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1 IntrodutionThis paper is onerned with probabilisti properties of two ommon lasses of models,namely generalized autoregressive onditional heteroskedastiity (GARCH) models andautoregressive onditional duration (ACD) models. GARCH models were pioneered byEngle (1982) and Bollerslev (1986), and have ever sine been widely used to analyze�nanial time series. The more reent ACD models were introdued by Engle and Russell(1998) to model the time dimension of irregularly spaed ultra-high-frequeny data.Our study of GARCH and ACD models makes use of the theory of Markov hains.Both GARCH and ACD models an be thought of as onsisting of two omponents ofwhih one is observable (say, returns or durations) and the other is unobservable or `hid-den' (say, onditional variane or onditional expeted duration). From the viewpointof Markov hain theory, the unobservable omponent an be investigated as a Markovhain of its own in isolation from the observable omponent. However, it is also useful toonsider both omponents jointly as a single Markov hain. For instane, in the develop-ment of statistial estimation and testing theory it is pertinent to know when the jointproess formed of the two omponents is, for example, stationary and has �nite momentsof some order. To make suh results readily available, we obtain onditions under whihthe ergodiity, or more preisely, V �geometri ergodiity of the hidden proess (viewedas a Markov hain of its own) is inherited by the joint proess (onsisting of both theobservable and hidden omponents). An immediate onsequene of this is that, with anappropriate hoie of initial values, the joint proess is stritly stationary and β�mixing(or absolutely regular) with ertain moments existing. Building on the reent work ofLiebsher (2005) we also obtain onditions whih imply β�mixing in the ase of nonsta-tionary initial values. Beause interest in results of this kind may not be on�ned toGARCH and ACD models they are �rst obtained for a very general lass of Markov mod-els de�ned in terms of transition probability measures. This extends the work of Liebsher(2005) who obtained uni�ed su�ient onditions for geometri ergodiity and β�mixingof autoregressive models and provided an insightful disussion about their relationship.We apply the results obtained for our general lass of Markov models to a sub-lasswhih ontains many �rst order GARCH and ACD models as speial ases. For simpliity,2



we onentrate on the leading ase of �rst order GARCH and ACD models but allow formore ompliated nonlinear strutures than in earlier literature. Our results apply tothe families of GARCH and ACD models introdued by Hentshel (1995) and Fernandesand Grammig (2006), respetively, and thereby to several ommonly used GARCH andACD models. Our results also apply to the integrated GARCH (IGARCH) model andprovide a rigorous proof of its short memory nature previously demonstrated by Dingand Granger (1996) using more elementary methods. In addition to these models, theGARCH-in-mean (GARCH�M) model as well as some GARCH and ACD models withrather ompliated nonlinear strutures are also overed. For some of these models theobtained onditions for ergodiity, mixing, and stationarity appear new.The approah used in this paper has predeessors. Genon-Catalot, Jeantheau, andLarédo (2000) onsidered a general lass of Markov models referred to as a `hidden Markovmodel' and obtained results similar to ours for stohasti volatility models. Carraso andChen (2002) attempted to generalize these results by formulating a `generalized hiddenMarkov model' whih ould also be applied to GARCH and ACD models. Unfortunately,however, this generalization appears too general to be useful. We show by a ounterex-ample that the onditions required for the generalized hidden Markov model do not ne-essarily guarantee the validity of the ergodiity and mixing results given by Carraso andChen (2002). We wish to stress, however, that this only onerns their results on thegeneralized hidden Markov model. All their results on GARCH, stohasti volatility, andACD models still remain valid as long as their results on the generalized hidden Markovmodel are orreted. Our paper presents suh a orretion (Proposition 1 below). Analternative orretion has reently been provided by Carraso and Chen (2005).As far as GARCH and ACD models are onerned, it should be mentioned that relatedresults on ergodiity, mixing, strit stationarity, and existene of moments have also ap-peared in Nelson (1990), Bougerol and Piard (1992), Duan (1997), Ling (1999), Zhang,Russell, and Tsay (2001), Carraso and Chen (2002), Ling and MAleer (2002), Ling andMAleer (2003), Lanne and Saikkonen (2005), Lee and Shin (2005), Franq and Zakoïan(2006), Meitz (2006), Straumann and Mikosh (2006), Cline (2006), Fernandes, Medeiros,and Veiga (2006), Medeiros and Veiga (2006), and Kristensen (2007). Our ontributionto this work is that we show how these models an be handled in a uni�ed framework3



whih also applies when very general nonlinear strutures or even models, other thanGARCH and ACD models, are of interest. Even though our framework is very general itprovides neessary and su�ient onditions for geometri ergodiity in some speial asesand, similarly to Franq and Zakoïan (2006), only requires mild moment assumptions.The rest of this paper is organized as follows. Our general lass of Markov modelsis studied in Setion 2. In Setion 3 these results are speialized to a spei� sub-lassof models whih ontains various GARCH and ACD models. Conluding remarks arepresented in Setion 4. Proofs of all the results are given in an Appendix.2 General Markov model2.1 De�nitionWe motivate our general Markov model by using the standard GARCH(1,1) model
ut = h

1/2
t εt

ht = ω + βht−1 + αu2
t−1,

(1)where εt ∼ i.i.d.(0, 1) with εt independent of (us, hs), s < t, and the parameters satisfy
ω > 0, α ≥ 0, β ≥ 0, and α + β < 1. Here ut is an observed proess and ht is itsunobserved onditional variane. Substituting ht from the latter equation to the formershows that (ut, ht) is a Markov hain. On the other hand, substituting ut from the formerequation to the latter shows that ht an be viewed as a separate Markov hain de�ned bythe equation ht = ω + βht−1 + αht−1ε

2
t−1. Thus, one an use the theory of Markov hainsto study properties of either the joint proess (ut, ht) or of ht in isolation from the proess

ut. An approah like this was reently used by Carraso and Chen (2002) who showed howto extend results on stationarity and mixing obtained for ht to the joint proess (ut, ht).These authors also de�ned a `generalized hidden Markov model' in order to make theirapproah generally appliable. We adopt the same idea and onsider a general Markovmodel with a struture similar to that in the GARCH(1,1) model (1). A omprehensivereferene of the needed Markov hain theory is Meyn and Tweedie (1993) whereas Chan(1990) provides a short review. As a further referene we mention Doukhan (1994) wherethe employed onept of β�mixing and its relation to other mixing onepts are disussed.4



Consider two stohasti proesses, Yt and Xt (t = 0, 1, . . .), taking values in mea-surable spaes (Y ,B(Y)) and (X ,B(X )), respetively. Suppose the joint proess Zt =

(Yt, Xt) is a (time homogeneous) Markov hain on (Z,B(Z)) , where Z = Y × X and
B(Z) = B(Y × X ), and let P n

Z (z, A) = Pr (Zn ∈ A | Z0 = z), z ∈ Z, A ∈ B(Z), signify its
n�step transition probability measure (P 1

Z(·, ·) = PZ(·, ·) and similarly for other transitionprobability measures). As in the generalized hidden Markov model of Carraso and Chen(2002) (onditions (ii) and (iii) of their De�nition 3) we now assume that, for all t ≥ 1, theonditional distribution of Yt given (Xt, Yt−1, Xt−1, . . . , Y0, X0) only depends on Xt andthat the onditional distribution of Yt given Xt = x does not depend on t. Let πY |X (· | x)signify this onditional probability distribution. As in the proof of Proposition 4(i) of Car-raso and Chen (2002) we an then write P n
Z (z, dz) = Pr(dy | dx, Z0 = z)Pr (dx | Z0 = z)where z = (y, x) and the former fator of the produt an be replaed by πY |X (dy | x).In the aforementioned proof, Carraso and Chen (2002) use the assumption that Xt isan (unobserved) stationary Markov hain (ondition (i) of their De�nition 3) and replaethe latter fator by P n

X (x, dx), the n�step transition probability measure of Xt. How-ever, this replaement is problemati in GARCH models, for example. Although ht inthe GARCH(1,1) model (1) an be treated as a Markov hain of its own this Markovhain is not idential to the latter omponent of the joint proess (ut, ht). Spei�ally,given an initial value (u0, h0), the joint proess implies that h1 = ω + βh0 + αu2
0 whereas

h1 = ω + βh0 + αh0ε
2
0 results when ht is treated as a separate Markov hain. Thus,if the joint proess (ut, ht) is the Markov hain onsidered, the onditional probabilitydistribution of h1 also depends on the initial value u0, not only on h0.Motivated by the preeding disussion we denote P̃ n

X (z, ·) = Pr (Xn ∈ · | Z0 = z) andonlude that
P n

Z (z, dz) = πY |X (dy | x) P̃ n
X (z, dx) . (2)As notied above, the dependene of the latter fator on the right hand side on the initialvalue y is inonvenient. Fortunately, however, this matter an be handled (at least) inGARCH models. To see this, onsider again the GARCH(1,1) model (1) and the relatedtwo-dimensional Markov hain. Given the initial value (u0, h0), the joint proess impliesthat h1 = ω + βh0 + αu2

0 and, as an be easily heked, h2 = ω + βh̃0 + αh̃0ε
2
1 where

h̃0 = ω + βh0 + αu2
0. On the other hand, when ht is treated as a separate Markov hain,5



h1 = ω + βh0 + αh0ε
2
0 is obtained. Thus, the generation mehanism of h2 (based on thetwo-dimensional Markov hain) is entirely similar to that of h1 obtained when ht is treatedas a separate Markov hain. Only the initial value h̃0 that appears in h2 is de�ned in aspeial way. This learly extends to larger values of t so that, apart from the de�nitionof the initial value, the generation mehanism of ht (t ≥ 2) based on the two-dimensionalMarkov hain (ut, ht) is idential to that of ht−1 obtained when ht is analyzed separately.Using the above disussion on the GARCH(1,1) model (1) as a pattern we now replaethe probability measure P̃ n

