proof and it alsoenables us to obtain expli
it results about existen
e of moments. However, if one is onlyinterested in proving geometri
 ergodi
ity an alternative 
ondition, based on the followingresult, 
an be employed.Lemma 3 Suppose that (1) E

[
b(εt)

k
]

< ∞ for some k ∈ R+ and (2) E [ln(a + b(εt))] <

0. Then there exists a k0 ∈ (0, k) su
h that E
[
(a + b(εt))

k0

]
< 1.The result of this lemma 
an be justi�ed by following the arguments in Remark 2.9of Basrak, Davis, and Mikos
h (2002). Condition (1) was already used in Assumption2(e) whereas 
ondition (2) is an analog of the ne
essary and su�
ient 
ondition for thestationarity of the 
onventional GARCH(1,1) pro
ess obtained by Nelson (1990) andextended to a 
lass of GARCH(1,1) models by Fran
q and Zakoïan (2006, Theorem 2)14



and Meitz (2006). If 
ondition (2) is used in Theorem 1 instead of E
[
(a + b(εt))

k
]

< 1 we
an 
on
lude the (
1 + xk0

)�geometri
 ergodi
ity of Xt for some k0 ∈ (0, k) but the pre
isevalue of k0 
annot be determined. An analog of the result of Lemma 3 is also employedby Fran
q and Zakoïan (2006, Theorem 3) to prove the geometri
 ergodi
ity of a 
lassof GARCH(1,1) models (see the beginning of step (iii) in the proof of their Lemma 2).Their proof also assumes an analog of 
ondition (1) of Lemma 3 whi
h is not required toobtain stationarity (see the aforementioned referen
es). As a �nal remark of Lemma 3 wenote that 
ondition (2) is implied by E
[
(a + b(εt))

k
]

< 1 (k > 0), as Jensen's inequalityshows.To be able to apply Proposition 1 and obtain useful results for the joint pro
ess (Yt, Xt),
on
rete assumptions about the fun
tions fy1 and fy2 are needed. In most appli
ationsof GARCH or ACD models, the fun
tion fy2 is assumed to be a power fun
tion, thatis, fy2(x) = x1/d for some positive real number d. This is also the assumption we willmake. In the 
ontext of ACD models, the fun
tion fy1 is always assumed to be 0. InGARCH models, the most 
ommon spe
i�
ation for the `in-mean part' has also beena power fun
tion, say fy1(x) = µ0 + µ1x
1/e for some positive real number e. We willassume slightly less, only dominan
e by su
h a fun
tion. The following theorem gives anergodi
ity result for the joint pro
ess (Yt, Xt) for these 
ases.Theorem 2 Suppose that the assumptions of Theorem 1 are satis�ed and that fy2(x) =

x1/d where d ∈ R+. (a) If fy1(x) = 0 and E[|εt|
dk] < ∞, where k is as in Assumption 2,then Zt is VZ�geometri
ally ergodi
 with VZ(y, x) = 1 + |y|dk + xk. (b) If |fy1(x)| ≤

µ0 + µ1x
1/e, where e ∈ R+, µ0, µ1 ≥ 0, E[|εt|

min{d,e}k] < ∞, and k is as in Assumption 2,then Zt is VZ�geometri
ally ergodi
 with VZ(y, x) = 1 + |y|min{d,e}k + xk.As already noted after Proposition 1, the VX�geometri
 ergodi
ity of Xt implies the
V �geometri
 ergodi
ity of Zt with V (y, x) = VX(x). A drawba
k of this 
hoi
e of thefun
tion V is that nothing 
an be 
on
luded about the moments of Yt. The usefulnessof being able to use a more general 
hoi
e of the fun
tion V be
omes 
lear in Theorem2 where results on the existen
e of moments of the stationary distribution of Yt are alsoobtained. If the 
onditions of Lemma 3 are used instead of the moment 
ondition ofTheorem 1, the 
on
lusions of Theorem 2 hold with an unknown k0 ∈ (0, k). In this 
ase,15



part (b) of the theorem establishes geometri
 ergodi
ity in GARCH�M models under mildmoment 
onditions.Our next result applies Proposition 2 and provides 
onditions whi
h guarantee thatthe joint pro
ess (Yt, Xt) is β�mixing.Theorem 3 Suppose that the assumptions of Theorems 1 and 2(a) (or 2(b)) are sat-is�ed, and that Zt is initialized from Z0 = (Y0, X0) with a distribution µ su
h that
Eµ[VX(Fx(X0, Y0))] < ∞, where Fx (·, ·) denotes the fun
tion on the right hand side of(10). Then Zt is β�mixing with geometri
ally de
aying mixing numbers.In summary, Theorems 1�3 establish the V �geometri
 ergodi
ity and β�mixing for thegeneral model de�ned by equations (9) and (10) or equation (11). Existen
e of momentsalso readily follows from the stated 
onditions (in parti
ular, supt≥1 Eµ[|Yt|

dk] < ∞ (or
supt≥1 Eµ[|Yt|

min{d,e}k] < ∞), and supt≥1 Eµ[Xk
t ] < ∞, and these moments 
onverge to theones taken with respe
t to the stationary distribution πZ at a geometri
 rate).Con
rete examples where Theorems 1�3 apply are dis
ussed now. Depending on whi
hformulation has been more 
ommon in the literature, the stru
ture of ea
h model isdes
ribed by using either equation (10) or equation (11). For 
onvenien
e, all the examplesare summarized in Tables 1 and 2 where 
hoi
es of the relevant fun
tions and 
onstantsassumed in the pre
eding results are also provided. Be
ause typi
al 
hoi
es of the fun
tion

fy1 were already dis
ussed fy1 (·) = 0 is here assumed, so only GARCH and ACD modelsare 
onsidered. The validity of Assumption 2 
an be rather straightforwardly veri�ed formost of the 
onsidered models (see, however, some remarks in Examples 3 and 4 below).The form the 
ondition E
[
(a + b(εt))

k
]

< 1 of Theorem 1 takes in these 
ases is alsodisplayed in Table 1 with k = 1. The parameter restri
tions implied by this 
onditionagree in ea
h 
ase with the 
orresponding 
onditions reported in earlier literature. Theweaker log-moment 
ondition of Lemma 3 su�
ing for geometri
 ergodi
ity is also givenin Table 1.Example 1 (The GARCH�family of Hents
hel (1995) and the ACD�familyof Fernandes and Grammig (2006)). Consider the family of GARCH models of
16



