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Abstract. We consider a committee facing a binary decision under un-
certainty. Each member holds some private information. Members may have
different preferences and initial beliefs, but they all agree which decision should
be taken in each of the two states of the world. We characterize the optimal
anonymous and deterministic voting rule and provide a homogeneity assump-
tion on preferences and beliefs under which sincere voting is a Nash equilibrium
for this rule. We also provide a necessary and sufficient condition for sincere
voting to be an equilibrium under any deterministic majoritarian voting rule.
We show that a class of slightly randomized majoritarian voting rules make sin-
cere voting a strict and unique equilibrium. A slight deontological preference
for sincere voting, or ex post revelation of individual votes – “transparency”
– combined with a concern for esteem, has the same effect.
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1. Introduction

We here analyze a generalized “Condorcet jury problem,” that is, a situation in which
a decision has to be taken collectively by a committee or jury. There are only two
states of the world. In the case of a jury, the defendant is either guilty or inno-
cent. However, the state is unknown at the time of the decision and individual jury
members have private information about the true state. Condorcet’s (1785) classical
theorem essentially establishes that, under conditionally independent private infor-
mation, aggregation by way of voting under majority rule is asymptotically efficient
in the sense that the probability for a mistaken jury decision – convicting an inno-
cent defendant or acquitting a guilty – tends to zero as the number of jury members
goes to infinity.
The modern strategic analysis of jury voting, pioneered by Austen-Smith and

Banks (1996), has pointed out a major weakness of the classical result. An unstated
hypothesis underlying Condorcet’s analysis is that jury members vote informatively,
that is, base their votes solely on their own private information, without regard
to other jury members’ potential information and votes. This hypothesis may seem
innocuous, since all jury members share the same goal. However, a careful analysis
shows that this is not always the case. More exactly, Austen-Smith and Banks noticed
that, if the number of jury members is large, informative voting is in general not a
Nash equilibrium of the Bayesian game that corresponds to Condorcet’s setting.
This negative result emanates from the following observation: An individual vote

makes a difference only if it is pivotal. Hence, as a voter under majority rule I should
reason as if I knew that the other votes were in a tie.1 But if there are many voters, the
(hypothetical) fact that all the others are tied is very informative, perhaps “drench-
ing” my own private information. Under such weak “evidence,” perhaps I should
not vote according to my private information. If the committee, jury or electorate
is large enough, this argument against informative voting becomes overwhelming.
Consequently, informative voting is then not a Nash equilibrium, and Condorcet’s
judgement-aggregation argument fails.
We here generalize somewhat the setting and address some more issues, allowing

for preference and belief heterogeneity, so that committee members may differ in
the von Neumann utilities they attach to the different combinations of decisions and

1The notion of a pivotal event for a player is not restricted to voting games; Al-Najjar and
Smorodinsky (2000) defined, in a rather general setting, the influence of a player in a mechanism
as the maximum difference this player’s action can make in the expected value of a collective result.
They show that, a precise sense, the mechanisms that maximise the number of influential players
are derived from majority rule.
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states of the world, as well as in the subjective probabilities they attach to these
states. In particular, committee members need not agree precisely about the relative
“costs” associated with the two types of mistake that can be made – taking decision
1 in state 0 or decision 0 in state 1. We assume, however, that all committee members
are equally “competent” in the sense that their private information is equally precise.
In this somewhat generalized setting, we first characterize optimal anonymous

and deterministic voting rules in a committee of arbitrary finite size. We show that
if the committee is sufficiently homogeneous in terms of preferences and beliefs, then
informative voting is an equilibrium under the optimal voting rule. As a corollary
we obtain that, contrary to what one might expect, the optimal voting rule for large
committees or electorates does not depend on aggregate preferences and beliefs, only
on the precision of the private information. Secondly, we re-examine Austen-Smith’s
and Banks’ (1996) result, and, thirdly, following Coughlan (2000), we analyze the ef-
fect of having a straw vote before the decisive vote and establish that if the committee
is sufficiently homogeneous in terms of preferences and beliefs, informative voting is
consistent with equilibrium. More exactly, if each committee member believes that
all others vote informatively in the straw vote, then no committee member has an
incentive to deviate from informative voting, and once the total number of straw
votes for the two alternatives have been made public, all committee members will
vote in the same way in the decisive vote. This does not hold, however, if committee
members’ preferences or beliefs are sufficiently heterogeneous, as we demonstrate by
way of a numerical example; then committee members with extreme preferences or
initial beliefs may have an incentive not to reveal their private information in the
straw vote. Moreover, even when informative voting is an equilibrium in this setting,
there is still a plethora of uninformative equilibria, so straw vote is not a universal
remedy.
Fourthly, we introduce a one-stage voting procedure, a slightly randomized ma-

jority rule, and show that informative voting then is a strict Nash equilibrium and
that this is the unique equilibrium. We also show that this slightly randomized voting
rule is asymptotically efficient: in the limit as the committee size goes to infinity, the
probability of a mistaken collective decision tends to zero.
Fifthly, and finally, we reconsider majority rule in the basic setting, but now ap-

plied to committee members who slightly dislike voting against their personal beliefs
and/or who care about their esteem, which depends on ex post observation (by the
general public or the committee members) of the true state (at the time of the de-
cision) and their individual vote. Such a voter is rational but has slightly different
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preferences from what is usually assumed in voting models; a deontological prefer-
ence against insincere voting. Irrespective of how weak this preference for sincerity
is, there exists a critical committee size such that sincere voting is a strict Nash
equilibrium whenever the committee is large enough. This is the unique equilibrium
and its outcome is asymptotically efficient; the probability of a mistaken collective
decision goes to zero as the committee size tends to infinity. Hence, in so far that
real-life committee members either have a deontological preference for sincerity or the
voting procedure is ex post transparent, collective decisions are likely to aggregate
judgements more efficiently than suggested by current theory, even when voters act
strategically.
Before embarking upon our analysis, let us comment on related research. The

two seminal papers on incentives for informative voting are Austen-Smith and Banks
(1996), mentioned above, and Feddersen and Pesendorfer (1996). In the latter paper,
the so-called swing voter’s curse is analyzed. It refers to the following phenomenon. If
voters, among whom there are partisans for each alternative as well as non-partisans,
are allowed to abstain from voting, then poorly informed non-partisans may use the
following mixed strategy. They probabilistically balance their votes in such a way that
they collectively compensate for the presence of partisan voters (who support a given
candidate in any case) and leave room for the better informed non-partisan voters.
This mixed strategy of poorly informed non-partisan voters involves abstention with
positive probability. By contrast, we do not allow our voters to abstain – this is one
of the two senses in which our model is about committees, as opposed to electorates.
Subsequent theoretical research on jury behavior mainly concern the relative mer-

its of different voting rules, see Feddersen and Pesendorfer (1998) and the role of
straw-votes or debates before voting. Coughlan (2000) was mentioned above, and
Austen-Smith and Feddersen (2005) is another contribution along similar lines. In
these models, where voters are identical, the picture is very different with and with-
out debate or straw vote. Moreover, if voters with identical preferences and priors
share their private information, then decisions are unanimous in the decisive vote,
and all majoritarian voting rules (including unanimity) are equivalent, see also Ger-
ardi and Yariv (2007). These results do not hold if voters are not identical.
The second sense in which our model concerns committees and not electorates

is that we assume that the number of voters is fixed and known. By contrast, in
real-life elections, this number is usually unknown at the time of voting. See Myerson
(1998), Feddersen and Sandroni (2002) and Krishna and Morgan (2007) for excellent
studies of abstention and random electorates. We here focus exclusively on the binary
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decision problems, but there has been a recent renewal of interest and new results
have been obtained for more general collective decision problems under uncertainty,
see McLennan (2007).
The rest of the paper is organized as follows. In section 2 we set the stage for the

subsequent analysis by way of spelling out the base-line model. Section 3 analyzes
optimality of anonymous voting rules. Section 4 is devoted to equilibrium consid-
erations and establishes a slight generalization of Theorem 1 in Austen-Smith and
Banks (1996). Section 5 examines a two-stage voting procedure where the first stage
is a straw vote. Section 6 develops a slightly randomized majority rule and we show
that informative voting is the unique Nash equilibrium under this rule, and that this
equilibrium outcome is asymptotically efficient. Essentially the same conclusions are
reached in section 7 for voters with a slight preference for sincere voting under one-
stage majority rule. Section 8 concludes. Technical proofs have been relegated to an
appendix at the end of the paper.

2. The framework

There are n committee members, where n is a positive integer. The committee has
to make a binary decision, x ∈ {0, 1} = X. All committee members agree what is
the right decision in each state of nature. However, they do not know the state of
nature ω ∈ {0, 1} = Ω. Each committee member i has a prior belief about the actual
state of nature. These priors may be, but need not be, the same for all committee
members.2 Moreover, such priors may be based in part on a common signal, received
by all committee members, as, for example, in the proceedings during a trial, during a
committee hearing, or a public debate before an election. We here analyze the decision
problem faced by the committee (jury or electorate) after any common signal has been
received and we refer to the committee members’ beliefs at that stage as their priors.
Formally, let µi be the prior probability that committee member i assigns to state

ω = 1 (and thus 1−µi to state ω = 0) and assume that no state is a priori excluded;
0 < µi < 1 for all committee members i. In addition, each committee member i
receives a private “signal” si ∈ {0, 1}, a random variable that is positively correlated
with the true state of nature ω:½

Pr [si = 0 | ω = 0] = q0
Pr [si = 1 | ω = 1] = q1

2See Dixit and Weibull (2007) for an analysis of how judgmental polarization can arise among
voters with identical preferences but distinct priors.
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for q0, q1 > 1/2. Hence, all committee members have the same “competence” – or
receive signals of the same “quality” – in the sense that, in a given state, they all
have the same conditional probability of receiving a correct signal. Signals received
by different committee members are, however, conditionally independent, given the
state of nature.
All committee members agree that the right decision in state ω is x = ω. In the

jury example, they all wish the decision to be conviction if the defendant is guilty
and acquittal if the defendant is innocent. In the investment decision, they wish the
investment to be made if and only it is profitable. However, in all other respects they
may differ in the von Neumann-Morgenstern utilities that they assign to the four
possible decision-state pairs. Without loss of generality, these utilities are given for
each committee member i by the following table:

ω = 0 ω = 1
x = 0 ui0 ui1 − αi

x = 1 ui0 − βi ui1

In this notation, the assumption that they all agree about what is the right decision
in each state simply means that both αi and βi are positive, an assumption that
we will maintain throughout this study. For each committee member i, these two
parameters are the disutilities that the committee member attaches to the two types
of mistake, namely, of taking the wrong decision in state ω = 1 (say, acquitting a
guilty defendant or passing a profitable investment opportunity) and of taking the
wrong decision in state ω = 0 (say, convicting an innocent defendant or making an
unprofitable investment). We will sometimes refer to the first mistake (decision x = 0
in state ω = 1) as a mistake of type I (accepting the false null hypothesis that the
state is 0) and the second mistake (decision x = 1 in state ω = 0) as a mistake of
type II (rejecting the true null hypothesis that the state is 0).
For many purposes, the relevant data about each committee member i can be

summarized in one number, namely

γi =
αiµi

βi (1− µi)
(1)

where γi > 0 follows from our assumptions. Note that γi = 1 if and only if both types
of mistake carry the same ex ante expected utility loss. Before receiving one’s signal,
the probability that committee member i attaches to state 1 is µi and the “cost” of a
mistake then (that is, a mistake of type I) is αi. Hence, the ex-ante expected utility
loss to committee member i of a mistake of type I is µiαi. The probability attached to
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state 1 is 1−µi and the “cost” of a mistake then (that is, of type II) is βi. Acquitting
an guilty defendant or passing a good investment opportunity may often be a lesser
mistake than convicting an innocent defendant or making a bad investment. In such
cases αi < βi and hence γi < 1 if the prior is uniform µi = 1/2.