X (z, ·) in (2) by a ounterpart whih, for some j ≥ 0, an betreated as an (n − j)�step transition probability measure of a separate Markov hain on
(X ,B(X )). We state the following assumption.Assumption 1 Let Zt = (Yt, Xt) (t = 0, 1, . . .) be a Markov hain on (Z,B(Z)) where
Z = Y × X and B(Z) = B(Y × X ). Assume the following onditions.(a) For all n ≥ 1 the n�step transition probability measure of Zt an be expressed inthe form (2) where πY |X (· | x) is the onditional probability distribution of Yt given

Xt = x.(b) There exist a funtion λ : Z → X , an integer j ≥ 0, and a transition probabilitymeasure PX(·, ·) of a Markov hain on (X ,B(X )) suh that, for all n > j, P̃ n
X (z, ·) =

P n−j
X (x̃, ·) where x̃ = x̃(z) = λ(z).It is impliit in Assumption 1(a) that onditions (ii) and (iii) de�ning the generalizedhidden Markov model of Carraso and Chen (2002) are satis�ed. Furthermore, when Xt isviewed as a part of the joint proess (Yt, Xt) its transition probability measure is assumedto agree with the transition probability measure of a separate Markov hain on (X ,B(X ))with suitably de�ned initial values. However, Xt is not neessarily a Markov hain beauseits transition probabilities may depend on the initial value of the joint proess (Yt, Xt).Therefore, ondition (i) of De�nition 3 of Carraso and Chen (2002) need not hold (noteven without the word `stationary').Assumption 1 is more restritive than required for the generalized hidden Markovmodel of Carraso and Chen (2002). To demonstrate the need of suh a restrition, we6



use a model whih is a speial ase of Example 1 of Carraso and Chen (2002). Thus, let
εt be a sequene of n.i.d.(0, 1) random variables and onsider the model

Yt = εt + ε2t

Xt = εt,
(3)

t = 1, 2, . . .. The model is extended for t = 0 by assuming that Y0 and X0 are independentof eah other and of {εt, t ≥ 1} with standard normal distributions. Clearly, Xt is astationary, geometrially ergodi, and β�mixing Markov hain. It is also straightforwardto verify that the onditions required for the generalized hidden Markov model of Carrasoand Chen (2002) are satis�ed and, by Proposition 4 of that paper, the joint proess (Yt, Xt)should be a geometrially ergodi and β�mixing Markov hain. This, however, is not thease. Beause Cov(Yt, Y2t) = Cov(ε2t, ε2t) = 1 for all t ≥ 1 the proess Yt is not strongmixing and, hene, not β�mixing (f. Proposition 1, p. 4, and Theorem 3, p. 9, in Doukhan(1994)). Also, the onditional distribution of (Yt, Xt) given its past is not a funtion of
(Yt−1, Xt−1) only and, therefore, (Yt, Xt) is not a (geometrially ergodi) Markov hain.An important requirement in Assumption 1 is that the joint proess (Yt, Xt) is aMarkov hain beause then models like (3) are ruled out.1 It is straightforward to hekthat Assumption 1 holds for the GARCH(1,1) model (1) with j = 1, the funtion λ givenby λ (u, h) = ω + βh + αu2, πY |X (· | x) the onditional distribution of ut given ht, and
PX(·, ·) the transition probability measure assoiated with ht viewed as a separate Markovhain. The GARCH(1,1) model (1) is a speial ase of the model

Yt = Fy(Xt, ζt) (4)
Xt = Fx (Xt−1, Yt−1) , (5)where ζt is an i.i.d. error term independent of (Ys, Xs) , s < t, and the random vetors

Yt, Xt, and ζt take values on some subsets of Eulidean spaes equipped with Borel sigma�elds. As in the GARCH(1,1) model (1) it an be seen that the joint proess (Yt, Xt) is a1Reently, Carraso and Chen (2005) have orreted their original de�nition of the generalized hiddenMarkov model in a way slightly di�erent from our Assumption 1. When this orreted de�nition is usedundesirable models suh as (3) are ruled out and all the results in Carraso and Chen (2002), inludingProposition 4, remain valid. 7



Markov hain and that ζt and Xt are independent with the latter having the representation
Xt = Fx (Xt−1, Fy(Xt−1, ζt−1))

def
= Gx(Xt−1, ζt−1). (6)Thus, Xt an be viewed as a Markov hain of its own and studied in isolation from

Yt. Verifying that Assumption 1 is satis�ed for the model (4)�(5) with λ (·) = Fx (·) isstraightforward but somewhat tehnial. Details are therefore deferred to the Appendix.2.2 Geometri ergodiityWe shall now show that Assumption 1 guarantees that ergodiity and mixing of theomponent proess Xt are inherited by the joint proess Zt. We use the V �geometriergodiity of a Markov hain de�ned as follows (see Meyn and Tweedie (1993, p. 356)).De�nition 1 The Markov hain Zt is V �geometrially ergodi if there exist a real valuedfuntion V : Z → [1,∞), a probability measure πZ on B(Z), and onstants ̺ < 1 and
Mz < ∞ (depending on z) suh that

sup
v:|v|≤V

∣∣∣∣
∫

Z

P n
Z (z, dw) v(w) −

∫

Z

πZ(dw)v(w)

∣∣∣∣ ≤ ̺nMz for all z ∈ Z and all n ≥ 1. (7)The de�nition also assumes that the funtion V is integrable with respet to the prob-ability measure πZ . When ondition (7) holds we also say that the transition probabilitymeasure PZ (·, ·) is V �geometrially ergodi and similarly for other transition probabil-ity measures suh as PX (·, ·). Note that the �rst integral in (7) equals the onditionalexpetation E[v (Zn) | Z0 = z].The weakest form of V �geometri ergodiity is obtained when V (·) ≡ 1 in whih asethe Markov hain Zt is said to be geometrially ergodi. Geometri ergodiity entails thatthe n�step transition probability measure P n
Z (z, ·) onverges at a geometri rate to theprobability measure πZ(·) with respet to the total variation norm for all z ∈ Z. Theprobability measure πZ is often referred to as the stationary probability measure of Zt.The reason is that geometri ergodiity implies stationarity of Zt if the initial value Z0is distributed aording to the probability measure πZ (see Meyn and Tweedie (1993, p.230�231)). A onvenient feature of V �geometri ergodiity is that it automatially showsthe existene of the expetation of ∫

Z
πZ(dw)v(w) for all v suh that |v(·)| ≤ V (·).8



The following proposition establishes the V �geometri ergodiity of Zt.Proposition 1 Suppose that the Markov hain Zt = (Yt, Xt) satis�es Assumption 1 andthat the transition probability measure PX(·, ·) is VX�geometrially ergodi. Then Zt is VZ�geometrially ergodi for any funtion VZ : Z → [1,∞) suh that ∫
Y

πY |X (dy | x) VZ(y, x) ≤

cVX(x) for all x ∈ X and some c < ∞.The ondition imposed on the funtion VZ in Proposition 1 is automatially satis�edfor VZ (y, x) = VX (x), although more useful results an be obtained with other hoiesof VZ . However, even this speial ase shows that the geometri ergodiity of PX(·, ·) isinherited by Zt and, when initialized from its stationary distribution, Zt is stationary and
β�mixing with geometrially deaying mixing numbers (see Meyn and Tweedie (1993, pp.230�231) and Doukhan (1994, p. 4 and 89)). Thus, Proposition 1 provides us with resultssimilar to those stated in Proposition 4 of Carraso and Chen (2002).While Proposition 1 makes it possible to apply limit theorems developed for Markovhains to funtions of Zt regardless of initial values (see Meyn and Tweedie (1993, Chapter17)), these theorems are not diretly appliable when funtions of (Zt, Zt−1, ..., Z1) areof interest (suh funtions are met, for instane, in the estimation theory of GARCHmodels, see e.g. Straumann and Mikosh (2006, Setions 6 and 7)). In suh ases otherlimit theorems an be useful. Our next result gives su�ient onditions for Zt to be
β�mixing. This result holds for a wide lass of nonstationary initial values and providesthe needed prerequisite for using limit theorems developed for near epoh dependentfuntions of mixing proesses (see Davidson (1994, Setions 20.6 and 24.4) for suh limittheorems and Franq and Zakoïan (2006) for a related disussion on the usefulness of limittheorems developed for mixing proesses). We use a subsript in the expetation operatorto indiate the initial distribution of the hain with respet to whih the expetation istaken.Proposition 2 Let the assumptions of Proposition 1 be satis�ed and the funtion VZbe as required in Proposition 1. Furthermore, let πX(·) signify the stationary probabilitymeasure related to a Markov hain with transition probability measure PX(·, ·). Suppose

9



that (a) there exist onstants ̺ < 1 and R < ∞ suh that
sup

v:|v|≤VX

∣∣∣∣
∫

X

P n
X (x, dw) v(w) −

∫

X

πX(dw)v(w)

∣∣∣∣ ≤ ̺nRVX(x) (8)for all x ∈ X and all n ≥ 1, (b) Eµ[VX(λ(X0, Y0))] < ∞ where µ is the distribution of theinitial value Z0 = (Y0, X0), and () ∫
Y