Hents
hel (1995), whi
h 
an be written as (see eq. (A.2) and (A.3) of Hents
hel (1995))
Yt = σtεt

σλ
t = ω + (αλf ν(εt−1) + β)σλ

t−1 (12)
f(εt−1) = |εt−1 − b| − c(εt−1 − b),where we assume that b ∈ R, |c| ≤ 1, and the remaining parameters take positive values.2De�ning Xt = σλ

t we arrive at a formulation written in the form of (9) and (11) as
Yt = X

1/λ
t εt and Xt = ω + αλXt−1f

ν(εt−1) + βXt−1. In addition to the 
onventionallinear GARCH model, this family also nests several other popular GARCH models (seeHents
hel (1995) for a list). For brevity, the abbreviation BC�GARCH model is used inTables 1 and 2 (here BC is due to the Box-Cox transformation). Fernandes and Grammig(2006) 
onsider a family of ACD models analogous to Hents
hel's family of GARCHmodels. This family 
an be de�ned with exa
tly the same equations (12).Applying the result of Theorem 1 with k = 1 to the 
onventional linear GARCHmodel gives the 
ondition α + β < 1 for (1 + x)�geometri
 ergodi
ity of the 
onditionalvarian
e pro
ess. This agrees with the ne
essary and su�
ient 
ondition for se
ond orderstationarity (of Yt) obtained by Bollerslev (1986). If we only assume that k > 0 and
E [ln (β + αε2

t )] < 0, Lemma 3 and Theorem 1 give the (
1 + xk0

)�geometri
 ergodi
ity forsome 0 < k0 < k. Here the 
ondition E [ln (β + αε2
t )] < 0 agrees with the ne
essary andsu�
ient 
ondition for the (stri
t) stationarity and geometri
 ergodi
ity of the 
onditionalvarian
e pro
ess obtained in Nelson (1990) and Fran
q and Zakoïan (2006, Theorem 3and Remark 3), respe
tively. More generally, one 
an similarly 
on
lude that in thegeneral model (12) the 
ondition E [ln (β + αλf ν(εt−1))] < 0 is ne
essary and su�
ientfor geometri
 ergodi
ity (the ne
essity 
an be demonstrated as in Fran
q and Zakoïan(2006, se
ond part of Theorem 2)). Thus, even though our model a

ommodates verygeneral forms of nonlinearity we 
an obtain good results in this spe
ial 
ase. In parti
ular,the moment 
onditions we need are mild and 
omparable to those in Fran
q and Zakoïan(2006) although our assumptions about the distribution of the innovation pro
ess εt arestronger than assumed in that paper.2Hents
hel (1995) also 
onsiders a slightly di�erent formulation whi
h in
ludes the 
ase λ = 0. We donot dis
uss this 
ase. 17



Example 2 (The integrated GARCH model). Choosing f ν(εt−1) = ε2
t−1, αλ = 1−β,and λ = 2 shows that the IGARCH model is a spe
ial 
ase of the BC�GARCH model.In the 
ase of the IGARCH model, we also assume that E [ε2

t ] = 1 regardless of the valueof k, an assumption also made by Nelson (1990). As in that paper one 
an then see that
ondition (2) of Lemma 3, that is, E [ln (β + (1 − β) ε2
t )] < 0, is automati
ally satis�ed.Thus, in the IGARCH model the 
onditional varian
e pro
ess is (

1 + xk0

)�geometri
allyergodi
 with some positive k0. Using Theorem 2 we 
an even say more about the value of
k0. Unlike in all other models we have to assume that the 
ondition E

[
(a + b(εt))

k
]

< 1only holds for k < 1. Then, be
ause E[a + b(εt)] = E[β + (1 − β) ε2
t ] = 1, stri
t 
on
avityand Jensen's inequality give E[(a + b(εt))

k] < (E[a + b(εt)])
k = 1 for 0 < k < 1. Thus,for the IGARCH model Theorem 2 applies with k < 1 and d = 2 implying that theabove mentioned (

1 + xk0

)�geometri
 ergodi
ity holds for any k0 < 1. Consequently, Ythas �nite moments of orders smaller than 2. This is 
onsistent with the well-known fa
tthat the IGARCH pro
ess (that is Yt) has a stri
tly stationary but not a se
ond orderstationary solution (see Nelson (1990)). Previously, properties of the IGARCH pro
esswere also studied by Ding and Granger (1996) who demonstrated its short memory natureby showing that an `approximate' auto
orrelation fun
tion of Y 2
t de
ays to zero at ageometri
 rate. Our Theorem 3 makes this point more rigorous by showing that thepro
ess Yt is β�mixing with geometri
ally de
aying mixing numbers.Example 3 (Threshold models). A popular non-linear GARCH model is the GJR�GARCH model of Glosten, Jaganathan, and Runkle (1993), where the equation 
orre-sponding to (10) is Xt = ω +(α+α∗

1 (Yt−1 > 0))Y 2
t−1 +βXt−1. Here 1 (·) is the indi
atorfun
tion. The GJR�GARCH model is an example of threshold GARCH (or TGARCH)models studied more generally by Ling (1999, Theorems 4.1 and 4.2) and Lee and Shin(2005, Example 5). In a simple �rst order version of this model, the equation 
orrespond-ing to (10) is given by

Xt = ωj + αjY
2
t−1 + βjXt−1, if Yt−1 ∈ [rj−1, rj), j = 1, . . . , J, (13)where −∞ = r0 < r1 < · · · < rJ = ∞ are the threshold values, and the remainingparameters satisfy ωj > 0, αj > 0, and βj ≥ 0. Repla
ing Y 2

t−1 with Yt−1 and r0 = −∞18



with r0 = 0 in this de�nition one obtains the threshold ACD (or TACD) model of Zhang,Russell, and Tsay (2001).Verifying the validity of Assumption 2 for TGARCH and TACD models is more in-volved than for the pre
eding models. Details are therefore presented in the Appendix.Here we only mention that it is 
onvenient to express the model in a form in whi
h the
ounterpart of the fun
tion fx2 
an take negative values. Note also that in this 
ase theexpression a+ b(εt) appearing in Theorem 1 and Lemma 3 takes a somewhat 
ompli
atedform (see the Appendix). In Table 1 we therefore report parameter restri
tions whi
himply the validity of the 
ondition E
[
(a + b(εt))

k
]