3

In the base-line setting, each committee member i casts a vote vi ∈ {0, 1}, a
vote which may, but need not, be guided by i’s private signal, and the collective
decision x is determined by way of some pre-specified rule f that maps each vote
profile v = (v1, ..., vn) to a probability f (v) ∈ [0, 1] that the decision will be x = 1.
The probability for decision x = 0 thus is assigned probability 1− f (v). Formally, a
voting rule is a function f : {0, 1}n → [0, 1].
A voting strategy for committee member i in the base-line setting is a function

σi : {0, 1} → [0, 1] that maps i0s signal si to a probability σi (si) for a vote vi on
alternative 1: Pr [vi = 1 | si] = σi (si).4 In others words, a voting strategy prescribes
with what probability the committee member will vote for decision alternative 1
(and vote on alternative 0 with the residual probability). By a pure voting strategy
we mean a strategy σi such that σi (si) ∈ {0, 1} for both signals si. In this case,
vi = σi (si).
In the voting literature, the pure strategy to always vote according to one’s signal,

σi (si) ≡ si, is usually called informative voting, while voting for the alternative that
maximizes the voter’s expected utility, conditional on her own signal, and only on
that piece of information, is called sincere voting.
Each committee member i is thus characterized by the parameter triplet θi =

(αi, βi, µi), where all three parameters are positive and µi < 1. When studying as-
ymptotic properties of arbitrarily large committees, we will assume that all parameter
triplets belong to some compact set in the interior of the parameter space:

θi ∈ Θ = [αmin, αmax]× [βmin, βmax]× [µmin, µmax] (2)

where all bounds are positive and µmax < 1. We will refer to this condition as the
preference boundedness condition. This condition is met by the two standard methods
to theoretically generate ever larger economies: (i) by replicating a given finite set of

3In environmental management, type II errors can be more costly than type I errors for environ-
mental management. This is because the commitment of time, energy and people to fighting a false
alarm (a type I error) may be short term (until the mistake is discovered), while the cost of not
doing something when in fact it should be done (a type II error) will have both short- and long-term
costs (e.g. ensuing environmental degradation).

4We will later analyze behavioral voting strategies under two-stage voting rules.
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economic agents, or (ii) by independent sampling from a fixed probability distribution
over the type space, here Θ.

2.1. Condorcet’s jury theorem. Condorcet’s Jury Theorem, stated in terms of
the present model, asserts that if all committee members vote informatively, then the
probability of a mistaken collective decision under majority rule tends to zero as the
committee size tends to infinity. The result hinges on the conditional independence of
the signals and the assumption that they are positively correlated with the true state.
The result does not depend on the committee members’ preferences and beliefs, since
their voting behavior is assumed and that is all that matters:

Theorem 1 [Condorcet]. Suppose that all committee members vote informatively
under majority rule. Let Xn (ω) ∈ {0, 1} be the collective decision when there are n
committee members and the true state is ω. Then

lim
n→∞

Pr [Xn (ω) 6= ω | ω] = 0 ∀ω ∈ Ω

For the sake of completeness, we provide a modern proof in the appendix.

2.2. Signal informativeness. The Condorcet theorem presumes that all com-
mittee members vote informatively. Clearly, this is not always a reasonable assump-
tion, not even for n = 1, a single decision-maker. To clarify this aspect, suppose, that
one committee member has been selected to make the decision single-handedly, based
only on his or her private signal. If the signal is noisy and her prior and valuation of
mistake costs favor one alternative over the other, the right decision may well be to
disregard the signal. More exactly, an application of Bayes’ rule gives the following
posterior probability for state 0 after signal 0 has been received (recall that the prior
is 1− µi):

Pr [ω = 0 | si = 0] =
(1− µi) Pr [si = 0 | ω = 0]

Pr [si = 0]
=

(1− µi) q0
(1− µi) q0 + µi (1− q1)

and likewise when the signal si = 1 has been received. Consequently, the strategy
to vote informatively, vi ≡ si, is optimal if and only if (1− µi) q0βi ≥ µi (1− q1)αi

and µiq1αi ≥ (1− µi) (1− q0)βi, or, equivalently, if and only if (1− q0) /q1 ≤ γi ≤
q0/ (1− q1). We will assume that both inequalities hold strictly for all committee
members,

1− q0
q1

< γi <
q0

1− q1
∀i, (3)
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a condition we will refer to as the signal informativeness condition. It follows from
our assumption q0, q1 > 1/2 that the lower (upper) bound in (3) is below (above) 1.
For the sake of illustration of this condition, consider a court jury member i who a

priori believes that both states (that the defendant is innocent or guilty, respectively)
are equally likely, µi = 1/2, and who finds convicting an innocent defendant twice as
bad a mistake as acquitting a guilty defendant, βi = 2αi. Then γi = 1/2 and thus
the right-hand inequality in (3) is always met: the committee member should never
vote against the signal “innocent.” However, the left-hand inequality is violated if
(and only if) q0+ q1/2 < 1, that is, if the signal is not so strongly correlated with the
true state of the world (say, q0 = q1 = 0.6). It is then optimal is “guilty” (si = 1).

Remark 1. Let f be a voting rule that randomly picks 1 vote out of the n votes
cast, with a positive and exogenously fixed probability for each vote vi to be picked,
and let the collective decision x be determined by that vote: x = vi. Under such a
randomized voting rule, a rational committee member realizes that, independently of
how others in the committee vote, his or her vote will matter only if selected. Since,
moreover, the probability for this event is positive and independent of his or her own
action, sincere voting is optimal under condition (3). Under such a randomized voting
rule, sincere voting is not only compatible with Nash equilibrium; it is a dominant
strategy.

3. Optimal voting rules

What voting rules are optimal for the committee? We here briefly consider the
optimality of deterministic one-stage voting rules, that is, voting rules f : {0, 1}n →
{0, 1} that map vote profiles v = (v1, ..., vn) to decisions (randomized voting rules
will be considered in Section 6).
As for normative criteria by which to define optimality, the following two seem

most relevant: maximization of the (subjective or objective) probability for taking
the right decision, or, alternatively, maximization of the sum of the committee mem-
bers (subjectively or objectively) expected utility from the decision. While the first
criterion does not discriminate between mistakes of type I and II, the second does.
And this makes sense in many contexts. For instance, if most or all members of a jury
consider it a worse error to convict an innocent than to acquit a guilty defendant,
then it is desirable that the voting rule accounts for this preference asymmetry. We
here focus on this latter, utilitarian criterion. We call such a function optimal if there
exists no other such function that yields higher expected welfare. Formally, for any
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deterministic voting rule f , let

W (f) =
nX
i=1

ui0 Pr [x = ω = 0 | µi] +
nX
i=1

¡
ui0 − βi

¢
Pr [x = 1, ω = 0 | µi]

+
nX
i=1

ui1 Pr [x = ω = 1 | µi] +
nX
i=1

¡
ui1 − αi

¢
Pr [x = 0, ω = 1 | µi]

where x = f (s1, ..., sn). With some abuse of notation, Pr [· | µi] here denotes the
probability for an event “ · ” under the prior µi. All these priors may be the same
and this common prior may even be an objective probability.
Hence, we evaluate welfare when the voting rule f in question is applied directly to

the signal vector, or, equivalently, when all committee members vote informatively.
Optimality in this first-best sense is then defined as maximization of W over the
set of deterministic voting functions. An optimal voting rule is thus an optimal
deterministic direct mechanism, with no requirement of incentive-compatibility.5

Of great practical relevance is the subset of so-called k-majority rules, rules that
require at least k votes out of n in order for decision 1 to be taken. Formally, let N
be the nonnegative integers and for any k ∈ N ∩ [0, n+ 1], let fk : {0, 1}n → {0, 1}
be the k-majority rule defined by fk (v1, ..., vn) = 1 iff

Pn
i=1 vi ≥ k. For n odd,

simple majority rule is thus the special case when k = (n+ 1) /2. For arbitrary n,
k = 1 and k = n are the two unanimity rules (requiring n votes for decision 0 and 1,
respectively), k = 0 the rule to take decision 1 irrespective of the votes and k = n+1

the rule to take decision 0 irrespective of the votes. It is not difficult to verify that if
a k-majority rule is optimal and informativeness condition (3) holds, then 1 ≤ k ≤ n

and no other deterministic voting rule can result in higher welfare.6

Hence, without loss of generality we may restrict the quest for optimal rules to
k-majority rules and focus on k ∈ N ∩ [1, n]. Since the number n of committee
members is finite, existence of an optimal voting rule is guaranteed. The following
result provides a necessary and sufficient condition for optimality. In order to state

5As shown in Chwe (2007), optimality under the incentive constraints for sincere voting does not
necessarily, or even typically, lead to monotonic voting rules.

6To see this, suppose f : {0, 1}n → {0, 1} is optimal. Since all voters’ signals have the same
precision, there exists some symmetric function g : {0, 1}n → {0, 1} such that W (g) =W (f). Then
g (s1, ..., sn) is a function h of the signal sum

P
si. Since f maximizes W , so does g, and then h

has to be increasing, since q0, q1 > 1/2 by assumption, so nothing can be gained by disregarding
a signal. Since h is increasing, g is a k-majority rule for some k ∈ {0, 1, ..., n, n+ 1}. If the signal
informativeness condition (3) holds strictly, and αi, βi > 0, it is never optimal to disregard all
signals, so then k ∈ {1, ..., n}.
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it, let ᾱn =
Pn

i=1 µiαi, β̄n =
Pn

i=1 (1− µi)βi and γ̄n = ᾱn/β̄n. Moreover, for any
integers n and k, let

Ak,n =

µ
1− q0
q1

¶kµ
q0

1− q1

¶n−k

and note that Ak,n is increasing in n and decreasing in k.7

Theorem 2. For any positive n ∈ N and k ∈ N∩ [1, n], k-majority rule is optimal if
and only if

Ak,n ≤ γ̄n ≤ Ak−1,n. (4)

(Proof in appendix.)
Consider a sequence of committees, of ever larger size n = 1, 2..., all with the same

signal precisions, q0 and q1. By our preference boundedness condition (2) there exist
numbers γmin, γmax > 0. such that γmin ≤ γ̄n ≤ γmax for all n ∈ N . In other words,
the parameter sequence (γ̄n)n∈N is bounded away from zero and from plus infinity,
a condition that holds trivially if all committee members have the same preferences
and beliefs. For each positive integer n, let k∗ (n) be optimal, and write ρ∗ (n) for
the optimal vote ratio k∗ (n) /n. It is not difficult to verify that ρ∗ (n) converges
as the committee size n goes to infinity, and, perhaps more surprisingly, that the
limit is independent of voters’ preferences and priors, as long as these are bounded
in the above sense. The limit of ρ∗ (n), as n tends to infinity, then depends only on
the precision of the two signals. Moreover, the limit value of ρ∗ (n) never falls short
of 1 − q0 (the probability that signal 1 is received when the state is 0) and it never
exceeds q1 (the probability that signal 1 is received when the state is 1). In particular,
the limit value is 1/2 if q0 = q1. In other words: if the two signals are equally precise,
then simple majority rule is optimal for large committees, independent of preferences
and beliefs. Even if one type of mistake (say, convicting an innocent defendant) is
deemed much worse than the other type (acquitting a guilty defendant), majority
rule is still the optimal voting rule if the committee (jury or electorate) is very large:

Corollary 1. For all q0, q1 ∈
¡
1
2
, 1
¤
and any sequence (γ̄n)n∈N that is bounded away

from zero and plus infinity:

1− q0 ≤ lim
n→∞

ρ∗ (n) =
ln
³

q0
1−q1

´
ln
³

q0
1−q1

´
+ ln

³
q1
1−q0

´ ≤ q1 (5)

7Also note that An ≤ (1− q0) /q1 and A0 ≥ q0/ (1− q1). Hence the optimality condition (4)
holds for some k ∈ {1, ..., n}, under informativeness condition (3).
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The reason for the apparently counter-intuitive result that the optimal voting
rule is independent of preferences can be explained as follows. Suppose that, for a
given committee size n, a certain k-majority rule fk is optimal: k∗ (n) = k. Then we
necessarily have W

¡
fk
¢
≥ W

¡
fk+1

¢
, that is, it should not be welfare improving to

instead use (k + 1)-majority rule. Let N1 be the (random) number of signals 1 among
the n signals received. Comparing voting rules fk and fk+1, it is clear that the first
is (weakly) better than the second if and only if it is better when N1 = k, this being
the only event in which the two voting rules differ. Moreover, if N1 = k, then fk is
(weakly) better than fk+1 if an only if erring under voting rule fk+1 (taking decision
0 when the state is 1) is no smaller than the social cost of erring under fk (taking
decision 1 when the state is 0), which, formally, amounts to the inequality

ᾱn Pr [N1 = k | ω = 1] ≥ β̄n Pr [N1 = k | ω = 0] .

For very large n and proportionately large k, k = k∗ (n) ≈ ρ∗ (n)n, the ratio between
the probabilities either tends to zero or to plus infinity (since q0, q1 > 1/2). However,
the ratio γ̄n = ᾱn/β̄n is, by hypothesis bounded away from zero and plus infinity
(uniformly in n). Hence, asymptotically, it does not matter exactly what values
the parameters γ̄n have, as long as they all lie in a bounded interval of positive
numbers. Consequently, the limit ratio ρ∗ (n) does not depend on the committee
members’ preferences or beliefs. (The same reasoning can be applied to the necessary
inequality W

¡
fk
¢
≤ W

¡
fk+1

¢
, and a formal proof of the corollary is given in the

appendix.)
While the optimal voting rule for very large committees does not depend on pref-

erences or beliefs, this is (of course) not true for small and medium-sized committees.
This is shown in the following numerical example.

