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I. Introduction

This study is part of a large body of research on the incentives to innovate

in durable goods industries. In most of the existing formulations, the decision to

invest in research and development is driven by the prospect of monopoly pro�ts on

the incremental value that the new vintages provide. Thus, in much of the existing

literature, innovation goes hand-in-hand with value creation.

In this paper, I reexamine the manufacturers�incentives assuming that the mere

introduction of new vintages a¤ects the usage value of all vintages previously sold.

In particular, I study a standard durable good pricing model in which a monopolist

has the option, at the beginning of each period, to destroy1 the usage value of

all units previously sold and simultaneously introduce a new, perhaps improved,

vintage at some cost c � 0, a practice which I refer to as "destructive creation".

Such cost is interpreted as any expenditure incurred in the process of destruction

as well as in the process of creating, developing and marketing the new versions. In

equilibrium innovation cycles of �nite length, consisting in the periodic introduction

of successive, non-overlapping vintages arise. In this framework I address three basic

questions. First, how do the incentives to innovate a¤ect the equilibrium prices and

sales? Second, is this practice desirable from a pro�t maximizing perspective? Since

rational consumers anticipate opportunistic behavior and adjust their willingness to

pay accordingly, manufacturers may actually want to build a reputation for not

doing this kind of things. And third, what are the welfare consequences?

By allowing innovation to a¤ect the value of the existing stock of durable goods,

we highlight the role of destruction rather than creation in driving innovative ac-

tivity. The formal analysis shows that destructive creation unambiguously leads to

higher pro�ts whatever the innovation cost. On second thought this shouldn�t come

as a surprise. If the �problem�, from a pro�t maximizing perspective, is the dura-

bility of the output then it follows that any (cheap enough) mechanism that reduces

or eliminates it would put the monopolist in a stronger position (i.e. �closer�to the

rental outcome). The power to �wreck�the value of old versions of a product ends

up serving much the same purpose and hence the pro�t restoral.

This result comes with important strings attached, due to the fact that new

introductions are always determined ex-post. This distinctive feature of this mecha-

nism generates a link between market prices and consumers expectations: the price

itself a¤ects the willingness to pay for it. The reason is that the incentives to inno-

vate depend on the existing stock of durable. Thus current sales a¤ect the expected

duration of the good. In equilibrium a unique continuation pro�le is associated to

1The assumption of full destruction is made for expositional convenience. One can allow for
partial destruction as long as destruction is anyway signi�cant.
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every price such that the higher the price for the current vintage, the farther away

innovation and thus the higher the willingness to pay. Manufacturers are shown to

sometimes exploit this linkage to extract higher rents.

Finally welfare e¤ects are in general ambiguous both for consumers and for

aggregate e¢ ciency. The analysis shows that remedies aiming at increasing the cost

of destructive creation, and thus at discouraging its practice, can back�re. They can

lead to an increase in the discounted amount of resources invested in the practice

and/or to distortion of the equilibrium prices (thus a¤ecting consumers�surplus).

This result is particularly intriguing since it holds even if the new vintages are not

of increased value.

Crucial in the analysis is the role of destruction. One of the primary ways in

which it can be accomplished is through product design or restrictive aftermarket

practices. For instance software writers usually limit backward compatibility while

manufacturers usually cease after a while to supply essential after-sales services or

spare parts for their old products. Examples and applications include aftermarket

practices that hinder prolonged usage;2 excessive add-on pricing;3 markets char-

acterized by network externalities and/or compatibility issues;4 standard setting;

social consumption.5 Kodak, Prime Computer, Data General, Unisys and Xerox,

for example, have been repeadetly alleged of monopolizing the maintenance market

refusing to deal with independent service organizations (ISOs). In fact Borenstein

et al (1995; pp. 470) argue that in some of these classic court cases was presented

"...evidence that manufacturers introduce price increases for parts and

service on old equipment -or refuse to service old models altogether-

speci�cally to induce customers to migrate to a newer model."

More recently Microsoft, contextually to the launch of its new O.S. Vista, has

discontinued the provision of security support for older versions as part of its "Life

Cycle Support Policy", forcing customers still running these old editions (actually

millions) to upgrade.6 Similarly Turbine Ent., the publisher of Asheron�s Call 2, a

2e.g., prohibitive maintenance, repair, consumables, spare parts prices; discontinued provision
of essential complementary services such as security updates (OSs, antiviruses) or on-line platforms
(video games, e-services).

3High add-on prices may be interpreted as a mean to encourage customers to migrate to newer,
perhaps richer models.

4e.g. software upgrades, textbooks revisions, consumer electronics.
5e.g., fashion clothes (Pesendorfer 1996), conspicuous consumption (Bagwell and Bernheim

1996), prosocial behavior (Benabou and Tirole 2006).
6Windows Vista was originally promised for the second half of 2006. Ef-

fective July 11, 2006, Windows 98, Windows 98 Second Edition, and Windows
Me (and their related components) have transitioned to a non-supported status
(http://www.microsoft.com/windows/support/endofsupport.mspx). In December 2005, 22%
of Pc Users were still running Windows 98/ME according to Elizabeth Montalbano�s "Older
Windows OS Users: Kiss Tech Support Good-Bye"; Thursday, April 13, 2006; www.pcworld.com.
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popular multiplayer on-line game has recently shutdown its servers (thus actually

"killing" thousands of virtual characters) as a reaction to tepid sales of their lat-

est expansion packs. Despite many remonstrances (that sometimes degenerated in

"virtual" but otherwise real in-game riots), the publisher did not make any e¤ort to

commit to prolonged service or to guarantee some sort of backward compatibility.7

As a byproduct, the model is thus able to explain in a uni�ed manner a number

of business practices related to secondary markets which have a long history of

scrutiny under the antitrust laws but which have been seldomly related both in

theory and in practice. The plainti¤s�arguments in most cases relied either on some

sort of leverage theory (for �rms with substantial market power in the primary

market) or on the lack of commitment power (or imperfect contractibilities) that

prevented competitive pressure in the primary market from restoring cost based

pricing in the aftermarkets. This research instead interprets these practice as a

mean of encouraging customers migrating to newer models. High spare parts prices

are not meant to be paid but to be avoided through substitution. It thus gives an

additional reason for monopolizing aftermarkets even when the seller has substantial

market power in the primary market which does not rely on any leverage hypothesis.

Interestingly, experimental evidence suggests that destruction can also be ob-

tained through marketing techniques. For instance, Okada (2001) shows that trade-

in pricing, gift opportunities, and low external reference prices signi�cantly increase

the likelihood of replacement of old vintages with new ones by negatively a¤ecting

the perceived residual value of the old products.

Lastly theoretical applications of destructive creation also include Schumpeterian

growth models i.e., endogenous growth models in which whoever succeeds in the

R&D race reaps the full monopoly pro�ts "as if" the value of the previous (lower

quality) goods were completely destroyed (e. g. Aghion and Howitt 1992).8

The paper is organized as follows. Section 2 introduces the main ingredients

and solves the so called "Shutdown Game", establishing the conditions under which

a monopolist will continue to sell an "older" version when he can instead opt out of

the market, (i.e. shutdown) and receive a reward s � 0. The fact that the buyers�
valuation of the good is endogenous (it depends on how long the seller stays on the

market before shutting down) raises issues related to the existence and uniqueness

of an equilibrium which di¤er from the ones discussed in classic intertemporal price

7"The end is virtually nigh", The Economist, 12/10/2005, Vol. 377, Issue 8456, Special Section
pp14.

8Consumers�expectations of future "destruction" are typically neglected in these models. This
is because the monopolist�s good is either assumed to be a consumption good or to be a durable
(capital) good that is rented rather than sold. However since US vs United Shoe machinery corp., the
courts have declared the latter policy illegal when employed by a monopolist such as a patent holder.
The fact that rational consumers anticipate "destruction" then ends up a¤ecting the incentives to
innovate which are crucial in these models.
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discrimination models.9 Section 3 (the Innovation Game) endogenizes the outside

option s which is de�ned as the continuation value of the game following an "empty"

innovation net of the future R&D �xed cost. Section 4 extends the positive analysis

by considering a broader equilibrium concept. The latter gives rise to interesting

additional equilibria labeled "innovation traps" and "cycling cycles" whose main

characteristic is that the value of a particular vintage depends directly on calendar

time. Section 5 discusses welfare. It also discusses to what extent the mere intro-

duction of superior products can be interpreted as a means of destroying the value

of previous versions. Section 6 concludes. All proofs are presented in appendix.

Related literature Since consumers are heterogeneous this model combines

standard intertemporal price discrimination and obsolescence. This article is thus

related to the seminal papers of Waldman (1993), Choi (1993), Waldman (1996)

and Fishman and Rob (2000)10 on new product introductions and to the subse-

quent debate prompted by these works. The �rst two articles, like this one, are

concerned with the e¤ects of new destructive product introductions. In both pa-

pers the combination of incompatibility between successive product generations and

network externalities generates a destructive e¤ect, since, in equilibrium, as more

and more consumers upgrade, the value of the old product decreases. Waldman

(1996) and Fishman and Rob (2000) instead study the monopolist�s incentives to

introduce a superior product in a later period. However, all these works abstract

away from Coasian issues assuming either non-overlapping cohorts of homogeneous

consumers or high heterogeneity11 and hence they don�t look at the interplay be-

tween introduction policies and Coasian dynamics. Fudenberg and Tirole (1998),

Lee and Lee (1998) and Nahm (2004) relax the assumption of homogeneous con-

sumers and present a two period model of technological innovation. Neither article

captures the e¤ects described here for reasons discussed at the end of section 4. Hen-

del and Lizzeri (1999) and Morita and Waldman (2004) propose a model in which

a monopolist can a¤ect the value of used units restricting consumers�abilities to

maintain the good. The former article assumes away Coasian dynamics12 and iden-

ti�es an additional reason for why a seller may still want to a¤ect the value of used

units. Since consumers have heterogeneous valuations for quality and used goods

are imperfect substitutes of new goods, by controlling the rate at which goods dete-

riorate though both product design and restrictive aftermarket practices the seller

can segment the market in used unit users and new unit users. Morita and Waldman

(2004) instead relate aftermarket practices to Coasian dynamics. They present a

9E.g. Fudenberg, Levine and Tirole (1985) and Gul, Sonnenschein and Wilson (1986).
10These papers in turn build on Coase (1972) and Bulow (1982, 1986)
11 In Waldman (1996) there is only one "type" whose valuation exceeds the marginal cost of

production.
12The seller can commit to an output plan at the beginning of the game.
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two-period model of a market in which durable goods naturally deteriorate13 (i.e.

destruction is assumed), and the seller can costlessly14 restore the value of used

units say, by allowing for competition in aftermarkets. When the scrap value of an

used unit is higher than the consumption value their model can be interpreted as

a model of destructive creation with c = 0 since destroying on purpose is equiva-

lent to not restoring on purpose. The two models are complementary since Morita

and Waldman assume destruction (or that destruction is costless) and vary the rate

at which the durable goods deteriorate while I assume that the old versions are

worthless if destroyed and let the cost of doing so vary. This distinction is crucial.

