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Clever agents in adaptive learning

ALEXANDER MATROS*
DEPARTMENT OF ECONOMICS
STOCKHOLM SCHOOL OF ECONOMICS

October 3, 2000

ABSTRACT.  Saez-Marti and Weibull [4] investigate the consequences of
letting some agents play a myopic best reply to the myopic best reply in Young’s
[8] bargaining model. This is how they introduce ”cleverness” of players. We
analyze such clever agents in general finite two-player games. We show that
Young’s [9] prediction is robust: adaptive learning with clever agents does select
the same minimal curb set as in the absence of clever agents, if their population
share is less than one. However, the long-run strategies distribution in such a
curb set may vary with the share of clever agents.

Key words: Evolution; game theory; bounded rationality; Markov chain;
stochastic stability.

Journal of Economic Literature Classification: C72, C73.

1. INTRODUCTION
While bounded rationality and learning models have been studied extensively in the
last few years, game theory has been unsuccessful in explaining where the bounds on
rationality ought to be placed in a model of boundedly rational agents.

Recently, Young [7] — [9] suggested an evolutionary model which explains how
agents can make their choices based only on their own preferences and a sample of
what happened in the recent past. A two-player game is played repeatedly by the
members of two large populations. Agents in the same population have the same
preferences. In every round, two agents, one from each population, are randomly
selected to play the game. Each of the two drawn agents simultaneously chooses a
strategy in the game. Every agent has access to a random sample, drawn from the

*Previous version - licentiate paper - February 15, 2000. I would like to thank Martin Dufwenberg,
Jens Josephson, Martin Meier, Vladimir Rodionov, Maria Saez-Marti, Jana Vyrastekova, Peyton
Young, Karl Wirneryd, conference participants at the Stockholm School of Economics and the
Tenth International Conference at Stony Brook for helpful comments, and Tatiana Damjanovic for
assistance regarding computer issues. Special thanks go to Kerstin Niklasson and Roland Nilsson
for their fine editing. I am indebted to Jorgen Weibull, who has provided personal encouragement
for this paper. Financial support by the Jan Wallander and Tom Hedelius Foundation is gratefully
acknowledged. Remaining errors are due solely to the author.
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recent history of play. They use their sample as a predictor of the behavior of the
agent they face, and almost always play a best reply to the opponent population’s
empirical strategy distribution in the sample. However, occasionally agents "mutate”,
and instead choose a strategy that is not a best reply to any possible sample from
the recent history of play.

Saez-Marti and Weibull [4], using Young’s [8] model, consider agents that are
"clever” in a certain sense. They study the effect of letting a share of one of the pop-
ulations know the opponent population preferences, denoting these agents as ”clever”,
in the Nash Demand Game. Saez-Marti and Weibull [4] assume, firstly, that the pop-
ulation without clever agents plays its best reply to a sample of past strategies played
by the other population and, secondly, clever agents play a best reply to their oppo-
nent population’s best reply to the clever agent’s sample. In other words, the clever
agents try to anticipate their opponent’s choice on the basis of the sample of strate-
gies played by their own population. They show that Young’s prediction is robust to
the introduction of any share less than one of clever agents.

The purpose of the present paper is to demonstrate that this robustness holds for
generic finite two-player games. Young [9] proves that the adaptive learning process
settles down in a minimal curb configuration which minimizes the stochastic poten-
tial in such games when the mutation rate goes to zero. Our main result is that
the adaptive learning with any share less than one of clever agents converges to the
same minimal curb configuration as the Young’s adaptive learning process when the
mutation rate goes to zero. However, we show that the presence of clever agents may
influence the long-run strategies distribution inside the minimal curb configuration.

We also analyze the question, which was posted in Saez-Marti and Weibull [4], how
well clever agents fare among non-clever given fixed population shares of clever and
non-clever agents. More specifically, we consider the Matching-Pennies Game and find
that the gain of clever agents depends on the share of these agents in the population.
Moreover, clever agents outsmart not only the agents in the other population but also
indirectly the non-clever agents in their own population. As a result, non-clever agents
in both populations earn expected negative payoffs while the ”clever subpopulation”
on average earns expected positive payoffs in this zero-sum game. The larger the
share of clever agents, the larger is the gain to the population. On the margin, an
additional clever agent gains less as the share of clever agents increases. We can call
it “decreasing returns to cleverness”.

Saez-Marti and Weibull [4] show that the ”clever” population gets the whole
pie playing with the “non-clever” population in the Nash Demand Game. However,
we demonstrate that ”cleverness” does not guarantee an advantage in asymmetric
coordination games even if all agents in one population are clever. In the Strict
Demand Game, where two players must coordinate to get in sum exactly the size
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of the pie, otherwise they both get nothing, the population without clever agents
obtains the whole pie.

Young [9] shows that for 2 x 2 coordination games, in the limiting case when the
mutation rate goes to zero, adaptive play converges to the risk-dominant convention
- a repetition of the risk-dominant equilibrium. He also analyzes the case with two
different sample sizes for two populations. We demonstrate that clever agents matter:
if the sample sizes are different in the two populations, then the stochastically stable
convention may differ from Young’s [9] prediction. In the extreme case, when all
agents in one population are clever, the outcome is the risk-dominant convention for
the other population.! The intuition for this result is as follows. The clever agent in
population 1 predicts the strategy of her opponent and chooses the predicted strategy
too, because of the specific structure of 2 x 2 coordination games.

The paper is organized as follows. In Section two we describe the unperturbed and
perturbed versions of adaptive play with clever agents. In Section three we derive
general results for the stationary distribution of this process. In Section four the
specific nature of the limiting distribution inside of a minimal curb set is studied in
details. In Section five we investigate the properties of 2 x 2 coordination games when
agents have asymmetric information. We conclude in Section six. Proofs are given in
the Appendix.