< 1 of Theorem 1 and the 
ondition
E [ln(a + b(εt))] < 0 of Lemma 3.For the TGARCH model our results improve on those in Ling (1999, Theorems 4.1and 4.2) and Lee and Shin (2005, Example 5) where only the existen
e of a stationarysolution of the model is established but the uniqueness and ergodi
ity of this solutionare not obtained. Although our framework is quite general and not ex
lusively designedfor threshold models, the parameter restri
tion obtained from our Theorem 1 still agreeswith the 
onditions given in these previous papers when J = 2, and, when J > 2, it evenprovides an improvement. In these papers it is also assumed that the 
hain (Yt, Xt) is weakFeller (see Meyn and Tweedie (1993, p. 127)), a 
ontinuity assumption not satis�ed by allTGARCH models and not required by our results. For the TACD model the 
onditionobtained from Theorem 1 
oin
ides with the su�
ient 
ondition for geometri
 ergodi
ityobtained by Zhang, Russell, and Tsay (2001). Finally, our Lemma 3 provides su�
ient
onditions for geometri
 ergodi
ity that are stri
tly weaker than the 
onditions reportedboth for the TGARCH and the TACD model in the aforementioned earlier papers.3Example 4 (Smooth transition models). Smooth transition GARCH models wereintrodu
ed by Hagerud (1996) and González-Rivera (1998), and dis
ussed by Lundberghand Teräsvirta (2002) and Lanne and Saikkonen (2005), while the ACD analogs wereintrodu
ed by Meitz and Teräsvirta (2006). To obtain a general framework 
overing allthese models, let G1 and G2 be fun
tions with range [0, 1], and ω > 0, α > 0, β > 0,3For the TGARCH model an even better 
ondition has re
ently been obtained by Cline (2006). How-ever, this 
ondition is quite 
ompli
ated and obtaining an expli
it 
ondition in terms of the model parame-ters appears di�
ult, and therefore simulation or numeri
al methods may be ne
essary for its appli
ation.19



ω∗∗ > 0, ω + ω∗ > 0, α + α∗ > 0, and β + β∗ > 0. In the GARCH variant, the equation
orresponding to (10) takes the form
Xt = ω + αY 2

t−1 + βXt−1 + (ω∗ + α∗Y 2
t−1)G1(Yt−1) + (ω∗∗ + β∗Xt−1) G2(Xt−1).The ACD variant is otherwise similar ex
ept that on the right hand side Y 2

t−1 is twi
erepla
ed by Yt−1.4 For Assumption 2(d2) to be satis�ed we need to assume that thefun
tion G1 is 
ontinuous from the left (or from the right). This, however, is not restri
tive,be
ause in pra
ti
e G1 is usually 
ontinuous. A su�
ient 
ondition for Assumption 2(d3)to hold is that for large values of y the fun
tion G1(y) is di�erentiable and G′
1(y) = o (y−2)as y → ∞. This 
ondition is satis�ed in the two typi
al examples where G1 is the
umulative distribution fun
tion of the logisti
 distribution or normal distribution. Forthe fun
tion G2 mu
h less needs to be assumed. For 
onvenien
e, we may assume that thelimit limx→∞ G2(x) exists, in whi
h 
ase the 
onstant a in Table 2 has the stated form.Note that to satisfy the Lips
hitz 
ondition required in Proposition 3.1 of Straumannand Mikos
h (2006), rather 
ompli
ated restri
tions need to be imposed on the modelparameters and on the fun
tions G1 and G2. These restri
tions are also quite stringent.For instan
e, models in whi
h the fun
tion G2 has a 
ontinuous derivative attaining a valuelarge enough at some point are ruled out. Su
h models 
an still satisfy our Assumption 2.Conditions for geometri
 ergodi
ity obtained from Theorem 1 and Lemma 3 are reportedin Table 1, and the latter are an improvement 
ompared to previously reported 
onditions.As indi
ated earlier, the validity of Assumption 2(d) is relatively straightforward to
he
k even for rather 
ompli
ated nonlinear models. At least for some of the modelsdis
ussed above alternative approa
hes, whi
h require deriving the 
onditional density of

Xt given Xt−1 = x and 
he
king that it has suitable properties, 
an be 
umbersome. Thismay be the 
ase, for instan
e, if one has a smooth transition GARCH model with thefun
tion G1 not monotoni
ally in
reasing.4Note that this model is not general enough to 
over the re
ent smooth transition GARCH and ACDmodels of Medeiros and Veiga (2006) and Fernandes, Medeiros, and Veiga (2006). Be
ause these modelsare nested in (9) and (10) they 
ould be analyzed in our framework but at the 
ost of making the examplemore 
omplex. 20



4 Con
lusionIn this paper we have studied a general Markov model whi
h 
ontains an observable andan unobservable or hidden 
omponent. We gave 
onditions under whi
h the V �geometri
ergodi
ity of the hidden 
omponent viewed as a Markov 
hain of its own is inherited bythe joint pro
ess formed of the two 
omponents. Conditions for β�mixing and existen
eof moments for the joint pro
ess were also obtained.Results obtained for our general Markov model were applied to a wide 
lass of modelswhi
h in
ludes as spe
ial 
ases many �rst order GARCH, GARCH�M, and ACD modelswith possibly 
ompli
ated nonlinear stru
tures. In some spe
ial 
ases our 
onditions for
V �geometri
 ergodi
ity were seen to agree with 
onditions previously shown to be ne
es-sary and su�
ient for stationarity and geometri
 ergodi
ity. For highly nonlinear models,our 
onditions provided an improvement over previous results, whereas in the 
ase ofGARCH�M models our results are, to the best of our knowledge, the �rst ones available.As our emphasis was on allowing for nonlinearities, we only 
onsidered �rst order models,whi
h are also often found adequate in pra
ti
e. Due to the very general nature of theemployed assumptions, the results obtained for these models should be straightforward toapply. Compared to previous 
ounterparts they appear espe
ially 
onvenient for modelssu
h as smooth transition GARCH models or their ACD versions where highly nonlin-ear stru
tures have been 
onsidered. Extensions of our results to general higher-orderGARCH, GARCH�M, and ACD models forms an interesting topi
 for future resear
h.
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Model equations Condition in Theorem 1 with k = 1( Condition (2) in Lemma 3 )GARCH Xt = ω + αY 2
t−1 + βXt−1 α + β < 1 ( E[ln(β + αε2

t )] < 0 )ACD Xt = ω + αYt−1 + βXt−1 α + β < 1 ( E[ln(β + αεt)] < 0 )GJR�GARCH Xt = ω + (α + α∗
1(Yt−1 > 0))Y 2

t−1 + βXt−1 α + α∗/2 + β < 1 (1)( E[ln(β + (α + α∗
1(εt > 0))ε2

t )] < 0 )TGARCH Xt =
∑J

j=1(ωj + αjY
2
t−1 + βjXt−1)1(Yt−1 ∈ [rj−1, rj)), max{α1, αJ} + max{β1, βJ} < 1 (2)where −∞ = r0 < r1 < · · · < rJ = ∞ ( E[ln(max{β1, βJ} + max{α1, αJ}ε