Example 1. See diagram below, drawn for γ̄ = 1, q0 = 0.8 and q1 = 0.7. On the
horizontal axis is n, the number of committee members, and on the vertical axis k, the
number of votes 1 for taking the collective decision 1. The two solid straight lines are
the upper and lower bounds on k for optimality. We see that simple majority is op-
timal in the range of the diagram: k∗ (2) = 1, k∗ (3) = k∗ (4) = 2, k∗ (5) = k∗ (6) = 3

and k∗ (7) = 4. If γ̄ is increased, then one would expect the required number of votes
for decision 1 to decrease, for n fixed. The dashed straight lines are the upper and
lower bounds on k for optimality when γ̄ = 1.35. We see that then k∗ (n) is indeed
smaller for certain n. For instance, for n = 7 it now takes only 3 votes, instead of 4,
for decision 1. Recall, however, that the two sequences of optimal k-majority rules,
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the one for γ̄ = 1 and the one for γ̄ = 1.35 have the same limit for k∗ (n) /n. In force
of the corollary, we know that this limit is approximately 0.44.

1 2 3 4 5 6 7
0

1

2

3

4

n

k

Figure 1: The lower and upper bounds on k∗ (n).

4. Equilibrium

Suppose that the collective decision is to be taken according to k-majority rule among
n committee members, for some positive integer k ≤ n, and as described above. This
k may be, but need not be optimal. Suppose that each committee member votes so as
to maximize his or her own expected utility as defined above. Is sincere voting then
a Nash equilibrium? Does this depend on whether or not the voting rule is optimal?
We will throughout this section assume that the signal informativeness condition (3)
is met. As a consequence, sincere voting is identical with informative voting, and
we will use these two attributes interchangeably. Given her signal, each voter i then
casts a vote vi ∈ {0, 1}, simultaneously with the other voters, and the decision x = 1

results if at least k voters cast the vote 1, while the decision x = 0 results in the
opposite case.
In Nash equilibrium, each voter maximizes his or her expected utility, given his or

her private signal, and given all other voters’ strategies. Clearly, there is a plethora of
(pure and mixed) uninformative Nash equilibria of this voting game whenever n ≥ 3.
For example, to always vote 0 (or 1), independently of one’s private signal, constitutes
a Nash equilibrium. For if others vote according to such a strategy, then my vote
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will never be pivotal and hence I can just as well use the same uninformative voting
strategy as the others. Under what conditions, if any, will sincere voting constitute
an equilibrium? In order to answer this question, suppose that voter i expects all
others to vote sincerely and hence informatively. Is it then in i’s interest to also vote
sincerely?
Denote by T the event of a tie among the others, that is, that exactly k − 1 of

the other voters receive the signal 1 and thus n− k receive the signal 0. Suppose, for
instance, that i received the signal si = 0. Should i then vote on alternative 0? The
probability for the joint event that si = 0 and that there is a tie among the others,
conditional on the state ω = 0, is

Pr [T ∧ si = 0 | ω = 0] =
µ
n− 1
k − 1

¶
qn−k0 (1− q0)

k−1

Likewise, conditional on the state ω = 1, we have

Pr [T ∧ si = 0 | ω = 1] =
µ
n− 1
k − 1

¶
qk−11 (1− q1)

n−k

Therefore, according to i’s prior, the probability for the joint event that i receives
the signal 0 and there is a tie among the others is

Pr [T ∧ si = 0] =

µ
n− 1
k − 1

¶h
(1− µi) q

n−k
0 (1− q0)

k−1 + µiq
k−1
1 (1− q1)

n−k
i

Since, according to i’s prior, the probability of receiving the signal 0 is Pr [si = 0] =
(1− µi) q0+µi (1− q1), committee member i attaches the following conditional prob-
ability of a tie among the others, conditional upon si = 0:

p0(m) = Pr [T | si = 0] =
µ
n− 1
k − 1

¶
(1− µi) q

n−k
0 (1− q0)

k−1 + µiq
k−1
1 (1− q1)

n−k

(1− µi) q0 + µi (1− q1)

We are now in position to compute the difference in expected utility for voter i
between casting the sincere vote vi = 0 instead of the insincere vote vi = 1, conditional
upon the signal si = 0:

∆ui = E [ui | si = vi = 0]− E [ui | si = 0 ∧ vi = 1]

Because i’s vote affects the collective decision x only in the event T , we have

∆ui = p0(m) · (E [ui | T ∧ si = vi = 0]− E [ui | T ∧ si = 0 ∧ vi = 1])
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where

E [ui | T ∧ si = vi = 0] = κi − αi Pr [ω = 1 | T ∧ si = 0]

E [ui | T ∧ si = 0 ∧ vi = 1] = κi − βi Pr [ω = 0 | T ∧ si = 0]

and κi is the conditionally expected utility of taking the right decision, x = ω,
conditional on the event T ∧ si = 0.8 By Bayes’ law (factorials cancel):

Pr [ω = 0 | T ∧ si = 0] =
(1− µi) Pr [T ∧ si = 0 | ω = 0]

Pr [T ∧ si = 0]

=
(1− µi) q

n−k+1
0 (1− q0)

k−1

(1− µi) q
n−k1
0 (1− q0)

k−1 + µiq
k−1
1 (1− q1)

n−k+1 .

Hence:

∆ui =

µ
n− 1
k − 1

¶
(1− µi) q

n−k+1
0 (1− q0)

k−1 βi − µiq
k−1
1 (1− q1)

n−k+1 αi

(1− µi) q0 + µi (1− q1)
. (6)

The condition for ∆ui to be nonnegative, that is, for i to rationally want to vote
according to her signal si = 0, is thus

(1− µi) q
n−k+1
0 (1− q0)

k−1 βi ≥ µiq
k−1
1 (1− q1)

n−k+1 αi,

which can be written as

γi ≤
µ
1− q0
q1

¶k−1µ
q0

1− q1

¶n−k+1
= Ak−1,n. (7)

Hence, sincere voting on alternative 0 (that is, to chose vi = 0 when si = 0) is optimal
if and only if condition (7) is met. Likewise, voting on alternative 1 is optimal if and
only if

γi ≥
µ
1− q0
q1

¶kµ
q0

1− q1

¶n−k
= Ak,n (8)

We have proved the following equilibrium counterpart to the optimality result in
Theorem 2:

8Let κωi be the utility of taking the right decision in state ω = 0, 1. Then

κi = κ0i Pr [ω = 0 | T ∧ si = 0] + κ1i Pr [ω = 1 | T ∧ si = 0]
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Theorem 3. Suppose that the signal informativeness condition (3) is met. For any
positive n ∈ N and k ∈ N ∩ [1, n], sincere voting under k-majority rule constitutes a
Nash equilibrium if and only if

Ak,n ≤ γi ≤ Ak−1,n ∀i (9)

Some remarks are in place. First, if committee members have exactly the same
preferences and beliefs, then conditions (9) and (4) are identical. Hence, in this
special case, a k-majority rule is optimal (for a committee of given size n) if and
only if sincere voting under this rule is a Nash equilibrium. This was first proved by
Austen-Smith and Banks (1996, Lemma 2), see also Costinot and Kartik (2006) for
more recent findings under the same hypothesis of identical preferences and beliefs.
Secondly, for k = n = 1 – the case of a single decision-maker – condition (9) is,

as one would expect, identical with the signal informativeness condition (3).
Thirdly, if n is odd and k = (n + 1)/2 – simple majority rule – then (9) and

(3) are again identical if q0 = q1. This is not surprising, since in this knife-edge case
when the two signals have identical precision, a tie among all other voters does not
affect the odds for one state over the other.9 Generically, however, q0 and q1 are not
identical. For instance, the probability of finding evidence against a guilty defendant
is arguably not always exactly the same as the probability of finding counter-evidence
against an innocent defendant. Suppose, thus, that q0 6= q1 and consider majority
rule in a committee with an odd number of members. Applied to majority rule with
n odd, condition (9) can be written as

1− q0
q1

∙
q0 (1− q0)

(1− q1) q1

¸m
≤ γi ≤

q0
1− q1

∙
q0 (1− q0)

(1− q1) q1

¸m
∀i (10)

where m = (n− 1) /2; half the number of other voters. If q0 and q1 differ even
the slightest, then the factor in square brackets is distinct from unity. As n tends
to infinity, this factor either converges to zero, if q0 > q1, or to plus infinity, if
q0 < q1. Inevitably, one of the two inequalities in condition (9) is thus violated for
all n sufficiently large, for any given positive and finite γi value. We have proved the
following slight generalization of Theorem 1 in Austen-Smith and Banks (1996):10

Corollary 2. Suppose that q0 6= q1. For any positive sequence (γi)i∈N there exists
an n0 ∈ N such that sincere voting is a Nash equilibrium under simple majority rule
for no n ≥ n0.

9Then Pr [ω = 0 | T ∧ si = 0] = Pr [ω = 0 | si = 0] and likewise for ω = si = 1.
10Their result concerns the special case α1 = α2 = ... = αn = β1 = β2 = ... = βn.
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This result is intuitively plausible. For suppose that state 0 is more likely to give
rise to signal value 0 than state 1 is likely to give rise to signal value 1, that is, q0 > q1.
In such a case, signal 0 is less informative than signal 1 in the sense that signal 0 is
more likely in state 1 than signal 1 is in state 0. If n is large, a tie among the others
is then quite a strong indication of state 1, even if a voter’s own signal were 0, since
in total there are just about as many signals 0 as signals 1, quite an unlikely event in
state 0. Hence, even if I, as a voter, believed that the others vote sincerely, I should
vote on alternative 1 in such a case, irrespective of my own signal.
We finally explore the relations between optimality of the voting rule and sincere

voting being an equilibrium. It follows immediately from Theorems 2 and 3 that if
sincere voting is a Nash equilibrium under a k-majority rule, then this rule is opti-
mal. We already noted that the converse holds if committee members have identical
preferences. What if they do not? We proceed to show that if a k-majority rule is op-
timal, then sincere voting is an equilibrium for sufficiently homogenous committees.
Broadly speaking, this should follow from continuity and the discreteness of the set of
voting rules. We here identify bounds on preference heterogeneity for the mentioned
equivalence between optimality and equilibrium.
To this end, it is useful to first ask which collective decision x ∈ {0, 1} individual i

then would like to see taken, if i had known the total number N1 of signals 1 received
among all committee members. As shown in the appendix, voter i will prefer decision
x = 1 over decision x = 0 if and only if

Pr[N1 | ω = 0]
Pr[N1 | ω = 1]

≤ γi (11)

This can be re-written as N1 ≥ λi, where

λi =
n ln q0

1−q1 − ln γi
ln q0

1−q1 + ln
q1
1−q0

(12)

We note that both terms in the denominator are positive and that λi decreases with
γi. Hence, λ1 ≥ λ2 ≥ .. . ≥ λn. For generic parameter values q0, q1 and γi, the
parameters λi are not integers. In the sequel, we focus on this generic case. We will
call λi ∈ R the threshold of i; voter i needs more than λi signals 1 to prefer decision
1 (in the jury case, a “guilty” verdict). Write Mi = bλic+ 1 for the smallest integer
exceeding λi. Committee member i thus prefers decision 1 (over decision 0) if and
only if the number of signals 1 is at leastMi ∈ N. We call the committee homogeneous
if

Mi =Mj ∀i, j ∈ {1, ..., n} , (13)
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while otherwise the committee will be called heterogeneous.11

Proposition 1. If sincere voting is a Nash equilibrium under k-majority rule, then k-
majority rule is optimal. Conversely, if k-majority rule is optimal and the committee
is homogeneous, then sincere voting under this rule is a Nash equilibrium.

(Proof in appendix.)

Example 2. In Example 1 we showed that for n = 3, γ̄ = 1.35, q0 = 0.8 and q1 = 0.7
simple majority is the optimal voting rule: k∗ (3) = 2. Suppose now that the three
committee members differ in how they value a mistake of type I (say, acquitting a
guilty defendant). Let µi = 1/2 and βi = 1 for i = 1, 2, 3, and let α1 = α2 = 1 and
α3 = 2.05. In other words, committee members 1 and 2 are “doves” while member
3 is a “hawk.” With these preferences, γ̄ = 1.35, just as in Example 1, and the
informativeness condition (3) is met:

0.286 ' 1− q0
q1

≤ γi ≤
q0

1− q1
' 2.667

for i = 1, 2, 3. However, sincere voting is not a Nash equilibrium, since committee
member 3, the “hawk” needs only 1 positive signal in order to be convinced that
x = 1 is the right decision:

γ3 = 2.05 > A1,3 =

µ
1− q0
q1

¶µ
q0

1− q1

¶2
' 2.03

Had there instead been five committee members (say two additional members with
µi = 1/2, αi = 1.35 and βi = 1, for i = 4 and 5), then member 3, the hawk, would
have an even stronger disincentive to vote sincerely when receiving the signal 0:

γ3 = 2.05 > A2,3 =

µ
1− q0
q1

¶2µ
q0

1− q1

¶3
' 1.55

In order to appreciate how binding the homogeneity condition is, let us approx-
imate the integer bλm+1c with the real number λm+1 − 1/2. This approximation
is “neutral” in the sense that if bλm+1c = k is reported to an outside observer,
then k + 1/2 is the mid-point of the unit interval to which λm+1 must belong. Us-
ing (12) and the fact that the upper and lower bounds for λm+1 differ by one unit

11A jury is thus heterogeneous if λ1 > bλm+1c+ 1 or λn < bλm+1c or both.
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(N0 < λm+1 < N0 + 1), the resulting approximate homogeneity condition boils down
to:

(1− q0) (1− q1)

q0q1
<

γi
γj

<
q0q1

(1− q0) (1− q1)
∀i, j (14)

It is easily verified that this condition is implied by our signal informativeness condi-
tion (3). The intuition here is that if the signal informativeness condition holds, then
the committee as a whole cannot be very heterogeneous. But, as the above example
shows, the committee need not be very homogeneous either. We note that the het-
erogeneity can be larger the higher the signal quality. As q0, q1 → 1, the left-hand
side of (14) tends to zero while the right-hand side tends to plus infinity.

