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Folk Theorems for Present-Biased Players

Axel Bernergård�y

SSE/EFI Working Paper Series in Economics and Finance
No. 736
June, 2011

Abstract. The folk theorems for in�nitely repeated games with dis-
counting presume that the discount rate between two successive periods is con-
stant. Following the literature on quasi-exponential or hyperbolic discounting,
I model the repeated interaction between two or more decision makers in a
way that allows present-biased discounting where the discount factor between
two successive periods increases with the waiting time until the periods are
reached. I generalize Fudenberg and Maskin�s (1986) and Abreu, Dutta and
Smith�s (1994) folk theorems for repeated games with discounting so that they
apply when discounting is present-biased. Patience is then represented either
by the discount factor between the next and the current period or, alternatively,
by the sum of the discount factors for all future periods.

Keywords: folk theorem, present-biased, discounting, hyperbolic.

JEL-code: C73.

1. Introduction
A phenomenon that has been observed in laboratory experiments is that people are
less willing to postpone pleasure from today to tomorrow than from a day far into
the future to the day after that (Eisenhauer and Ventura (2006), Loewenstein and
Prelec (1992), Thaler (1981)). Such behavior is consistent with increasing patience
where the discount factor between two successive periods increases with the waiting
time until the periods are reached. Individuals who discount in this way are said to
be �present-biased�since their aversion to a postponement is stronger if a reward is
postponed from the present.
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Present-biasedness has been a known phenomenon for economists since Strotz
(1956), Pollak (1968) and Phelps and Pollak (1968) initiated the study of how present-
biasedness a¤ects individuals�, generations�or governments�consumption-savings prob-
lems. The discount factor that a present-biased decision maker uses between two
adjacent periods depends on how far into the future the periods are, so in e¤ect such
a decision maker uses di¤erent preference orderings to make decisions at di¤erent
points in time. In this literature, that was further developed by Peleg and Yaari
(1973), Goldman (1980) and Laibson (1997, 1998), a decision maker is therefore rep-
resented by a sequence of multiple selves. The central issue is to which extent the
current self is hurt by present-biasedness when there is no way to commit to a plan
of actions. More recent studies by Krusell and Smith (2003) and Vieille and Weibull
(2009) focus on the multiplicity of equilibria in the game between the multiple selves
of a present-biased decision maker; and Dasgupta and Maskin (2005) and Wärneryd
(2007) provide theoretical explanations of how present-biasedness could be the result
of evolutionary forces.
While much is known about how present-biasedness a¤ects the consumption-

savings problem, comparatively little is known about what happens when two or
more present-biased decision makers interact repeatedly with each other. To model
the situation where present-biased decision makers play a given stage game repeatedly
as a game, we have to consider each decision maker at each point in time as a distinct
player. The result is a well de�ned game between in�nitely many multiple selves, with
one player to act in each player role in each period. The subgame perfect equilibria
of this game are strategy pro�les such that all decision makers act optimally after all
histories, taking the actions of other decision makers and their own future actions as
given. If we use subgame perfection as our formal rule to predict how the game will
be played we thus make two implicit assumptions. First, that decision makers are
sophisticated and recognize that they have di¤erent preferences at di¤erent points in
time. Second, that decision makers do not have access to a commitment device and
therefore cannot control their own future actions.
Once the model is in place it is possible to ask the same questions as in an expo-

nentially discounted repeated game, and our focus will be on the relationship between
patience and the set of equilibrium outcomes. Since Aumann and Shapley�s (1976)
and Rubinstein�s (1979) folk theorems it is a familiar idea that repetition enables
many outcomes if players are patient. We will examine to which extent this holds
also when discounting is present-biased, with patience represented by the discount
factor between the next and the current period, or, alternatively, by the sum of the
discount factors for all future periods. The results of the analysis are generaliza-
tions of Fudenberg and Maskin�s (1986) and Abreu, Dutta and Smith�s (1994) folk
theorems that apply to present-biased discount functions. Folk theorems for quasi-
exponential or hyperbolic discounting follow as corollaries. Unlike in previous work
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with present-biased players discussed below, a folk theorem with mixed actions is
established.
The repeated interaction of present-biased decision makers has been studied be-