2. ADAPTIVE PLAY WITH CLEVER AGENTS

In the evolutionary model described below we consider clever agents, introduced in
Saez-Marti and Weibull [4] for the Nash bargaining game, in two-player games. The
basic setting without clever agents is Young’s [9] model.

Let I' be a two-player game with finite strategy space X; x X5 and payoff functions
u; » X1 X Xo — R, i =1,2. We assume that there exist two finite populations of
agents. In each discrete time period, t = 1,2, ..., one agent is drawn at random from
each of the populations to play the game. Agents in population 1 (2) can only play
role 1 (2) in the game. Population 1 consists of clever and non-clever agents, in fixed
population shares A and 1 — A, respectively, while the agents in population 2 are only
non-clever. We assume that all agents are equally likely to be drawn to play. An
agent in role ¢ chooses at time t a strategy ! from the set X; according to a rule that
will be defined below. The play at time ¢ is the vector 2' = (2}, ). The history of
play up to time ¢ is the sequence h' = (z=™*1 ... ).

Strategies are chosen as follows. Fix integers s and m, where 1 < s < m. At
time ¢ + 1 each agent drawn to play the game inspects a sample of size s, taken
without replacement from the history of play up to time ¢. The draws of samples

ITo find the risk-dominant convention we have to take in consideration only payoffs of the non-
clever population. The formal definition is on page 16.
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are statistically independent across agents and time. A non-clever agent chooses a
best reply to the opponent population’s empirical strategy distribution in her sample.
We assume that clever agents know the preferences of the other population and that
they use this knowledge to choose a best reply to the anticipated choice by their
opponent. More precisely, a clever agent - these always play in role 1 - inspects
her own population’s play in her sample, and calculates player 2’s best reply to this
sample. Then the clever agent chooses a best reply to this predicted strategy. If
there are more than one best reply, then an agent chooses each of them with positive
probability. We will specify these probabilities later on.

We can think of the sampling process as beginning in period ¢ = m + 1 from some
arbitrary initial sequence of m plays h™. We then obtain a finite Markov chain on
the state space (X1 x X5)™ = H of sequences of length m drawn from strategy space
X7 x Xy, with some an arbitrary initial state h™. As we will see below, the resulting
process is ergodic; thus, in the long-run, the initial state is irrelevant. Given a history
ht = (z'=™F1 . x') at time ¢, the process moves in the next period to a state of the
form AT = (2!7™F2 2t 2!, Such a state is called a successor of h'.

The process moves from the current state h to a successor state A’ in each period
according to the following transition rule. For each x; € X;, let p;(z; | h) be the
conditional probability that agent i chooses z;, given that the current state is h. We
assume that p;(z; | h) is independent of ¢ and that p;(x; | h) > 0 if and only if there
exists a sample s such that z; is a best reply to this sample for a non-clever agent
or x; is a best reply to the opponent’s best reply to this sample for a clever agent
in population 1. If z = (z1,xz3) is the rightmost element of h’, the probability of
moving from h to k' is Rjw™ = py(xy | h)pa(xs | h) if A is a successor of h and
R = 0if b’ is not a successor of h. Following Young [10], we call the process
R™**0 ymperturbed adaptive play with clever agents with memory m, sample size s,
and share A of clever agents in population 1.

The perturbed process can be described as follows. In each period there is a
small probability ¢ > 0 that any drawn agent in role ¢ experiments by choosing a
strategy at random from X; instead of applying the best reply rule. The event that
1 experiments is assumed to be independent from the event that the other agent
playing this game in the opponent’s role j experiments. For every ¢ let ¢;(z; | h) be
the conditional probability that ¢ chooses z; € X;, given that ¢ experiments and the
perturbed process is in state h. We assume that ¢;(x; | h) is independent of ¢ and
that ¢;(z; | h) > 0 for all ; € X; and for all h. Suppose that the perturbed process is
in state h at time ¢. The probability is (1 — ) that exactly one of the agents playing
the game experiments and that the other does not. Conditional on this event, the
transition probability of moving from h to h' is Q3,, = qi(z; | h)p;j(x; | h), where
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i # j, if A’ is a successor of h and z is the rightmost element of A’ and Q},, = 0,
if ' is not a successor of h. Similarly, £? is the probability that both drawn agents
experiment. Conditional on this event, the transition probability of moving from h
to W is Q% = qi(z1 | h)ga(z2 | 1), if A is a successor of h and x is the rightmost

element of ' and Q3,, = 0, if 1/ is not a successor of h. This gives the following
transition probability of the perturbed Markov process:
Rppi™® = (1= &)’ Ryt ™ + 2e(1 = €)Qpy + £°Qh (1)

The process R™**¢ is denoted (perturbed) adaptive play with clever agents with
memory m, sample size s, share A of clever agents in population 1 and error rate ¢.
As usual in evolutionary models, two forces drive the perturbed Markov process.
The first - Rhm,;,s’A’O - is the selection rule. The second - Q},, and Q%,, - is the mutation.
Note that 1) if A = 0, then R[»"*" is Young’s [9] adaptive learning, 2) if T is the
Nash bargaining game, then we are in the framework of Saez-Marti and Weibull [4].

3. HOW CLEVERNESS DOES NOT MATTER
In this section we find out when introduction of positive share A of clever agents does
not change the long-run prediction of the model without clever agents. We start from
useful definitions.