Remark 2. Re-consider Theorem 3 and suppose that the signal informativeness con-
dition (3) is met. In order to determine whether sincere voting under k-majority rule,
for any given k ∈ N ∩ [1, n], is a Nash equilibrium or not, it is sufficient to assume
that each voter i knows his or her own preferences – whether or not his or her pa-
rameter γi belongs to the interval [Ak,n, Ak−1,n]. In particular, a committee member
does not need to know other committee members’ preferences or beliefs. In such an
equilibrium, each committee member reasons under the hypothesis that all others
vote according to their private signals – their motives for doing so are irrelevant.

5. Straw vote

It has been suggested (see Coughlan, 2000) that communication before voting can
improve the outcome. Coughlan considers the following two-stage voting procedure:
in stage one, all committee members simultaneously report their private signal, a zero
or a one, to a “center.” These reports may be truthful or false. The total counts of
reported zeros and ones are made public to the whole committee. In stage two, there
is simultaneous voting under some k-majority rule as described above, but now with
the total number of reports of each type being common knowledge.
It turns out that under such a straw vote procedure, truthful revelation of one’s

signal in the communication stage is compatible with subgame perfect equilibrium
if voters are identical. In this equilibrium, all committee members have access to
the same aggregate information. However, this is but one of many subgame perfect
equilibria, many of which are uninformative. For example, even if everyone sends
truthful reports, it is optimal to vote on alternative 0 irrespective of the information
available, if one expect all others to do likewise. Moreover, as Coughlan (2000)
shows, truthful reporting is not compatible with subgame perfection if the committee
is heterogeneous in terms of preferences. Members with extreme preferences will not
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want to truthfully report their information if it “points in the wrong direction” In
this section we focus on simple majority rule in a committee with an odd number of
members.
Consider, first, a committee consisting of three members with γ1 ≤ γ2 ≤ γ3, and

such that the signal informativeness condition (3) is met. For each committee member
i, there then exists a minimal number Mi of signals 1 before committee member i
prefers decision 1 over decision 0. We then haveM1 ≥M2 ≥M3 > 0. In other words,
committee member 1 is the “dove” and member 3 the “hawk” in the sense of requiring
the strongest (weakest) evidence to make decision 1 (say, convict the defendant in a
court). However, by (3), all members requires some evidence of state 1 – at least
one signal 1. Suppose now that we apply the straw vote procedure and that all three
committee members truthfully report their signals in the first round. In the second
round, they will then have the same information: they all know the number N1 of
signals 1. All four outcomes, N1 = 0, 1, 2, 3, have positive probability. Suppose that
M1 = 3 and M2 = 1, that is, the committee member 1 needs three signals 1 in order
to prefer decision 1, while the “median voter”, member 2, needs only one signal 1
in order to prefer decision 1. If sufficiently dovish, committee member 1 will then
not report his or her signal truthfully in the straw vote–the dove will report the
signal 0 irrespective of the true signal received. To see this, note that if the other two
report truthfully, then they will vote for decision 1 whenever the straw vote results
in N1 ≥ 1. In other words, if at least one of the two others received the signal 1,
the outcome will be decision 1, irrespective of 1’s report and subsequent vote. If no
committee member received the signal 1 and members 2 and 3 reported truthfully,
then member 1 would prefer decision 1, irrespective of his or her own signal. Hence,
committee member 1, the dove, will always report signal 0, since either this does not
affect the outcome or it sways it away from decision 1 when the evidence for this
decision is weak in member 1’s eyes. The reason for the failure of the straw vote
procedure in this example is the preference heterogeneity in the committee, the big
gap between γ1 and γ2 resulting in a big gap between M1 and M2, here 2.
Secondly, let us consider a committee consisting of an arbitrary odd number n of

committee members. Write n = 2m + 1, where m ∈ N. Without loss of generality,
suppose that γ1 ≤ γ2 ≤ ... ≤ γn. For each committee member i, let λi be as defined
in equation (12). Then λ1 ≥ λ2 ≥ ... ≥ λn. We will call committee member i = m+1

the median voter – the unique committee member who has equally many committee
members on her “left” as on her “right” on the parameter scale. Let si be the signal
received by committee member i. Denote by ti ∈ {0, 1} the straw vote of i in stage
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one of this mechanism and call these votes reports. Let the random variable N1 be
the number of reports ti = 1 in the first stage: N1 =

Pn
i=1 ti. In the second stage, the

committee votes again, now “for real,” and the collective decision x is taken according
to simple majority rule. The vote cast by individual i at this second stage is denoted
vi. When deciding which vote to cast, voter i knows her own private signal si and
report ti, as well as the realization of N1. Hence, a pure strategy for each committee
member i is a pair (τ i, σ̃i), where τ i : {0, 1} → {0, 1} assigns a report ti = τ i (si)

to each signal si received, and σ̃i : {0, 1}2 × {0, 1, 2, ..., n} → {0, 1} assigns a vote
vi = σ̃i (si, ti, Ni) to each signal si received, report ti delivered and observed count
N1 of reports tj = 1.
Is truthful reporting compatible with sequential equilibrium? Suppose that all

committee members report truthfully in the first stage: ti = si for all i. In stage two,
all committee members are then essentially in the same “information set” in stage
two, before casting their “real” votes: they all know the total number N1 of signals
1 among the n signals received. No voter knows exactly who received what signal,
except for their own, but this is of no consequence since all voters by assumption
receive signals of the same “quality.”
Suppose that each committee member votes for his or her preferred decision al-

ternative in stage two, given his or her information. Will each voter i then have an
incentive to report truthfully in the first stage? A single voter can change N1 by only
one unit.
Suppose, first, that voter i received the signal si = 1 and that there were N0 other

signals 1. Then N1 = N0+1 if i will truthfully report ti = 1 while N1 = N0 if i would
falsely report ti = 0. It follows that i’s report will affect the final decision x if and only
if N0 < λm+1 < N0 + 1, or, equivalently, if and only if N0 = bλm+1c.12 Therefore any
committee member i who receives the signal si = 1 can reason conditionally on this
event, namely, that the total number of signals sj = 1 received by the other committee
members is exactly bλm+1c. The probability for this event does not depend on the
identity of member i and it does not depend on i’s signal or report. This probability
is positive whenever 0 ≤ bλm+1c ≤ n, a condition that can be written as

γm+1 ≤
µ

q0
1− q1

¶n

.

But this inequality is implied by the informativeness condition (3) that we already
imposed.

12The reasoning is based on the assumption that λm+1 does not happen to be an integer.
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Likewise, had voter i instead received the signal si = 0, while the others had still
together received N0 signals 1, then i’s report will affect the final decision x if and
only if N0 − 1 < λm+1 < N0, or, equivalently, if and only if N0 = bλm+1c+ 1. Again,
this event has positive probability.
It follows that if the committee is homogeneous in the sense defined in connection

with Proposition 1, then all committee members will always agree in the second stage
about what is the right decision to take. To always report truthfully is then consistent
with sequential equilibrium. By contrast, if the committee is heterogeneous, then the
strategy to always report truthfully is incompatible with sequential equilibrium. We
have established:

Proposition 2. Suppose that the signal informativeness condition (3) holds and
suppose that λm+1 /∈ N. Truthful reporting in the straw vote is then compatible with
sequential equilibrium if and only if the committee is homogeneous.

The same result for the special case q0 = q1 can be found in Coughlan (2000),
who considers various majoritarian voting rules.

Example 3. Re-consider Example 2, where n = 3, q0 = 0.8, q1 = 0.7, µi = 1/2 and
βi = 1 for i = 1, 2, 3, and α1 = α2 = 1 and α3 = 2.05. In Example 1, we showed
that the optimal voting rule was simple majority: k∗ (3) = 2 and in Example 2 we
showed that sincere voting under this rule was incompatible with Nash equilibrium.
Would a straw vote help? No, because the “hawk” – committee member 3 – needs
only one signals 1 for decision 1, while the two others need 2. More exactly, we have
γ1 = γ2 = 1 and γ3 = 2.05, and thus λ1 = λ2 ' 1.318 and λ3 ' 0.996 according
to (12), and M1 = M2 = 2 but M3 = 1. There is no sequential equilibrium in which
committee member 1 reports the signal 0 truthfully in the straw vote.

6. A randomized voting rule

Consider first the voting rule according to which each of the nmembers of a committee
casts a vote, a random sample of h ≤ n of these votes is drawn and the collective
decision is made by way of some k-majority rule applied to this random sample. If
each vote has the same positive probability of being sampled, and the sample size h
is small enough, then it follows from the above analysis that informative voting will
be a Nash equilibrium (take h = 1, say).
More precisely, under the signal informativeness condition (3), condition (10) is

met for all non-negative integers m sufficiently small (certainly for m = 0). Let
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m∗ be the maximal such integer, and note that m∗ depends on the signal quality
parameters q0 and q1 as well as on the taste-and-belief parameters γi, but is inde-
pendent of m. For any number n = 2m + 1 of committee members, let f∗ be the
randomized voting rule according to which all voters vote simultaneously and the
collective decision x is determined by simple majority rule applied to a subset of odd
size h ≤ min {2m∗ + 1, n} of these votes, the subset being drawn at random from
among all subsets of size h, with equal probability for each such subset, and where
the draw is statistically independent of the state of nature, of the signals and of the
votes. In force of Theorem 3 we have:

Corollary 3. If the signal informativeness condition (3) is met, then informative
voting is a Nash equilibrium under the voting rule f∗.

An evident drawback of this voting rule is that it does not aggregate the private
information in an efficient way when n is large, since the sample size h remains
bounded by 2m∗ + 1. Hence, while the collective information by the law of large
numbers tends asymptotically to the truth as n tends to infinity, just as claimed by
Condorcet, the collective decision x under f∗ will remain bounded away from being
fully informed.
However, there is a straight-forward way to combine this simple randomized ma-

jority rule with the usual majority rule and thereby obtain a randomized majority
rule that is asymptotically efficient. Instead of always letting a randomly selected
subset of votes determine the collective decision, suppose that, after everybody has
cast their votes, a binary randomization device is employed to determine whether the
collective decision x be determined by (i) the simple majority of a random sample of h
votes, as described above, or (ii) by the simple majority of all n votes, as described in
Section 3. It turns out that under this randomized majority rule, Condorcet’s claim
can be restored: by choosing the probability for the event (i) carefully, the collective
decision will be fully informed with probability one in equilibrium in the limit as n
tends to infinity. Indeed, as we will see, this equilibrium is strict and there are no
other pure-strategy equilibria and there are no symmetric mixed equilibria either.13

For the sake of definiteness and ease of notation, we establish this result for the
special case of the simple majority rule applied to a committee with an odd number
n = 2m + 1 of members (for some m ∈ N) and random delegation to a single vote,

13We conjecture that our equilibrium is unique, but have not yet been able to prove this.
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h = 1.14 More precisely, with a pre-specified probability ε > 0 the decision is taken
according to a randomly drawn single vote and with probability 1 − ε according to
simple majority rule applied to all votes. Denote by f ε this randomized voting rule,
for 0 < ε < 1.
We first investigate the condition on the delegation probability ε for sincere voting

to be a Nash equilibrium under such a voting rule f ε. Suppose that committee mem-
ber i has received the signal si = 0. Denote by ∆uεi the difference in expected utility,
for that member, when casting the sincere vote vi = 0 rather than the insincere vote
vi = 1. Committee member i thus becomes the “ex-post dictator” with probability
ε/n, while majority rule is applied to all n votes with probability 1 − ε. If another
committee member’s vote is sampled, then i’s vote does not matter. It follows from
the above analysis that:

∆uεi =
ε

n

(1− µi) q0βi − µi (1− q1)αi

(1− µi) q0 + µi (1− q1)
+ (15)

+(1− ε)

µ
2m

m

¶
(1− µi) q

m+1
0 (1− q0)

m βi − µiq
m
1 (1− q1)

m+1 αi

(1− µi) q0 + µi (1− q1)

The first term on the right-hand side is non-negative if and only if γi ≤ q0/ (1− q1).
The corresponding condition for signal 1 is γi ≥ (1− q0) /q1. Both conditions are
satisfied under the informativeness condition (3). It follows that then ∆uεi is positive
for all ε < 1 close enough to 1. Moreover, for ε fixed, it is not difficult to show that
the second term on the right-hand side tends to zero as n tends to infinity. Under our
preference boundedness condition (2), this holds uniformly for all i (see Appendix).
Hence, ε can be small when n is large. Moreover, the incentive for voting sincerely
is then strict, so sincere voting is not only a Nash equilibrium but a strict Nash
equilibrium. Indeed, this equilibrium is unique. This is the content of the following
two results. We will say that the signal informativeness condition (3) is uniformly
met if there exists some η < 1 such that

1− q0
ηq1

< γi <
ηq0
1− q1

∀i

Theorem 4. Suppose that the preference boundedness condition (2) holds and that
signal informativeness condition (3) is uniformly met. There exist a sequence of
positive numbers ε̄n → 0 such that for each n ∈ N and ε ≥ ε̄n, under the rule f ε:

14Our results generalize to any sequence hn ≤ max {2m∗ + 1, n}, whereby informationally more
effient collective decisions are obtained.
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(i) sincere voting is a strict Nash equilibrium
(ii) there exists no other Nash equilibrium.