2
t )] < 0 (3) )TACD Xt =

∑J
j=1(ωj + αjYt−1 + βjXt−1)1(Yt−1 ∈ [rj−1, rj)), αJ + βJ < 1 (2)where 0 = r0 < r1 < · · · < rJ = ∞ ( E[ln(βJ + αJεt)] < 0 (3) )ST�GARCH Xt = ω + αY 2

t−1 + βXt−1 α + max{α∗, 0} + β + β∗G2(∞) < 1 (4)

+(ω∗ + α∗Y 2
t−1)G1(Yt−1) + (ω∗∗ + β∗Xt−1)G2(Xt−1) ( E[ln(β + β∗G2(∞) + (α + max{α∗, 0})ε2

t )] < 0 ) (4)ST�ACD Xt = ω + αYt−1 + βXt−1 α + max{α∗, 0} + β + β∗G2(∞) < 1 (4)

+(ω∗ + α∗Yt−1)G1(Yt−1) + (ω∗∗ + β∗Xt−1)G2(Xt−1) ( E[ln(β + β∗G2(∞) + (α + max{α∗, 0})εt)] < 0 ) (4)BC�GARCH Xt = ω + βXt−1 + αλXt−1f
ν(εt−1), and Yt = X

1/λ
t εt E[β + αλf ν(εt)] < 1 ( E[ln(β + αλf ν(εt))] < 0 )BC�ACD Xt = ω + βXt−1 + αλXt−1f

ν(εt−1), and Yt = X
1/λ
t εt E[β + αλf ν(εt)] < 1 ( E[ln(β + αλf ν(εt))] < 0 )Table 1: Summary of the dis
ussed examples: Model equations, the form of 
ondition E[(a + b(εt))

k] < 1 in Theorem 1 with k = 1, and the form of
ondition E[ln(a+ b(εt))] < 0 in Lemma 3 (see Table 2 for the de�nitions of a and b(·)). Notes: (1) Assuming εt has a symmetri
 distribution. (2) This is a
ondition implying the validity of E[(a + b(εt))] < 1. (3) This is a 
ondition implying the validity of E[(max{β1, βJ}+ max{α1, αJ}ε
2
t )

k0 ] < 1 (TGARCH)or E[(βJ + αJεt)
k0 ] < 1 (TACD), and hen
e of E[(a + b(εt))

k0 ] < 1, for some k0 > 0. (4) G2(∞) is used as a shorthand notation for limx→∞ G2(x).
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fy2(x) fx1(x) fx2(fy2(x)ε, x) (1) a b(ε) cGARCH x1/2 ω + βx αy2 β αε2 0ACD x ω + βx αy β αε 0GJR�GARCH x1/2 ω + βx (α + α∗
1(y > 0))y2 β (α + α∗

1(ε > 0))ε2 0TGARCH (2) x1/2 β∗x
∑J

j=1

{
(ωj + αjy

2 + βjx) β∗ α∗ε
2 maxωj + r2

∗ max αj

1(y ∈ [rj−1, rj))
}
− β∗x + maxβj1(ε2 < r2

∗/M) (3) +M maxβj
(3)TACD x βJx

∑J
j=1

{
(ωj + αjy + βjx) βJ αJε maxωj + rJ−1 maxαj

1(y ∈ [rj−1, rj))
}
− βJx + maxβj1(ε < rJ−1/M) (3) +M maxβj

(3)ST�GARCH x1/2 ω + βx ω∗G1(y) β (α + max{α∗, 0})ε2 |ω∗|

+(ω∗∗ + β∗x)G2(x) +(α + α∗G1(y))y2 +β∗G2(∞) (4)ST�ACD x ω + βx ω∗G1(y) β (α + max{α∗, 0})ε |ω∗|

+(ω∗∗ + β∗x)G2(x) +(α + α∗G1(y))y +β∗G2(∞) (4)BC�GARCH x1/λ ω + βx αλxfν(ε) β αλf ν(ε) 0BC�ACD x1/λ ω + βx αλxfν(ε) β αλf ν(ε) 0Table 2: Summary of the dis
ussed examples (
ontinued): Choi
es of the relevant fun
tions and 
onstants. The fun
tion fy1 is omitted as in every 
ase

fy1(x) = 0. Notes: (1) Two di�erent formulations, 
orresponding to equations (10) and (11), are used to a
hieve notational 
onvenien
e. (2) For TGARCHwe denote α∗ = max{α1, αJ}, β∗ = max{β1, βJ}, and r∗ = max{|r1|, |rJ−1|} (as in the Appendix). (3) M is a (large) 
onstant 
hosen in the Appendix.

(4) G2(∞) is used as a shorthand notation for limx→∞ G2(x).

23



Appendix: ProofsValidity of Assumption 1 for the model (4)�(5). First 
on
lude from (4) that the
onditional probability distribution of Yt given Xt = x is de�ned by
πY |X (A | x) =

∫
1 (Fy(x, ζ) ∈ A) Pζ(dζ), A ∈ B(Y),where 1 (·) is the indi
ator fun
tion and Pζ(·) signi�es the probability distribution of ζt.Similarly, the transition probability measure of the Markov 
hain Xt de�ned by (6) is

PX (x, A) =

∫
1 (Gx(x, ζ) ∈ A) Pζ (dζ) , A ∈ B(X ),from whi
h the 
orresponding n�step transition probability measure 
an be derived (
f.Meyn and Tweedie (1993, p. 78)). To derive the probability measure P̃ n

X (·, ·), let z = (y, x)be an initial value and set z̃ = z̃ (z) = Fx (z). Then 
on
lude from equation (5) that
X1 = z̃ and X2 = Fx (z̃, Fy(z̃, ζ1)). Interpreting z̃ = z̃ (z) as a fun
tion of z one obtains
P̃ 2

X (z, ·) from this whereas equation (6) yields X2 = Gx (z̃, ζ1) , z̃ ∈ X . Thus, we get
P̃ 2

X(z, A) =

∫
1 (Gx(z̃(z), ζ) ∈ A) Pζ (dζ)