A product set of strategies is a set of form C' = C} x (5, where each C; is a non-
empty subset of X;, 1 = 1,2. Let AC; denote the set of probability distributions over
C;, and let AC; x ACy denote the product set of such distributions. Let BR; (C})
denote the set of strategies in X; that are player i’s best replies to some distribution
p; € AC;, i # j. Denote BR(C) = BR1(C3) X BRy(Ch).

Definition 1. (Basu and Weibull [1]) A non-empty Cartesian product set C' = Cy X
Cy C X is closed under best replies (or C' is a curb set) if BR(AC; x ACy) C C.
Such a set is a minimal curb set if it does not properly contain a curb set.

It is straightforward to show that BR(AC; x AC,) = C for any minimal curb
set C. Following Young [9], we say that a span of a subset H' C H = (X; x X3)"™,
denoted by S (H'), is the product set of all pure strategies that appear in some history
in H'. H' is a minimal curb configuration if its span is a minimal curb set.

We say that a recurrent class of the process R™**? is a set of states such that
there is zero probability of moving from any state in the class to any state outside
and there is a positive probability of moving from any state in the class to any other
state in the class.

We will work with generic games and we need to introduce a generic condition.
These kinds of conditions are common in economics models. For discussion of this
issue see, for example, Samuelson [5, pp.30].
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Given a two-player game I' on the finite strategy space X; x Xo, let BR;*(z;)
denote the set of all probability mixtures p; € A; = AX;, where j # 7, such that z;
is a best reply to p;. We will work with the Young’s [9] generic condition.

Definition 2. I' is a nondegenerate in best replies if for every player ¢ and every
z; € X;, either BR; !(x;) is empty or it contains a non-empty subset that is open in
the relative topology of A;, where j # .

The following result shows that a prediction in generic games for the unperturbed
process R™*M0 with X € (0,1) is the same as in Young [9] for the unperturbed process
R™*00 In other words recurrent classes for process R™**9 are independent from \.

Theorem 1. Let I' be a nondegenerate in best replies two-player game on the finite
strategy space X1 x Xs. If s/m is sufficiently small, the unperturbed process R™**°
converges with probability one to a minimal curb configuration.

Proof: See the Appendix.

If A =1, then Theorem 1 can fail. Consider the game in Figure 1.

a b
Al12,1]0,0
B 4,0 |4,1
c| 81|30

FIGURE 1

In this game, A is a best reply to a and B is a best reply to b. For any history h an
agent in player position 2 has three opportunities. She can have a or b as the only
best reply to a sample of player 1 from the history or she can be indifferent between
a and b. In the last case we assume that an agent in player position 2 will randomize
50 : 50 between two choices. A clever agent in player position 1 will also calculate
these three opportunities and play A against a, B against b, and A in the third case.
Hence there are only strategies A and B in any sample of player 1 in the long-run if
A = 1. However strategy C' belongs to a minimal curb set too, because it is a best
reply to, for example, mixed strategy %a + %b.

We say that a process is irreducible if and only if there is a positive probability of
moving from any state to any other state in a finite number of periods. We will need
the following definitions.
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Definition 3. (Young[10]) R (¢) is aregular perturbed Markov process if R (¢)
is irreducible for every € € (0,e*], and for every state h, h' € H, Ry (¢) approaches
Ry (0) at an exponential rate, i.e. lim. .o Rpp (€) = Rpp (0) and if Ryp (¢) > 0 for
some ¢ > 0, then 0 < lim._, frhhh;(f,) < oo for some ry,_; > 0. The real number ry,_,,

is the resistance of the transition h — h'.

Lemma 1. An adaptive play with clever agents is a regular perturbed Markov process.

Proof: R™** ¢ is a regular perturbed Markov process for the same reason as
shown by Young [9] when he considers adaptive play. End of proof.

Definition 4. (Young [7]) Let p (€) be the unique stationary distribution of an irre-
ducible process R (g). A state h is stochastically stable if lim. ,q up (€) > 0.

Let process R™**Y have recurrent classes Fi, ..., Ex. For each pair of distinct
recurrent classes, a pg-path is a sequence of states ( = (hy, ..., hy) that begins in E,
and ends in E,. The resistance of this path is the sum of the resistances on the
edges that compose it. Let r,, be the least resistance over all pg-paths. Construct a
complete directed graph with K vertices, one for each recurrent class. The weights on
the directed edge E, — E, is r,,. A tree rooted at £ is a set of K — 1 directed edges
such that, from every vertex different from Fj, there is a unique directed path in the
tree to Ej. The resistance of such a rooted tree I(E;) is the sum of the resistances 7,
on the K —1 edges that compose it. The stochastic potential p(E;) of a recurrent class
E; is the minimum resistance over all trees rooted at E;. We will use the following
result in our main theorem.

Theorem 2. (Young [9]) Let R (¢) be a regular perturbed Markov process and let
p(€) be the unique stationary distribution of R (g) for ¢ > 0. Then lim._ou (¢) =
p (0) exists and is a stationary distribution of R (0). The stochastically stable states
are precisely the states that are contained in the recurrent classes of R (¢) having
minimum stochastic potential.

We are now in a position to state the main result.

Theorem 3. Let I' be a nondegenerate in best replies two-player game on the finite
strategy space Xy x Xo. If s/m and e are sufficiently small, s and m are sufficiently
large and X\ € (0,1), the perturbed process R™*¢ puts arbitrarily high probability
on the minimal curb configuration(s) that minimize the stochastic potential of the
perturbed process R™%%¢.
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Proof: See the Appendix.