Remark 3. In the appendix, we prove claim (i) for ε̄n decreasing exponentially with
n and claim (ii) for ε̄n decreasing with n at the rate 1/

√
n. We also prove that claim

(ii) holds for pure-strategy equilibria and for symmetric mixed-strategy equilibria
when ε̄n decreases exponentially. However, in order to eliminate asymmetric mixed
equilibria, we used an argument that holds only for ε̄n decreasing at the rate 1/

√
n,

though we conjecture that claim (ii) might in fact be true also for exponentially
decreasing ε̄n.

Let (εn)n∈N be any sequence of positive numbers tending to zero, such that εn ≥
ε̄n for all n, where (ε̄n)n∈N satisfies Theorem 4. Let (fn)n∈N be the corresponding
sequence of randomized majority rules. This sequence of voting rules is asymptotically
efficient:

Corollary 4. Suppose that the preference boundedness condition (2) holds and that
the signal informativeness condition (3) is uniformly met. Let Xn ∈ {0, 1} be the
committee decision under a voting rule fn such as just described, for each n ∈ N.
Then

lim
n→∞

Pr [Xn 6= ω | ω] = 0 ∀ω ∈ Ω

(Proof in appendix.)

Example 4. In Examples 1-3 we studied a committee consisting of three members
for which the simple majority rule was optimal but under which sincere voting was
not a Nash equilibrium. How large do we need ε to be in order for the randomized
majority rule f ε to induce sincere voting as a (strict) Nash equilibrium? Recall that
q0 = 0.8, q1 = 0.7, µi = 1/2 and βi = 1 for i = 1, 2, 3, and α1 = α2 = 1 and α3 = 2.05.
For any ε > 0 we then have the following expected utility difference between voting
0 and voting 1 upon receiving signal 0, for each committee member i:

∆uεi =
ε

3
· q0 − (1− q1)αi

1 + q0 − q1
+ 2 (1− ε) · q

2
0 (1− q0)− q1 (1− q1)

2 αi

1 + q0 − q1

=
ε

3
· 0.8− 0.3αi

1.1
+ 2 (1− ε) · 0.8

2 · 0.2− 0.7 · 0.32αi

1.1

These are affine functions of ε. For member 3, the “hawk,” we obtain

∆uε3 = 0.0581 · ε− 0.00209.
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Hence, ∆uε3 > 0 for all ε ' 0.036. A “dictatorship delegation probability” of about
3.6% (1.2% for a given committee member) will thus make sincere voting a strict
equilibrium.

7. A slight preference for sincerity or esteem

Suppose that the committee members have a slight preference for voting according
to their personal beliefs. More precisely, in addition to the expected utility from the
collective decision, let there be an additional utility from voting sincerely, that is,
on the alternative that, given one’s preferences, prior and signal is the right decision
(has the highest expected utility). Such voters are “rational,” it is only that they not
only care about the final collective decision but also about the sincerity of their own
voting act – of casting their vote in accordance with or against their true belief.
This preference can be intrinsic – a deontological preference for sincerity per

se. Arguably, many individuals have such preferences. However, a preference for
sincerity can also emanate from reputation concerns.15 Think, for example, of the
board of a company or of a central bank.16 Indeed, in the latter context, the question
of increased transparency has been taken up in the public debate, and some central
banks (such as the Bank of England and the Sveriges Riksbank) have in recent years
introduced transparency rules, whereby individual board members’ votes are made
public after the decision has been made, and, later on these votes can be evaluated
against the backdrop of the economy’s performance during the period in question.
Similar concerns may apply to other committee and board decisions.
In order to illustrate the effect of such transparency in the context of the present

stylized abstract model, suppose now that each individual member of the committee
is aware at the moment of voting that there is a positive probability λ that after some
time the true state of nature at the time of the decision will be publicly revealed along
with the individual’s actual vote. Assume, furthermore, that the committee member’s
esteem (in her own eyes or in others’) will increase if his or her vote was right, that is
if vi = ω, while otherwise the esteem falls. We assume that the utility to committee
member i of increased esteem from voting right (as compared with voting on the
wrong alternative) is positive, ρi > 0. Given signal 0, for example, the expected
utility gain from increased esteem, when voting informatively (that is, on alternative

15We are grateful to Torsten Persson for pointing out this possibility.
16Clearly, the board of a company or a central bank usually does not face a binary decisions but

much more complex decision problems. However, in practice complex deliberations sometimes boil
down to a binary decision, to accept or reject a a finalpolicy proposal pitted agains status quo or
another proposal.
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0 instead of on alternative 1) is then

δ0i = λ
(1− µi) q0 − µi (1− q1)

(1− µi) q0 + µi (1− q1)
· ρi

(see calculations leading up to the informativeness condition (3)), and likewise for
the expected utility gain δ1i from increased esteem when voting informatively when
the signal is 1.17 It is easily verified that both δ0i and δ1i are positive if

1− q0
q1

<
µi

1− µi
<

q0
1− q1

or, equivalently, if the informativeness condition (3) is met for αi = βi.
Maintaining the signal informativeness assumption (3) and assuming that the

decision is to be taken by simple majority rule, suppose that each committee member
i who receives the signal 0 obtains additional utility δ0i > 0 from voting 0, and
likewise if the committee member had received the signal 1. For each committee size
n = 2m+ 1, the expected utility difference between voting 0 and 1, for a committee
member i who has received the signal 0, now is:

∆u0i = δ0i +

µ
2m

m

¶
(1− µi) q

m+1
0 (1− q0)

m βi − µiq
m
1 (1− q1)

m+1 αi

(1− µi) q0 + µi (1− q1)
(16)

and likewise when the committee member has received the signal 1.
Clearly, sincere voting is a Nash equilibrium for all δ0i , δ

1
i > 0 sufficiently large.

Moreover, if there exists a positive lower bound δ on all δ0i and δ
1
i , then sincere voting

is a Nash equilibrium granted n is large enough, since the probability for a tie under
sincere voting goes to zero as n → +∞ and hence the strategic incentive against
sincere voting vanishes asymptotically as the size of the committee tends to infinity.
In this sense, the negative result in Corollary 2 is not robust. More precisely, the
reason for this non-robustness is that the second term in (16) tends to zero as m
tends to plus infinity. Hence, no matter how small δ0i > 0 is, ∆u0i is positive for m
large enough, and likewise for the expected utility difference between voting 1 and 0
for voters who have received the signal 1.
We can firm up these observations as follows. Consider a sequence of committees

with ever larger size n, such that the preference boundedness condition (2) holds and
the signal informativeness condition (3) is uniformly met. The utility from sincere
voting and/or from boosted esteemmay depend on the committee size. Arguably, this

17δ1i = λµq1−(1−µ)(1−q0)
(1−µ)(1−q0)+µq1 ρi.
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utility can plausibly be decreasing in n. In order to allow for this possibility, let δ0i,n
and δ1i,n be positive for each member i and committee size n. Granted these parameter
values are not too close to zero, and do not decrease too fast with n, informative voting
is a strict Nash equilibrium, indeed the unique Nash equilibrium for each committee
size n. In particular, the whole plethora of uninformative Nash equilibria that exist
in the standard voting model in sections 3 and 4 vanishes. Formally:

Theorem 5. Suppose that the preference boundedness condition (2) holds and the
signal informativeness condition (3) is uniformly met. There exist a sequence of pos-
itive numbers δ̄n → 0 such that for each n ∈ N, if δ0i,n, δ1i,n ≥ δ̄n for all i ∈ {1, ..., n},
(i) sincere voting is a strict Nash equilibrium
(ii) there exists no other Nash equilibrium.

(Proof in appendix.)
Condorcet’s jury theorem thus holds for rational voters who have a preference

for voting according to their own beliefs and/or care about their own reputation.
Applying Theorem 1 we immediately obtain:

Corollary 5. Suppose that the preference boundedness condition (2) holds, that
the informativeness condition (3) is uniformly met, and that δ0i,n, δ

1
i,n ≥ δ̄n > 0 for

all n ∈ N and i ∈ {1, ..., n}. Let Xn (ω) ∈ {0, 1} be the collective decision in pure-
strategy Nash equilibrium under majority rule with n voters. Then

lim
n→∞

Pr [Xn (ω) 6= ω] = 0.

The following example gives a numerical illustration of how strong the prefer-
ence for sincerity and/or esteem needs to be in order to make sincere voting a Nash
equilibrium in Examples 1-4.

Example 5. The diagram below shows the graph of the utility difference ∆u0i for
committee member i = 3, the “hawk” in Examples 1-4, the difference in expected
utility from voting sincerely and insincerely, after this member has received the signal
0. On the horizontal axis is m, where the total committee size is n = 2m+ 1. When
adding a utility δ0i > 0 for sincere voting, this curve is lifted by δ

0
i . We see that for a

committee size of n = 3 only a slight preference for sincerity, δ0i ' 0.002, is needed.
By contrast, intermediate committee sizes (5 ≤ n ≤ 17) require a stronger preference
for sincerity (roughly δ0i ' 0.03), while in large committees again only a slight prefer-
ence for sincerity is required, for large n monotonically vanishing as n → ∞. These
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utility levels for sincerity should be compared with the committee members utility
loss from mistakes of types I and II (2.05 and 1, respectively).

2 4 6 8 10 12 14

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

m

u diff

Figure 2: The incentive for sincere voting.

The following example illustrates the possibility of a mixed equilibrium when the
preference for sincere voting is not strong enough. In this equilibrium, a “dove” and
a “hawk” randomize in an anti-symmetric way.

Example 6. Consider a committee with tree members with uniform priors (µi = 1/2
for i = 1, 2, 3), both signals equally precise (q0 = q1 = q), distinct preferences (γ1 =
1/c, γ2 = 1 and γ3 = c for some c > 1) and an equally strong preference for sincerity,
(δ0i = δ1i = δ ≥ 0 for i = 1, 2, 3), such that the signal informativenss condition is
strictly met for all committee members. Since the two signals are equally precise,
sincere voting is then a strict Nash equilibrium for all δ ≥ 0. Consider the possibility
of an additional equilibrium, a mixed anti-symmetric equilibrium in which (a) voter 1
votes sincerely when receiving signal 0 and votes 1 with probability x when receiving
signal 1, (b) voter 2 votes sincerely, and (c) voter 3 votes sincerely when receiving
signal 1 and votes 0 with probability x when receiving signal 0. Does there exist an x
in the open unit interval for which this constitutes a Nash equilibrium? The critical
point is that x should render voter 1 indifferent when receiving signal 1 and voter 3
indifferent when receiving signal 0. It is not difficult to show that the anti-symmetry
of preferences makes these two indifference conditions coincide, and that they both
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boil down to the following equation:

x =
q (c− 1) (1− q)− δ

(c+ 1) (2q − 1) (1− q) q
(17)

For q = 0.8, δ = 0.1 and c = 2, for example, the signal informativeness condition
is met and we obtain x ≈ 0.31. More generally, the equilibrium randomization x

is decreasing in δ, the preference for sincerity. For δ ≥ q (c− 1) (1− q), no mixed
equilibrium of this sort exists. For example, for q = 0.8 and c = 2 this is true for all
δ ≥ 0.16.