=

∫
1 (Gx(z̃, ζ) ∈ A) Pζ (dζ) = PX (z̃, A) , A ∈ B(X ).By indu
tion it 
an be seen that P̃ n

X (z, A) = P n−1
X (z̃, A) for all n ≥ 2 and, be
ause thevalidity of equation (2) is straightforward to 
he
k, it follows that Assumption 1 appliesto the model de�ned by (4) and (5) with j = 1 and the fun
tion λ given by λ = Fx.Proof of Proposition 1. The proof is based on ideas similar to those in the proof ofProposition 4 of Carras
o and Chen (2002). Set πZ (·) = πY |X (· | x) πX(·) where πX(·)signi�es the stationary probability measure related to a Markov 
hain with transitionprobability measure PX(·, ·). First note that

∫

Z

VZ(z)πZ(dz) =

∫

X

πX(dx)

∫

Y

VZ(y, x)πY |X(dy|x) (14)
≤

∫

X

πX(dx)cVX(x)

< ∞,
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where we have used the assumed 
ondition ∫
Y

VZ(y, x)πY |X(dy|x) ≤ cVX(x), for all x ∈ X ,and the VX�geometri
 ergodi
ity of Xt. Then, for every z0 = (y0, x0) ∈ Y ×X and n > j,
sup

s:|s|≤VZ

∣∣∣∣
∫

Y×X

[P n
Z (z0, dz) − πZ (dz)] s (z)

∣∣∣∣

= sup
s:|s|≤VZ

∣∣∣∣
∫

X

[
P̃ n

X (z0, dx) − πX (dx)
] (∫

Y

πY |X (dy | x) s (y, x)

)∣∣∣∣ (15)
≤ c sup

v:|v|≤VX

∣∣∣∣
∫

X

[
P n−j

X (x̃0, dx) − πX (dx)
]
v (x)

∣∣∣∣ ,where x̃0 = x̃ (z0) = λ(z0). Here the equality follows from (2) and the de�nition of πZ(·).In the inequality we have used Assumption 1(b) and the fa
t that, for any fun
tion s with
|s(·)| ≤ VZ(·),

∣∣∣∣
∫

Y

πY |X (dy|x) s (y, x)

∣∣∣∣ ≤

∫

Y

πY |X (dy | x) |s (y, x)|

≤

∫

Y

πY |X (dy | x) VZ (y, x)

≤ cVX(x).Be
ause PX (·, ·) is assumed to be VX�geometri
ally ergodi
 the last quantity in (15) 
anbe bounded by a term of the form ̺nMx̃0
, where ̺ < 1 and Mx̃0

< ∞. Thus, the same istrue for the �rst quantity, implying that Zt is VZ�geometri
ally ergodi
.Proof of Proposition 2. By Proposition 2.4 of Liebs
her (2005), Zt is β�mixingwith geometri
ally de
aying mixing numbers if (i) Eµ[VX(λ(X0, Y0))] < ∞ and (ii) Ztis Q�geometri
ally ergodi
 in the sense of Liebs
her (2005) with Q(z) = VX(λ(x, y)).Condition (i) holds by assumption (b). For 
ondition (ii), we �rst need to show that
EπZ

[VX(λ(Xt, Yt))] < ∞. This is obtained from (14) by repla
ing VZ(z) with VX(λ(x, y))and using assumption (
) in 
onjun
tion with the VX−geometri
 ergodi
ity of Xt. As forthe remaining part of 
ondition (ii), noti
e that from (15) and (8) we �nd that
sup

s:|s|≤VZ

∣∣∣∣
∫

Y×X

[P n
Z (z0, dz) − πZ(dz)]s(z)

∣∣∣∣ ≤ c sup
v:|v|≤VX

∣∣∣∣
∫

X

[P n−j
X (x̃0, dx) − πX(dx)]v(x)

∣∣∣∣

≤ ρnRVX(x̃0)

= ρnRVX(λ(x0, y0))for some ρ ∈ (0, 1) and R < ∞ (here ρ−j has been absorbed into R). Considering fun
tions
s (·) ≤ 1 
ompletes the proof of 
ondition (ii) (see the de�nition of Q�geometri
 ergodi
ityin Liebs
her (2005, p. 671)). 25



Proof of Lemma 1. Consider the model (4)�(5) and suppose the assumptions ofProposition 2 are satis�ed apart from (
). Re
all that now Assumption 1 holds with thefun
tion λ given by λ = Fx. This in 
onjun
tion with the de�nition of the 
onditionalprobability distribution πY |X (· | x) and equations (4), (5), and (6) shows that
∫

Y

πY |X (dy | x) VX(λ(x, y)) = E[VX(Fx(Xt, Yt)) | Xt = x]

= E [VX (Gx(x, ζt))]

= E [VX (Xt+1) | Xt = x]

=

∫

X

PX (x, dw)VX(w).For simpli
ity, set ∫
X

πX(dw)VX(w) = C and note that C < ∞ by the assumed VX−geometri
ergodi
ity of PX (·, ·). Thus, using (8) with n = 1 we �nd that, for all x ∈ X ,
∣∣∣∣
∫

X

PX (x, dw)VX(w)

∣∣∣∣ ≤

∣∣∣∣
∫

X

PX (x, dw)VX(w) −

∫

X

πX(dw)VX(w)

∣∣∣∣ + C

≤ (̺R + C) VX(x),where ̺R + C < ∞. Combining the pre
eding inequalities yields the stated result.Proof of Theorem 1. We use µLeb(·) to signify the Lebesgue measure on R and PX (·, ·)the transition probability measure obtained when Xt is viewed as a separate Markov 
haingenerated by (11). Due to the imposed assumptions, the state spa
e of Xt is X = [f,∞).The proof 
onsists of showing that Xt is irredu
ible and aperiodi
, that an appropriatesmall set exists, and that the so-
alled drift 
ondition is satis�ed with the fun
tion VX (forde�nitions of these 
on
epts, see Meyn and Tweedie (1993)). Irredu
ibility, the existen
eof a small set, and aperiodi
ity are �rst proven in Lemmas 4, 5, and 6, respe
tively.Lemma 4 If the assumptions of Theorem 1 hold there exist real numbers l and l su
hthat (
l, l

)
⊂ X and the Markov 
hain Xt is ϕ�irredu
ible with ϕ(·) = µLeb(· ∩ (l, l)).Proof. By assumption E

[
(a + b(εt))

k
]

< 1. Therefore we 
an 
hoose an ǫ > 0 su
h that
E

[
(a + ǫ + b(εt))

k
]