Varying the cost of destruction generates the intertemporal con�ict that constitutes

the core of this paper. In contrast Morita and Waldman�s results would not change

if the monopolist could commit at the beginning of the game to a behavior in the

aftermarket. Furthermore all these analyses do not investigate the properties of the

resulting cycles as they typically study a �nite, two-period model.

Pesendorfer (1996) illustrates an interesting mechanism by which the introduc-

tion of new "styles" of no additional value destroys the value of the previous ones.15

In his model a matching market that sorts people by the fashion they use creates

a signaling/screening role of consumption. As "high" types upgrade to new, more

exclusive products the value of the old product decreases.16 This paper takes the

destructive mechanism as given (i.e. endows the seller with a destructive wand) and

investigates issues related to its optimal employment and to its performance relative

to other means to �ght the Coasian inclination to lower prices over time.

Finally this paper is also related to models of cyclic pricing such as Conlisk et

al. (1984) and Sobel (1991). In this model sales (or recurrent periods of low prices)

occur over time as consumers anticipate opportunistic behavior and are thus willing

to pay less for goods expected to be destroyed sometime soon.

II. The Shutdown Game

The elements of the formal model are as follows. A Seller has an in�nite number

of units for sale. Storage is costless and the Seller derives no utility from having

such objects in his inventory. There is a unit measure of non-atomic buyers indexed

by b 2
�
b; b
�
with b > 0 who derive a positive utility, in a way discussed below,

from consumption. The Seller cannot discriminate among di¤erent buyers but it

13Used, non maintained, units are less productive than new or maintained units.
14They assume that units costs of maintenance are su¢ ciently low so that used units are always

restored at the competitive price.
15The astute reader should have noticed that I�ve already celebrated Pesendorfer�s intuition in

the opening including "fashions" and signal provision as potential applications and examples of
destructive creation.
16By the same logic any model of (dynamic) signal provision is a model of destructive creation

as long as the introduction of new signals a¤ects the (equilibrium) value of the signals already sold.
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is common knowledge that b is a random variable i:i:d: across consumers with a

smooth17 cumulative distribution function F (b) and bounded density f(b) 2
�
0; �f

�
.

Time is indexed by periods t = 1; 2; :::;1 and � < 1 is a common discount factor.

At the beginning of each period the monopolist can either continue to serve the

residual demand and hence propose a price pt or shut down. When the latter option

is preferred the game ends and the monopolist obtains s � 0. Buyers, right after

purchasing, derive a per period utility b in every period before shut down occurs.

I will refer to the number of sale�s periods before shut down in equilibrium as the

(residual) "length of the game".

Assume that the monopolist shuts down in period T +1 and hence let T denote

the last period of sales. The utility from purchasing the good evaluated at t � T is

then given by:
TX
i=t

�i�tb� pt: (1)

Each Buyer maximizes his expected utility while the Seller maximizes the ex-

pected present value of its revenue stream. A behavior strategy for the Seller is

a mapping from histories to probability distributions over shutdown decisions and

prices whereas a pure strategy for a buyer is a mapping from those histories in

which he didn�t purchase to purchase decisions.18 A Perfect Bayesian Equilibrium

of this game is a pair of strategies and a set of beliefs satisfying the usual optimality

conditions and Bayes rule. As we shall see the case s = 0 raises additional issues.

To avoid them in what follows I assume that there is an epsilon sunk cost that

should be paid to provide an extra period of durability. This guarantees that the

monopolist always shutdowns in every subgame in which he has already sold one

unit to everybody. The case s = 0 is postponed to section 4 as an extension.

Let us initially consider the situation where the Seller can commit, at the begin-

ning of the game, to any time path of prices and shutdown policy. The associated

payo¤ constitutes an upperbound on what the seller can extract and therefore a

natural benchmark.

Proposition 1 The optimal precommitment strategy is to charge a �xed price equal
to the (static) monopoly price and to never shutdown as long as the shutdown reward

is lower or equal than the associated pro�ts and to shutdown immediately otherwise.

17Formally, I assume that the cumulative distribution function is di¤erentiable and has a di¤er-
entiable inverse.
18Lastly, I assume that the equilibrium actions of each agent are constant on histories in which

prices are the same and the sets of agents accepting at each point of time di¤ers at most by sets of
measure 0, which is a natural requirement in all intertemporal price discrimination models (a good
discussion of this issue can be found in Gul et al. 1986, note 6.2).
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The precommitment payo¤ in case of permanent service is given by

�fc(�) = [1� F (pfc(1� �))] pfc;

where pfc is any optimal precommitment price. Such payo¤ equals the "rental

solution" of a standard durable good model where a buyer b gets utility b=(1 � �)

upon purchasing. It can hence be rewritten asmaxr [1� F (r)] r=(1��) where r is the
rental price. Committing to permanent service maximizes all buyers�willingness to

pay as it removes concerns over durability. At the same time a �xed price strategy

permits to restore market power as it removes cheaper substitutes in the future.

Yet, if the outside option s is greater than the resulting pro�ts, the Seller would

trivially stay out of the market and cash s. That shutdown in �nite time cannot

be optimal follows from the fact that the full commitment payo¤ coincides with the

rental solution. As the problem of whether to rent or shutdown is clearly stationary

then the monopoly either rents every period or never rents.

Let us now turn to the equilibrium analysis, absent any commitment power. The

fact that the value of the good depends positively on how long the seller stays raises

issues related to the existence and uniqueness of an equilibrium. An important one is

that multiplicity could arise due to self-ful�lling expectations of the form: the higher

the expected durability, the higher the willingness to pay, the lower the incentive

to actually shutdown. Another concern is whether shutdown always occurs in �nite

time in any equilibrium. The following lemma establishes that any equilibrium

should be characterized by negotiations of �nite nature.

Lemma 1 If s � 0 then shutdown always occurs in �nite time.

Starting from the "last period of sales" is then possible to "work backwards"

to construct an equilibrium.

Proposition 2 An equilibrium exists and is unique. Furthermore

(i) There exists a �nite, decreasing sequence of outside options fsn(�)gn such that,
in equilibrium, if s 2 (sn+1(�); sn(�)) then there will be n periods of sales before
shutdown whereas for s = sn+1(�) there will be either n or n + 1 periods of

sales depending on the seller�s initial choice.

(ii) The monopolist enters (i.e. makes at least one o¤er before shutting down

operations) if and only if the shutdown reward is less than the full commitment

pro�ts.

As in standard intertemporal price discrimination models, the consumers�set

in every t will be partitioned in two, possibly empty, convex and disjoint subsets:
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owners and not owners. De�ne as bt the owner with the lowest valuation at time t.19

To see that expectations over durability cannot self-ful�ll, let eb1(s) be the level of
bt (or residual demand) that makes the seller indi¤erent between staying one more

period or not in the last period of sales (i.e. given that shutdown occurs tomorrow

with probability one). The key to the proof is that for any history such that bt <eb1(s) in any equilibrium the seller must shutdown with probability one. Suppose

that this is not the case. By lemma 1 a last period always exists in this continuation

game and, by de�nition of eb1(s), the seller will always shutdown before any such
last period, a contradiction. Given such termination condition the proof proceeds by

inductive hypothesis on bt employing a dominance argument. It analogously de�nes

a unique sequence of thresholds febn(s)g such that the (continuation) equilibrium is

characterized by shutdown after at most n � 1 periods of sales whenever bt < ebn.
Because the monopolist always sells to everybody in a �nite number of periods the

induction should eventually stop and therefore an equilibrium exists. Uniqueness is

then established up to the seller initial choice. To any �rst period price is associated a

unique sequence of o¤ers by the seller and acceptance decisions by the buyers. Since

the program need not be convex, it can be the case that the seller is indi¤erent

between two (or more) �rst period prices. The monopolist therefore "selects" the

equilibrium path through his initial choice.

Corollary (i) characterizes the relationship between the equilibrium durability

and the outside option. Intuitively an higher s, ceteris paribus, increases the temp-

tation to shutdown and therefore weakly reduces the equilibrium durability. The

latter part of the statement accounts for the possibility that b is exactly equal toebn(s) for some n. If this is the case then also the equilibrium length depends on the

seller�s initial choice as, by de�nition, ebn(s) leaves the seller indi¤erent between n
or n� 1 periods of sales.

Let �(�; s) denote the (discounted) equilibrium pro�ts, which is a well de�ned,

continuous function by proposition 2. (ii) implies that the equilibrium pro�ts are

always greater than s whenever s < �fc and are always equal to s otherwise, a

property which will be useful later on.

Since in section 3 s is interpreted as the net value of an innovation, it remains

to be established whether the equilibrium pro�ts increase with s. Also, whether

there is any con�ict between what the seller would like to commit to and what

he ends up doing in equilibrium. Interestingly the answer to both questions is no,

not necessarily. The fact that the pro�ts can indeed decrease with s is somewhat

surprising. One would have conjectured that a higher outside option would have

19 Intuitively as the game advances bt weakly declines towards b since more and more consumers
join the owners group. In the remaining part of the paper I will improperly refer to bt as the
"residual demand".
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put the seller in a "stronger" position. If the pro�ts are not increasing in s, then the

value of the outside option, de�ned as �(�; s)� �(�; 0), could be negative as well: it

can be advantageous, ex-ante, to "drop" an outside opportunity whenever o¤ered

one. In order to build the intuition behind these results, I turn to the analysis of

a simple, well-behaved two period game. In light of proposition 2 this two-period

illustration can be interpreted as the actual equilibrium of a game in which the

support is "narrow enough".

A. A two-period illustration

Consider a simple (and rather sad) world inhabited by a seller whose output,

lasts no more than two periods. At the beginning of each period t = 1; 2, the seller

can propose a price that all buyers evaluate or cash s � 0 and leave the market.