πY |X (dy | x) VX(λ(x, y)) ≤ cVX(x) for all x ∈ Xand some c < ∞. Then Zt is β�mixing with geometrially deaying mixing numbers.This proposition is based on reent results of Liebsher (2005) whih highlight relationsbetween β�mixing and geometri ergodiity. To be able to apply these results we needassumptions not needed in the ase of stationary initial values. Our assumption (a) isslightly stronger than VX−geometri ergodiity of PX (·, ·), but is implied by the so-alleddrift riterion whih is a standard tool used to obtain geometri ergodiity (see Meynand Tweedie (1993, Theorem 15.0.1)). A ounterpart of our third assumption () wasalready needed in Proposition 1. This assumption is not very restritive either in that itis automatially satis�ed by the general model (4)�(5) and, therefore, by models we aremainly interested in. We state this as a lemma.Lemma 1 Condition () of Proposition 2 is redundant for the model (4)�(5).Assumptions (a) and () also imply that Zt is V −geometrially ergodi with V (·) =

VX (λ(·)) and, for this ase, the argument given in Meyn and Tweedie (1993, disussionfollowing Theorem 16.1.5) ould be employed to establish the strong mixing of Zt. Thisargument assumes ondition (b) and suggests that it is also neessary in our ase.It may also be noted that the onditions of Proposition 2 ensure �niteness of ertainmoments. For instane, it is straightforward to establish that supt≥1 Eµ[v (Zt)] < ∞ forany funtion v suh that |v (·) | ≤ VZ (·), and that these moments onverge to the onestaken with respet to the stationary distribution πZ at a geometri rate.3 GARCH and ACD modelsAs in Carraso and Chen (2002), Propositions 1 and 2 an be applied to �rst orderGARCH models. In addition to various GARCH(1,1) models Carraso and Chen (2002)10



also onsidered higher-order GARCH models as well as examples of ACD models andautoregressive stohasti volatility models. We do not onsider stohasti volatility modelsbeause for them similar results an be found in Genon-Catalot, Jeantheau, and Larédo(2000). However, as an extension of previous work we present both GARCH models andACD models as speial ases of a general model whih even inludes the GARCH�Mmodel. As far as we know, these are the �rst results on geometri ergodiity and mixingobtained for the GARCH�M model (for the ARCH�M model similar results were obtainedby Masry and Tjøstheim (1995)).We onsider a speial ase of the model (4)�(5) with Yt and Xt real valued and Xtpositive. Spei�ally, the model is de�ned by
Yt = fy1(Xt) + fy2(Xt)εt (9)
Xt = fx1(Xt−1) + fx2(Yt−1 − fy1(Xt−1), Xt−1), (10)where the εt are i.i.d. and independent of (Ys, Xs), s < t, and fy1, fy2, fx1, and fx2 areBorel measurable funtions to be desribed in detail shortly. The analog of equation (6)is obtained by substituting Yt−1 from (9) into (10), yielding
Xt = fx1(Xt−1) + fx2(fy2(Xt−1)εt−1, Xt−1). (11)A model formulated in this way inorporates various GARCH and ACD models. In theGARCH ontext, fy1 is the onditional mean funtion whereas fy2 is used to model theonditional variane. In the ACD ontext, fy2 represents the onditional mean of Yt and

fy1 is omitted. Conrete examples will be given later.For the development of our theory we make the following assumptions.Assumption 2(a) The i.i.d. random variables εt have a probability density funtion φε(·) supported on
(ε,∞) and bounded away from zero on ompat subsets of (ε,∞). Here either ε = 0or ε = −∞.(b) The funtions fx1 : R+ → R+ and fx2 : (ε,∞) × R+ → R are bounded on boundedsubsets of their domains and, for some f > 0, infx∈R+,u∈(ε,∞) (fx1(x) + fx2(u, x))=f .11



() There exists a real number a ∈ [0,∞) suh that fx1(x) ≤ ax + o(x) as x → ∞.(d) The funtion fx2 satis�es the following three onditions.(d1) There exists an unbounded interval of R+ whih is, for all x > 0, ontained inthe image set fx2((ε,∞), x).(d2) For all x > 0, the funtion fx2(·, x) is ontinuous from the right (or alterna-tively, ontinuous from the left).(d3) There exists a real number R > 0 suh that, for u > R and all x > 0, fx2(u, x)is ontinuous and monotonially inreasing, and the related inverse funtion
f−1

x2 (v, x) has a partial derivative ∂f−1
x2 (v, x)/∂v whih is bounded away fromzero on ompat subsets of its domain.(e) There exists a Borel measurable funtion b : (ε,∞) → R+, nononstant and ontin-uous on some open set, and a real number c ∈ [0,∞) suh that fx2(fy2(x)εt, x) ≤

xb (εt) + c for all x ∈ R+. Furthermore, E[b (εt)
k] < ∞ for some k ∈ R+.(f) The funtion fy2 : R+ → R+ is bounded on bounded subsets of its domain andbounded away from zero on [f,∞).Assumption 2(a) is satis�ed in most appliations. The ase ε = 0 is typial in ACDmodels, while in GARCH models ε = −∞. Restriting ε to these two values is notessential for the development of the theory, but from a pratial point of view there islittle need for generalizing this. In Assumptions 2(b) and (f) the funtions fx1, fx2, and fy2are assumed to be bounded on bounded subsets of their domains, while in Assumptions2(a), (b), (d), and (f) the funtions φε, fx1 + fx2, ∂f−1

x2 (v, x)/∂v, and fy2, respetively, areassumed to be suitably bounded away from zero. These assumptions are hardly restritivein pratie. Espeially the latter assumptions, though, suggest that some attention needsto be paid to the de�nitions of these funtions.Assumption 2(b) also ensures that the proess Xt is always positive. Note that thereis more than one way to de�ne the funtions fx1 and fx2 without violating equations (10)and (11). In most ases it is natural to hoose the funtions fx1 and fx2 suh that both12



of them are always positive. However, as a subsequent example shows, it is useful to bemore �exible and only require that the sum fx1 + fx2 is positive.The onditions restriting the funtions fx1 and fx2 in Assumptions 2() and (e),respetively, essentially restrit Xt to depend on its past value at most in a linear fashionwhen arbitrarily large past values are of onern. This will be ruial in proving thegeometri ergodiity of Xt. Similar assumptions have also been used in previous proofs forgeometri ergodiity (see Lanne and Saikkonen (2005) for both Assumption 2() and (e)and Masry and Tjøstheim (1995), Lu (1998), and Lu and Jiang (2001), among others forAssumption 2()). Further onditions on the onstant a, the funtion b(·), and momentsof the random variables εt will be imposed later. It will prove bene�ial to have the valuesof the onstant a and the funtion b(·) as small as possible.Due to the very general nonlinear struture we wish to aommodate for, the onditionsimposed on the funtion fx2 in Assumption 2(d) are on the whole somewhat involved. Thevalidity of these onditions an still be straightforwardly heked for many GARCH andACD models, as our subsequent examples show. Often one an also use the followingsimple lemma (whose proof is omitted) to verify Assumptions 2(d1), (d2), and (d3).Lemma 2 Suppose the funtion fx2 has range R+ (instead of R) and that, for all x >

0, the funtion fx2(·, x) is (1) surjetive, (2) ontinuous, and (3) both monotoniallyinreasing and ontinuously di�erentiable on (l,∞), where l ≥ 0. Then Assumptions2(d1), (d2), and (d3) hold.Assumption 2(d) enables us to prove our results without knowing anything about,not even existene of, the onditional density of Xt given Xt−1 = x. In previous proofsof geometri ergodiity it has been quite typial to make expliit use of this onditionaldensity and its properties (f., e.g., Lu (1998) and Lanne and Saikkonen (2005)). Whileoften straightforward this approah an sometimes be rather awkward to use and thenour general onditions an be very onvenient.As indiated in the Introdution, our assumptions over nonlinear spei�ations notovered by related previous studies. For instane, Carraso and Chen (2002) and Strau-mann and Mikosh (2006) both give onditions for the ergodiity of rather general lassesof GARCH models whih, however, do not ontain some of the nonlinear models to be13



disussed below. In partiular, some smooth transition GARCH models (see Example 4below) in whih fx1 and/or fx2 in (11) are nonlinear funtions of Xt−1 annot be han-dled in the framework of Carraso and Chen (2002). The framework of Straumann andMikosh (2006) is similar to ours in that nonlinear funtions of a very general form areemployed but these funtions are restrited by a Lipshitz ondition. Even though thisondition works well in several ases it rules out models overed by our Assumption 2.For instane, disontinuous models suh as threshold-type GARCH models (see Example3 below) are ruled out (some of them are overed by Carraso and Chen (2002)) and thesame is true for some smooth transition GARCH models.As disussed in the ontext of the more general model (4)�(5), Xt an be viewed as aseparate Markov hain generated by (11) and with the assoiated transition probabilitymeasure de�ning the ounterpart of PX(·, ·) in Assumption 1. The following theoremshows that, from this perspetive, Xt is V �geometrially ergodi, as required for its oun-terpart in Proposition 1.Theorem 1 Consider Xt as a Markov hain generated by (11) and, in addition to As-sumption 2, suppose that E
[
(a + b(εt))

k
]

< 1. Then Xt is VX�geometrially ergodi with
VX(x) = 1 + xk.The moment ondition assumed in Theorem 1 is onvenient in the proof and it alsoenables us to obtain expliit results about existene of moments. However, if one is onlyinterested in proving geometri ergodiity an alternative ondition, based on the followingresult, an be employed.Lemma 3 Suppose that (1) E

[
b(εt)

k
]