< 1. (16)By Assumptions 2(
) and (e) we 
an now 
hoose an Mǫ ∈ R+ su
h that
fx2(fy2(x)εt, x) ≤ xb(εt) +

1

2
ǫx (17)26



and
fx1(x) ≤ ax +

1

2
ǫx (18)for x ∈ X and x > Mǫ. De�ne the sets S1ǫ = {x ∈ X : x > Mǫ} and S2ǫ = {x ∈ X : x ≤

Mǫ}. Without loss of generality Mǫ 
an be 
hosen large enough that S2ǫ is nonempty.Clearly X = S1ǫ ∪ S2ǫ. From (16) it follows that a + 1
2
ǫ < 1, and hen
e we 
an withoutloss of generality also assume that Mǫ > (1− a− 1

2
ǫ)−1 inf I, where I denotes the intervalin Assumption 2(d1) (this fa
t will be used later in the proof of Lemma 6).We shall next prove the following four results:I) ∀x ∈ S1ǫ : ∃n ∈ Z+ : P n(x, S2ǫ) > 0II) ∀x ∈ S2ǫ : P (x, A ∩ (l, l)) > 0 whenever µLeb(A ∩ (l, l)) > 0III) infx∈S2ǫ

P (x, A ∩ (l, l)) > 0 whenever µLeb(A ∩ (l, l)) > 0IV) ∀x ∈ S1ǫ : ∃n ∈ Z+ : P n+1(x, A ∩ (l, l)) > 0 whenever µLeb(A ∩ (l, l)) > 0Establishing II and IV will 
omplete the proof of Lemma 4, while III will be used laterin the proof of Lemma 5.Proof of I. Let t ∈ Z+ and suppose that Xt−1 ∈ S1ǫ. Using (17) and (18) we �nd that
Xt ≤ Xt−1 (a + ǫ + b(εt−1)) and, sin
e both sides are positive, Xk

t ≤ Xk
t−1 (a + ǫ + b(εt−1))

k.Next 
onsider the event
Ωn =

{
(a + ǫ + b(εt−1))

k < E
[
(a + ǫ + b(εt−1))

k
]
, t = 1, . . . , n

}
,where n is a positive integer. The non
onstan
y and 
ontinuity of b(·) on some open setimplies that the probability of Ωn is positive for every n. Thus, on the event Ωn,

Xk
t ≤ Xk

t−1 · E
[
(a + ǫ + b(εt−1))

k
]
, (19)where by (16) the expe
tation is < 1.Now 
hoose an arbitrary x ∈ S1ǫ, and denote X0 = x. Using (19) indu
tively we have,for arbitrary n ∈ Z+ and on the event Ωn, that

Xk
n ≤ xk ·

{
E

[
(a + ǫ + b(εt−1))

k
]}n (20)27



as long as X1, . . . , Xn−1 ∈ S1ǫ. Sin
e E[(a + ǫ + b(εt−1))
k] < 1, the right-hand-side of(20) will eventually be less than or equal to Mk

ǫ when n is 
hosen large enough, and forsu
h n we will have Xn ∈ S2ǫ. Sin
e the probability of the event Ωn is positive for every
n, we have thus 
ompleted the proof of I.Proof of II and III. Sin
e the fun
tions fx1 and fx2 are bounded on bounded subsetsof their domain there exist positive and �nite real numbers M1 and M2 su
h that

sup
x∈S2ǫ

fx1(x) ≤ M1 and sup
x∈S2ǫ

fx2(R, x) ≤ M2. (21)De�ne l = max{M1 + M2, Mǫ + 1}, and 
hoose an arbitrary l > l (note that the fa
t
l > Mǫ is used only later in the proof of Lemma 6).Now 
hoose an arbitrary set A su
h that µLeb(A ∩ (l, l)) > 0. Furthermore, 
hoose anarbitrary x ∈ S2ǫ. For the 1�step transition probability from x to A it holds that

P (x, A) =

∫ ∞

−∞

1 (fx1 (x) + fx2 (fy2 (x) ε, x) ∈ A)φε (ε) dε

≥

∫ ∞

R/fy2(x)

1 (fx1 (x) + fx2 (fy2 (x) ε, x) ∈ A) φε (ε) dε.A

ording to Assumption 2(d) fx1 (x) + fx2 (fy2 (x) ε, x) is monotoni
ally in
reasing withrespe
t to ε on the integration range, and thus, making a transformation of variables
v = fx1 (x) + fx2 (fy2 (x) ε, x), we have

P (x, A) ≥

∫

{v>fx2(R,x)+fx1(x)}

1 (v ∈ A)φε

(
f−1

x2 (v − fx1 (x) , x)

fy2 (x)

)

×
1

fy2 (x)

∂f−1
x2 (v − fx1 (x) , x)

∂v
dv

≥

∫

A∩(l,l)

φε

(
f−1

x2 (v − fx1 (x) , x)

fy2 (x)

)
1

fy2 (x)

∂f−1
x2 (v − fx1 (x) , x)

∂v
dv.The boundedness 
onditions for fx1, fx2, fy2, ∂f−1

x2 (v, x)/∂v, and φε imply that
inf

x∈S2ǫ,v∈A∩(l,l)
φε

(
f−1

x2 (v − fx1 (x) , x)

fy2 (x)

)
1

fy2 (x)

∂f−1
x2 (v − fx1 (x) , x)

∂v
≥ ǫ∗for some positive ǫ∗, and therefore P (x, A) ≥ ǫ∗µLeb(A ∩ (l, l)). Be
ause the set A 
an
learly be repla
ed by A ∩ (l, l) both II and III are obtained from

inf
x∈S2ǫ

P (x, A ∩ (l, l)) ≥ ǫ∗µLeb(A ∩ (l, l)). (22)28



Proof of IV. Choose an arbitrary set A su
h that µLeb(A ∩ (l, l)) > 0, and an arbitrary
x ∈ S1ǫ. A

ording to I, we 
an 
hoose an integer n su
h that P n(x, S2ǫ) > 0. Now, bythe Chapman-Kolmogorov equation (Meyn and Tweedie (1993, Theorem 3.4.2, p. 67))

P n+1(x, A ∩ (l, l)) =

∫

X

P n(x, dy)P (y, A∩ (l, l))

≥

∫

S2ǫ

P n(x, dy)P (y, A∩ (l, l))

≥

∫

S2ǫ

P n(x, dy)ǫ∗µLeb(A ∩ (l, l))