When the latter option is chosen the game ends and the value of all units previously

sold, if any, is destroyed. If shutdown has not previously occurred, it will occur at t =

3 with probability one. To simplify the exposition assume also, in this illustration,

that there is enough concavity in the problem that equilibrium prices are unique for

almost every s20 and consider those cases in which the maxr[1 � F (r)]r > b.21 If

b is (relatively) low enough then, by virtue of proposition 2, an equilibrium exists

and is unique. It is worth considering here two di¤erent cases: in the �rst case the

monopolist can commit to shutdown at any time T +1 2 f1; 2; 3g (or can guarantee
any "durability" T he wants) although he cannot pledge himself to predetermined

prices, whereas in the second case he is unable to do so.

Commitment on duration.� Under commitment, the monopolist�s pro�ts

can be trivially decomposed in two parts: the discounted sum of the per period

revenues and the discounted shutdown reward, as the amount of the latter does not

a¤ect the equilibrium prices. Consider �rstly the impact of increased durability,

say from one to two periods, on the buyers�willingness to pay and therefore on the

equilibrium revenues. First, increased durability raises the utility that all buyers get

upon purchase in period 1 (durability e¤ect). On the contrary, the seller�s inability

to commit to future prices creates a cheaper substitute in the future and hence,

all things being equal, this reduces their willingness to pay (Coasian e¤ect).22 The

former e¤ect always dominates the latter and therefore postponing shutdown always

20A rectangular distribution would guarantee this. Later on it will be clear what "almost" means
in this context.
21This condition restricts the analysis to non-trivial cases in which the seller can pro�tably

exercise his market power.
22The presence of a Coasian e¤ect is the main di¤erence between this case and the full commit-

ment case. Under full commitment, deferring shutdown increases the value of sales by a factor of
�T whereas here the value of sales increases less due to the seller�s dynamic inconsistency.
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increases revenues despite the seller�s dynamic inconsistency.23 To see this, consider

the �rst period of sales. The indi¤erent buyer b between purchasing today at price

p or tomorrow at some price p2 in the two-period game (i.e. the game where the

seller commits to two periods of service) solves:

b(1 + �)� p = �(b� p2): (2)

Uniqueness comes from the fact that the optimal second period price (i.e. argmaxp[F (�)�
F (p)]p+ �s) is a non decreasing function of residual demand. It follows that at any

given �rst period price p strictly more consumers, if any, purchase in the two-period

game (buy i¤ b � p� �p2) than in the one period game (buy i¤ b � p).24

Conversely, postponing shutdown entails a loss as the quantity s is cashed

later due to standard discounting (deferral e¤ect). The seller hence trades-o¤ the

incremental gains due to extended durability with the incremental losses due to the

deferral of the outside option. The higher the outside option, the lower the optimal

precommitment durability.

No commitment.� Now consider the more interesting case where the �rm

is unable to commit. Since in period 3 shutdown occurs with probability one then

those buyers still on the market in period 2 behave accordingly and buy i¤ b � p. At

the beginning of period 2 the Seller has to evaluate what are the potential bene�ts

of serving the residual demand compared with the sure option of s. Trivially, there

is a threshold leveleb(s), de�ned by:
eb(s) = max�� � b : max

p
[F (�)� F (p)]p+ �s � s

�
such that the seller always stays whenever � > eb(s), always shutdowns whenever
� < eb(s) and is indi¤erent whenever � = eb(s), which is increasing in s up to b.

Consider now the �rst period. Since buyers care about "durability" their will-

ingness to pay depends on whether the next period the seller will stay or leave, that

is on whether residual demand will exceed eb(s) or not. The indi¤erent buyer is now
de�ned by:

b(1 + � )� p = � (b� p2) (2�)

where  is the (equilibrium) probability that the seller doesn�t shutdown and makes

another o¤er p2 in period two.

Intuitively if the �rst period price is su¢ ciently low then, even if buyers are

23Notice that, in standard models of intertemporal discrimination, the converse result holds since
there is no "durability e¤ect".
24The assumption that maxr[1 � F (r)]r > b guarantees that the seller never sells to everybody

in the �rst period.
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Figure 1: Indi¤erent Buyer under Uniform Distribution

"pessimistic" (they expect only one period of service), enough of them purchase

and hence tomorrow the seller will actually shutdown with probability one. On the

contrary if the �rst period price is high enough, then even if buyers are "optimistic",

few of them purchase and tomorrow the seller will stay with probability one. Figure

1 captures this intuition and depicts the indi¤erent buyer as a function of p, in the

simplest case of uniformly distributed buyers. Interestingly, for intermediate values

of p, a pure strategies equilibrium does not exist. To see this notice that if buyers are

optimistic, too many of them end up buying whereas if they are pessimistic, too few

of them purchase. In this intermediate price range for each �rst period price there

exists a unique continuation equilibrium in which: 1) only buyers with valuation

greater or equal than eb(s) purchase, 2) the seller randomizes between staying one
more period and shutting down and 3) the equilibrium probability of staying one

more period increases with the �rst period price. The upper bound of the interval,

denoted p(s), solves (2�) when  = 1, b = eb(s) and p2 = argmaxp[F (eb(s))�F (p)]p+
�s.

Letting �(p) be the indi¤erent buyer as a function of the �rst period price and

�1(�; s) � max fmaxp[F (�)� F (p)]p+ �s; sg be the continuation value of the game
at the beginning of period 2, the seller program is given by:

max
p
[1� F (�(p))]p+ ��1(�(p); s): (3)

Let p� denote any solution of (3). By inspection it is possible to immediately exclude

that the optimal price falls in the region
heb(s); p(s)� since demand is insensitive to

price in this range. Such observation is a consequence of the seller�s inability to

charge low prices (p < p(s)) and all together maintain buyers�con�dence over dura-

bility due to his own inconsistency problem. Therefore, depending on s, two kinds
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Figure 2: (a) Value Function (b) Simulation

of equilibrium can arise: a "one-period equilibrium" in which the seller proposes a

low price p� < eb(s) and then shuts down; or a "two-period equilibrium" in which the
seller proposes a high price p� � p(s) and then a lower price, conditional on selling.

By convexity, in this simple illustration it is possible to prove that for almost any

s � 0 the equilibrium is unique. The "almost" quali�er accounts for the possibility

that the Seller can be indi¤erent, for some s, between a two-period and a one-period

equilibrium.

It is now possible to compare the two solutions. Figure 2a depicts the equi-

librium pro�ts as a function of the shutdown reward both in the commitment and

in the no commitment case. Consider the latter. An higher s a¤ects the game in

two respects. As in the commitment case, it raises the continuation value of the

game, since s is cashed at some point (direct e¤ect). Furthermore it increases the

temptation to shutdown, since it raises the threshold eb(s) and, as a consequence, the
minimum price p(s) that guarantees that tomorrow shutdown will not occur with

probability one (indirect e¤ect). Let pc1 denote the optimal �rst period price when

the seller commits to two periods of sales. For relatively low values of s the seller

charges pc1, thus replicating the commitment solution as dynamic inconsistency is

not a concern. However if, for some values of s, p(s) exceeds pc1 whereas the opti-

mal precommitment durability is 2, then it is possible to prove that the seller �nds

worthwhile, in some range (sa; sb), to distort his �rst period price upwards (up to

p(s)) to preserve his own incentives to stay on the market and therefore to maintain

buyer�s con�dence over durability. If the indirect e¤ect (negative) of a marginal

increase of s overwhelms the direct e¤ect (�2) then the value function could well

decrease in this range. Eventually (s 2 (sb; sc)) the seller switches to a low price

12



(< eb(s)) and therefore shuts down at the beginning of period 2, even tough he would
prefer to commit to two periods of sales.

The following proposition (proved in the appendix) contains this section main

insights. It establishes that, for any parametrization of the model, there always

exists a � low enough (possibly greater than one) such that this is actually the case

in equilibrium.

Proposition 3 In the two period game, if players are su¢ ciently impatient then
there exists an open, convex and non empty subset of shutdown values s such that:

(i) The precommitment pro�ts exceed the equilibrium pro�ts.

(ii) The seller charges higher prices than in the precommitment case in both peri-

ods.25

(iii) Equilibrium pro�ts decrease with the shutdown reward.

Figure 2b plots the value function for di¤erent values of the discount factor

when b is uniformly distributed in [1; 3]. Values on both axes are expressed in % of

the rental solution �fc(2=3). Notice that for � = 2=3 the value function increases

with the shutdown reward whereas for � = 1=2 and � = 1=3 this is no longer the

case. In particular for delta equal to 1=3 the value of the outside option becomes

actually negative for some s > 0 and therefore the seller would get more if s were

equal to zero.

B. Discussion

So far I only addressed the issue of existence and uniqueness. Before moving on,

it is worth taking a few lines to comment on and summarize a number of features of

the equilibrium. First, the unique restriction invoked so far is the so called "gap case"

that is b > 0. It is possible to show that nothing changes if we let b = 0 whenever

s > 0. However, when both parameters are equal to zero, it is not possible to bound

the number of sales periods and therefore to have a complete characterization of the

equilibrium set. In this case durability is always in�nite26 but the actual allocation

of gains from trade varies over the equilibrium set.

The shutdown reward can be interpreted either as the opportunity cost of stay-

ing on a given market or as an alternative elastic demand. Therefore one can �nd

examples where this theory directly applies. For instance in the video games and

software industries �rms typically have to maintain essential complementary ser-

vices such as on-line platforms or after sales support that typically don�t generate

25Clearly (ii) )(i), however there are values of s such that only (i) holds, this is why the two
statements are apart.
26The seller will never charge a price equal to zero.
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enough revenues to cover their costs. However the buyers�willingness to pay for the

main product crucially depends on the availability of such services. Sound economic

reasoning would suggest these �rms to build a reputation for keeping their servers

up. According to the shutdown model, if the price at which their titles sell on the

market do not justify further investments even if the publishers were able to build

such a reputation, for instance because the opportunity cost is particularly high,

then their shutdown policy could be interpreted as a means to maximize pro�ts

rather than as an expression of a dynamic inconsistency issue.