< ∞ for some k ∈ R+ and (2) E [ln(a + b(εt))] <

0. Then there exists a k0 ∈ (0, k) suh that E
[
(a + b(εt))

k0

]
< 1.The result of this lemma an be justi�ed by following the arguments in Remark 2.9of Basrak, Davis, and Mikosh (2002). Condition (1) was already used in Assumption2(e) whereas ondition (2) is an analog of the neessary and su�ient ondition for thestationarity of the onventional GARCH(1,1) proess obtained by Nelson (1990) andextended to a lass of GARCH(1,1) models by Franq and Zakoïan (2006, Theorem 2)14



and Meitz (2006). If ondition (2) is used in Theorem 1 instead of E
[
(a + b(εt))

k
]

< 1 wean onlude the (
1 + xk0

)�geometri ergodiity of Xt for some k0 ∈ (0, k) but the preisevalue of k0 annot be determined. An analog of the result of Lemma 3 is also employedby Franq and Zakoïan (2006, Theorem 3) to prove the geometri ergodiity of a lassof GARCH(1,1) models (see the beginning of step (iii) in the proof of their Lemma 2).Their proof also assumes an analog of ondition (1) of Lemma 3 whih is not required toobtain stationarity (see the aforementioned referenes). As a �nal remark of Lemma 3 wenote that ondition (2) is implied by E
[
(a + b(εt))

k
]

< 1 (k > 0), as Jensen's inequalityshows.To be able to apply Proposition 1 and obtain useful results for the joint proess (Yt, Xt),onrete assumptions about the funtions fy1 and fy2 are needed. In most appliationsof GARCH or ACD models, the funtion fy2 is assumed to be a power funtion, thatis, fy2(x) = x1/d for some positive real number d. This is also the assumption we willmake. In the ontext of ACD models, the funtion fy1 is always assumed to be 0. InGARCH models, the most ommon spei�ation for the `in-mean part' has also beena power funtion, say fy1(x) = µ0 + µ1x
1/e for some positive real number e. We willassume slightly less, only dominane by suh a funtion. The following theorem gives anergodiity result for the joint proess (Yt, Xt) for these ases.Theorem 2 Suppose that the assumptions of Theorem 1 are satis�ed and that fy2(x) =

x1/d where d ∈ R+. (a) If fy1(x) = 0 and E[|εt|
dk] < ∞, where k is as in Assumption 2,then Zt is VZ�geometrially ergodi with VZ(y, x) = 1 + |y|dk + xk. (b) If |fy1(x)| ≤

µ0 + µ1x
1/e, where e ∈ R+, µ0, µ1 ≥ 0, E[|εt|

min{d,e}k] < ∞, and k is as in Assumption 2,then Zt is VZ�geometrially ergodi with VZ(y, x) = 1 + |y|min{d,e}k + xk.As already noted after Proposition 1, the VX�geometri ergodiity of Xt implies the
V �geometri ergodiity of Zt with V (y, x) = VX(x). A drawbak of this hoie of thefuntion V is that nothing an be onluded about the moments of Yt. The usefulnessof being able to use a more general hoie of the funtion V beomes lear in Theorem2 where results on the existene of moments of the stationary distribution of Yt are alsoobtained. If the onditions of Lemma 3 are used instead of the moment ondition ofTheorem 1, the onlusions of Theorem 2 hold with an unknown k0 ∈ (0, k). In this ase,15



part (b) of the theorem establishes geometri ergodiity in GARCH�M models under mildmoment onditions.Our next result applies Proposition 2 and provides onditions whih guarantee thatthe joint proess (Yt, Xt) is β�mixing.Theorem 3 Suppose that the assumptions of Theorems 1 and 2(a) (or 2(b)) are sat-is�ed, and that Zt is initialized from Z0 = (Y0, X0) with a distribution µ suh that
Eµ[VX(Fx(X0, Y0))] < ∞, where Fx (·, ·) denotes the funtion on the right hand side of(10). Then Zt is β�mixing with geometrially deaying mixing numbers.In summary, Theorems 1�3 establish the V �geometri ergodiity and β�mixing for thegeneral model de�ned by equations (9) and (10) or equation (11). Existene of momentsalso readily follows from the stated onditions (in partiular, supt≥1 Eµ[|Yt|

dk] < ∞ (or
supt≥1 Eµ[|Yt|

min{d,e}k] < ∞), and supt≥1 Eµ[Xk
t ] < ∞, and these moments onverge to theones taken with respet to the stationary distribution πZ at a geometri rate).Conrete examples where Theorems 1�3 apply are disussed now. Depending on whihformulation has been more ommon in the literature, the struture of eah model isdesribed by using either equation (10) or equation (11). For onveniene, all the examplesare summarized in Tables 1 and 2 where hoies of the relevant funtions and onstantsassumed in the preeding results are also provided. Beause typial hoies of the funtion

fy1 were already disussed fy1 (·) = 0 is here assumed, so only GARCH and ACD modelsare onsidered. The validity of Assumption 2 an be rather straightforwardly veri�ed formost of the onsidered models (see, however, some remarks in Examples 3 and 4 below).The form the ondition E
[
(a + b(εt))

k
]

< 1 of Theorem 1 takes in these ases is alsodisplayed in Table 1 with k = 1. The parameter restritions implied by this onditionagree in eah ase with the orresponding onditions reported in earlier literature. Theweaker log-moment ondition of Lemma 3 su�ing for geometri ergodiity is also givenin Table 1.Example 1 (The GARCH�family of Hentshel (1995) and the ACD�familyof Fernandes and Grammig (2006)). Consider the family of GARCH models of
16



Hentshel (1995), whih an be written as (see eq. (A.2) and (A.3) of Hentshel (1995))
Yt = σtεt

σλ
t = ω + (αλf ν(εt−1) + β)σλ

t−1 (12)
f(εt−1) = |εt−1 − b| − c(εt−1 − b),where we assume that b ∈ R, |c| ≤ 1, and the remaining parameters take positive values.2De�ning Xt = σλ

t we arrive at a formulation written in the form of (9) and (11) as
Yt = X

1/λ
t εt and Xt = ω + αλXt−1f

ν(εt−1) + βXt−1. In addition to the onventionallinear GARCH model, this family also nests several other popular GARCH models (seeHentshel (1995) for a list). For brevity, the abbreviation BC�GARCH model is used inTables 1 and 2 (here BC is due to the Box-Cox transformation). Fernandes and Grammig(2006) onsider a family of ACD models analogous to Hentshel's family of GARCHmodels. This family an be de�ned with exatly the same equations (12).Applying the result of Theorem 1 with k = 1 to the onventional linear GARCHmodel gives the ondition α + β < 1 for (1 + x)�geometri ergodiity of the onditionalvariane proess. This agrees with the neessary and su�ient ondition for seond orderstationarity (of Yt) obtained by Bollerslev (1986). If we only assume that k > 0 and
E [ln (β + αε2

t )] < 0, Lemma 3 and Theorem 1 give the (
1 + xk0

)�geometri ergodiity forsome 0 < k0 < k. Here the ondition E [ln (β + αε2
t )] < 0 agrees with the neessary andsu�ient ondition for the (strit) stationarity and geometri ergodiity of the onditionalvariane proess obtained in Nelson (1990) and Franq and Zakoïan (2006, Theorem 3and Remark 3), respetively. More generally, one an similarly onlude that in thegeneral model (12) the ondition E [ln (β + αλf ν(εt−1))] < 0 is neessary and su�ientfor geometri ergodiity (the neessity an be demonstrated as in Franq and Zakoïan(2006, seond part of Theorem 2)). Thus, even though our model aommodates verygeneral forms of nonlinearity we an obtain good results in this speial ase. In partiular,the moment onditions we need are mild and omparable to those in Franq and Zakoïan(2006) although our assumptions about the distribution of the innovation proess εt arestronger than assumed in that paper.2Hentshel (1995) also onsiders a slightly di�erent formulation whih inludes the ase λ = 0. We donot disuss this ase. 17



Example 2 (The integrated GARCH model). Choosing f ν(εt−1) = ε2
t−1, αλ = 1−β,and λ = 2 shows that the IGARCH model is a speial ase of the BC�GARCH model.In the ase of the IGARCH model, we also assume that E [ε2

t ] = 1 regardless of the valueof k, an assumption also made by Nelson (1990). As in that paper one an then see thatondition (2) of Lemma 3, that is, E [ln (β + (1 − β) ε2
t )] < 0, is automatially satis�ed.Thus, in the IGARCH model the onditional variane proess is (

1 + xk0

)�geometriallyergodi with some positive k0. Using Theorem 2 we an even say more about the value of
k0. Unlike in all other models we have to assume that the ondition E

[
(a + b(εt))

k
]

< 1only holds for k < 1. Then, beause E[a + b(εt)] = E[β + (1 − β) ε2
t ] = 1, strit onavityand Jensen's inequality give E[(a + b(εt))

k] < (E[a + b(εt)])
k = 1 for 0 < k < 1. Thus,for the IGARCH model Theorem 2 applies with k < 1 and d = 2 implying that theabove mentioned (

1 + xk0

)�geometri ergodiity holds for any k0 < 1. Consequently, Ythas �nite moments of orders smaller than 2. This is onsistent with the well-known fatthat the IGARCH proess (that is Yt) has a stritly stationary but not a seond orderstationary solution (see Nelson (1990)). Previously, properties of the IGARCH proesswere also studied by Ding and Granger (1996) who demonstrated its short memory natureby showing that an `approximate' autoorrelation funtion of Y 2
t deays to zero at ageometri rate. Our Theorem 3 makes this point more rigorous by showing that theproess Yt is β�mixing with geometrially deaying mixing numbers.Example 3 (Threshold models). A popular non-linear GARCH model is the GJR�GARCH model of Glosten, Jaganathan, and Runkle (1993), where the equation orre-sponding to (10) is Xt = ω +(α+α∗