= P n(x, S2ǫ)ǫ∗µLeb(A ∩ (l, l))

> 0,where the �rst inequality follows from the fa
t that S2ǫ ⊂ X , and the se
ond inequalityfollows from (22). This 
ompletes the proof of IV.Lemma 5 If the assumptions of Theorem 1 hold the set S2ǫ is small.Proof. Equation (22) shows that equation (5.14) of Meyn and Tweedie (1993) holds withthe measure ǫ∗µLeb(· ∩ (l, l)). Thus, the set S2ǫ is small by the de�nition of a small set.Lemma 6 If the assumptions of Theorem 1 hold the Markov 
hain Xt is aperiodi
.Proof. By Proposition A1.1 of Chan (1990), the aperiodi
ity of Xt obtains if
∀x ∈ A :

(
P (x, A) > 0 and P 2(x, A) > 0

) (23)for some small set A su
h that ϕ (A) > 0. We shall show this holds with the set (l, l).To this end, it su�
es to prove that for all open subsets A of S1ǫ and for every x ∈ A,

P (x, A) > 0 and P 2 (x, A) > 0. Let A be an arbitrary open subset of S1ǫ and x ∈ A bearbitrary. Be
ause x > Mǫ, we have by (18) and (16), that fx1(x) ≤
(
a + 1

2
ǫ
)
x < x, andfurthermore that x−fx1(x) ≥ x−

(
a + 1

2
ǫ
)
x = x(1−a−1

2
ǫ). As Mǫ > (1−a−1

2
ǫ)−1 inf I, wetherefore have x−fx1(x) > inf I, where I again denotes the interval in Assumption 2(d1).The same assumption now implies that there exists a u su
h that fx1(x) + fx2(u, x) = x.Hen
e we 
an also �nd an e ∈ (ε,∞) su
h that fx1(x) + fx2(fy2 (x) e, x) = x. Sin
e theset A is open, we 
an 
hoose a δ > 0 su
h that (x − δ, x + δ) ⊂ A, and the 
ontinuity29



from the right (alternatively, 
ontinuity from the left) of fx2(·, x) ensures that for a su
h
δ, there exists an e > e (alternatively, e < e) su
h that

ε ∈ (e, e) ⇒ fx1(x) + fx2(fy2 (x) ε, x) ∈ (x − δ, x + δ) (24)(alternatively, ε ∈ (e, e)). Thus, we 
an 
on
lude that
P (x, A) ≥ P (x, (x − δ, x + δ))

= Pr (fx1(x) + fx2(fy2 (x) εt, x) ∈ (x − δ, x + δ))

≥ Pr (εt ∈ (e, e))

> 0,where the se
ond inequality follows from (24) and the third from the assumed positivityof φε(·). In addition, by the Chapman-Kolmogorov equation,
P 2(x, A) =

∫

X

P (x, dy)P (y, A) ≥

∫

(x−δ,x+δ)

P (x, dy)P (y, A) > 0.Hen
e the assertion made is proven. Sin
e this holds, in parti
ular, for the set (l, l) the
ondition (23) is established with A = (l, l).By Lemma 4, ϕ
(
(l, l)

)
> 0. To establish that the set (l, l) is small 
onsider �rst theproof of parts II and III in Lemma 4 but with the set S2ǫ repla
ed by (l, l). Repeatingthe arguments in that proof we 
an �nd an ǫ′∗ > 0 and an open interval (l′, l′) su
h thatthe transition probabilities from (l, l) to (l′, l′) are positive and

inf
x∈(l,l)

P (x, A ∩ (l′, l′)) ≥ ǫ′∗µLeb(A ∩ (l′, l′)) > 0 (25)whenever µLeb(A ∩ (l′, l′)) > 0. Equation (5.14) of Meyn and Tweedie (1993) is nowsatis�ed with the measure ǫ′∗µLeb(· ∩ (l′, l′)), and thus the set (l, l) is small.Finishing the proof of Theorem 1.Given Lemmas 4, 5, and 6, it now su�
es to show that 
ondition (15.3) of Meyn andTweedie (1993) holds with the fun
tion VX(x) = 1 + xk. This in turn is the 
ase if thereexist 
onstants c1 > 0 and c2 < ∞ su
h that
E [VX(Xt) | Xt−1 = x] ≤ (1 − c1)VX(x) + c21 (x ∈ S2ǫ) for all x ∈ X . (26)30



The expe
tation in (26) 
an be written as
E

[
1 + Xk

t | Xt−1 = x
]

= 1 + E
[
(fx1(x) + fx2(fy2(x)εt−1, x))k

]
.Suppose �rst that x ∈ S1ǫ. As in the proof of part I of Lemma 4 we have

1 + E
[
(fx1(x) + fx2(fy2(x)εt−1, x))k

]
≤1 + xkE

[
(a + ǫ + b(εt−1))

k
]

=


1 −

xk
(
1 − E

[
(a + ǫ + b(εt−1))

k
])

1 + xk


 (1 + xk).Rede�ning Mǫ if ne
essary we 
an without loss of generality assume that Mǫ > 1. Then

x > 1 and xk/(1 + xk) > 1/2. Sin
e E
[
(a + ǫ + b(εt−1))

k
]

< 1, it follows that
1 + E

[
(fx1(x) + fx2(fy2(x)εt−1, x))k

]

<

(
1 −

1

2

(
1 − E

[
(a + ǫ + b(εt−1))

k
]))

(1 + xk).De�ning c1 = 1
2

(
1 − E

[
(a + ǫ + b(εt−1))

k
]) shows that (26) holds for all x ∈ S1ǫ.Suppose now that x ∈ S2ǫ. Then, by the �rst inequality in (21) and Assumption 2(e),

1 + E
[
(fx1(x) + fx2(fy2(x)εt−1, x))k

]
≤ 1 + E

[
(M1 + c + xb(εt−1))

k
]

≤ 1 + E
[
(M1 + c + Mǫb(εt−1))

k
]

< ∞.De�ning c2 = 1 + E
[
(M1 + c + Mǫb(εt−1))

k
] and noting that (1 − c1)V (x) is alwayspositive shows that (26) holds also for all x ∈ S2ǫ. Sin
e X = S1ǫ ∪ S2ǫ, this 
ompletesthe proof of VX�geometri
 ergodi
ity.Proof of Theorem 2. The fa
t that the Markov 
hain Zt = (Yt, Xt) satis�es Assump-tion 1 follows from the dis
ussion after this assumption. Also, Xt viewed as a separateMarkov 
hain is VX�geometri
ally ergodi
 by Theorem 1. Hen
e, by Proposition 1, it re-mains to be proven that ∫