fore by Streich and Levy (2007), Prokopovych (2005), and Chade, Prokopovych and
Smith (2008). Streich and Levy provide a thorough discussion of the empirical rel-
evance of present-biased discounting and proceed to analyze the repeated game in
which the stage game is a prisoner�s dilemma and discounting is quasi-exponential
in the Laibson-Phelps-Pollak beta-delta form. Prokopovych and Chade et al. also
assume that present-biasedness takes the form of quasi-exponential discounting and
use recursive techniques to characterize equilibrium payo¤s and explore the costs of
present-biasedness. When discussing the relationship between patience and equilib-
rium payo¤s, Chade et al. note that with quasi-exponential discounting Fudenberg
and Maskin�s (1986) pure-action folk theorem for repeated games without a public
correlation device works as usual. This is precisely what Proposition 2 below implies
when discounting is quasi-exponential. Prokopovych (2005) uses decomposability
arguments to prove a more general pure-action folk theorem for quasi-exponential
discounting. Prokopovych�s folk theorem is not a special case of any folk theorem
in the present paper since it shows that if discounting is quasi-exponential, then
intertemporal averaging can be used to dispense with public signals.
Section 2 contains an informal presentation of the model and discusses what situ-

ations it is intended to capture. The model is formally described in section 3. Section
4 discusses two ways to represent patience. Folk theorems for present-biased players
are developed in section 5 and 6. Related but still open problems are presented in
section 7, and section 8 concludes. All proofs are given in the appendix.

2. Preliminaries
We consider a situation where n decision makers repeat a simultaneous-move stage
game in�nitely many times, and where the decision makers can observe each others�
actions after each period. The n decision makers have the same discount function f:1

Payo¤s that are received t periods into the future are discounted by the factor f(t);
independently of which period the current period is. Time preferences are then such
that when two alternative sequences of current and future payo¤s are compared, the
current date is irrelevant. The decision makers do not grow old and change the way
they think about intertemporal trade-o¤s.
The only assumptions we will make about f are that each value f(t) lies in the

interval [0; 1] and that f is summable. One relevant class of such functions are those
positive discount functions f for which the ratio f(t+1)=f(t) is nondecreasing. Such

1Section 7.1 describes what changes and what does not change when there is one discount function
for each decision maker. The conclusion will be that the results continue to hold but give a less
complete description of what can happen in this case.
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discount functions will be called present-biased. To use the ratio f(t+1)=f(t) to de�ne
present-biasedness in this way accords with the discussion in the introduction because
f(t + 1)=f(t) is the discount factor between the period that lies t + 1 periods into
the future and the period that lies t periods into the future. The ratio f(t+ 1)=f(t)
also plays a key role in Saez-Marti and Weibull�s (2005) study of the relationship
between discounting of instantaneous utilities and pure altruism toward future selves
or future generations. They show that present-biased discounting of instantaneous
utilities corresponds to pure altruism toward future generations.
The canonical example of a discount function is the exponential function f(t) = �t

with � 2 (0; 1): This discount function is evidently such that f(t+1)=f(t) is constant
at � for all t; so exponential discounting is the borderline case of present-biased
discounting where the ratio f(t+1)=f(t) is constant. Two other examples of present-
biased discount functions are the quasi-exponential discount function f(t) = ��t

with �; � 2 (0; 1) and the hyperbolic discount function f(t) = (1 + �t)�
=� with
0 < � < 
:With quasi-exponential discounting the ratio f(t+1)=f(t) jumps up once
and thereafter remains constant, while the hyperbolic discount function is such that
the ratio f(t+ 1)=f(t) is strictly increasing.
When the ratio f(t + 1)=f(t) is strictly increasing, the time preferences of the

decision makers are inconsistent in the sense that a plan of actions that is optimal as
viewed from one period may be suboptimal when viewed from another period. We will
assume that the decision makers lack the ability to commit to a plan of actions so that
the period t action is controlled in period t only. Since standard game theory requires
that each player has a unique preference relation over outcomes, the set of players in
the game that models the repeated interaction will therefore be f1; : : : ; ng�N: Player
(i; t) is the �current self�of decision maker i in period t: The repeated interaction is
then modelled as a game with a countably in�nite set of players where each player
(i; t) acts only once, after observing the history of play leading up to period t:
We will analyze the set of subgame perfect equilibria in this game. Since each