1 (Yt−1 > 0))Y 2
t−1 +βXt−1. Here 1 (·) is the indiatorfuntion. The GJR�GARCH model is an example of threshold GARCH (or TGARCH)models studied more generally by Ling (1999, Theorems 4.1 and 4.2) and Lee and Shin(2005, Example 5). In a simple �rst order version of this model, the equation orrespond-ing to (10) is given by

Xt = ωj + αjY
2
t−1 + βjXt−1, if Yt−1 ∈ [rj−1, rj), j = 1, . . . , J, (13)where −∞ = r0 < r1 < · · · < rJ = ∞ are the threshold values, and the remainingparameters satisfy ωj > 0, αj > 0, and βj ≥ 0. Replaing Y 2

t−1 with Yt−1 and r0 = −∞18



with r0 = 0 in this de�nition one obtains the threshold ACD (or TACD) model of Zhang,Russell, and Tsay (2001).Verifying the validity of Assumption 2 for TGARCH and TACD models is more in-volved than for the preeding models. Details are therefore presented in the Appendix.Here we only mention that it is onvenient to express the model in a form in whih theounterpart of the funtion fx2 an take negative values. Note also that in this ase theexpression a+ b(εt) appearing in Theorem 1 and Lemma 3 takes a somewhat ompliatedform (see the Appendix). In Table 1 we therefore report parameter restritions whihimply the validity of the ondition E
[
(a + b(εt))

k
]

< 1 of Theorem 1 and the ondition
E [ln(a + b(εt))] < 0 of Lemma 3.For the TGARCH model our results improve on those in Ling (1999, Theorems 4.1and 4.2) and Lee and Shin (2005, Example 5) where only the existene of a stationarysolution of the model is established but the uniqueness and ergodiity of this solutionare not obtained. Although our framework is quite general and not exlusively designedfor threshold models, the parameter restrition obtained from our Theorem 1 still agreeswith the onditions given in these previous papers when J = 2, and, when J > 2, it evenprovides an improvement. In these papers it is also assumed that the hain (Yt, Xt) is weakFeller (see Meyn and Tweedie (1993, p. 127)), a ontinuity assumption not satis�ed by allTGARCH models and not required by our results. For the TACD model the onditionobtained from Theorem 1 oinides with the su�ient ondition for geometri ergodiityobtained by Zhang, Russell, and Tsay (2001). Finally, our Lemma 3 provides su�ientonditions for geometri ergodiity that are stritly weaker than the onditions reportedboth for the TGARCH and the TACD model in the aforementioned earlier papers.3Example 4 (Smooth transition models). Smooth transition GARCH models wereintrodued by Hagerud (1996) and González-Rivera (1998), and disussed by Lundberghand Teräsvirta (2002) and Lanne and Saikkonen (2005), while the ACD analogs wereintrodued by Meitz and Teräsvirta (2006). To obtain a general framework overing allthese models, let G1 and G2 be funtions with range [0, 1], and ω > 0, α > 0, β > 0,3For the TGARCH model an even better ondition has reently been obtained by Cline (2006). How-ever, this ondition is quite ompliated and obtaining an expliit ondition in terms of the model parame-ters appears di�ult, and therefore simulation or numerial methods may be neessary for its appliation.19



ω∗∗ > 0, ω + ω∗ > 0, α + α∗ > 0, and β + β∗ > 0. In the GARCH variant, the equationorresponding to (10) takes the form
Xt = ω + αY 2

t−1 + βXt−1 + (ω∗ + α∗Y 2
t−1)G1(Yt−1) + (ω∗∗ + β∗Xt−1) G2(Xt−1).The ACD variant is otherwise similar exept that on the right hand side Y 2

t−1 is twiereplaed by Yt−1.4 For Assumption 2(d2) to be satis�ed we need to assume that thefuntion G1 is ontinuous from the left (or from the right). This, however, is not restritive,beause in pratie G1 is usually ontinuous. A su�ient ondition for Assumption 2(d3)to hold is that for large values of y the funtion G1(y) is di�erentiable and G′
1(y) = o (y−2)as y → ∞. This ondition is satis�ed in the two typial examples where G1 is theumulative distribution funtion of the logisti distribution or normal distribution. Forthe funtion G2 muh less needs to be assumed. For onveniene, we may assume that thelimit limx→∞ G2(x) exists, in whih ase the onstant a in Table 2 has the stated form.Note that to satisfy the Lipshitz ondition required in Proposition 3.1 of Straumannand Mikosh (2006), rather ompliated restritions need to be imposed on the modelparameters and on the funtions G1 and G2. These restritions are also quite stringent.For instane, models in whih the funtion G2 has a ontinuous derivative attaining a valuelarge enough at some point are ruled out. Suh models an still satisfy our Assumption 2.Conditions for geometri ergodiity obtained from Theorem 1 and Lemma 3 are reportedin Table 1, and the latter are an improvement ompared to previously reported onditions.As indiated earlier, the validity of Assumption 2(d) is relatively straightforward tohek even for rather ompliated nonlinear models. At least for some of the modelsdisussed above alternative approahes, whih require deriving the onditional density of

Xt given Xt−1 = x and heking that it has suitable properties, an be umbersome. Thismay be the ase, for instane, if one has a smooth transition GARCH model with thefuntion G1 not monotonially inreasing.4Note that this model is not general enough to over the reent smooth transition GARCH and ACDmodels of Medeiros and Veiga (2006) and Fernandes, Medeiros, and Veiga (2006). Beause these modelsare nested in (9) and (10) they ould be analyzed in our framework but at the ost of making the examplemore omplex. 20



4 ConlusionIn this paper we have studied a general Markov model whih ontains an observable andan unobservable or hidden omponent. We gave onditions under whih the V �geometriergodiity of the hidden omponent viewed as a Markov hain of its own is inherited bythe joint proess formed of the two omponents. Conditions for β�mixing and existeneof moments for the joint proess were also obtained.Results obtained for our general Markov model were applied to a wide lass of modelswhih inludes as speial ases many �rst order GARCH, GARCH�M, and ACD modelswith possibly ompliated nonlinear strutures. In some speial ases our onditions for
V �geometri ergodiity were seen to agree with onditions previously shown to be nees-sary and su�ient for stationarity and geometri ergodiity. For highly nonlinear models,our onditions provided an improvement over previous results, whereas in the ase ofGARCH�M models our results are, to the best of our knowledge, the �rst ones available.As our emphasis was on allowing for nonlinearities, we only onsidered �rst order models,whih are also often found adequate in pratie. Due to the very general nature of theemployed assumptions, the results obtained for these models should be straightforward toapply. Compared to previous ounterparts they appear espeially onvenient for modelssuh as smooth transition GARCH models or their ACD versions where highly nonlin-ear strutures have been onsidered. Extensions of our results to general higher-orderGARCH, GARCH�M, and ACD models forms an interesting topi for future researh.
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Model equations Condition in Theorem 1 with k = 1( Condition (2) in Lemma 3 )GARCH Xt = ω + αY 2
t−1 + βXt−1 α + β < 1 ( E[ln(β + αε2

t )] < 0 )ACD Xt = ω + αYt−1 + βXt−1 α + β < 1 ( E[ln(β + αεt)] < 0 )GJR�GARCH Xt = ω + (α + α∗
1(Yt−1 > 0))Y 2

t−1 + βXt−1 α + α∗/2 + β < 1 (1)( E[ln(β + (α + α∗
1(εt > 0))ε2

t )] < 0 )TGARCH Xt =
∑J

j=1(ωj + αjY
2
t−1 + βjXt−1)1(Yt−1 ∈ [rj−1, rj)), max{α1, αJ} + max{β1, βJ} < 1 (2)where −∞ = r0 < r1 < · · · < rJ = ∞ ( E[ln(max{β1, βJ} + max{α1, αJ}ε

2
t )] < 0 (3) )TACD Xt =

∑J
j=1(ωj + αjYt−1 + βjXt−1)1(Yt−1 ∈ [rj−1, rj)), αJ + βJ < 1 (2)where 0 = r0 < r1 < · · · < rJ = ∞ ( E[ln(βJ + αJεt)] < 0 (3) )ST�GARCH Xt = ω + αY 2

t−1 + βXt−1 α + max{α∗, 0} + β + β∗G2(∞) < 1 (4)

+(ω∗ + α∗Y 2
t−1)G1(Yt−1) + (ω∗∗ + β∗Xt−1)G2(Xt−1) ( E[ln(β + β∗G2(∞) + (α + max{α∗, 0})ε2

t )] < 0 ) (4)ST�ACD Xt = ω + αYt−1 + βXt−1 α + max{α∗, 0} + β + β∗G2(∞) < 1 (4)

+(ω∗ + α∗Yt−1)G1(Yt−1) + (ω∗∗ + β∗Xt−1)G2(Xt−1) ( E[ln(β + β∗G2(∞) + (α + max{α∗, 0})εt)] < 0 ) (4)BC�GARCH Xt = ω + βXt−1 + αλXt−1f
ν(εt−1), and Yt = X

1/λ
t εt E[β + αλf ν(εt)] < 1 ( E[ln(β + αλf ν(εt))] < 0 )BC�ACD Xt = ω + βXt−1 + αλXt−1f