In Section 5 we analyzed the potential benefit of a straw vote. We found that,
when a straw vote is organized but the committee is not homogeneous in the sense of
condition (13), then, according to Proposition 2, truthful reporting is not compatible
with sequential equilibrium for the original utilities. The analysis of the present section
carries over to the straw-vote setting if committee members obtain additional utilities
δ0i , δ

1
i > 0 from reporting truthfully.

8. Conclusion

The above analysis is restricted to a fairly special setting; a committee of equally
“competent” members who receive private information of exogenously fixed precision
and face a binary collective decision problem without the possibility of abstention.
However, we believe that the qualitative conclusions hold more generally.
First, suppose that the committee members are unequally “competent” in the

sense that their signals are not equally precise. If these competence differences are
known, then weighted majority rule, where more competent voters are given higher
weights, may be used to obtain more efficient information aggregation (see Ben-
Yashar and Milchtaich (2006)). We believe that our qualitative results concerning
equilibrium carry over also to such cases. If differences in competence are not known,
then again we believe that our qualitative conclusions hold. For if voters’ individual
vectors qi = (qi0, q

i
1) are identically and independently distributed according to some

fixed probability distribution, and this distribution is not too dispersed, then an
application of the law of large numbers will presumably lead to qualitatively the
same asymptotic result as we report here.
Secondly, while our hypothesis that committee members know each other’s prefer-

ences is arguably not so unrealistic in small committees that meet regularly, it is not
so realistic in many other situations. Hence, a generalization in this direction is also
called for. Note, however, that some of our results would be unaffected if committee
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members would only have probabilistic beliefs about each others’ preferences. For
instance, whether or not sincere voting is a Nash equilibrium does not depend on
committee members’ beliefs or knowledge about each others’ preferences. All that
matters for a voter is whether or she wants to follow her own signal under the hy-
pothesis that all the others vote sincerely – irrespective of their motives for doing
so.
A third direction for generalization, which would be valuable and challenging to

explore, concerns the binary nature of both signals and choices. What can be said if
the choice is binary but there are more than two signal values (perhaps just three, or
a whole continuum)? What if there are more than two choice alternatives?
A forth direction would be to analyze equilibrium outcomes if abstention is an

option and/or the number of voters is unknown by the voters. Such aspects may be
less relevant for some committees but may play a major role in other committees and
certainly in general elections. Krishna and Morgan (2007) undertake an investigation
of precisely these two aspects, in a setting where the number of voters is a Poisson
distributed random variable and each voter draws a random cost for casting a vote (or
going to the polls). The actual number of voters is not observed by the voters and each
voter only observes his or her own voting cost. Krishna and Morgan assume that the
voters otherwise have identical preferences, that the two states of nature are equally
likely and that the two signals are equally precise. The show that sincere voting
then is the unique Nash equilibrium under super-majority rules when the expected
number of voters is large. Moreover, equilibrium participation rates are such that the
outcome is asymptotically efficient. While their model thus is cast more in the mold
of general elections, it would be interesting to explore (a) whether our assumptions
about preference and belief heterogeneity can be handled in their framework and (b)
whether (strategic) abstention in a committee of fixed and know size (without voting
costs) can be handled in our framework.
A a fifth and final avenue for further work would be to endogenize voters’ signal

precision. Before a committee meets, committee members usually make (mostly
unobserved) efforts to study relevant information so that they will be well informed at
the meeting. However, as is well-known both by practitioners and theorists, this gives
rise to a free-rider problem, whereby committee members often tend to under-invest
and arrive at the meeting less informed than what would be collectively desirable. For
a recent analysis of this phenomenon, see Koriyama and Szentes (2007), who consider
a binary effort choice but abstracts from strategic aspects of voting. A synthesis of
their approach and ours could potentially lead to interesting new insights.
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9. Appendix

We here provide proofs of claims not proved in the main text.

9.1. Theorem 1. Suppose that ω = 0 and consider any positive integer n. The
probability that voter i votes vi = si = 1, when voting informatively, is 1−q0. Define
majority rule by f (v) = 1 if

P
vi > n/2, f (v) = 1/2 if

P
vi = n/2 and otherwise

f (v) = 0. Under this rule, the probability of a wrong decision in this state is thus

Pr [Xn = 1 | ω = 0] ≤ Pr
"
1

n

nX
i=1

si ≥
1

2
| ω = 0

#

Conditional upon ω = 0, the random variables {si}ni=1 are independent, with the
same Bernoulli distribution. Hence, according to the Central Limit Theorem (see,
for example, Theorem 27.1 in Billingsley, 1995), their average, 1

n

Pn
i=1 si (given ω =

0), converges in distribution towards the normal distribution with mean 1 − q0 and
variance q0(1− q0)/n. Since 1− q0 <

1
2
:

lim
n→∞

Pr

"
1

n

nX
i=1

si ≥
1

2
| ω = 0

#
= 0

The same argument applies to the state ω = 1.

9.2. Theorem 2. Write W
¡
fk
¢
in the following way, where the random variable

N1 is the number of signals 1 received, U0 =
Pn

i=1 (1− µi)u
i
0 and U1 =

Pn
i=1 µiu

i
1,

two real numbers:

W
¡
fk
¢
= −β̄n Pr [x = 1 | ω = 0]− ᾱn Pr [x = 0 | ω = 1] + U0 + U1

= −β̄n Pr [N1 ≥ k | ω = 0]− ᾱn Pr [N1 < k | ω = 1] + U0 + U1

Hence,

W
¡
fk+1

¢
−W

¡
fk
¢
= β̄n Pr [N1 = k | ω = 0]− ᾱn Pr [N1 = k | ω = 1]

and thus

W
¡
fk+1

¢
≤W

¡
fk
¢
⇐⇒ γ̄ ≥ Pr [N1 = k | ω = 0]

Pr [N1 = k | ω = 1]

⇐⇒ γ̄ ≥ (1− q0)
k qn−k0

qk1 (1− q1)
n−k = Ak,n
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Likewise:

W
¡
fk−1

¢
≤W

¡
fk
¢
⇐⇒ γ̄ ≤ Pr [N1 = k − 1 | ω = 0]

Pr [N1 = k − 1 | ω = 1]

⇐⇒ γ̄ ≤ (1− q0)
k−1 qn−k+10

qk−11 (1− q1)
n−k+1 = Ak−1,n

Since Ak,n is decreasing in k, W
¡
fk
¢
≥ W

¡
fh
¢
for all h = k + 1, k + 2, ..., n if and

only if γ̄ ≥ Ak,n. Likewise, W
¡
fk
¢
≥ W

¡
fh
¢
for all h = k − 1, k − 2, ..., 1 if and

only if γ̄ ≤ Ak−1,n. Hence, as k increases from 1 to n, W
¡
fk
¢
reaches its maximum

value either at a unique k or (non-generically) at two adjacent values, k − 1 and k.
As noted in footnote 6, k = 0 and k = n+ 1 are never optimal.

9.3. Corollary 1. Condition (4) is equivalent with∙
(1− q0) (1− q1)

q0q1

¸k µ
q0

1− q1

¶n

≤ γ̄n ≤
∙
(1− q0) (1− q1)

q0q1

¸kµ
q1

1− q0

¶µ
q0

1− q1

¶n+1

or µ
q0

1− q1

¶n

≤ γ̄n ·
∙

q0q1
(1− q0) (1− q1)

¸k
≤
µ

q1
1− q0

¶µ
q0

1− q1

¶n+1

Taking logarithms and dividing through with n, we obtain

ln

µ
q0

1− q1

¶
≤ 1

n
ln γ̄n +

k

n
ln

∙
q0q1

(1− q0) (1− q1)

¸
≤ 1

n
ln

µ
q1

1− q0

¶
+

µ
1 +

1

n

¶
ln

µ
q0

1− q1

¶
As n → ∞, the upper bound converges to the lower bound, ln

³
q0
1−q1

´
, and 1

n
ln γ̄n

tends to zero since,from our preference boundedness condition, γ̄n ∈ [γmin, γmax] for
all n ∈ N. This establishes the equality in (5).
In order to establish the claimed inequalities, let

B =
ln
³

q0
1−q1

´
ln
³

q0
1−q1

´
+ ln

³
q1
1−q0

´ .
Suppose first that q1 ≤ q0. Then

q1
1−q0 ≤

q0
1−q1 , from which we deduce that B ≥ 1/2

and 1− q0 ≤ B. To obtain the second claimed inequality, B ≤ q1, note that this can
be re-written, after some manipulation, as

q1 ln(1− q0) + (1− q1) ln q0 ≤ q1 ln q1 + (1− q1) ln(1− q1).
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The right-hand side is independent of q0, while the left-hand side is decreasing in q0.
Thus, the claimed inequality B ≤ q1 holds for all q0 ∈ [q1, 1] if and only if it holds for
q0 = q1. Writing the inequality for that special case, one obtains

q1 ln(1− q1) + (1− q1) ln q1 ≤ q1 ln q1 + (1− q1) ln(1− q1),

or, equivalently,
(2q1 − 1) ln(1− q1) ≤ (2q1 − 1) ln q1,

an inequality which clearly holds since q1 ≥ 1/2.
Now suppose that q1 ≤ q0. Then the above reasoning (switching q0 and q1) gives us

1− q1 ≤ 1−B ≤ q0, which is equivalent with the claimed inequality 1− q0 ≤ B ≤ q1.

9.4. Proposition 1. Suppose that sincere voting is an equilibrium under k-majority
rule, then, by Theorem 3, Ak,n ≤ γi ≤ Ak−1,n for all i. Hence

(1− µi) βiAk,n ≤ µiαi ≤ (1− µi)βiAk−1,n ∀i

so β̄nAk,n ≤ ᾱn ≤ β̄nAk−1,n or, equivalently, Ak,n ≤ γ̄n ≤ Ak−1,n. Thus, by Theorem
2, the k-majority rule is optimal.
Conversely, suppose that the committee is homogeneous. There exists an integer

M such that M − 1 ≤ λi ≤M for all i. By definition (12) of λi, this is equivalent to∙
q0

1− q1

¸n−M ∙
1− q0
q1

¸M−1
≤ γi ≤

∙
1− q0
q1

¸M−1 ∙
q0

1− q1

¸n−M
∀i (18)

This implies the same inequality for γ̄n and thus k-majority rule is optimal for k =M ,
by Theorem 2. But since (18) holds, sincere voting is an equilibrium, by Theorem 3.

9.5. Claim (i) in Theorem 4. To see that sincere voting under f ε is a strict
Nash equilibrium, first note that ∆uεi > 0 if and only if

ε

1− ε
>
2m+ 1

Bi
·
µ
2m

m

¶£
αiµiq

m
1 (1− q1)

m+1 − βi (1− µi) q
m+1
0 (1− q0)

m¤ (19)

where the factor Bi = βi (1− µi) q0 − αiµi (1− q1) is positive by (3). By Stirling’s
formula, µ

2m

m

¶
=
(2m)!

(m!)2
=

4m√
πm

(1 + o(m))
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so the right-hand side of (19) is approximated by

(1 + o(m)) · 4m

Bi(2m+ 1)
√
πm

·
£
αiµiq

m
1 (1− q1)

m+1 − βi (1− µi) q
m+1
0 (1− q0)

m¤
≤ (1 + o(m)) · 2αiµi (1− q1)

Bi

√
π

[4q1(1− q1)]
m
√
m ≤ (1 + o(m)) · Ci

Bi
· am
√
m

where Ci = 2αiµi (1− q1) /
√
π and a = 4q1(1− q1) < 1. Hence, (19) is met if

ε

1− ε
>

Ci

Bi
(1 + o(m))am

√
m

A sufficient condition for this to hold is that

ε >
Ci

Bi
(1 + o(m))am

√
m (20)

The preference boundedness condition (2) together with the hypothesis that the
signal informativeness condition is uniformly met implies that Ci/Bi is uniformly
bounded: there exists a D ∈ R such that Ci/Bi < D for all i.18 Let ε = bm with
a < b < 1. Then ε→ 0 as m→ +∞. Moreover, sinceµ

b

a

¶m
1√
m
→ +∞ as m→∞,

(20) holds for all m large enough, irrespective of how large D is.
The same reasoning applies to the expected utility upon receiving the signal si = 1.

This proves claim (i) for ε = bm, for any b such that

max{4q0(1− q0), 4q1(1− q1)} < b < 1

where we note that lower bound indeed is less than 1 since q0, q1 > 1/2.

9.6. Corollary 4. Suppose first that ω = 0 and consider informative voting under
fn, for n = 2m+1 ∈ N fixed. The probability that committee member i votes si = 1
is, by definition 1 − q0. If the collective decision is taken by simple majority rule

18To see this, note that Ci/Bi ≤ D iff

1

γi
· q0
1− q1

− 1 ≥ 1

D

and let η = D/ (D + 1).