Y
πY |X(dy|x)VZ(y, x) ≤ cVX(x) for all x ∈ X and some c < ∞.The 
onditional probability distribution of Yt given Xt = x is

πY |X(dy|x) =
1

fy2(x)
φε

(
y − fy1(x)

fy2(x)

)
dy.31



Thus, sin
e VX (x) = 1 + xk, part (a) follows by observing that
∫

Y

πY |X(dy|x)VZ(y, x) = 1 + xk + E
[
|x1/dεt|

dk
]
≤ (1 + xk)(1 + E

[
|εt|

dk
]
).Consider now part (b), and suppose �rst that d ≤ e. Similarly as above,

∫

Y

πY |X(dy|x)VZ(y, x) = 1 + xk + E
[
|x1/dεt + fy1(x)|dk

]

≤ 1 + xk + C1

(
E

[
|x1/dεt|

dk
]
+ |fy1(x)|dk

)

≤ 1 + xk + C1

(
xkE

[
|εt|

dk
]
+ C2(µ

dk
0 + µdk

1 xdk/e)
) (27)for some 
onstants C1 and C2, where we have twi
e used Loève's cr�inequality (see David-son (1994, p. 140)). In (27), xdk/e ≤ max{1, xk} ≤ (1 + xk), and hen
e the expression in(27) is smaller than C3(1+ xk) for some 
onstant C3. The 
ase d > e 
an be proven in ananalogous way.Proof of Theorem 3. It was established in the proof of Theorem 2 that under 
urrentassumptions the Markov 
hain Zt = (Yt, Xt) satis�es the 
onditions of Proposition 1.The validity of 
ondition (a) of Proposition 2 follows from Theorem 15.0.1 of Meyn andTweedie (1993), be
ause we have established the validity of their 
ondition (15.3) in theproof of Theorem 1 (see equation (26)). Condition (b) is satis�ed by assumption be
ausein the present 
ase λ = Fx whereas 
ondition (
) is redundant by Lemma 1. The resultsfollow by applying Proposition 2 with the fun
tions VZ from Theorem 2.Validity of Assumption 2 for TGARCH and TACD models. Consider theTGARCH model, whi
h, denoting Rj = [rj−1, rj), 
an be written as

Xt =
J∑

j=1

(
ωj + αjY

2
t−1 + βjXt−1

)
1 (Yt−1 ∈ Rj) .For simpli
ity, denote α∗ = max{α1, αJ}, β∗ = max{β1, βJ}, and r∗ = max{|r1| , |rJ−1|}.De�ning fx1(x) = β∗x and fx2(x

1/2ε, x) =
∑J

j=1 (ωj + αjxε2 + βjx) 1
(
x1/2ε ∈ Rj

)
− β∗xwe have Xt = fx1(Xt−1) + fx2(X

1/2
t−1εt−1, Xt−1). The validity of 
onditions (b), (
), (d2),and (d3) of Assumption 2 is rather 
lear. For 
ondition (d1) it su�
es to note that

[ωJ + αJrJ−1,∞) ⊆ fx2([rJ−1,∞), x) = [ωJ + αJrJ−1 + (βJ − β∗) x,∞) for all x.32



For 
ondition (e), note that ∑J−1
j=2 (αjxε2)1

(
x1/2ε ∈ Rj

)
≤ r2

∗ max αj, ∑J
j=1 ωj1

(
x1/2ε ∈ Rj

)
≤

max ωj, and for any positive M (whi
h is to be 
hosen shortly)
J−1∑

j=2

(βjx) 1
(
x1/2ε ∈ Rj

)
≤ x max βj1

(
xε2 ≤ r2

∗

)

= x max βj1
(
xε2 ≤ r2

∗

)
[1 (x ≤ M) + 1 (x > M)]

≤ M max βj + x max βj1
(
xε2 ≤ r2

∗

)
1 (x > M)

≤ M max βj + x max βj1
(
ε2 ≤ r2

∗/M
)
.Therefore

fx2(x
1/2ε, x) =

J∑

j=1

(
ωj + αjxε2 + βjx

)
1

(
x1/2ε ∈ Rj

)
− β∗x

≤ max ωj + r2
∗ max αj + M max βj + x max βj1

(
ε2 ≤ r2

∗/M
)

+(α1xε2 + β1x)1
(
x1/2ε ∈ R1

)
+ (αJxε2 + βJx)1

(
x1/2ε ∈ RJ

)
− β∗x

≤ max ωj + r2
∗ max αj + M max βj + x max βj1

(
ε2 ≤ r2

∗/M
)

+ α∗xε2and, denoting c = (maxωj + r2
∗ max αj + M max βj) and b (ε) = (α∗ε

2 + max βj1 (ε2 ≤ r2
∗/M)),we have established the validity of the inequality in 
ondition (e).It remains to be veri�ed that the moment 
ondition in (e) is satis�ed. For this, wenext establish that, for any k > 0, if E

[
(α∗ε

2
t + β∗)

k
]

< 1, then E[(a + b (εt))
k] < 1(and thus also E[b (εt)

k] < ∞ in 
ondition (e)). In addition to 
ompleting the veri�
a-tion of Assumption 2, this gives an easily veri�able 
ondition whi
h implies the valid-ity of the moment restri
tion in Theorem 1. When k ≤ 1, Loève's cr�inequality gives
E[(a + b (εt))

k] ≤ E
[
(α∗ε

2
t + β∗)

k
]

+ E
[
(max βj1 (ε2

t ≤ r2
∗/M))k

]
= E

[
(α∗ε

2
t + β∗)

k
]

+

max βk
j E [1 (ε2

t ≤ r2
∗/M)]. By 
hoosing M su�
iently large, the last term 
an be madearbitrarily small, and hen
e E[(a + b (εt))

k] < 1 for a suitable 
hoi
e of M . Suppose nowthat k > 1. By Minkowski's inequality we have E[(a + b (εt))
k] ≤ {(E

[
(α∗ε

2
t + β∗)

k
]
)1/k +

(E
[
(max βj1 (ε2

t ≤ r2
∗/M))k

]
)1/k}k and, by 
hoosing M su�
iently large, the se
ond ex-pe
tation 
an again be made small enough so that E[(a + b (εt))

k] < 1. This 
ompletesestablishing the validity of the 
onditions for the TGARCH model. The required ar-guments for the TACD model are similar, although slightly simpler, and are omitted.
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