This theorem shows that strategies that agents take in the two populations are
the same for the perturbed process R™**»¢ with A € (0,1) and the perturbed process
R™*%¢ without clever agents. In other words the same recurrent classes will be
chosen in the long-run by the perturbed process R™**¢ for all A € [0,1). However,
in the next section it will be shown by means of an example that the distribution of

strategies that agents take in the two populations is different for different values of
A

4. HOW CLEVERNESS MATTER
4.1. Intra-curb effects with A € [0,1). Although the presence of clever agents
does not influence the choice of the limiting curb set if A € [0,1), as we saw in the
previous section, here we show that it can influence the distribution of strategies
inside the limiting curb configuration. We clarify that by means of the following
example. Consider the Matching-Pennies game with the following payoff matrix in
Figure 2.

a b
All,-1|-1,1
B|-1,1|1,-1

FIGURE 2

Choose the parameters in adaptive learning with clever agents as follows: memory,
m = 2; sample size, s = 1; proportion A € [0,1] of clever agents in population 1.2
Each state can be represented by a 1 x 4 block of A’s, B’s, a’s, and b’s, where the
first two squares represent the agent’s in population 1 previous two strategies and the
last two represent the agent’s in population 2 previous two strategies. For example,
the state ABab means that the agent in population 1 chose A two periods ago, and
B one period ago, while, the agent in population 2 chose a two periods ago, and b
one period ago. There are 16 possible states for the process.

The asymptotic properties of the finite Markov process R™**¢ can be studied
algebraically as follows. Let z; = AAaa,...,z16 = BBbb be an enumeration of the
states, let R be a transition matrix of the Markov process R™%*¢ on the finite

1z, (£, )
state space ({A, B} x {a,b})?, and let u (g, \) = : be a column vector

Hzi6 (5a >‘)

2For our purpose we need to consider only case A € [0, 1).
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of probability distribution on the finite state space ({A, B} x {a,b})*. Consider a
system of linear equations

16
R-p(e,)) = p(s,A), where p(g,)) > 0 and » e, (5,4) = L. (2)
=1

It is well known that this system (for the irreducible process R™**¢) always has

exactly one solution p (g, ), which is called a stationary distribution of the process
R™**¢_ From Theorem 2, it follows that

lim i (2,A) = 2(0,A), (3)
£—

where p (0, ) is the stationary distribution of R™**0. Note that the process R™*¢
has only one recurrent class - the whole state space ({4, B} x {a,b})* - and without
loss of generality we can analyze only the unperturbed process R™**°. Solving the
system of linear equations:

R-M(O,)\):M(O,)\), (4)

gives the stationary distribution g (0,) for different values of A, where R is the
matrix described in Figure 3. Empty squares in the matrix correspond to zeros. We
assume here that if an agent is indifferent between two pure strategies, then she plays
both of them with the same probability.

Now we can calculate the expected payoffs for both populations. It is enough to
consider only the expected payoffs to the agent drawn from population 1 to play the
game, since this is a zero-sum game.

A clever agent predicts correctly the only best reply of the other agent from
population 2 if two last periods agents in population 1 played the same strategy.
Hence a clever agent always receives payoff u§ (A, z;) = 1 in the following 8 states:
AAaa, AAab, AAba, AAbDL, BBaa, BBab, BBba, BBbb. In the remaining 8 states
the expected payoff to a clever agent is zero. Therefore, the total expected payoff to
a clever agent is

u§ Zuzj (0, ) ui (A, z5) Zuzj (0, A) —I—Z,uzj (0, ) (5)

j=1 7j=13

where z; = AAaa, ..., z4 = AAbb, z13 = BBaa, ..., z1¢ = BBbb.
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FIGURE 3.

A non-clever agent in population 1 plays a best reply to an opponent’s probability
distribution in the sample. As a result of this behavior she always receives payoff —1
in the following 2 states: AAaa and BBbb, and payoff 1 in the following 2 states:
AAbb and BBaa. In the remaining 12 states the expected payoff to a non-clever agent
is zero. Therefore, the total expected payoff to a non-clever agent in population 1 is

u? ()‘) = Z:uzj (07 )‘) u? ()‘7 Zj) = Mz (07 )‘) = Mz (07 )‘) = Mz (07 )‘) + Mg (07 )‘) ( )
Jj=1 6

The expected payoff to a clever agent is positive if at least one of the states 21, ..., 24, 213, ...

shows up in the stationary distribution p (0,\). This is the case for any value of
A € (0,1]. Hence a “cleverness” is an advantage in the Matching-Pennies game, be-
cause the expected payoff to a clever agent is higher than the expected payoff to a
non-clever agent from the same population.? What is the expected average payoff
of population 17 Figure 4 shows how the expected payofts to a clever agent, a non-
clever agent and population 1 (in average) depend on the share A of clever agents in
population 1.

3We think that it should be a general result that the expected payoff of the clever agent is equal
to or higher than the expected payoff of the non-clever agent from the same population inside of
any minimal curb set.

y 216
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FIGURE 4.

There are different stationary distributions for different values of A\. The expected
payoft to a non-clever agent in population 1 is negative and falling as the share of
clever agents increases. The expected average payoff to population 1 is positive for
A > 0 and depends positively on the share of clever agents. Accordingly, all agents
in population 2 earn a negative expected payoff, which is decreasing in A. Clever
agents outsmart agents from the other population. The larger is the share of clever
agents in population 1, the smaller is the expected payoff to each clever agent. In
this sense, the marginal return to cleverness is decreasing. Moreover, the presence of
clever agents in population 1 imposes a negative externality on the non-clever agents
in the same population.