III. Innovation Cycles

This section completes the theoretical investigation. It presents an equilibrium

analysis of a market in which a seller can, at a cost c, destroy the value of all units

previously sold and simultaneously introduce a new version. The model focuses on

the pure "destructive" aspect of innovation by assuming that the new versions are

of no additional value (the e¤ect of relaxing this assumption are discussed in section

5). The cost c can be interpreted as any expenditure incurred in the process of

destruction.27 It can also be interpreted as the cost of creating, developing and

marketing the new versions. Clearly if such cost is su¢ ciently low then innovation

cycles of �nite length endogenously arise.

The extensive form described in section 2 is modi�ed replacing the shutdown

option with an innovate option in the way described below. Innovating destroys

the value of the old products, if any (and in this respect is equivalent to shutdown).

However a �xed cost c � 0 must be paid each time an innovation takes place.

The utility from purchasing the latest version evaluated at t � T is still given by

(1) where T is now interpreted as the last period of sales before a new version is

introduced. The timing of the game is as follows. At the beginning of period 1 the

monopolist faces an entry decision.28 He can either stay out of the market or pay c,

create a product and �x a price p1 that all buyers evaluate. When the former option

is chosen the game ends and the monopolist obtains 0. Conditional on entry, at the

beginning of each subsequent period t = 2; :::;1 the monopolist can either continue

to serve residual demand and hence propose a price pt or innovate. When the latter

option is selected the monopolist pays c and starts to sell his new product, which is

in all respects identical to the old one, by �xing a new price and so on. De�ne the

period between two successive innovations as a "cycle".

27E.g., the costs of restrictive after market practices, the cost of setting a new standard or of
shutting down existing platforms.
28Alternatively one could assume that the seller is "endowed" with his �rst product and pays c

only to innovate (there is no entry decision). To simplify thinghs I also assume w.l.o.g. that the
seller always enters whenever indi¤erent.
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As the outcome of each cycle is uniquely determined by the continuation pay-

o¤s after an innovation takes place (proposition 2), the problem has the �avour of a

repeated game. That is: after each innovation the seller and the buyers play a game

which is equivalent in all respects to the previous one save for the expected contin-

uation payo¤ following an innovation which varies with the pro�le under scrutiny.

Let � = 1; 2; ::; index the innovations and let se� be the expected value of the game

after the � -th innovation net of the (future) innovation costs. An equilibrium of the

innovation game is de�ned29 as any sequence fse�g
1
�=1 that satis�es:

(a) se� + c 2 �(�; se�+1)

(b) se� 2 [0; �fc � c]

since to any such sequence it is possible to associate the corresponding "stage

game" equilibrium pro�les. The �rst condition simply re�ects the requirement of

subgame perfection. The latter condition remarks the upper and lower bounds of

the seller�s pro�ts. If an equilibrium sequence is constant over � then the associated

equilibrium is said to be stationary. Stationary equilibria are obviously more attrac-

tive as the value of an innovation does not depend directly on time t. For this reason

in most of what follows I focus attention on this class of equilibria. However it turns

out that (some) non stationary equilibria unveil aspects of the seller�s problem that

could be equally interpreted in economic terms and hence are worth exploring. In-

deed there are cases where non stationary equilibria dominate the stationary ones.

Their discussion is postponed to section 4.

A. Stationary Equilibrium

I now proceed to characterize the stationary equilibrium of the game. An

important issue is that the link between the seller�s eagerness to innovate and his

continuation payo¤ can generate multiplicity. For instance, suppose that the Seller

is optimistic in that he expects the upcoming cycles to be short. If shorter cycles

are more pro�table, the Seller will be eager to innovate and hence the current cycle

is expected to end soon in equilibrium. On the other hand the same reasoning

applies for pessimistic sellers: beliefs over the future might self-ful�ll. The proof of

the following theorem breaks down this argument arguing that this full-�lling e¤ect

would require the expected continuation value of the game to decrease (or increase)

"without bounds".

Theorem 1 A stationary equilibrium exists and is unique in the class of stationary

equilibria. Moreover if the cost of innovation is low enough (c < �(�; 0)) entry

29Details on strategies and beliefs are given in the proof of theorem 1.
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occurs and the equilibrium is characterized by an in�nite replication of symmetric

cycles.

The proof looks for any �xed point s� of the correspondence �(�; s) � c that

satis�es (b). To see that no more than one �xed point can exist it is su¢ cient to

consider what happens when any se� is arbitrarily set below (above) a �xed point.

For instance if the buyers and the seller are pessimistic over the future, i.e. se� < s�,

then such future would self-ful�ll if and only if such pessimism grows over time

without bounds. The point can be intuitively explained using �gure 3a. Assume

(for simplicity) that � has modulus of continuity lower than one in absolute terms.

Recall from section 2 that for every se < �fc the seller stays at least one period

on the market as it gets more than just grabbing s. Therefore if se� < �fc then

it should be that se� > se�+1 for s
e
� to be ful�lled in equilibrium. Iterating this

reasoning, eventually se�+i will jump outside the payo¤ bounds in (b) and hence it

is not possible to construct an equilibrium around any such trajectory.

Let

�(�; c) = �(�;�(�; c))� c (4)

be the value of the game. The theorem says that there exists only one perfect equi-

librium that satis�es the stationarity assumption. If the average30 cost of innovation

is low enough, the model reproduces a crucial feature of these durable markets: the

cyclical introduction of non-overlapping generations of goods or, alternatively, the

cyclical destruction and contextual introduction of a new generation of products.

30Since pro�ts are measured per-capita, c can be interpreted as the $ cost of destruction per
buyer.
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B. Properties of Innovation Cycles

I shall now ask what are the properties of these innovation cycles, what is the

(relative) pro�tability of destructive creation so as compared with the full and partial

commitment solutions and how does this pro�tability vary with the innovation cost

c. Finally I shall ask what is the role of pricing and hence what kind of predictions

it is possible to make on the within cycles equilibrium prices. Much of what follows

capitalizes the investment made in section 2.

Proposition 4 If innovation is costless then equilibrium pro�ts equal the rental

solution pro�ts. Furthermore the equilibrium is unique31 and characterized by a new

innovation in every period.

That when c = 0 the equilibrium pro�ts equal the rental (or full commitment)

solution comes at no surprise. Selling a good that is expected (and is actually)

costlessly destroyed after each period is trivially equivalent to renting in a world

with no marginal costs of production. For low enough values of c the "always

innovating" solution continues both to exist and to be unique with the monopolist

now paying a (little) fee every period: �(�; c) = �fc � c=(1� �).

Proposition 5 Consider the stationary equilibrium and suppose that the cost of

innovation is such that entry occurs.

(i) Equilibrium pro�ts decrease with the cost of innovation.

(ii) The equilibrium length of each cycle (weakly) increases with the cost of innova-

tion.

(iii) The (within) cycle price path exhibits Coasian dynamics.

Moreover consider the two period illustration of section 2. If the cost of innovation

is such that an intertemporal con�ict arises then:

(iv) Innovation occurs weakly too soon, from an ex-ante, pro�t maximizing perspec-

tive.

(v) A high enough �rst period price is followed by delayed innovation and this can

be used to maintain buyers�con�dence over "durability" in those instances where an

intertemporal con�ict arises.

Rather than cluttering the remaining part of the paper with formal statements

about the relationship between the cost c and the equilibrium length of each cycle

(or equilibrium durability) I limit myself to observe that there is a one to one

relationship between the outside option�s thresholds de�ned in section 2 and the

cost thresholds in the innovation game. By (i) higher costs lower the value of an

innovation. Hence, in terms of the shutdown game, higher costs lower the outside
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Figure 4: Simulation of the value function: (a) �(c)=�fc (b) �(c)=�c(c)

option and therefore increase the equilibrium durability of each and every product.

More interesting is the comparison between the equilibrium pro�ts and the

pro�ts the seller would make under commitment to introduction policies. Figure 6a

plots the both value functions when b is uniformly distributed in [1; 3] and � = 1=2.

The value is expressed in % of the rental solution. Figure 6b plots the value of the

game as a % of the value under a commitment to an optimal introduction policy. The

discussion parallels section 2�s analysis as these are clearly two facets of exactly the

same problem. For low enough values of c the commitment solution coincides with

the no commitment one, since the seller�s dynamic inconsistency is not a concern.

For intermediate values of c an intertemporal con�ict arises. Under commitment the

seller switches sooner to two-period cycles since it doesn�t have to pay the extra-cost

of persuading the buyers that he will indeed wait one more period before introducing

his new product. Hence in equilibrium, for relatively low values of c, the seller

continues to innovate every period even tough he would prefer to commit not to.

The higher c, the lower the attractiveness of a one-period equilibrium as compared

to a two-period one. Eventually the seller will �nd pro�table to implement the "high

pricing scheme" to save on innovation costs. In this range he charges higher prices

than the precommitment ones in both periods to maintain the buyers con�dence

over durability. Lastly for c high enough the equilibrium matches once again the

commitment solution up to the point where the innovation costs are so high that

the seller prefers to stay out of the market altogether.

In the stationary equilibrium, Waldman�s intuition about the seller�s tendency

to innovate "too much" from an ex-ante, pro�t maximizing perspective still applies
31Actually I prove that the stationary equilibria is the unique equilibrium of the game for c equal

or "close enough" to zero.
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(Although with some caveats as for some values of c there is no con�ict32), but his

conjecture that

"...the �rm might be able to mitigate the e¤ects of this time inconsistency

problem by choosing a technology that is excessively costly to improve."

(Waldman 1996 pp. 593)

does not hold when one allows for heterogeneous consumers. In this model, were

the seller able to choose from more than one production technology at the beginning

of the game, he will always choose the most e¢ cient one despite his (eventual) time

inconsistency problem. This can help explain why �rms such as "Microsoft, do not

seem to be taking any such actions" (Waldman 2003, pp.147) that constrain their

own ability to introduce upgrades.

Why Waldman�s conjecture does not apply? As I have shown that the value of

the shutdown game can indeed decrease with the continuation value of the game due

to the seller�s dynamic inconsistency, it is legitimate to question whether increas-

ing the innovation cost can actually raise the seller pro�tability in this extended

framework as it mitigates the time inconsistency problem, if any.

The intuition goes as follows. The marginal impact of innovation costs can be

decomposed in two e¤ects. First, higher costs decrease the continuation value of

the game since they are actually incurred in equilibrium (negative e¤ect). Second,

in those instances where an intertemporal con�ict arises, they reduce the relative

cost of implementing the high pricing regime because they reduce the temptation to

innovate (positive e¤ect). In other words, lower expected earnings from innovation

relax the "credibility constraint" and permit to safely expand supply in earlier pe-

riods. The combined e¤ect is always negative as the higher expenses incurred due

to raising costs outweigh the marginal bene�ts which are bounded above by one.