ν(εt−1), and Yt = X
1/λ
t εt E[β + αλf ν(εt)] < 1 ( E[ln(β + αλf ν(εt))] < 0 )Table 1: Summary of the disussed examples: Model equations, the form of ondition E[(a + b(εt))

k] < 1 in Theorem 1 with k = 1, and the form ofondition E[ln(a+ b(εt))] < 0 in Lemma 3 (see Table 2 for the de�nitions of a and b(·)). Notes: (1) Assuming εt has a symmetri distribution. (2) This is aondition implying the validity of E[(a + b(εt))] < 1. (3) This is a ondition implying the validity of E[(max{β1, βJ}+ max{α1, αJ}ε
2
t )

k0 ] < 1 (TGARCH)or E[(βJ + αJεt)
k0 ] < 1 (TACD), and hene of E[(a + b(εt))

k0 ] < 1, for some k0 > 0. (4) G2(∞) is used as a shorthand notation for limx→∞ G2(x).
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fy2(x) fx1(x) fx2(fy2(x)ε, x) (1) a b(ε) cGARCH x1/2 ω + βx αy2 β αε2 0ACD x ω + βx αy β αε 0GJR�GARCH x1/2 ω + βx (α + α∗
1(y > 0))y2 β (α + α∗

1(ε > 0))ε2 0TGARCH (2) x1/2 β∗x
∑J

j=1

{
(ωj + αjy

2 + βjx) β∗ α∗ε
2 maxωj + r2

∗ max αj

1(y ∈ [rj−1, rj))
}
− β∗x + maxβj1(ε2 < r2

∗/M) (3) +M maxβj
(3)TACD x βJx

∑J
j=1

{
(ωj + αjy + βjx) βJ αJε maxωj + rJ−1 maxαj

1(y ∈ [rj−1, rj))
}
− βJx + maxβj1(ε < rJ−1/M) (3) +M maxβj

(3)ST�GARCH x1/2 ω + βx ω∗G1(y) β (α + max{α∗, 0})ε2 |ω∗|

+(ω∗∗ + β∗x)G2(x) +(α + α∗G1(y))y2 +β∗G2(∞) (4)ST�ACD x ω + βx ω∗G1(y) β (α + max{α∗, 0})ε |ω∗|

+(ω∗∗ + β∗x)G2(x) +(α + α∗G1(y))y +β∗G2(∞) (4)BC�GARCH x1/λ ω + βx αλxfν(ε) β αλf ν(ε) 0BC�ACD x1/λ ω + βx αλxfν(ε) β αλf ν(ε) 0Table 2: Summary of the disussed examples (ontinued): Choies of the relevant funtions and onstants. The funtion fy1 is omitted as in every ase

fy1(x) = 0. Notes: (1) Two di�erent formulations, orresponding to equations (10) and (11), are used to ahieve notational onveniene. (2) For TGARCHwe denote α∗ = max{α1, αJ}, β∗ = max{β1, βJ}, and r∗ = max{|r1|, |rJ−1|} (as in the Appendix). (3) M is a (large) onstant hosen in the Appendix.

(4) G2(∞) is used as a shorthand notation for limx→∞ G2(x).
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Appendix: ProofsValidity of Assumption 1 for the model (4)�(5). First onlude from (4) that theonditional probability distribution of Yt given Xt = x is de�ned by
πY |X (A | x) =

∫
1 (Fy(x, ζ) ∈ A) Pζ(dζ), A ∈ B(Y),where 1 (·) is the indiator funtion and Pζ(·) signi�es the probability distribution of ζt.Similarly, the transition probability measure of the Markov hain Xt de�ned by (6) is

PX (x, A) =

∫
1 (Gx(x, ζ) ∈ A) Pζ (dζ) , A ∈ B(X ),from whih the orresponding n�step transition probability measure an be derived (f.Meyn and Tweedie (1993, p. 78)). To derive the probability measure P̃ n

X (·, ·), let z = (y, x)be an initial value and set z̃ = z̃ (z) = Fx (z). Then onlude from equation (5) that
X1 = z̃ and X2 = Fx (z̃, Fy(z̃, ζ1)). Interpreting z̃ = z̃ (z) as a funtion of z one obtains
P̃ 2

X (z, ·) from this whereas equation (6) yields X2 = Gx (z̃, ζ1) , z̃ ∈ X . Thus, we get
P̃ 2

X(z, A) =

∫
1 (Gx(z̃(z), ζ) ∈ A) Pζ (dζ)

=

∫
1 (Gx(z̃, ζ) ∈ A) Pζ (dζ) = PX (z̃, A) , A ∈ B(X ).By indution it an be seen that P̃ n

X (z, A) = P n−1
X (z̃, A) for all n ≥ 2 and, beause thevalidity of equation (2) is straightforward to hek, it follows that Assumption 1 appliesto the model de�ned by (4) and (5) with j = 1 and the funtion λ given by λ = Fx.Proof of Proposition 1. The proof is based on ideas similar to those in the proof ofProposition 4 of Carraso and Chen (2002). Set πZ (·) = πY |X (· | x) πX(·) where πX(·)signi�es the stationary probability measure related to a Markov hain with transitionprobability measure PX(·, ·). First note that

∫

Z

VZ(z)πZ(dz) =

∫

X

πX(dx)

∫

Y

VZ(y, x)πY |X(dy|x) (14)
≤

∫

X

πX(dx)cVX(x)

< ∞,
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where we have used the assumed ondition ∫
Y

VZ(y, x)πY |X(dy|x) ≤ cVX(x), for all x ∈ X ,and the VX�geometri ergodiity of Xt. Then, for every z0 = (y0, x0) ∈ Y ×X and n > j,
sup

s:|s|≤VZ

∣∣∣∣
∫

Y×X

[P n
Z (z0, dz) − πZ (dz)] s (z)

∣∣∣∣

= sup
s:|s|≤VZ

∣∣∣∣
∫

X

[
P̃ n

X (z0, dx) − πX (dx)
] (∫

Y

πY |X (dy | x) s (y, x)

)∣∣∣∣ (15)
≤ c sup

v:|v|≤VX

∣∣∣∣
∫

X

[
P n−j

X (x̃0, dx) − πX (dx)
]
v (x)

∣∣∣∣ ,where x̃0 = x̃ (z0) = λ(z0). Here the equality follows from (2) and the de�nition of πZ(·).In the inequality we have used Assumption 1(b) and the fat that, for any funtion s with
|s(·)| ≤ VZ(·),

∣∣∣∣
∫

Y

πY |X (dy|x) s (y, x)

∣∣∣∣ ≤

∫

Y

πY |X (dy | x) |s (y, x)|

≤

∫

Y

πY |X (dy | x) VZ (y, x)

≤ cVX(x).Beause PX (·, ·) is assumed to be VX�geometrially ergodi the last quantity in (15) anbe bounded by a term of the form ̺nMx̃0
, where ̺ < 1 and Mx̃0

< ∞. Thus, the same istrue for the �rst quantity, implying that Zt is VZ�geometrially ergodi.Proof of Proposition 2. By Proposition 2.4 of Liebsher (2005), Zt is β�mixingwith geometrially deaying mixing numbers if (i) Eµ[VX(λ(X0, Y0))] < ∞ and (ii) Ztis Q�geometrially ergodi in the sense of Liebsher (2005) with Q(z) = VX(λ(x, y)).Condition (i) holds by assumption (b). For ondition (ii), we �rst need to show that
EπZ

[VX(λ(Xt, Yt))] < ∞. This is obtained from (14) by replaing VZ(z) with VX(λ(x, y))and using assumption () in onjuntion with the VX−geometri ergodiity of Xt. As forthe remaining part of ondition (ii), notie that from (15) and (8) we �nd that
sup

s:|s|≤VZ

∣∣∣∣
∫

Y×X

[P n
Z (z0, dz) − πZ(dz)]s(z)

∣∣∣∣ ≤ c sup
v:|v|≤VX

∣∣∣∣
∫

X

[P n−j
X (x̃0, dx) − πX(dx)]v(x)

∣∣∣∣

≤ ρnRVX(x̃0)

= ρnRVX(λ(x0, y0))for some ρ ∈ (0, 1) and R < ∞ (here ρ−j has been absorbed into R). Considering funtions
s (·) ≤ 1 ompletes the proof of ondition (ii) (see the de�nition of Q�geometri ergodiityin Liebsher (2005, p. 671)). 25



Proof of Lemma 1. Consider the model (4)�(5) and suppose the assumptions ofProposition 2 are satis�ed apart from (). Reall that now Assumption 1 holds with thefuntion λ given by λ = Fx. This in onjuntion with the de�nition of the onditionalprobability distribution πY |X (· | x) and equations (4), (5), and (6) shows that
∫

Y

πY |X (dy | x) VX(λ(x, y)) = E[VX(Fx(Xt, Yt)) | Xt = x]

= E [VX (Gx(x, ζt))]

= E [VX (Xt+1) | Xt = x]

=

∫

X

PX (x, dw)VX(w).For simpliity, set ∫
X

πX(dw)VX(w) = C and note that C < ∞ by the assumed VX−geometriergodiity of PX (·, ·). Thus, using (8) with n = 1 we �nd that, for all x ∈ X ,
∣∣∣∣
∫

X

PX (x, dw)VX(w)

∣∣∣∣ ≤

∣∣∣∣
∫

X

PX (x, dw)VX(w) −

∫

X

πX(dw)VX(w)

∣∣∣∣ + C

≤ (̺R + C) VX(x),where ̺R + C < ∞. Combining the preeding inequalities yields the stated result.Proof of Theorem 1. We use µLeb(·) to signify the Lebesgue measure on R and PX (·, ·)the transition probability measure obtained when Xt is viewed as a separate Markov haingenerated by (11). Due to the imposed assumptions, the state spae of Xt is X = [f,∞).The proof onsists of showing that Xt is irreduible and aperiodi, that an appropriatesmall set exists, and that the so-alled drift ondition is satis�ed with the funtion VX (forde�nitions of these onepts, see Meyn and Tweedie (1993)). Irreduibility, the existeneof a small set, and aperiodiity are �rst proven in Lemmas 4, 5, and 6, respetively.Lemma 4 If the assumptions of Theorem 1 hold there exist real numbers l and l suhthat (
l, l