4.2. Clever population against non-clever population, A = 1. Consider an
extreme case, with all clever agents in population 1. In this case strategies that
agents choose in the two populations may differ for the perturbed process R™*1¢
with all clever agents in population 1 and the perturbed process R™*%¢ without
clever agents. The question now arises whether to be clever, have more information
about the opponent, is better off than to be non-clever. The answer depends on a
game. The following examples illustrate this point. We start from the Strict Demand

game and afterwards compare that game with the Nash Demand game, which was
studied in Saez-Marti and Weibull [4].

The Strict Demand Game. Consider two finite populations, 1 and 2, who
periodically bargain pair-wise over their shares of a common pie. Let x denote the
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share that player 1 gets, and let y denote the share that player 2 gets. Suppose that
all agents in population 1 have the same concave, increasing, and differentiable utility
function, which is a function of the share x

u:[0,1] = R, (7)

and all agents in population 2 have the same concave, increasing, and differentiable
utility function as a function of the share y

v:[0,1] = R. (8)

Without loss of generality we can normalize v and v so that u(0) = v(0) = 0.

In each period t = 1,2, ..., one agent is drawn at random from each population.
They play the Strict Demand Game, later SDG: player 1 demands some number z €
(0, 1], and simultaneously player 2 demands some number y € (0,1]. The outcomes
and payoffs are as in Figure 5.

Demands | Outcomes | Payoffs

z+y=1]|zy u(@), v(y)

r+y#11[0,0 0,0
FIGURE 5

To keep the state space finite, we shall discretize demands. Let a finite set D(6) =
{6,26,...,1 — 6} be the space of demands. Furthermore, let R™*!¢ be an adaptive
play with all clever agents in population 1. Let (x!,y") denote the amounts demanded
by the agents in population 1 and population 2 respectively in period ¢. At the end
of period ¢, the state is

ht = ((:Bt_m+1,yt_m+1) s (2 Y1) 9)

At the beginning of period ¢ + 1, the current clever agent, playing the game, draws
a sample of size s from the z—values in A'. Simultaneously and independently, the
agent in population 2 draws a sample of size s also from the z—values in h'.

A conventional division is a state of the form

hy =((z,1—2),....(z,1 —x)), (10)

where 0 < z < 1. We say that a division (z,1 — z) is stochastically stable for a given
precision 6, if the corresponding convention h, is stochastically stable.
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Definition 5. The basin of attraction of state h is the set of states h’ such that
there is a positive probability of moving in a finite number of periods from h' to h
under the unperturbed process R™*0.

For every real number 7 let [r] denote the least integer greater than or equal to
r.

Lemma 2. For every x € D(6) the minimum resistance of moving from convention
h, to a state in some other basin of attraction is [srs(x)], where

1

v(1=6) *

rs(r) = PREIEE)
v(1—x)

Proof: See the Appendix.

Lemma 3. A division (z,1 — z) is stochastically stable if and only if x maximizes
the function rs(z) on D(0).

Proof. It follows from Theorem 2.

Corollary 1. The division (6,1 — §) is stochastically stable.
Proof. = maximizes the function rs(z) on D($) at x = 6. End of the proof.
The main result of this part follows immediately from the corollary.

Proposition 1. Assume that all agents in population 1 are clever. Then for every
6 > 0 there exists one stable division, and this division converges to (z,y) = (0,1) as
6 — 0.

The Nash Demand Game. In this subsubsection we refresh an example which
was analyzed by Saez-Marti and Weibull [4]: the Nash Demand Game. The set up
is the same as in the case of the Strict Demand Game, but now players will also
get a demanding part of the whole pie, if their common demand is less than 1. For
the case A = 1, Saez-Marti and Weibull [4] show that for any precision § > 0 there
exist at least one and at most two stable divisions, and as 6 — 0 they converge to

(z,y) = (1,0).
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5. 2 x 2 COORDINATION GAMES AND ASYMMETRIC SAMPLING

So far, we have assumed that agents have the same amount of information in a sense of
having the same sample size. What happens if the two populations differ in sample
sizes? In this section we analyze this question for 2 x 2 Coordination Games by
assuming that the agents in population 1 have sample size s and that the agents in
population 2 have sample size s’. Let the error rate, £, be the same for all agents, and
let the memory, m be the same for both populations and satisfy m > max {2s, 2s'}.
Taken together, these factors define a Markov process R"™%%»¢ with memory m,
sample sizes s and s', the share A of clever agents in population 1, and error rate «.
We denote any game in this class of 2 x 2 games by G.

It was a lot of studies recently which analyzed the question: which equilibrium
would be observed in 2 X 2 coordination games in the long-run. Two papers, Kandori,
Mailath, and Rob [3] and Young [7], pioneer this topic. We will compare our results
with predictions from the existing literature. Young [7] shows that the stochastically
stable states of the perturbed process R™%*%¢ correspond one to one with the risk-
dominant conventions.

Consider a two-player coordination game G with payoff matrix in Figure 6.

a b

A UAa, VAa | UWAb, VAb
B | upq,vBa | UBb, UBb

FIGURE 6

G is a Coordination Game with pure strategy Nash equilibria (4, a) and (B, b) if the
following inequalities hold:

UAq > UBay UBb > UAb, VAa > VAby UBb > UBa. (11)

The following concept from Young [7] will play a crucial role in our study of 2 x 2
coordination games.

Definition 6. A convention is a state of the form h, = (z,x,...,x), where x is a
strict Nash equilibrium of G.

Definition 7. (Harsanyi and Selten [2|) Equilibrium (A, a) is risk-dominant if
(Uaa — UBa) (Vaa — Vap) > (uns — uap) (Vs — Vpa) -

We say that a convention h, is risk-dominant if the strict Nash equilibrium z
is risk-dominant. It turns out that the risk-dominant convention is stochastically
stable in Young’s [9] framework if s = s’. The following proposition is a corollary of
Theorems 1 and 3.
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Proposition 2. If max {s,s'} < m/2, then from any initial state, the unperturbed
process R™*%' A0 converges with probability one to a convention and locks in.