So a �rm would never gain by constraining his own ability to practice destructive

creation through increasing its costs.

Finally, the model reproduces the cyclic price patterns that characterize most

durable goods markets. Within each cycle, prices decrease due to standard Coasian

dynamics. However when a new model is created, the introduction (or �rst period)

price jumps up to the price at which the previous version was introduced. In this

particular framework introductory prices do not re�ect the incremental value of the

new products (as one would expect if the new products were of higher quality).

They are instead correlated with the introductory prices of previous product lines,

something that could be amenable to empirical investigation.
32The fact that the seller ex-ante and ex-post incentives to innovate are aligned for some c is

deliberately not stressed throughout the paper as it is a consequence of the discrete nature of the
model.
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Figure 5: Non-stationary equilibria: (a) Cycling cycles (b) Innovation trap

IV. Robustness and extensions: Innovation Traps and Cycling Cycles.

This section discusses a number of features of the equilibrium that have been

previously assumed away. First, it considers the e¤ect of relaxing the assumption

that there is an epsilon sunk cost that should be paid to provide an extra period

of durability. Then it characterizes the non stationary equilibria of the (extended)

model. Finally it provides a su¢ cient condition for the stationary equilibrium to be

unique.

Consider the stationary equilibrium. The assumption that staying idle on the

market is costly has bite only when the (expected) value of an innovation is equal

to zero (or when s = 0 in section 2 notation). Therefore it has bite only when the

innovation costs are high enough to drain all the revenues from future sales. Let

�1 denote the revenues that the seller makes if he commits to never innovate.33

If we replace the assumption above with a milder one, namely that lower (last

period) prices are never "cue" of higher durability34 (AA), then Lemma 1 and hence

proposition 2 continue to hold. For every c a stationary equilibrium exists and is still

unique but characterized by entry for cost levels up to �1(> �(�; 0)). The higher

the cost, the lower the frequency of innovation that keeps the continuation pro�ts

equal to zero. When c 2 [�(�; 0); �1) the seller is caught in an "innovation trap".
He is unable to make any pro�ts even if he could make some by simply abstaining

from innovating which is a weakly dominated strategy. In this cost region the mere

33Notice that �1 is nothing else then the value of the (unique) equilibrium of a standard durable
good model in which the utility that a type b gets upon purchase is constant over time and given
by b=(1� �) and there are no �xed costs.
34Formally, it is su¢ cient to require the "expected" residual durability at the time everybody

purchases one unit (i.e. in the last period of sales) to be non decreasing in the last period of sales�
price.
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fact that the seller is expected to behave opportunistically prevents him from asking

higher prices on the market.35

Other (non-stationary) equilibria may arise for two mutually exclusive reasons

depending on the cost level c. First, since the slope of the value function can exceed

1 in absolute terms then other sequences fse�g� that satisfy conditions (a) and (b)
may exist in addition to the �xed point. For instance there could exist converging

patterns, i.e. sequences of expectations that converge asymptotically to the �xed

point36 as well as cycling patterns as the one depicted in �gure 5a. Second, if the

cost of innovation is in [�(�; 0); �1(�; 0)] then any sequence of the form (s1; 0; 0; ::)

with s1 2 [0; �1 � c] can be supported as an equilibrium outcome (�gure 5b). The

expectation of making no pro�ts out of innovating may still justify to make some

positive pro�ts in the �rst cycle. For instance if c 2 [�(�; 0); �1) there always exists
an equilibrium in which the seller never innovates (as the value of an innovation is

zero) whose associated pro�ts are given by �1 � c > 0 where c is the entry cost.

Notice that these latter outcomes dominate the stationary equilibrium in which

the seller is caught in an innovation trap. Although stationary equilibria are typi-

cally more attractive, innovation traps generated by "pessimistic" expectations over

durability are somewhat less likely to arise since in the repeated game the seller can

frustrate these expectations and provide higher durability at no cost. The following

corollary of theorem 1 gives a su¢ cient condition for the stationary equilibrium to

be unique.

Corollary 1 If c 2 [0; �(�; 0)) and j@�(�; s)=@sj < 1 8s then the equilibrium of the

innovation game is unique.

The �rst condition eliminates equilibria of the latter type as it insures that the

continuation value of the game is always positive. The second condition guarantees

that ��1 is a contraction mapping and therefore that any sequence starting at any

value other than the �xed point will diverge.

V. Discussion

An interesting question is what would happen if the government could a¤ect

the incentives to practice destructive creation, for instance, mandating the provision

of security support for a minimum number of years. For this purpose consider the

problem of a regulator who can a¤ect the cost c. De�ne welfare as the discounted

35 In a previous version of this paper (available on request) I show that the above analysis remains
valid even absent any restriction for the case s = 0, at the cost of higher complexity.
36 If @�(�; s)=@s < �1 for some s then one can �nd a cost range in which �(�; s)�c is a contraction

mapping for s close enough to the �xed point.
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Figure 6: Total Surplus and its decomposition (a) � = 1=5 (b) � = 2=3

total surplus, that is, the sum of the consumers�surplus and the seller�s pro�ts gross

of innovation costs.

Since we already know that equilibrium pro�ts are non increasing in c, consider

consumer surplus. A higher c a¤ects consumers� surplus in two, di¤erent ways

depending on whether it increases or not the equilibrium durability. Suppose that

this is not the case, i.e. suppose that a marginal increase of the cost does not trigger

any reduction in durability. If the seller is operating in the high pricing region then

such increase relax the "credibility" constraint and therefore result in lower prices

and in higher consumers�surplus. In all other cases higher costs simply lower pro�ts

as the seller keeps on charging the precommitment prices.

Conversely a marginal increase in c may trigger higher durability. In this case

the impact on consumers� surplus is typically ambiguous. Increasing the length

of each cycle clearly increases the number of equilibrium o¤ers and therefore the

number of consumers who have access to the good, but at the same time alters

the relative price and period at which di¤erent consumers join the owners�group.

Therefore consumers�surplus can again increase with the equilibrium length of each

cycle depending on the parametrization of the model. If the resulting increase in

consumers�surplus outweighs the seller�s losses then total welfare may well increase

with the innovations costs.

Figure 6 depicts total surplus as a function of c for the two-period game intro-

duced earlier.37 Consider consumers�surplus. The vertical drop, mirrored in total

37The welfare function is simulated using the same parametrization for the two-period game
employed throughout the article. Values are in % of the total welfare under full commitment
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welfare, corresponds to the case in which a marginal increase in c triggers higher

durability. In this speci�c case, for both discount factors, consumers are on average

worse o¤when the equilibrium length of each cycle increases from one period to two

periods. The subsequent increasing portion of the curve corresponds to the case in

which higher costs relax the dynamic inconsistency constraint. Interestingly, �gure

6(a) (as opposed to �gure 6(b)) illustrates a case in which the resulting increase in

consumers� surplus outweighs the seller�s losses with the result that total welfare

increases with c despite the social waste due to higher costs. Worth noticing is also

the shaded region on the right side of both plots. It re�ects the seller�s indi¤erence

between entering or not when c 2 [�(�; 0); �1]. Conditional on entry, the seller is
caught in the "innovation trap" described above in which expected pro�ts are equal

to zero. Since consumers always bene�t from having access to the monopolist�s

product, in this region welfare depends trivially on the equilibrium probability of

entry.

These considerations suggest that the regulator�s task of �ne tuning the cost c is

particularly arduous in this framework. Irrespective of how much consumers�surplus

is weighed relative to the monopolist�s pro�ts, increasing the cost of destruction can

back�re, leading to lower surplus for all parties involved.

A. Non destructive creation

Clearly allowing for "non empty" (or improved) innovations won�t change much

as long as the seller can likewise destroy the value of old units. Improved versions

increase the temptation to practice destructive creation as consumers value more

the new generations of goods. However the qualitative results remain unchanged.38

Yet with one important conceptual di¤erence. In this paper destroying old products

restores market power preventing Coasian dynamics which usually ends up hurting

consumers�welfare. When innovations are not empty, destructive creation serves

a second, more noble, purpose. As Fishman and Rob (2000) point out, when a

durable good monopolist introduces a new, improved version39 he can only charge

for the incremental value the new product provides until its replacement by a yet-

better model, as otherwise consumers would wait the next generation of goods. On

the other hand such incremental value is enjoyed forever which implies that the

incentives to invest are below the social optimum level. Destructive creation helps

the seller to recover the full value of the innovation and thus preserves the incentives

to innovate. This argument adds a further cautionary note for the regulator who

wants to forbid this practice.

calculated in c = 0.
38A suitable renormalization of the model would preserve all the qualitative results.
39 In their model the new version incorporates all the previous improvements.
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Consider now the more general case of genuine, non destructive innovation (i.e.

"Creative Destruction"). An important question is whether themere introduction of

superior products can be itself a means of destroying the value of previous versions.

If rational buyers are willing to pay less for the current product whenever they

expect future innovations then it is "as if" the sellers are actually destroying (at

least part of) the value of their previous versions with their new introductions. In

such cases one would expect, among other things, analogous e¤ects to arise.

One reason why this could happen is due to a "replacement e¤ect" on the

willingness to pay. More precisely, consider a simple extension of the two-period

illustration of section 2 with the twist that the seller can introduce a superior product

rather than shutting down and that old products continue to be fully functional.

The shutdown reward can be interpreted as the expected discounted value of the

innovation. In a two-period world with no overlapping innovations, no second hand

markets and anonymous buyers, the mere expectation of replacing the old good (i.e.

substituting your old laptop with a new one) lowers the willingness to pay of repeated

purchasers to the equivalent value of one period of service. The (classic) case of

the Osborne Computer Corporation illustrates one instance of this phenomenon.

At the beginning of the 80�s the company, (that invented the �rst mass-produced

portable computer) went unexpectedly bankrupt as the announcement of a new line

of revolutionary products killed the demand for the company�s existing products,

causing �nancial distress.

Previous related works in this literature include Fudenberg and Tirole (1998)

and Lee and Lee (1998) who present a two-period model of technological innovation

with heterogeneous buyers in which a seller introduces an improved product in period

2. However in both articles technological progress is exogenously given40 and hence

there is no role for destructive creation. Nahm (2004) endogenizes the R&D decision

to capture the interactions between the outstanding stock of the old product and

the incentives to introduce a new one. In his paper (net sales case) the existence of

perfect second hand markets compensates repeated purchasers and thus o¤sets the

"replacement e¤ect" described above (there is no destruction). In analogy, one can

conjecture than any mechanism that permits to compensate repeated purchasers

(i.e. o¤er discounts) will have the e¤ect of mitigating (or even assume away) the

"destructive" downside of the innovative activity.