)
⊂ X and the Markov hain Xt is ϕ�irreduible with ϕ(·) = µLeb(· ∩ (l, l)).Proof. By assumption E

[
(a + b(εt))

k
]

< 1. Therefore we an hoose an ǫ > 0 suh that
E

[
(a + ǫ + b(εt))

k
]

< 1. (16)By Assumptions 2() and (e) we an now hoose an Mǫ ∈ R+ suh that
fx2(fy2(x)εt, x) ≤ xb(εt) +

1

2
ǫx (17)26



and
fx1(x) ≤ ax +

1

2
ǫx (18)for x ∈ X and x > Mǫ. De�ne the sets S1ǫ = {x ∈ X : x > Mǫ} and S2ǫ = {x ∈ X : x ≤

Mǫ}. Without loss of generality Mǫ an be hosen large enough that S2ǫ is nonempty.Clearly X = S1ǫ ∪ S2ǫ. From (16) it follows that a + 1
2
ǫ < 1, and hene we an withoutloss of generality also assume that Mǫ > (1− a− 1

2
ǫ)−1 inf I, where I denotes the intervalin Assumption 2(d1) (this fat will be used later in the proof of Lemma 6).We shall next prove the following four results:I) ∀x ∈ S1ǫ : ∃n ∈ Z+ : P n(x, S2ǫ) > 0II) ∀x ∈ S2ǫ : P (x, A ∩ (l, l)) > 0 whenever µLeb(A ∩ (l, l)) > 0III) infx∈S2ǫ

P (x, A ∩ (l, l)) > 0 whenever µLeb(A ∩ (l, l)) > 0IV) ∀x ∈ S1ǫ : ∃n ∈ Z+ : P n+1(x, A ∩ (l, l)) > 0 whenever µLeb(A ∩ (l, l)) > 0Establishing II and IV will omplete the proof of Lemma 4, while III will be used laterin the proof of Lemma 5.Proof of I. Let t ∈ Z+ and suppose that Xt−1 ∈ S1ǫ. Using (17) and (18) we �nd that
Xt ≤ Xt−1 (a + ǫ + b(εt−1)) and, sine both sides are positive, Xk

t ≤ Xk
t−1 (a + ǫ + b(εt−1))

k.Next onsider the event
Ωn =

{
(a + ǫ + b(εt−1))

k < E
[
(a + ǫ + b(εt−1))

k
]
, t = 1, . . . , n

}
,where n is a positive integer. The nononstany and ontinuity of b(·) on some open setimplies that the probability of Ωn is positive for every n. Thus, on the event Ωn,

Xk
t ≤ Xk

t−1 · E
[
(a + ǫ + b(εt−1))

k
]
, (19)where by (16) the expetation is < 1.Now hoose an arbitrary x ∈ S1ǫ, and denote X0 = x. Using (19) indutively we have,for arbitrary n ∈ Z+ and on the event Ωn, that

Xk
n ≤ xk ·

{
E

[
(a + ǫ + b(εt−1))

k
]}n (20)27



as long as X1, . . . , Xn−1 ∈ S1ǫ. Sine E[(a + ǫ + b(εt−1))
k] < 1, the right-hand-side of(20) will eventually be less than or equal to Mk

ǫ when n is hosen large enough, and forsuh n we will have Xn ∈ S2ǫ. Sine the probability of the event Ωn is positive for every
n, we have thus ompleted the proof of I.Proof of II and III. Sine the funtions fx1 and fx2 are bounded on bounded subsetsof their domain there exist positive and �nite real numbers M1 and M2 suh that

sup
x∈S2ǫ

fx1(x) ≤ M1 and sup
x∈S2ǫ

fx2(R, x) ≤ M2. (21)De�ne l = max{M1 + M2, Mǫ + 1}, and hoose an arbitrary l > l (note that the fat
l > Mǫ is used only later in the proof of Lemma 6).Now hoose an arbitrary set A suh that µLeb(A ∩ (l, l)) > 0. Furthermore, hoose anarbitrary x ∈ S2ǫ. For the 1�step transition probability from x to A it holds that

P (x, A) =

∫ ∞

−∞

1 (fx1 (x) + fx2 (fy2 (x) ε, x) ∈ A)φε (ε) dε

≥

∫ ∞

R/fy2(x)

1 (fx1 (x) + fx2 (fy2 (x) ε, x) ∈ A) φε (ε) dε.Aording to Assumption 2(d) fx1 (x) + fx2 (fy2 (x) ε, x) is monotonially inreasing withrespet to ε on the integration range, and thus, making a transformation of variables
v = fx1 (x) + fx2 (fy2 (x) ε, x), we have

P (x, A) ≥

∫

{v>fx2(R,x)+fx1(x)}

1 (v ∈ A)φε

(
f−1

x2 (v − fx1 (x) , x)

fy2 (x)

)

×
1

fy2 (x)

∂f−1
x2 (v − fx1 (x) , x)

∂v
dv

≥

∫

A∩(l,l)

φε

(
f−1

x2 (v − fx1 (x) , x)

fy2 (x)

)
1

fy2 (x)

∂f−1
x2 (v − fx1 (x) , x)

∂v
dv.The boundedness onditions for fx1, fx2, fy2, ∂f−1

x2 (v, x)/∂v, and φε imply that
inf

x∈S2ǫ,v∈A∩(l,l)
φε

(
f−1

x2 (v − fx1 (x) , x)

fy2 (x)

)
1

fy2 (x)

∂f−1
x2 (v − fx1 (x) , x)

∂v
≥ ǫ∗for some positive ǫ∗, and therefore P (x, A) ≥ ǫ∗µLeb(A ∩ (l, l)). Beause the set A anlearly be replaed by A ∩ (l, l) both II and III are obtained from

inf
x∈S2ǫ

P (x, A ∩ (l, l)) ≥ ǫ∗µLeb(A ∩ (l, l)). (22)28



Proof of IV. Choose an arbitrary set A suh that µLeb(A ∩ (l, l)) > 0, and an arbitrary
x ∈ S1ǫ. Aording to I, we an hoose an integer n suh that P n(x, S2ǫ) > 0. Now, bythe Chapman-Kolmogorov equation (Meyn and Tweedie (1993, Theorem 3.4.2, p. 67))

P n+1(x, A ∩ (l, l)) =

∫

X

P n(x, dy)P (y, A∩ (l, l))

≥

∫

S2ǫ

P n(x, dy)P (y, A∩ (l, l))

≥

∫

S2ǫ

P n(x, dy)ǫ∗µLeb(A ∩ (l, l))

= P n(x, S2ǫ)ǫ∗µLeb(A ∩ (l, l))

> 0,where the �rst inequality follows from the fat that S2ǫ ⊂ X , and the seond inequalityfollows from (22). This ompletes the proof of IV.Lemma 5 If the assumptions of Theorem 1 hold the set S2ǫ is small.Proof. Equation (22) shows that equation (5.14) of Meyn and Tweedie (1993) holds withthe measure ǫ∗µLeb(· ∩ (l, l)). Thus, the set S2ǫ is small by the de�nition of a small set.Lemma 6 If the assumptions of Theorem 1 hold the Markov hain Xt is aperiodi.Proof. By Proposition A1.1 of Chan (1990), the aperiodiity of Xt obtains if
∀x ∈ A :

(
P (x, A) > 0 and P 2(x, A) > 0

) (23)for some small set A suh that ϕ (A) > 0. We shall show this holds with the set (l, l).To this end, it su�es to prove that for all open subsets A of S1ǫ and for every x ∈ A,

P (x, A) > 0 and P 2 (x, A) > 0. Let A be an arbitrary open subset of S1ǫ and x ∈ A bearbitrary. Beause x > Mǫ, we have by (18) and (16), that fx1(x) ≤
(
a + 1

2
ǫ
)
x < x, andfurthermore that x−fx1(x) ≥ x−

(
a + 1

2
ǫ
)
x = x(1−a−1

2
ǫ). As Mǫ > (1−a−1

2
ǫ)−1 inf I, wetherefore have x−fx1(x) > inf I, where I again denotes the interval in Assumption 2(d1).The same assumption now implies that there exists a u suh that fx1(x) + fx2(u, x) = x.Hene we an also �nd an e ∈ (ε,∞) suh that fx1(x) + fx2(fy2 (x) e, x) = x. Sine theset A is open, we an hoose a δ > 0 suh that (x − δ, x + δ) ⊂ A, and the ontinuity29



from the right (alternatively, ontinuity from the left) of fx2(·, x) ensures that for a suh
δ, there exists an e > e (alternatively, e < e) suh that

ε ∈ (e, e) ⇒ fx1(x) + fx2(fy2 (x) ε, x) ∈ (x − δ, x + δ) (24)(alternatively, ε ∈ (e, e)). Thus, we an onlude that
P (x, A) ≥ P (x, (x − δ, x + δ))

= Pr (fx1(x) + fx2(fy2 (x) εt, x) ∈ (x − δ, x + δ))

≥ Pr (εt ∈ (e, e))

> 0,where the seond inequality follows from (24) and the third from the assumed positivityof φε(·). In addition, by the Chapman-Kolmogorov equation,
P 2(x, A) =

∫

X

P (x, dy)P (y, A) ≥

∫

(x−δ,x+δ)