Commitee decisions: optimality and equilibrium 36

applied to all n votes, the probability of a wrong decision, Xn = 1, is some number
Qn. So the probability of a wrong decision, given ω = 0, is

Pr [Xn = 1 | ω = 0] = εn(1− q0) + (1− εn)Qn

The probability of a wrong decision in state ω = 0 thus tends to 0 if Qn → 0 as
n→∞ since εn → 0. It thus remains to prove that Qn → 0. We proceed just as in
the proof of Condorcet’s jury theorem. First note that, since n is odd:

Qn = Pr

"
nX
i=1

si >
n

2
| ω = 0

#
Conditional upon ω = 0, the signals si are independent, with the same Bernoulli
distribution. Hence, according to the Central Limit Theorem, 1

n

Pn
i=1 si, given ω = 0,

converges in distribution to the normal distribution with mean 1 − q0 and variance
q0(1− q0)/n. Since q0 > 1

2
:

lim
m→∞

Pr

"
1

n

nX
i=1

si >
1

2
| ω = 0

#
= 0.

The same argument applies to the case ω = 1.

9.7. Claim (i) in Theorem 5. In order to establish that informative voting
constitutes a strict Nash equilibrium, consider, first, a voter who has received the
signal 0. Under majority rule applied to n = 2m + 1 voters, the expected utility
difference between voting 0 and 1 is given by (6). Focusing on large n and applying
Stirling’s formula,

m! =
√
2πm · (m/e)m · (1 + o(m)),

we have µ
2m

m

¶
=
(2m)!

(m!)2
=

4m√
πm

(1 + o(m))

and obtain

lim
m→∞

∆u0i = δ0i + lim
m→∞

4m√
πm

· βi (1− µi) q0 [q0 (1− q0)]
m − αiµi (1− q1) [q1 (1− q1)]

m

(1− µi) q0 + µi (1− q1)

≥ δ0i − lim
m→∞

1√
πm

· αiµi (1− q1) [4q1 (1− q1)]
m

(1− µi) q0 + µi (1− q1)

= δ0i − lim
m→∞

1√
πm

· αiµi (1− q1)

(1− µi) q0 + µi (1− q1)
· am = δ0i − 0 = δ0i ≥ δ > 0,
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because 1/2 < q1 < 1 implies that a = 4q1 (1− q1) < 1. The same holds for a voter
who has received the signal 1. Claim (i) is thus obtained in much the same way as
claim (i) in Theorem 4, namely, for a sequence of δ-values decreasing in n at the rate
bm, for m = (n− 1) /2, where max{4q0(1− q0), 4q1(1− q1)} < b < 1.

9.8. Claim (ii) in Theorems 4 and 5, pure strategies. The line of reasoning
is the same for Theorems 4 and 5, so we thus treat both cases in this section. For
any non-negative integer m, the base-line game, that is, simple majority rule applied
to a committee of size n = 2m + 1, will be denoted G(m). Let Gδ(m) denote the
game when majority rule is applied to a committee of size n = 2m+ 1 in which each
committee member obtains an additional utility, a “sincerity bonus,” of δ from voting
sincerely in each state of the world, and where δ > 0 is such that sincere voting is
a Nash equilibrium. (The following argument for uniqueness goes through also in
the more general case when δ > 0 instead is a lower bound on bonuses δωi ). Finally,
let Φε(m) denote the game in which the randomized majority rule f ε is applied to a
committee of size n = 2m+ 1 and where ε > 0 is such that sincere voting is a Nash
equilibrium.
In all these games, a pure strategy for any voter i is a mapping from i’s signal to

i’s vote:
σi : {0, 1}→ {0, 1} (21)

We will write σi(si) = vi when i’s signal is si and vote is vi. Thus each voter has four
pure strategies:

• The informative strategy, σ+ defined by: σ+(0) = 0 and σ+(1) = 1

• The reversed strategy, σ− defined by: σ−(0) = 1 and σ−(1) = 0

• The constant-0 strategy, σ0 defined by: σ0(0) = 0 and σ0(1) = 0

• The constant-1 strategy, σ1 defined by: σ1(0) = 1 and σ1(1) = 1

Let the strategies of players j = 1, ..., 2m be fixed and consider voter i = 2m+ 1.
Denote by T the event of a tie among all other votes. Since signals are independent,

conditionally on the state, we have:

Pr [T ∧ ( s2m+1 = 0) | ω] = Pr [T | ω] · Pr [s2m+1 = 0 | ω]

for all states ω. Let π0 = Pr [T | ω = 0] and π1 = Pr [T | ω = 1]. For player i =
2m+ 1, all strategies have the same payoff consequences unless the event T realizes.
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Therefore, only the following four events have to be considered when evaluating i’s
strategy choice:

event probability σ+ σ− σ0 σ1

T ∧ (s2m+1 = 0) ∧ (ω = 0) π0q0 (1− µi) 0 −βi 0 −βi
T ∧ (s2m+1 = 1) ∧ (ω = 0) π0(1− q0) (1− µi) −βi 0 0 −βi
T ∧ (s2m+1 = 0) ∧ (ω = 1) π1(1− q1)µi −αi 0 −αi 0
T ∧ (s2m+1 = 1) ∧ (ω = 1) π1q1µi 0 −αi −αi 0

The difference in expected utility for voter i = 2m + 1 between the informative
and reversed strategies is in Gδ(m):

E
£
ui(σ

+)
¤
− E

£
ui(σ

−)
¤
= π0(2q0 − 1) (1− µi)βi + π1(2q1 − 1)µiαi + δ.

By assumption, αi, βi > 0 and q0, q1 > 1/2. Hence:

E
£
ui(σ

+)
¤
− E

£
ui(σ

−)
¤
≥ δ,

where δ ≥ 0. Moreover, unless π0 and π1 are both equal to 0, E [ui(σ+)]−E [ui(σ−)] >
δ. However, there exist strategy profiles for which π0 = π1 = 0.
This argument shows that, in the base-line game G(m):

• The informative strategy σ+ weakly dominates the reversed strategy σ−.

• If a strategy profile is such that player i has a positive probability of being
pivotal, then the reversed strategy σ− is not a best response for player i.

It is easy to see that even stronger conclusions hold in all the variants of the base-
line game studied in this paper. With ethical voters, δ > 0, we have E [ui(σ+)] >
E [ui(σ−)], and with random delegation, the reversed strategy can be a best response
only if the player is pivotal in no sample. This is impossible when h = 1 (delegation
to a single vote). Hence:

Lemma 1. If δ, ε > 0, then σ− is used with probability zero in every Nash equilib-
rium of Gδ(m) and in every Nash equilibrium of Φε(m).

Our next lemma further restricts the set of potential equilibria under majority
rule with ethical voters and in randomized dictatorship.

Lemma 2. If δ, ε > 0, then there exists no pure Nash equilibrium of Gδ(m) or Φε(m)

in which both σ0 and σ1 are used.
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Proof: Consider a pure equilibrium in which both strategies σ0 and σ1 are used.
Let n+, n0 and n1 denote the number of players who respectively use the strategies
σ+, σ0 and σ1, with n+ + n0 + n1 = n = 2m + 1. One player, say i, plays the pure
strategy σ0 and another player, say j, plays σ1. Denote by V 0 the (random) number
of zero votes among the n+ voters who vote informatively and let V 1 = n+ − V 0.
Since player i herself votes 0, i is pivotal if and only if V 0+n0− 1 = V 1+n1. So the
event that i is pivotal is:

Ti =
©
V 0 + n0 − 1 = V 1 + n1

ª
=
©
V 0 = d

ª
,

where d = m− n0 + 1. Likewise for voter j:

Tj =
©
V 0 + n0 = V 1 + n1 − 1

ª
=
©
V 0 = d− 1

ª
.

Let

πi0 = Pr [Ti | ω = 0] , πi1 = Pr [Ti | ω = 1]
πj0 = Pr [Tj | ω = 0] , πj1 = Pr [Tj | ω = 1] .

We now look for possible strategic deviations. For player i, the expected utilities for
the three strategies in the base-line game G(m) are of the form

E
£
ui(σ

+)
¤
= constant− πi0(1− q0) (1− µi)βi − πi1(1− q1)µiαi

E
£
ui(σ

0)
¤
= constant− πi1µiαi

E
£
ui(σ

1)
¤
= constant− πi0 (1− µi)βi,

and similar expressions hold for player j.
In an equilibrium of G(m), i is better off playing σ0 than σ+, and j is better off

playing σ1 than σ+, so:

E
£
ui(σ

0)
¤
− E

£
ui(σ

+)
¤
= −πi1µiαi + πi0(1− q0) (1− µi)βi + πi1(1− q1)µiαi ≥ 0 (22)

E
£
uj(σ

1)
¤
− E

£
uj(σ

+)
¤
= −πj0 (1− µi)βi + πj0(1− q0) (1− µi)βi + πj1(1− q1)µiαi ≥ 0

where

πi0 =

µ
n+

d

¶
qd0(1− q0)

n+−d

πi1 =

µ
n+

d

¶
qn

+−d
1 (1− q1)

d

πj0 =

µ
n+

d− 1

¶
qd−10 (1− q0)

n+−d+1

πj1 =

µ
n+

d− 1

¶
qn

+−d+1
1 (1− q1)

d−1.
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when the factorials
¡
n+

d

¢
,
¡
n+

d−1
¢
are well-defined. If d < 0 or d > n+ then πi0 = πi1 = 0

and if d− 1 < 0 or d− 1 > n+ then πj0 = πj1 = 0.

In a game Gδ(m):

E
£
uδi (σ

+)
¤
= E

£
ui(σ

+)
¤
+ δ (23)

E
£
uδi (σ

0)
¤
= E

£
ui(σ

0)
¤
+ δPr [si = 0]

E
£
uδi (σ

1)
¤
= E

£
ui(σ

1)
¤
+ δPr [si = 1]

and (22) for σ0 for player i becomes:

E
£
uδi (σ

0)
¤
− E

£
uδi (σ

+)
¤
= E

£
ui(σ

0)
¤
− E

£
ui(σ

+)
¤
+ δ (Pr [si = 0]− 1) ≥ 0.

Since Pr [si = 0] < 1 this implies a strict inequality in (22) in the case δ > 0. The
same thing holds for σ1 so that both inequalities in (22) are strict in the case δ > 0.
In a game Φε(m) with 0 < ε < 1:

E
£
uεi (σ

+)
¤
= (1− ε

n
)E
£
ui(σ

+)
¤
− ε

n
(βi (1− µi) (1− q0) + αiµi(1− q1)) (24)

E
£
uεi (σ

0)
¤
= (1− ε

n
)E
£
ui(σ

0)
¤
− ε

n
αiµi

E
£
uεi (σ

1)
¤
= (1− ε

n
)E
£
ui(σ

1)
¤
− ε

n
βi (1− µi)

and (22) for σ0 becomes:

E
£
uεi (σ

0)
¤
− E

£
uεi (σ

+)
¤
= (1− ε

n
)
¡
E
£
ui(σ

0)
¤
− E

£
ui(σ

+)
¤¢

+
ε

n
(βi (1− µi) (1− q0)− αiµiq1) ≥ 0,

and likewise for σ1. By hypothesis, the informativeness condition (3) is met, so we
again obtain that both inequalities in (22) are strict in the case ε > 0.19

It follows that both in Gδ(m) and Φε(m), (22) becomes:

πi1q1γi < πi0(1− q0) (25)

πj0q0 < πj1(1− q1)γi

In the case 1 ≤ d ≤ n+ the formulae given above for the probabilities π give:

qn
+−d+1
1 (1− q1)

dγi < qd0(1− q0)
n+−d+1

qd0(1− q0)
n+−d+1 < qn

+−d+1
1 (1− q1)

dγi,

19It should be clear at this point that the same reasonning is valid if we simultaneously consider
delegation ε and ethical bonus δ.
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a contradiction. If d ≤ 0 or d ≥ n+ + 1, then πj0 = πj1 and thus the second strict
inequality in (25) is a contradiction. QED

Having established that there is no pure-strategy equilibrium in which both con-
stant strategies are used, we finally show that there is no pure-strategy equilibrium
in which any one of them is used. This establishes our uniqueness claims.
Formally:

Lemma 3. Under the conditions of the theorem, there exists an m0 ∈ N such that,
for all m > m0, ε ≥ bm and δ > 0, neither σ0 nor σ1 is used in any pure Nash
equilibrium of Gδ(m) and Φε(m).

Proof : Suppose that n1 = 0, so that only σ0 and σ+ may be used, with

n+ + n0 = n = 2m+ 1.