VI. Concluding remarks

Destructive creation o¤ers a stylized description of many markets and indus-

tries. In particular it o¤ers an interpretive key for recent business cases of destruction

40 In Lee and Lee (1998) innovation is actually a choice variable but the seller commits to R&D
before the �rst period of sales.
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as well as for other classic court cases concerning the issue of aftermarket monopo-

lization. In principle banning altogether the use of this mechanism would have the

desirable e¤ects of restoring Coasian dynamics and of preventing the social waste

that comes with empty innovations. This could be done, for instance, by requiring

after-sale services, extending warranties, mandating compatibility or preventing and

monitoring the institution of new industrial standards of little (or no) incremental

value which trigger waves of mass replacements. However, such plan of action would

require value judgments on the nature of innovations and assessments of the �rms�

cost schedules in the after-markets. Furthermore, it seems more reasonable to think

that a regulator can, at best, increase the cost of practicing destructive creation. As

we have seen, an intervention in this direction can potentially reduce both the total

and the consumers�surplus even if new vintages are indeed of no additional value.

One compelling research avenue is to identify under what conditions the mere

introduction of superior products can generate a similar dynamics in the more com-

plex setting with recurrent, non destructive innovations. On the empirical side event

studies could be performed to assess what is the impact (if any) of the introduction

(or of the expected introduction) of a new generation of products on the value of the

old ones through measurements, for instance, of prices�variations in the primary

and secondary markets. These and other related issues remain the topic of future

research.
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VII. Appendix

The proof of lemma 1 and Proposition 2 are adapted from Fudenberg, Levine and

Tirole (1985). Subscripts attached to mappings denote the number of sales�periods

left before shutdown in equilibrium unless otherwise indicated.

A. Proof of Proposition 1

If the seller can commit to shutdown time (or can guarantee any durability he wants)

then the utility that type b gets from purchasing in the �rst period a good that lasts

up to T is given by b
PT

i=1 �
i�1 In a related context Stokey (1979) and Riley and

Zeckhauser (1983) proved that the optimal precommitment strategy is to "hold �rm"

and charge a �xed price throughout the horizon. Type b buys in the �rst period i¤

b � p=
PT

i=1 �
i�1 or doesn�t buy at all. The seller�s program is therefore given by

maxp

h
1� F

�
p=
PT

i=1 �
i�1
�i
p+ �T s equivalent to:

max
r
[1� F (r)] r

TX
i=1

�i�1 (5)

since p = b
PT

i=1 �
i�1. From (5) it is clear that the optimal price does not depend

on T and that it should be equal to
PT

i=1 �
i�1 times the rental price. Consider the

associated envelope �fc(T ) = [1� F (r�)] r�
PT

i=1 �
i�1+�T s where r� is any solution

of (5). �fc(T + 1) � �fc(T ) = �T ([1� F (r�)] r� � (1 � �)s). The latter expression

is greater than zero whenever s < [1�F (r�)]r�
1�� which establishes the result.

B. Proof of lemma 1

The proof is divided in three parts.

1) [sorting condition] Notice that in any equilibrium the residual set of buyers fol-

lowing an o¤er pt is the prior set [b; bt] truncated from above at some point bt+1 � bt

(i.e. a sorting condition holds) where bt is de�ned as the owner with the lowest

valuation at time t. To see this let �m : H �! � [R+ � f0; 1g] denote a (behavior)
strategy for the seller and �b : H �! f0; 1g denote a (pure) strategy for type b
where H represents the set of all possible histories in every period in which shut

down has not occurred and �(�) is the set of all probability distributions over prices
and shutdown decisions. Given any seller�s pro�le type b buys at time t i¤

TX
i=t

�i�tb� pt � �Vb(b;Ht; T ) (6)

Where Vb(b;Ht; T ) is his valuation at time t+1 given historyHt when the monopolist

is expected to shutdown in period T + 1 which is equal to:

26



TX
j=t+1

�j�(t+1)�j(b;Ht)

24 TX
i=j

�i�j(b� pi)

35
if T � t+ 1 or 0 otherwise. The term in brackets is the discounted utility �ow con-

ditional on purchase at time j; �j(b;Ht) is the equilibrium probability, conditional

on today�s information Ht that purchase is made at time j. Let b0 > b. Since type b

can always mimic b0�s optimal strategy, that is, accept exactly when b0 accepts, then

it should be that:

Vb(b;Ht; T ) �
TX

j=t+1

�j�(t+1)�j(b
0;Ht)

24 TX
i=j

�i�j(b� pi)

35
which in turn implies an upper bound on the di¤erence:

Vb(b
0;Ht; T )� Vb(b;Ht; T ) �

TX
j=t+1

�j�(t+1)�j(b
0;Ht)

24 TX
i=j

�i�j(b0 � b)

35
Intuitively, the di¤erence between the two continuation values cannot be greater

because otherwise type b would obtain more by mimicking type b0. This observation

coupled with the fact that � < 1 and that
P
�j = 1 implies that

�
�
Vb(b

0;Ht; T )� Vb(b;Ht; T )
�
<

TX
i=j

�i�j(b0 � b) (7)

Subtracting side to side (6) into (7) we obtain:

TX
i=t

�i�tb0 � pt > �Vb(b
0;Ht; T ) (8)

that is if type b �nds optimal to buy today at price pt (i.e. (6) holds) then any other

buyer b0 > b accepts the same price with probability 1.

2) [lowerbound on prices] Notice that the seller never (i.e. in no subgame) charges

a price below b41 whenever s > 0. To see this let p denote the in�mum of the prices

o¤ered by the monopolist in any subgame. At this price everybody buys as a better

deal in the future cannot be expected. Observe that 1) p should necessarily be

lower or equal than b as otherwise type b would never accept it, as shutdown always

occurs in any subgame in which he has already purchased; 2) p should necessarily

be greater than �1 since gains from trade are �nite. To see that p < b cannot be

an equilibrium o¤er assume that tomorrow�s price is expected to be p (i.e. minimize

41 this trivially extends to the case s = 0 under our additional assumption that there is an epsilon
sunk cost to stay one more period on the market.
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all buyers willingness to pay) and consider type b�s problem. Type b prefers to buy

today i¤ b � p � �(b � p) i.e. i¤ p � p + (1 � �)(b � p). This implies that as long

as p < b there always exists a price p > p such that type b and thus any other

type buys. Therefore the Seller can raise p by a discrete amount and still have full

demand in every such subgame, a contradiction.

3) [�nite nature] Given the sorting condition and the lowerbound on prices I want to

show that there always exists a given posterior b� beyond which charging b > 0 and

selling to everybody is a dominant strategy. Assume that buyers b > be have already

bought the good and that all the remaining buyers play myopically and accept all

prices less than their valuation. Moreover assume that everybody expects an in�nite

durability. If a monopolist wishes to charge b against this optimistic and myopic

buyers he will do so against any other buyer, since any other (rational) buyer would

be less likely to purchase. Myopic and optimistic buyers buy i¤ p � b
1�� , b �

p(1� �). Pro�ts are given by

�(p) = [F (be)� F (p(1� �))] p+ �

1� �

Z p(1��)

b
bf(b)db

where �
1��

R p(1��)
b bf(b)db is clearly an upperbound of the continuation value (it has

been obtained assuming that tomorrow the monopolist would be able to perfectly

discriminate against all remaining myopic and optimistic buyers). Di¤erentiating

with respect to p yields:

@�

@p
= [F (be)� F (p(1� �))]� f(p(1� �)) [1� �]2 (9)

since f > 0 there always exists a threshold b� > b such that 8be < b� @�
@p < 0 for any p

and thus p� = b and game ends since (9) is increasing in be. Lastly I show that there

always exists a T <1 such that residual demand drops below b� within T periods

when s = 0. Suppose not. Notice that, by charging p = b the Seller can guarantee

himself at least [F (b�)� F (b)] b � k > 0 that implies that the continuation value of

the game Vs(be) should always be at least k as otherwise deviating to p = b would

be pro�table. Given be an upperbound on what the seller can get selling would be

given by:

B(be) =

Z be

b�

b

1� � f(b)db

once again assuming that buyers are both myopic and optimistic. Since the latter

expression strictly decreases with be, there exists another threshold b�� such that

B(b) < k i¤ be < b��. Therefore the posterior should never drop below b�� as

otherwise Vs drops below k. Similarly one can construct a sequence fbngn of such

28



thresholds with the property that:

kbn � bn�1k �
2(1� �)k

f
> 0

which in turn implies that eventually bn > be, i.e. that the posterior cannot drop

below be as otherwise the seller would �nd pro�table to deviate to p = b and game

ends.

C. Proof of proposition 2

Wlog prices are always restricted in some compact set [b; p] as nobody would accept a

price p > b=(1��). A pure strategy for the seller is a mapping � : H! [b; p]�f0; 1g;
a continuation strategy, given history ht is a mapping � : Ht ! [b; p]� f0; 1g where
Ht � H is the set of all possible continuation histories given ht. As the Seller

may well randomize, any continuation strategy speci�es a probability distribution

over prices and shutdown probabilities for every subgame. Since all players care only

about expected prices and shutdown probabilities, any two (behavior) strategies that

generate the same expectations for the same history are considered as equivalent. To

perform some comparative statics it is necessary to specify one ordering of sets which

will be useful later on. Consider a generic compact and real valued correspondence

� : X � R ! Y . According to Veinott (1989) ordering of sets, I will say that,

given any two x; x0 such that x0 � x with x0 6= x, for any a0 2 �(x0); a 2 �(x), �

is non decreasing whenever max fa0; ag 2 �(x0) and min fa0; ag 2 �(x); is strictly

increasing whenever a0 � a and is strongly increasing whenever a0 > a.