P (x, dy)P (y, A) > 0.Hene the assertion made is proven. Sine this holds, in partiular, for the set (l, l) theondition (23) is established with A = (l, l).By Lemma 4, ϕ
(
(l, l)

)
> 0. To establish that the set (l, l) is small onsider �rst theproof of parts II and III in Lemma 4 but with the set S2ǫ replaed by (l, l). Repeatingthe arguments in that proof we an �nd an ǫ′∗ > 0 and an open interval (l′, l′) suh thatthe transition probabilities from (l, l) to (l′, l′) are positive and

inf
x∈(l,l)

P (x, A ∩ (l′, l′)) ≥ ǫ′∗µLeb(A ∩ (l′, l′)) > 0 (25)whenever µLeb(A ∩ (l′, l′)) > 0. Equation (5.14) of Meyn and Tweedie (1993) is nowsatis�ed with the measure ǫ′∗µLeb(· ∩ (l′, l′)), and thus the set (l, l) is small.Finishing the proof of Theorem 1.Given Lemmas 4, 5, and 6, it now su�es to show that ondition (15.3) of Meyn andTweedie (1993) holds with the funtion VX(x) = 1 + xk. This in turn is the ase if thereexist onstants c1 > 0 and c2 < ∞ suh that
E [VX(Xt) | Xt−1 = x] ≤ (1 − c1)VX(x) + c21 (x ∈ S2ǫ) for all x ∈ X . (26)30



The expetation in (26) an be written as
E

[
1 + Xk

t | Xt−1 = x
]

= 1 + E
[
(fx1(x) + fx2(fy2(x)εt−1, x))k

]
.Suppose �rst that x ∈ S1ǫ. As in the proof of part I of Lemma 4 we have

1 + E
[
(fx1(x) + fx2(fy2(x)εt−1, x))k

]
≤1 + xkE

[
(a + ǫ + b(εt−1))

k
]

=


1 −

xk
(
1 − E

[
(a + ǫ + b(εt−1))

k
])

1 + xk


 (1 + xk).Rede�ning Mǫ if neessary we an without loss of generality assume that Mǫ > 1. Then

x > 1 and xk/(1 + xk) > 1/2. Sine E
[
(a + ǫ + b(εt−1))

k
]

< 1, it follows that
1 + E

[
(fx1(x) + fx2(fy2(x)εt−1, x))k

]

<

(
1 −

1

2

(
1 − E

[
(a + ǫ + b(εt−1))

k
]))

(1 + xk).De�ning c1 = 1
2

(
1 − E

[
(a + ǫ + b(εt−1))

k
]) shows that (26) holds for all x ∈ S1ǫ.Suppose now that x ∈ S2ǫ. Then, by the �rst inequality in (21) and Assumption 2(e),

1 + E
[
(fx1(x) + fx2(fy2(x)εt−1, x))k

]
≤ 1 + E

[
(M1 + c + xb(εt−1))

k
]

≤ 1 + E
[
(M1 + c + Mǫb(εt−1))

k
]

< ∞.De�ning c2 = 1 + E
[
(M1 + c + Mǫb(εt−1))

k
] and noting that (1 − c1)V (x) is alwayspositive shows that (26) holds also for all x ∈ S2ǫ. Sine X = S1ǫ ∪ S2ǫ, this ompletesthe proof of VX�geometri ergodiity.Proof of Theorem 2. The fat that the Markov hain Zt = (Yt, Xt) satis�es Assump-tion 1 follows from the disussion after this assumption. Also, Xt viewed as a separateMarkov hain is VX�geometrially ergodi by Theorem 1. Hene, by Proposition 1, it re-mains to be proven that ∫

Y
πY |X(dy|x)VZ(y, x) ≤ cVX(x) for all x ∈ X and some c < ∞.The onditional probability distribution of Yt given Xt = x is

πY |X(dy|x) =
1

fy2(x)
φε

(
y − fy1(x)

fy2(x)

)
dy.31



Thus, sine VX (x) = 1 + xk, part (a) follows by observing that
∫

Y

πY |X(dy|x)VZ(y, x) = 1 + xk + E
[
|x1/dεt|

dk
]
≤ (1 + xk)(1 + E

[
|εt|

dk
]
).Consider now part (b), and suppose �rst that d ≤ e. Similarly as above,

∫

Y

πY |X(dy|x)VZ(y, x) = 1 + xk + E
[
|x1/dεt + fy1(x)|dk

]

≤ 1 + xk + C1

(
E

[
|x1/dεt|

dk
]
+ |fy1(x)|dk

)

≤ 1 + xk + C1

(
xkE

[
|εt|

dk
]
+ C2(µ

dk
0 + µdk

1 xdk/e)
) (27)for some onstants C1 and C2, where we have twie used Loève's cr�inequality (see David-son (1994, p. 140)). In (27), xdk/e ≤ max{1, xk} ≤ (1 + xk), and hene the expression in(27) is smaller than C3(1+ xk) for some onstant C3. The ase d > e an be proven in ananalogous way.Proof of Theorem 3. It was established in the proof of Theorem 2 that under urrentassumptions the Markov hain Zt = (Yt, Xt) satis�es the onditions of Proposition 1.The validity of ondition (a) of Proposition 2 follows from Theorem 15.0.1 of Meyn andTweedie (1993), beause we have established the validity of their ondition (15.3) in theproof of Theorem 1 (see equation (26)). Condition (b) is satis�ed by assumption beausein the present ase λ = Fx whereas ondition () is redundant by Lemma 1. The resultsfollow by applying Proposition 2 with the funtions VZ from Theorem 2.Validity of Assumption 2 for TGARCH and TACD models. Consider theTGARCH model, whih, denoting Rj = [rj−1, rj), an be written as

Xt =
J∑

j=1

(
ωj + αjY

2
t−1 + βjXt−1

)
1 (Yt−1 ∈ Rj) .For simpliity, denote α∗ = max{α1, αJ}, β∗ = max{β1, βJ}, and r∗ = max{|r1| , |rJ−1|}.De�ning fx1(x) = β∗x and fx2(x

1/2ε, x) =
∑J

j=1 (ωj + αjxε2 + βjx) 1
(
x1/2ε ∈ Rj

)
− β∗xwe have Xt = fx1(Xt−1) + fx2(X

1/2
t−1εt−1, Xt−1). The validity of onditions (b), (), (d2),and (d3) of Assumption 2 is rather lear. For ondition (d1) it su�es to note that

[ωJ + αJrJ−1,∞) ⊆ fx2([rJ−1,∞), x) = [ωJ + αJrJ−1 + (βJ − β∗) x,∞) for all x.32



For ondition (e), note that ∑J−1
j=2 (αjxε2)1

(
x1/2ε ∈ Rj

)
≤ r2

∗ max αj, ∑J
j=1 ωj1

(
x1/2ε ∈ Rj

)
≤

max ωj, and for any positive M (whih is to be hosen shortly)
J−1∑

j=2

(βjx) 1
(
x1/2ε ∈ Rj

)
≤ x max βj1

(
xε2 ≤ r2

∗

)

= x max βj1
(
xε2 ≤ r2

∗

)
[1 (x ≤ M) + 1 (x > M)]

≤ M max βj + x max βj1
(
xε2 ≤ r2

∗

)
1 (x > M)

≤ M max βj + x max βj1
(
ε2 ≤ r2

∗/M
)
.Therefore

fx2(x
1/2ε, x) =

J∑

j=1

(
ωj + αjxε2 + βjx

)
1

(
x1/2ε ∈ Rj

)
− β∗x

≤ max ωj + r2
∗ max αj + M max βj + x max βj1

(
ε2 ≤ r2

∗/M
)

+(α1xε2 + β1x)1
(
x1/2ε ∈ R1

)
+ (αJxε2 + βJx)1

(
x1/2ε ∈ RJ

)
− β∗x

≤ max ωj + r2
∗ max αj + M max βj + x max βj1

(
ε2 ≤ r2

∗/M
)

+ α∗xε2and, denoting c = (maxωj + r2
∗ max αj + M max βj) and b (ε) = (α∗ε

2 + max βj1 (ε2 ≤ r2
∗/M)),we have established the validity of the inequality in ondition (e).It remains to be veri�ed that the moment ondition in (e) is satis�ed. For this, wenext establish that, for any k > 0, if E

[
(α∗ε

2
t + β∗)

k
]

< 1, then E[(a + b (εt))
k] < 1(and thus also E[b (εt)

k] < ∞ in ondition (e)). In addition to ompleting the veri�a-tion of Assumption 2, this gives an easily veri�able ondition whih implies the valid-ity of the moment restrition in Theorem 1. When k ≤ 1, Loève's cr�inequality gives
E[(a + b (εt))

k] ≤ E
[
(α∗ε

2
t + β∗)

k
]

+ E
[
(max βj1 (ε2

t ≤ r2
∗/M))k

]
= E

[
(α∗ε

2
t + β∗)

k
]

+

max βk
j E [1 (ε2

t ≤ r2
∗/M)]. By hoosing M su�iently large, the last term an be madearbitrarily small, and hene E[(a + b (εt))

k] < 1 for a suitable hoie of M . Suppose nowthat k > 1. By Minkowski's inequality we have E[(a + b (εt))
k] ≤ {(E

[
(α∗ε

2
t + β∗)

k
]
)1/k +

(E
[
(max βj1 (ε2

t ≤ r2
∗/M))k

]
)1/k}k and, by hoosing M su�iently large, the seond ex-petation an again be made small enough so that E[(a + b (εt))

k] < 1. This ompletesestablishing the validity of the onditions for the TGARCH model. The required ar-guments for the TACD model are similar, although slightly simpler, and are omitted.
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