If X\ € (0,1) and s = &', then Young’s [9] result holds. More precisely, if s/m < 1/2,
and s and m are sufficiently large, the stochastically stable states of the perturbed
process R™*% ¢ as e — 0, correspond one to one with risk-dominant conventions.

Let us examine what happens if the first and the second populations have different
sample sizes.

Proposition 3. Suppose that A € (0,1), s < &, §/m < 1/2, and s, s’ and m
are sufficiently large. Then the stochastically stable states of the perturbed process
R8¢ a5 e — 0, correspond one to one with risk-dominant conventions.

Proof: See the Appendix.

The intuition behind this result is that if the sample size of population 1 is less
than the sample size of population 2, then agents in population 1 need less mistakes
to switch to another strategy. It means that the role of the first population becomes
crucial for finding the minimum stochastic potential. In population 1, all agents have
the same sample size and clever agents, as before, play a best reply to a best reply of
an agent from population 2. In a 2 X 2 coordination game a clever agent in population
1 chooses the same strategy as an agent in population 2 does with positive probability.
So a clever agent needs the same number of mistakes to switch to another strategy
as a non-clever agent in population 2 does if they have the same sample sizes. Hence
we are back to the Young’s [7] framework.

Define

a = (Uaq — UBa) [ (Upa — Uap — Upa + Upy) (12)
and
B = Waq —vap) / (Vaa — Vap — VBa + VUBp) - (13)

Proposition 4. Suppose that A € (0,1), s > s', s/m < 1/2, and s, s’ and m are
sufficiently large, and ¢ is sufficiently small. Then the state h(a ) of the perturbed
process R™' ¢ is stochastically stable if and only if

min {[as], [As']} > min {[(1 —a)s], [(1 - 5)s']}. (14)
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Proof: See the Appendix.

What does proposition 3 say if the sample size s > s'7 According to the proposi-
tion, the state h(4 4 is stochastically stable if and only if inequality (14) holds. For
sufficiently large s’, the inequality becomes 5 > 1 — (3. This means that only the pay-
offs of the agents in population 2 matter. So, if the sample size of the first population
is “much larger” than the sample size of the second population then risk-dominant
convention for population 2 will be stochastically stable.

Definition 8. The convention h(4 q) is risk-dominant for population 2 if:

Vag — VAp > Vb — VBa. (15)

If inequality (15) is reversed, then convention h(gyy is risk-dominant for population
2.

Observe that (15) is equivalent to
g>1-p. (16)

The following proposition considers the extreme case when population 1 consists
entirely of clever agents. It turns out that there is a discontinuity at this end of
the spectrum: the whole population will move to risk-dominant equilibrium of the
population without clever agents.

Proposition 5. Assume that every agent in population 1 is clever. If mazx {s,s'} <
m/2, and s, s' and m are sufficiently large, the stochastically stable states of the
perturbed process R™*% 1% as e — 0, correspond one to one with the risk-dominant
convention(s) of the population without clever agents.

Proof: See the Appendix.

Corollary 2. Consider a two-player symmetric coordination game, G°, with the fol-
lowing payoff matrix in Figure 7

a b
Al uu|cd (17)
B | dc|vov

FIGURE 7
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where v > d, v > ¢. Find a and (8 from (12) and (13):

u—d
u—d—cH+wv g (18)
This means that the stochastically stable state(s) of the perturbed process Rmsss'Ae
correspond one to one with the risk-dominant convention(s), for any share of clever
agents in population 1.

Corollary 3. If d = ¢ in (17), then a two-player symmetric coordination game be-
comes a two-player doubly symmetric coordination game.* It follows straightforward
that the stochastically stable state(s) of the perturbed process R™' ¢ correspond
one to one with the Pareto dominant convention(s), for any share of clever agents in
population 1.°

The results for two-player 2 x 2 coordination games are summarized in Figure 8,
showing the stochastically stable states for different A, s, and s'.

=0 Xe(0,1) =1
s = s/ | risk-dominant | risk-dominant | risk-dominant(2)
s> | * * risk-dominant(2)
s<sl|* risk-dominant | risk-dominant(2)
FIGURE 8

Here

1. risk-dominant means that the outcome is risk-dominant convention.

2. * means that the convention h(4 ) is stochastically stable if inequality (14)
holds. If inequality (14) is reversed, then the convention h(py) is stochastically
stable.

3. risk-dominant(2) means that the outcome is a risk-dominant convention for
population 2.

4A symmetric two-player game is doubly symmetric if AT = A, where A is the symmetric payoff
matrix. See also Weibull [6].

5We say that convention h(a,q) is Pareto dominant if u > v, and convention h(p ) is Pareto
dominant if the reversed inequality holds.
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The question now arises whether the population with more information about the
opponent, population 1, is better off. The answer depends on the structure of the
game.

Consider the following games in Figure 9, and the process R™%% "¢

with s = ¢'.

a b a b
Al13,2]0,0 Al13,414,3
B10,0]1,4 B|10,0]|5,2

ame 1 ame 2
FIGURE 9

Then (A, a) is a risk-dominant equilibrium and h(g 3 is a risk-dominant convention for
population 2 in both games. Hence if A € [0, 1) then convention k4 q) is stochastically
stable (Proposition 2), otherwise if A = 1 then convention hpy) is stochastically
stable (Proposition 5). Cleverness (or A = 1) is a disadvantage in Game 1 (the clever
population switches from 3 in k44 to 1in h(py)) and an advantage in Game 2 (the
clever population switches from 3 in A4y to 5 in h(pyp)).