De�ne the maximization problem P (be; �; �; s; p) as it follows:

max
 2[0;1]

�
max
p�p

(F (be)� F (�(p))p+ ��(�(p); s)
�
 + (1�  )s

where � and � are well de�ned continuous functions. Let �(be; s; p) denote the

associated solution correspondence with respect to p, b�(be; s; p) its convex hull and
 (be; s; p) the associated solution correspondence with respect to  . The argument

p will be omitted whenever p = b=(1� �) (unrestricted program). Notice that both
� and  and therefore b� correspondences are non empty, compact valued and upper
hemi-continuous by Berge�s theorem. Since the objective function is continuous

and (F (be) � F (�(p))p is strictly supermodular in be (f(be) > 0) then �(be; s) and

therefore b�(be; s) are strictly increasing in be (Topkis 1978). Lastly notice that the
associated value function increases with be and s whenever �(�(p); s) increases with

s. Notice that this modi�ed42 speci�cation of the objective function permits to

separate the pricing strategy from the shutdown policy. It is then possible to de�ne

42 I�m taking the max (1�  )(maxp(�)) rather than max maxp(�).

29



a strategy as any pair of functions � � (�(H); (H)) that specify an (expected)

price and a probability of shutdown for every subgame.

Let �0(�(p); s) = s. De�ne recursively the n-period game and its associated prob-

lem P (be; �n; �n�1; s; p) as the game where the seller is constrained to shutdown

after at most n periods of sales where �n maps prices into indi¤erent buyers and

�n�1(�n(p); s) is the value of the n � 1-period game. If �n and �n�1 are well de-
�ned functions then the problem is well de�ned. Denote with �n, b�n and  n the
associated solution correspondences. Lastly let ��n(H) � (�n(H); n(H)) denote an
equilibrium pro�le for the n-period game.

Consider the one-period game. Obviously �1(p) = p as long as p � be and hence its

associated problem is well de�ned. Let eb1(s) = fmax be 2 R+ : �1(be; s) = sg be the
threshold on residual demand that leaves the seller indi¤erent between shutdown

and one period of sales. Clearly shutdown is a strictly dominant strategy whenever

be < eb1(s); a weakly dominant strategy whenever be = eb1(s) and a dominated
strategy whenever be > eb1(s). Let ep1(s) � eb1(s).
Lemma 2 For any history such that bt < eb1(s), ��(Ht) = ��1(Ht) = (�1(bt);0).

The claim is that shutdown is actually a dominant strategy for any history such

that bt < eb1(s). To see this recall from lemma 1 that b� is the posterior such that it

is always optimal to charge pt = b whenever bt 2 [b; b�]. If b� � eb1(s) (case "s low")
then, conditional on staying, the seller charges pt = b which results in F (bt)b pro�ts

less than s by de�nition of eb1(s). Consider now the complementary case: s such that
b� < eb1(s). If bt 2 [b; b�] then, by the same logic, shutdown is a dominant strategy.
Choose an " such that [F (b+ ")� F (b)] (b+")=(1��) < (1��)s and b+" < eb1(s) for
every b 2

h
b�;eb1(s)i. The claim is that if bt 2 [b; b� + "] then shutdown is a dominant

strategy. To see this notice that if the seller does not shutdown at time t then either

bt+1 � b� or bt+1 2 [b�; b� + "]. In the former case shutdown takes place at time
t + 1 with probability one and therefore � = �1, � = s and the seller gets at most

�1(b
e; s) which is less than s by de�nition of eb1(s). In the latter case an upperbound

on what the seller can get is given by [F (b� + ")� F (b�)] (b�+")=(1��)+�s which is
less than s by de�nition of ". Therefore, for any history ht such that bt 2 [b; b� + "]
shutdown is always a dominant strategy. The same is true by induction for any

bt 2
h
b�;eb1(s)�.

Lemma 3 If pt < ep1(s) then bt+1 < eb1(s):
The claim is that when a price pt < ep1(s) is charged then shutdown occurs tomorrow
with probability one. Suppose not. Then it should be that bt+1 � eb1(s) and that
 t+1 > 0 as otherwise type �1(pt) < eb1(s) should have accepted pt. Type eb1(s)
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prefers to buy today rather than tomorrow i¤ eb1(s) � pt � �pt+1 t+1. The latter

is always lower or equal than pt � �b since by lemma 1 the seller never charges a

price lower than b. Therefore type eb1(s) strictly prefers to buy at time t rather than
at t + 1 whatever pt+1 t+1. For the same reason he would not buy later on and

therefore bt+1 < eb1(s), a contradiction.
Consider the two-period game. �2(p) is nothing else than the (set) of types b that,

given price p, satis�es43:

b [1 + � 1(b)]� p 2 � [b� b�1(b)] 1(b)
which is equivalent to

p 2 b+ � 1(b)b�1(b) (10)

The right hand side of (10) represents the (net) utility that type b gets from pur-

chasing today if he were the indi¤erent buyer as a function of next period price

correspondence b�1(b) and the probability that there will be no future  1(b).
Any (continuation) strategy of the Seller speci�es a curve f : [b; be]! P such that44:

f(b) � b+ �b�1(b) 1(b) 8b (11)

As b�1(b) 1(b) is a strictly increasing, compact and convex valued, uhc correspon-
dence then b + �b�1(b) 1(b) is strongly increasing and uhc. In other words b +

�b�1(b) 1(b) depicts an increasing curve with some vertical but no horizontal traits.
Hence there exists a unique curve that satis�es property (11) which is invertible;

de�ne such inverse as f�1 = �2(p). �2 is therefore a well de�ned, non decreasing

function. Notice that 8p < ep1(s), �2(p) = �1(p) as the right hand side of (10)

collapses to b.

The function �2(p) has therefore some "�at spots" where increasing the current

price does not reduce the number of buyers as higher prices today are associated

with higher prices tomorrow. Notice moreover that for any pt there exists a unique

pair (b; pt+1 2  1(b)b�1(b)) that satis�es �2(pt) = pt � �pt+1 and therefore that

the choice of any price pt uniquely determines both the indi¤erent buyer and the

(expected) next period price.

Recall that ep1(s) � eb1(s) and de�ne recursivelyebn(s) � fmax be 2 R+ : min�n(be; s) < epn�1(s)g
and epn(s) � ebn(s) + �min�n(ebn; s). Notice that �n(pt) < ebn(s) for every pt < epn(s)
by de�nition of epn(s). Suppose that:
43To save notation the argument s is dropped in the following paragraph.
44For instance one strategy (for b � b1) may consist in charging tomorrow the highest price

whatever today�s price or: f(b) = b+ �max fb�1(b)g 8b
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a. �n(pt) = pt � �pet+1(pt) is a well de�ned, continuous and non decreasing

function where pet+1(pt) 2  n�1(�n(pt))b�n�1(�n(pt)) is the unique solution
to pt � �pet+1 = �n(pt).

b. �n�1(be; s) is continuous and increasing in both be and s.

c. �n�1(be), �n�1(be; epn�1(s)) and  n�1(be) are non empty, compact valued, uhc
and strictly increasing correspondences.

d. For any history ht such that bt < ebn�1(s), then pt < epn�2(s) and shutdown
occurs after at most n� 2 periods of sales with probability one which implies
that ��(Ht) = ��n�2(Ht)

45.

e. If pt < epn�1(s) then bt+1 is necessarily lower than ebn�1(s) and shutdown occurs
after at most n� 1 periods of sales.

I shall show that the same properties hold for the n-period game.

Consider the problem P (be; �n; �n�1; s; p). Notice that since �n is a strictly increas-

ing correspondence then for every bt < ebn(s) any element of �n(bt) should be lower
than epn�1(s) by de�nition of ebn(s). If a price pt 2 �n(bt) such that pt < epn�1(s) is
charged then by inductive hypothesis �n�1 = �n�2, �n(p) = �n�1(p) and therefore

pt should also be an element of �n�1(bt).

Lemma 4 For any history ht such that bt < ebn(s), then shutdown occurs after at
most n� 1 periods of sales with probability one.

To see this note that by (e.) it is su¢ cient to show that whenever bt < ebn(s), charging
any price greater or equal than epn�1(s) cannot be optimal. Observe that by inductive
hypothesis the seller can always guarantee himself �n�1(bt; s) charging some price

pt < epn�1(s) with pt 2 �n(bt) and moreover that any other price pt =2 �n(bt) such

that bt+1 < ebn�1(s) would lead to lower pro�ts. It remains to be proved that given
any price pt � epn�1(s) such that bt+1 � ebn�1(s) the seller cannot get anything better
or equal. To see this, consider an " such that [F (b+ ")� F (b)] (b + ")=(1 � �) +

��n�1(b; s) < �n�1(b; s) for every b in
hebn�1(s);ebn(s)� and such that b+ " < ebn(s).

Consider b = ebn�1(s) + ". Clearly for every pt is such that bt+1 � ebn�1(s) the seller
gets at most

h
F (ebn�1(s) + ")� F (b)i (ebn�1(s) + ")=(1 � �) + ��n�1(ebn�1(s); s) less

than �n�1(ebn�1(s); s). The same is true by induction for every b in hebn�1(s);ebn(s)�.
Lemma 5 If pt < epn(s) is charged then bt+1 should be necessarily lower than ebn(s).
45For the case n = 2 let p0(s) = b + " be a dummy variable and assume (innocuously) that the

seller is contrained to prices lower than p0 whenever he shut downs ( = 0).
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To prove this result it is su¢ cient to show that type �n(pt) < ebn(s) always accepts
any such price. Suppose not. Then it should be that bt+1 � ebn(s). Consider pt+1. By
a straightforward revealed preference argument pt+1 � min f�n�1(bt+1; epn�1(s))g �
min

n
�n�1(ebn(s))o � max f�n�1(�n(pt))g � pet+1(pt). At this price type �n(pt) is

"at most" indi¤erent between buying today at price pt or tomorrow which implies

that all types b > �n(pt) strictly prefer to buy today rather than tomorrow (lemma

1) and hence that bt+2 � ebn(s). By the same logic they would not buy later on and
hence they should all buy today at price pt and therefore bt+1 < ebn(s).
Lastly I work backward one period to show that �n+1(p) is well de�ned. The

valuation of a buyer who is just indi¤erent between paying p and waiting in the

n + 1 period game must satisfy b [1 + � n(b)] � p 2 � [b� b�n(b)] n(b) or p 2 b +

� n�1(b)b�n�1(b). Once again as b�n(b) n(b) is a strictly increasing, compact and
convex valued, uhc correspondence then b+ �b�n(b) n(b) is strongly increasing and
uhc. Therefore it has a unique, continuous and non decreasing inverse function

�n(p) = p � �pe(p) where pe(p) 2  n(�n(p))b�n(�n(p)) is the unique solution to
pt � �pe = �n(pt).