If n0 ≥ m + 2 then a σ0-strategist cannot be pivotal in the base-line game, so she
strictly improves her payoff by deviating to σ+.
If 0 < n0 ≤ m + 1 (that is d ≥ 0), then σ0 and σ+ are both used. Let i be a

σ0-strategist. In the base-line game,

E
£
ui(σ

0)
¤
− E

£
ui(σ

+)
¤
= πi0(1− q0) (1− µi)βi − πi1q1µiαi

= (1− µi)βi

µ
n+

d

¶h
qd0(1− q0)

n+−d+1 − γiq
n+−d+1
1 (1− q1)

d
i

= (1− µi)βi

µ
m+ d

d

¶£
qd0(1− q0)

m+1 − γiq
m+1
1 (1− q1)

d
¤

write

Am,d =

µ
m+ d

d

¶£
qd0(1− q0)

m+1 − γiq
m+1
1 (1− q1)

d
¤

In Gδ(m) or Φε(m), for δ, ε > 0, there is an additional positive “bonus” to the sincere
strategy (equations 23, 24) and this bonus does not depend on d.
We now establish the following

Claim. Given m and 0 ≤ d ≤ m: if Am,d > 0 then Am,d ≤ Am,m.

To prove this claim, remember thatµ
m+ d

d

¶
=

m+ d

d

µ
m+ d− 1
d− 1

¶



Commitee decisions: optimality and equilibrium 42

and write:

Am,d

Am,d−1
=

m+ d

d
· q0 ·

qd−10 (1− q0)
m+1 − γi

1−q1
q0

qm+11 (1− q1)
d−1

qd−10 (1− q0)m+1 − γiq
m+1
1 (1− q1)d−1

If Am,d−1 > 0, the denominator qd−10 (1 − q0)
m+1 − γiq

m+1
1 (1 − q1)

d−1 is positive and
then, since 1−q1

q0
< 1, the numerator qd−10 (1− q0)

m+1− γi
1−q1
q0

qm+11 (1− q1)
d−1 is larger

than the denominator, so that

Am,d

Am,d−1
>

m+ d

d
· q0

But q0 > 1/2 and m+ d ≥ 2d. Therefore Am,d > Am,d−1 and the claim is proved.
It follows that, in Gδ(m), if Euδi (σ0) ≥ Euδi (σ+) for some d < m, then Euδi (σ0) >

Euδi (σ+) for d = m. Clearly the same thing is true if σ0 is replaced by σ1.
The case d = m is when all other voters vote informatively. But we know that,

for m large enough, informative voting is a Nash equilibrium, which implies

Euδi (σ0),Euδi (σ1) ≤ Euδi (σ+)

It must therefore be the case that for no d, Euδi (σ0) ≥ Euδi (σ+) nor Euδi (σ1) ≥
Euδi (σ+). This proves the lemma for Gδ(m). The same reasoning applies to Φε(m).

9.9. Claim (ii) in Theorems 4 and 5, general case. We here show that all
equilibria are pure, under the hypotheses of Theorems 4 and 5, respectively. Consider
voter strategies σi : {0, 1} → [0, 1], for i = 1, ..., n, that map voter i0s signal si to
a probability pi = σi (si) for i voting on alternative 1 (and voting on alternative 0
with the complementary probability, 1− σi (si)). Sincere voting thus is the strategy
σi(si) ≡ si.
Consider now a given voter i who has received signal si = 0. Denote by Ti the

event of a tie among all other votes. Such a tie may arise by chance, even for given
signals, if other voters randomize their votes. However, since signals, and hence also
votes, are statistically independent conditionally upon the state ω, we have, under
any strategy profile (σ1, ..., σn):

Pr [Ti ∧ si = 0 | ω] = Pr [Ti | ω] · Pr [si = 0 | ω]

for ω = 0, 1. In the base-line model, game G (m), the difference in expected utility
for voter i between voting 0 and 1, conditional on having received signal 0, is

∆u0i = βi Pr [Ti ∧ ω = 0 | si = 0]− αi Pr [Ti ∧ ω = 1 | si = 0]

= βi
(1− µi) q0
Pr [si = 0]

Pr [Ti | ω = 0]− αi
µi(1− q1)

Pr [si = 0]
Pr [Ti | ω = 1]
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In the game Gδ (m) perturbed with the sincerity bonus δ, voting sincerely when
receiving signal 0 is optimal if and only if ∆u0i + δ ≥ 0, or, equivalently,

δPr [si = 0] + βi (1− µi) q0 Pr [Ti | ω = 0]− αiµi(1− q1) Pr [Ti | ω = 1] ≥ 0, (26)

and mixing is optimal if and only if this last equation is an equality.
Likewise, the difference in expected utility for voter i between voting 1 and 0,

conditional on having received signal 1, is

∆u1i = αi
µiq1

Pr [si = 1]
Pr [Ti | ω = 1]− βi

(1− µi) (1− q0)

Pr [si = 1]
Pr [Ti | ω = 0] ,

and thus sincere voting in this case is optimal if only if

δPr [si = 1] + αiµiq1 Pr [Ti | ω = 1]− βi (1− µi) (1− q0) Pr [Ti | ω = 0] ≥ 0, (27)

and mixing is optimal if and only if this last equation is an equality.
Summing the right hand sides of (26) and (27) yields:

δ + βi (1− µi) (2q0 − 1)Pr [Ti | ω = 0] + αiµi (2q1 − 1)Pr [Ti | ω = 1] ,
Because q0 and q1 are larger than 1/2, this is a strictly positive number as soon as
δ is strictly positive. Therefore at least one of the two inequalities (26) and (27) is
strict, which means that each voter must be voting sincerely on (at least) one signal.
In particular no voter can be strictly mixing on both signals. The same argument
works in games Φε(m) and it is worth noticing this fact:

Fact: Each voter is voting sincerely on at least one signal.

From this it follows that there exists one signal , say signal s = 0, such that at
least half of the population vote sincerely when receiving this signal. Without loss of
generality we may take the point of view of individual i = 2m+ 1 and suppose that
individuals j = 1, ...,m vote vj = 0 when receiving signal sj = 0. Let N0 denote the
random variable “number of votes 0 among voters 1, ..., 2m, conditionally on ω = 0”.
Then:

Pr [Ti | ω = 0] = Pr[N0 = m].

One can decompose the variable N0 as:

N0 = X0 + Y0

X0 =
mX
j=1

1{sj = 0 | ω = 0}

Y0 =
mX
j=1

1{sj = 1 ∧ vj = 0 | ω = 0}+
2mX

j=m+1

1{vj = 0 | ω = 0}
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Notice that

Pr[N0 = m] =
mX
k=0

Pr[X0 = k] · Pr[Y0 = m− k]

≤ max
0≤k≤m

Pr[X0 = k]

We do not know the probability distribution of Y0, because of possible mixing, but we

know that X0 is binomial with parameter q0 and m. Therefore max0≤k≤m Pr[X0 = k]

is equal to Pr[X0 = bq0mc] where bq0mc denotes the integer part of q0m. If q0m is an
integer, then we obtain:

Pr[N0 = m] ≤ Pr[X0 = q0m] =

µ
q0m

m

¶
qq0m0 (1− q0)

m−q0m,

and, after using Stirling’s formula:

Pr[X0 = q0m] ∼
1p

2πmq0(1− q0)
.

This last property can be shown to actually hold even if q0m is not an integer but we
leave this technical point to the interested reader. To have a majorization, we may
note for instance that it follows that there exists an A (which only depends on q0)
such that for all m > A, Pr [T2m+1 | ω = 0] < B/

√
m, for B = 1/

p
q0(1− q0). Thus,

looking again at the condition (27) one can see that, for m > A and

δ >
1

Pr[s = 1]
βi(1− µi)(1− q0)

B√
m
=

βi(1− µi)(1− q0)

(1− q1)µi + (1− µi)(1− q0)

B√
m

(27) is a strict inequality, which means that sincere voting on signal s = 1 is strictly
optimal for the considered voter i = 2m + 1. Then it follows that there exists a B0

(which depends on all the parameters q, α, β, µ) such that form > A and δ > B0/
√
m,

sincere voting on signal s = 1 is strictly optimal for all voters. The values of the
parameters αi, βi, µi for different voters are bounded, so we can take B0 to be a
constant of the model, independent of the population size.
If all voters vote sincerely on signal s = 1, the number N1 of votes 1 among voters
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j = 1, ...2m, conditionally on ω = 1 can be decomposed as:

N1 = X1 + Y1 for

X1 =
2mX
j=1

1{sj = 1 | ω = 1}

Y1 =
2mX
j=1

1{sj = 0 ∧ vj = 1 | ω = 1}

with X1 binomial (2m, q1). Again we note that

Pr [Ti | ω = 1] = Pr[N1 = m] = Pr[X1 + Y1 = m]

=
mX
k=0

Pr[X1 = k] · Pr[Y1 = m− k]

≤ max
0≤k≤m

Pr[X1 = k]

The mode of the binomial distribution of X1 is reached at the integer part of 2q1m,
a number that exceeds m. It follows that

max
0≤k≤m

Pr[X1 = k] = Pr[X1 = m] =

µ
m

2m

¶
qm0 (1− q0)

m.

Using Stirling’s approximation formula, one finds again that this number is decreasing
(this time exponentially) with m. The same reasoning as before can now take place
with respect to equation (26): the negative term, −αiµi(1 − q1) Pr [Ti | ω = 1], is
asymptotically small and we conclude that there exist numbers A0 and B00 such that
if m > A0 and δ > B0/

√
m, inequalities (26) and (27) are both strict for all i, which

means that all voters vote sincerely on both signals. Point (ii) in Theorem 4 follows
immediately. The reasoning is the same for Theorem 5.

9.10. Claim (ii) in Theorems 4 and 5, symmetric mixed equilibria. We
proved above that the lower bound δ̄n can be taken to zero exponentially with n,
instead of at the rate 1/

√
n, when we restrict the uniqueness claim to pure-strategy

equilibria. We here prove that this also holds for symmetric mixed equilibria.
Consider first a game Gδ (m) and suppose that voter i votes sincerely when re-

ceiving the signal si = 0 (that is, σi(0) = 0) but is mixing on signal si = 1 (that is,
0 < σi(1) < 1). Then one has ∆(ui | si = 0) ≥ 0 and ∆(ui | si = 1) = 0. Hence, with
the sincerity bonus δ:

αiµi(1− q1) Pr [T | ω = 1]− βi (1− µi) q0 Pr [T | ω = 0] ≤ δPr [si = 0]

αiµiq1 Pr [T | ω = 1]− βi (1− µi) (1− q0) Pr [T | ω = 0] = −δPr [si = 1]
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We now focus on symmetric equilibria: σj(0) = 0 and σj(1) = σ1 < 1 for all voters
j. It is easily shown that then

Pr [T | ω = 1] =
µ
m

2m

¶
Am

Pr [T | ω = 0] =
µ
m

2m

¶
Bm

with

A = q1σ1(q1(1− σ1) + 1− q1) = q1σ1(1− q1σ1)

B = (1− q0)σ1(q0 + (1− q0)(1− σ1)) = (1− q0)σ1(1− (1− q0)σ1)

so that the indifference equation can be written:

F (σ1) = φ∗

where the function F : [0, 1]→ R is defined by

F (σ1) = −αiµiq1A
m + βi (1− µi) (1− q0)B

m

and

φ∗ = δ

µ
m

2m

¶−1
Pr [si = 1]

Let us study this function F . We only consider values ofm and δ such that sincere
voting is a strict equilibrium (and we know that this is possible for exponentially small
δ). Then at σ1 = 1, we know that F (1) < φ∗ because if the others are not mixing,
then it is a strict best response for i to vote according to her signal si = 1. It is easy
to see that F (0) = 0.
We claim that there is no solution to the equation F (σ1) = φ∗. The function F is

polynomial, with F (0) < φ∗ and F (1) < φ∗. Hence, if F (σ1) = φ∗ has an interior, then
the maximum of F must be attained at some interior point σ∗1, at which F 0(σ∗1) = 0

and F (σ∗1) ≥ φ∗ > 0. However,

F 0(σ1) = −αiµiq1mAmA∗

A
+ βi (1− µi) (1− q0)mBmB∗

B

with

σ1A
∗

A
=

1− 2q1σ1
1− q1σ1

σ1B
∗

B
=

1− 2(1− q0)σ1
1− (1− q0)σ1
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For all σ1, B∗ > 0. For σ1 ≥ 1
2q1
, A∗ ≤ 0 and thus F 0(σ1) > 0. For σ1 < 1

2q1
, A∗ ≥ 0.

Note that 1− q0 < 1/2 < q1 implies

A∗

A
<

B∗

B
.

Therefore:

F 0(σ1) = −αiµiq1mAmA∗

A
+ βi (1− µi) (1− q0)mBmB∗

B

> m
A∗

A
(−αiµiq1A

m + βi (1− µi) (1− q0)B
m)

= m
A∗

A
F (σ1)

and thus in this case we would have F 0(σ∗1) > mA∗

A
F (σ∗1) > φ∗ > 0, a contradiction.

The same argument works for games Φε(m), establishing that, for exponentially
small perturbations there is no symmetric mixed-strategy equilibrium.
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