6. CONCLUDING REMARKS

In this paper we answer some questions which were posted in Saez-Marti and Weibull
[4]. They study the consequences of letting some agents play a myopic best reply to
the myopic best reply in Young’s [8] bargaining model. This is how they introduce
”cleverness” of players. Saez-Marti and Weibull [4] ask whether their results can be
generalized. We use the ”cleverness” approach from their paper to analyze generic
two-player games in Young’s [9] set-up. The resulting Markov process is denoted
adaptive play with clever agents.

Saez-Marti and Weibull [4] prove that an introduction of any share of clever agents
less than one will not change the long-run behavior in the special case, for the Nash
Demand Game. We have shown that this result is robust in generic two-player games:
adaptive learning with clever agents will settle down in a minimal curb configuration
which minimizes the stochastic potential for adaptive learning without clever agents.
However, the share of clever agents does matter inside of the minimal curb config-
uration as shown in the Matching-Pennies Game, where the gain of clever agents
depends on the share of these agents in the population.

Furthermore, in the extreme case, if the share of clever agents equals to one, then
we have a discontinuity in the following sense. In the case of all clever agents in one
of the populations, the stochastically stable states can be different from the previous
ones. Saez-Marti and Weibull [4] find this discontinuity for the Nash Demand Game.
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We also study whether it is advantageous to be a member of the population
consisting of only clever agents, and show that the answer is ambiguous even in
coordination games. On the one hand, Saez-Marti and Weibull [4] show that the
"clever” population gets the whole pie in the Nash Demand Game. On the other
hand, in the Strict Demand Game, where two players must coordinate to get in
sum exactly the size of the pie, otherwise they both get nothing, the population
without clever agents obtains the whole pie. Hence ”cleverness” does not guarantee
an advantage in general coordination games even if all agents in one of the populations
are clever.

We analyze properties of 2 x 2 coordination games when agents have asymmetric
information. It is a classical result (see Young [7] and Kandori, Mailath, and Rob [3]
- the first, among others) for the symmetric setting that in the limiting case, when
the mutation rate goes to zero, the risk-dominant equilibrium will be observed as the
long-run outcome in such games. We prove that if the sample sizes are different in
the two populations, then the long-run outcome may differ from this prediction.

Appendix.

Proof of Theorem 1: This proof is similar to the proof in [9, Theorem7.2]. We
need only to show that clever agents will not change anything.

Given a positive integer s, we say that the probability distribution p; € A; has
precision s if sp; is an integer for all x; € X;. We shall denote the set of all such
distributions by A$. For each subset Y; C X;, let Aj(Y;) denote the set of distributions
pi € A such that p;(z;) > 0 implies x; € Y;. For each positive integer s, let BR; (X ;)
be the set of pure-strategy best replies by a non-clever agent in population ¢ to some
product distribution p_; € A®,(X_;) = A%(Xj;), where j # 4. Similarly, BR;(Y_;)
denotes the set of all best replies by a non-clever agent in population 7 to some product
distribution p_, € A®,(Y_;). Let BR;(X;) be the set of pure-strategy best replies by
a clever agent in population 1 to some product distribution p; € Aj(X7).

For each product set Y and an agent in population ¢, define the mappings

B(Y) =Y;UBR;(Y_;) and B,(Y) =Y, UBRy(Y?), (19)

and let 8(Y) = [61(Y) U BL(Y)] x B2(Y), where 51(Y) is the mapping for the clever
agents from population 1 and 3;(Y) is the mapping for the non-clever agent i. Note
that B(Y) = [41(Y) U BR1(Y1)] x B2(Y). Similarly, for each integer s > 1 let

B;(Y) =YiUBR;(Y_), B7°(Y) = Y1 U BR{ (Y1) (20)
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and
YY) = [B(Y)UBE(Y)] x B5(Y). (21)

In the same way, as it is in the proof in [9, Theorem7.2], we can show that 3°(Y) =
B(Y) for all sufficiently large s.

Consider the process R™**% We shall show that if s is large enough and s/m
is small enough, the spans of the recurrent classes correspond one to one with the
minimal curb sets of game I'.

Fix a recurrent class Ej, of R™**% and choose any h’ € E}, as the initial state.
We shall show that the span of Ejy, S(Ey), is a minimal curb set. As shown in the
proof in [9, Theorem?7.2], there is a positive probability of reaching a state h' in
which the most recent s entries involve a repetition of some fixed x* € X, because
there is a positive probability that a non-clever agent will be chosen from population
1 in every period. Note that k! € Ej, because E} is a recurrent class. Let 3Y) denote
the j-fold iteration of # and consider the nested sequence

{*} C B({z*}) C B ({z*}) C ... C Y ({z*}) C ... (22)

Since X is finite, there exists some point at which this sequence becomes constant,
say

B9 ({a*}) = g9 ({a"}) = Y™ (23)

By construction, Y* is a curb set.

The proof that Y* is in fact a minimal curb set is the same as in the proof in
9, Theorem7.2]. End of proof.

Proof of Theorem 3: It follows immediately from Theorems 1 that minimal
curb configurations are recurrent classes of the regular perturbed Markov process
R™s*¢_ By Theorem 2, one (or some) of this minimal curb configuration(s) is (are)
stochastically stable. We have to show that this minimal curb configuration is the
same as in the absence of the clever agents.