By lemma 1, there always exist a T �+1 high enough such that bT �(s) � b < bT �+1(s)

and the inductive process comes to an endpoint. Since to each �rst period choice

p1 < pT �(s) is associated, by inductive hypothesis, a unique sequence of prices

such that fpei < pT ��i(s)gT
�

i=1 then the equilibrium is unique up to the seller initial

choice. The value of the game is therefore given by �T �(b; s) which is continuous

and increasing in s by inductive hypothesis.

The thresholdebn(s) can be alternatively de�ned as fmax be 2 R+ : �n�1(be; s) � �n(b
e; s)g

and hence interpreted as the threshold that leaves the seller indi¤erent between an

n-period and an n� 1-period game. The thresholds in corollary 1 are uniquely de-
�ned by sn =

n
s 2 R+ : ebn(s) = b

o
since ebn(s) is increasing in s. Moreover notice

that sn decreases with n since ebn(s) < ebn+1(s) for every s. For s = sn then the

seller is actually indi¤erent between charging a price pt 2 �n(b) with pt < pn�1

that results in n � 1 periods of sales and pt 2 �n(b) with pn�1 � pt < pn that

results in n periods of sales. In particular notice that s1 is such that �1(b; s1) =

maxr[1 � F (r)]r + �s1 = �0(b; s1) � s1which is nothing else than the value of the

rental solution �fc. Corollary 2 follows from the fact that eb1(s) < b whenever s < s1

and therefore shutdown is a dominated strategy.

D. Proof of Proposition 3

First notice that (ii)) (i) since the seller can always commit to charge the equilib-

rium prices. (ii)�s proof is divided in two parts: 1) analogously to the no-commitment
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case, the optimal precommitment durability weakly decreases with the value of the

outside option and 2) there always exists a positive and small enough � such that for

some values of s, p(s) exceeds the �rst period optimal precommitment price whereas

both the precommitment and the equilibrium durability is 2.

(a) If the seller can commit to any durability he wants, the optimal pricing strat-

egy does not depend on s. Let �c0(�(p); s) = s. De�ne recursively �cn(b; s) and

pcn(b) for n 2 f1; 2g as respectively the value function and the (unique) solu-
tion of the maximization problem P (b; �cn; �

c
n�1; s; b=(1 � �)) where �c1(p) = p and

�c2(p) is the unique solution of (2) when p2 = pc1(�
c
2(p)). De�ne the thresholds

scn =
�
s 2 R+ : �cn(b; s) = �cn�1(b; s)

	
for n 2 f1; 2g. The optimal durability weakly

decreases with s if

(i) sc2; s
c
1 > 0 and

(ii) sc2 < sc1

First notice that �c2(p) < p for every p > b which implies that pc2(b) � pc1(b) =

argmaxr[1 � F (r)]r > b and therefore that �c2(b; 0) � maxp[1 � F (�c2(p))]p >

maxr[1 � F (r)]r = �c1(b; 0) > �c0(b; 0). The latter coupled with the fact that

@�cn(b; s)=s = �n < 1 implies (i). Let Jcn(b) denote the "value of sales" of the

n-period game, that is �cn(b; s) � �ns. Showing that sc2 is strictly less than s
c
1 is

equivalent to show that Jc2(b) < Jc1(b)(1 + �) since sc2 = (Jc2 � Jc1)=�(1 � �) and

sc1 = Jc1=(1 � �). That the latter holds follows from the fact that Jc1(b)(1 + �) is

equal to the full commitment payo¤ which should be necessarily greater than the

no commitment one under the assumption that maxr[1� F (r)]r > b.

(b) Since it is more convenient to work with marginal buyers rather than prices let

bc1(�) � argmaxb[F (�)�F (b)]b and bc2(b) � argmaxb[1�F (b)](b+�pc1(b))+��c1(b; s)
be the optimal precommitment indi¤erent buyers which are unique by assumption.

Recall that 8s 2 [0; sc2) the seller strictly prefers a two period game (and hence

chooses bc2(b)) rather than a one period game. This implies, by a straightforward

revealed preference argument, that the seller would do so even when he cannot

resort to any commitment device. But since eb(s) increases with s, if eb(s) = bc2(b) for

some s < sc2 then the seller cannot replicate the commitment solution in some open

neighborhood of sc2. eb(s) = bc2(b) whenever s is equal to:

[F (bc2(b))� F (bc1(bc2(b)))]bc1(bc2(b))
1� � (12)

(� sa in �gure 2�s notation). The issue is to �nd conditions under which the latter

expression is lower than sc2 and therefore conditions under which the seller cannot
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replicate the commitment solution for some s < sc2. Recall that s
c
2 is such that

�c2(b; s) = �c1(b; s) or:

sc2 =
[1� F (bc2(b))](bc2(b) + �bc1(bc2(b))) + �[F (bc2(b))� F (bc1(bc2(b)))]bc1(bc2(b))� [1� F (bc1(b))]bc1(b)

�(1� �)

I want to �nd conditions on � such that sc2 > (12) which is equivalent to:

[1� F (bc2(b))]bc2(b)
[1� F (bc1(b))]bc1(b)

>
1

1 + �bc1(b
c
2(b))=b

c
2(b)

(13)

From the de�nition of bc2(b) notice that if � = 0 then b
c
2(b) = bc1(b) (the two period

game coincides with the one period game since there is no future) and hence at � = 0

condition (13) is not satis�ed. Using the fact that 1+ �bc01 (b
c
2(b)) � � is equal to one

when � = 0, it follows that the derivative of the left hand side of (13) calculated in

� = 0 is equal to zero since:

264@ [1�F (b
c
2(b))]b

c
2(b)

[1�F (bc1(b))]bc1(b)

@�

375
�=0

=

"
1

[1� F (bc1(b))]bc1(b)

" �
bc2(b)

�2
bc01 (b

c
2(b))f(b

c
2(b))

�2[1� hr0�1(bc2(b))�+ �bc001 (bc2(b))=�]
(1� �)

##
�=0

= 0

where hr0�1(b
c
2(b)) denotes the derivative of the inverse of the hazard rate of the

distribution calculated in bc2(b). On the other hand24@ � 1
1+�bc1(b

c
2(b))=b

c
2(b)

@�

35
�=0

=

�
1

(1 + �)2

�
�=0

= 1

which implies that, for any distribution F , condition (13) is always satis�ed for some

� close enough to zero. Lastly it remains to show that sa < s2. To see this recall that

the equilibrium pro�ts �(b; s) are continuous in s by proposition 2 which together

with the fact �(b; sa) = �c2(b; sa) > �c1(b; sa) necessarily imply that there exists an

open, non empty subset of R+ such that the equilibrium durability is two and the

seller charges higher than precommitment prices in both periods.

A (formal) proof of (iii) is omitted and replaced by the following observation. When

s 2 (sa; s2) the seller reacts to a marginal increase in the shutdown reward with a
supply contraction to preserve his ex-post incentives to stay on the market. In

other words the seller maximizes his discounted pro�ts subject to an intertemporal

constraint. Ceteris paribus, the (shadow) cost of shifting buyers and thus revenues

from today to future periods is higher the lower the discount factor as part of this
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revenues come back under the form of discounted pro�ts46. Given this observation it

is straightforward to show that there always exists a low enough � such that pro�ts

decrease with the shutdown reward.

E. Proof of Theorem 1

A history in period t is a sequence of prices, a sequence of innovations and a sequence

of purchases by consumers. Since the equilibrium pro�les of each cycle are uniquely47

determined, through a dominance argument, by the (expected) continuation value of

the game after an innovation takes place (proposition 2) then one can Wlog restrict

attention to continuation pro�les that depend only on events that occurred since

this particular cycle begun. Given any sequence of continuation values fse�g� such
that (a) and (b) are satis�ed, where � = 1; 2; ::; indexes the innovations, it is always

possible to construct at least an equilibrium. Consider the �rst order autonomous

system:

se� + c = �(�; se�+1) (14)

That any �xed point of �(�; s)� c is a stationary equilibrium follows by de�nition.

Since � is continuous, �(�; 0) > 0 and @�(�; se)=@se < 1 (whenever it exists) then a

�xed point s� necessarily exists and is unique for any c 2 [0; �(�; 0)] by Brouwer�s
theorem. For c < �(�; 0), s� > 0 and entry occurs with probability one.

In addition to �xed points, such dynamic system may make it possible the emergence

of some phenomena, such as cyclical or converging patterns, that maybe rooted into

equilibrium behavior. Consider the boundary-value problem given by (14) and any

initial condition se1 and de�ne a (particular) solution trajectory as any sequence

fseigi generated through (14). We are interested both in the asymptotic behavior
of such trajectories (convergence towards a limit point or a limit orbit) and in the

convergence process, if any, because any such trajectory that satis�es (a) and (b)

constitutes another (non-stationary) equilibrium of the game. Because � maybe not

monotonically increasing then the inverse mapping ��1 may well be a correspon-

dence, so solution trajectories obtained through (14) may not be unique. However

if j@�(�; se�+1)=@sj < 1 then e�, de�ned as the unique continuous selection of �, is a
contraction mapping (and hence (e��c)�1 is not). Therefore any solution trajectory
generated through (14) from some se1 6= s� either diverges away or is mapped to

zero. c < �(�; 0) guarantees that any trajectory that passes trough zero is mapped

outside the domain. [Author cite here] extends corollary 3 to the case where no

46Formally the seller program is given by: maxx a(x)+ b(x)�+ �2s s.t. b(x)+ �s = s. with b0 > 0
and a0 < 0 at the optimum:
47Recall that the equilibrium is unique "up to the seller initial choice" . Yet conditioning such

initial choice over history won�t change anything since the value of the game is constant over any
such initial choice.
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restrictions are imposed to deal with the s = 0 case.

F. Proof of Proposition 4 and 5

If c = 0, (4) becomes �(�; s�) = s� which is true i¤ s� = [1�F (r�)]r�
1�� where r� is the

rental solution (see the proof of proposition 1 for details). Uniqueness comes from

the fact that for s 2 (s2; s�] (i.e. for c low enough) the seller innovates every period
hence �0s = � > 0.

Di¤erentiating (4) yields @�(�; c)=@c = � [1� �0s(�;�(�; c))]
�1 < 0 since �0s is

bounded from above by 1. (ii),(iii),(iv) and (v) follow straightforwardly from propo-

sition 3.
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