Take any two recurrent classes, two minimal curb configurations, £, and E,. Note
that every mistake made in population 2 can influence behavior only the non-clever
agents in population 1. It means that all mistakes made in population 2 have the
same effect for the both processes R™*»¢ and R™%%<,

Suppose that [ mistakes in a row in population 1 are necessarily to move process
R™*%¢ from recurrent class E, to recurrent class F,. The clever agents in process
R™**¢ anticipate that. Hence, if it was less than [ mistakes in population 1, then
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the clever agent in role 1 expects an agent in role 2 plays as if they are in recurrent
class F,. It has to be at least | mistakes in population 1 to change these expectations
of the clever agent. It means that it has to be at least | mistakes in population 1
to move process R™**¢ from recurrent class FE, to recurrent class F,. At the same
time, there is a positive probability that only the non-clever agents will be chosen
from population 1 in every period. Therefore it is enough to make exactly [ mistakes
in population 1 to move process R™**¢ from recurrent class E, to recurrent class E,.
End of proof.

Proof of Lemma 2: Suppose that the process is in the convention h,, where
xz € D(8). Let m be a path of the least resistance from h, to a state that is in some
other basin of attraction. Clearly, 7 must pass through some state w such that some
best reply of agent in population 2 to a sample from w is different from 1 — z. Let
w be the first such a state.

To compute the least number of mistakes necessary to exit from convention h,,
it suffices to consider, for every a2’ # z, the least number of initial mistakes ' by the
agents in population 1 that will cause an agent in population 2 to reply with 1 — z’.
The number of mistakes in population 2 does not matter in this setting, because both
agents look only at the x—values in h'.

Choose an arbitrary x/ # z. Suppose that the agents in population 1 make
j successive demands of 2’ that cause some agent’s best reply in population 2 to
switch to 1 — 2’ instead of 1 — x. We can assume that j < s. When the agent in
population 2 samples these j mistaken demands z’, together with s— j of the previous
”conventional” demands x, she switches to 1 — 2’ provided that

Zv(l —a') > i
s s

v(l —z),
that is
v(l —x)
s.
v(l—a') 4+ ov(l —x)

Over all feasible 2’ # x the minimum value of j occurs when 2’ = § and

J=z

1

w(1-8) 5

=
L+ v(l—z)

Hence, the least number of mistakes to exit from the h,—basin of attraction is

[srs(x)], where
(z) .
re(x) = :
v(1=46)
1 v(1—x)
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This completes the proof of Lemma 2.

Proof of Propositions 3 and 4: It is straightforward to show that the resis-
tances to transiting between the absorbing states h(44) and hpy) are

Py = min{[as], [5s'], [s]} (24)

and

"5 ae = min {[(1 = a)s] . [(1 = B)s], [(1 = B)s]}, (25)

where a and 3 are from (12) and (13).

The last terms [(s] and [(1 — )s| appear because of the clever agents in popu-
lation 1, who have sample size s and imitate the behavior of an agent in population
2 in 2 x 2 coordination game.

By Theorem 2, h(4 ) is stochastically stable if and only if

7

8,8’ 5,8
TAa—Bb = TBbAa" (26)

Let s > ¢, then we have

i gy =min{[as], [3s'],[Bs]} = min {[as], [3s]} (27)

and

Phaa = min {[(1 = a)s], [(1 = B)s'], [(1 = B)s]} = min {[(1 — )s], [(1 = B)s']},

(28)
which is exactly the statement of proposition 4.
If s < &, then for sufficiently large s
P = min {[as], [3s'], [Bs]} = min{[as] , [Bs]} = smin{a, 3}
(29)

and

Pt e = min {[(1 - a)s],[(1 = B)s'],[(1 - B)s]} = smin {(1 - a), (1 - B)}.
(30)
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What does it mean that
min {a, 8} > min {(1 - a), (1 - 9)} (31)
from a “risk-dominance” point of view? Suppose that
min {a, 8} = a. (32)
Hence
min {(1 —a), (1 - F)} =1- 0. (33)
Find the domain where (31), (32), (33) and 0 < a, 8 < 1 hold. We have the following

inequalities:

a+pB>1 (34)
and
0<a<pf<l. (35)
Suppose now that
min {a, 8} = 3. (36)
Hence
min {(1 —a),(1-0)} =1-a. (37)

Find the domain where (31), (36), (37) and 0 < a, 8 < 1 hold. We get the following
inequalities:

at+p>1 (38)
and
0<f<a<l (39)
Hence the inequality
min {e, 3} > min {(1 — ), (1 - B)} (40)

is equivalent to the inequalities

a+0>1,0<a,[6<1. (41)
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By definition, equilibrium (A, a) is risk-dominant if
af>(1-a)1-p),0<a,f<1, (42)
or
a+3>1,0<a,8<1, (43)

which is exactly inequalities (41), and the statement of proposition 3 follows imme-
diately. End of proof.

Proof of proposition 5: As in the proof of the previous proposition, it is
straightforward to show that the resistances of transitions between the absorbing
states haq) and h(gy) for sufficiently large s and s’ are

Pinp = min{[3s'], [3s]} = fmin {s', s} (44)

and

Paaa = min{[(1 = B)s'], [(1 = B)s]} = (1 — B) min {s', s} (45)

Note that there are only the clever agents in population 1 and therefore the sample
of population 2 is irrelevant.
The convention h(4 4) is stochastically stable if and only if

5,8’ 5,8’
T da—Bb = T Bb—s Aa> (46)

or

g>1-p. (47)

This means, see (16), that the convention h4,q) is risk-dominant for population 2.

The same logic can be used if the convention h(p ) is stochastically stable. Hence,
the stochastically stable state(s) of the perturbed process R™#51¢ correspond one
to one with the risk-dominant convention(s) of population 2. End of proof.
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