player (i; t) only controls one action, a strategy pro�le is a subgame perfect equi-
librium if there are no pro�table one-shot deviations. This is true also in normal
�-discounted repeated games with just a collection f1; : : : ; ng of players because in
such repeated games the one-shot deviation principle holds. Therefore the splitting
of decision maker i into a sequence ((i; t))1t=0 of i-players becomes irrelevant if we
set f(t) = �t: For this particular discount function a strategy pro�le is subgame per-
fect in the game with a sequence of i-players if and only if it is subgame perfect in
the repeated game with just one player i: In this sense, the model presented below
nests the standard model of an exponentially discounted repeated game with perfect
monitoring.
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3. The Model
3.1. Stage Game. There is a stage game G = hN;A; ui ; where N = f1; : : : ; ng is
the �nite set of players, A = �i2NAi is the set of action pro�les, and u : A! Rn is the
combined stage-game payo¤ function. The set A is a compact subset of a Euclidean
space and u is continuous. We denote by A�i the set �j 6=iAj: Given a�i 2 A�i and
ai 2 Ai; we write (ai; a�i) for the action pro�le (ai)i2N :
A mixed action for player i is a probability distribution over Ai: We will consider

mixed actions only for the case when A is �nite, in which case the set of player i�s
mixed actions is denoted �Ai and the sets �A and �A�i are de�ned by �A =
�i2N�Ai and �A�i = �j 6=i�Aj: Abusing notation, we write ui(�) for i�s expected
payo¤ under � 2 �A:
The convex hull of u(A) is denoted F : The vectors v in F are the feasible payo¤

vectors. The pure-action minmax payo¤ for player i is denoted vPi ; and the mixed-
action minmax payo¤ for player i is denoted vi :

vPi = min
a�i2A�i

max
ai2Ai

ui(ai; a�i)

vi = min
��i2�A�i

max
ai2Ai

ui(ai; ��i)

The sets FP and F� are de�ned by

FP = fv 2 F : vi > vPi for all i 2 Ng;
F� = fv 2 F : vi > vi for all i 2 Ng:

Thus FP consists of all feasible payo¤ vectors that are strictly individually rational
relative to the pure-action minmax payo¤s, and F� consists of all feasible payo¤
vectors that are strictly individually rational relative to the mixed-action minmax
payo¤s. The action pro�le a 2 A is strictly individually rational if ui(a) > vPi for all
i 2 N:

3.2. Repeated Interaction. The stage gameG is repeated in�nitely many times.
For each player role i 2 N of the stage game there is a sequence ((i; t))1t=0 of i�players.
Player (i; t) acts in player role i in period t; and only in period t: A strategy for player
(i; t) is a description of how player (i; t) plans to act in every situation in which he can
be called upon to act, and thus speci�es one action for each history of play leading
up to period t: That is, a strategy for player (i; t) is a function �it : At ! Ai; where
At is the singleton set that contains the empty history if t = 0:
We include 0 in the set of natural numbers so that N = f0; 1; : : :g:

De�nition 1. A discount function is a function f : N! [0; 1] with f(0) = 1 such
that

P1
t=1 f(t) < +1: This function space is denoted D: A positive discount function
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f is present-biased if the ratio
f(t+ 1)

f(t)

is nondecreasing in t for all t 2 N: The subset of D which consists of all present-biased
discount functions is denoted D�:

The set A1 consists of all sequences (at)1t=0 with a
t 2 A for all t 2 N: Elements (at)

of A1 will be referred to as outcomes. Given a function f 2 D; time preferences are
de�ned as follows: An outcome a 2 A1 gives player (i; �) the payo¤ Ui� (a); where
the function Ui� : A1 ! R is de�ned by

Ui� (a) = ui(a
� ) +

1X
t=1

f(t)ui(a
�+t):

Preferences are then such that player (i; �) is altruistic towards future i�players, with
f(t) being the weight put on the generation that is t periods ahead. However, player
(i; �) does not care about the utility of future generations of j�players if j 6= i:2
The notation �(G; f) will be used for the game where the set of players is N �N;

player (i; �)�s strategy set consists of all functions from A� to Ai; and player (i; �)�s
preferences over A1 are given by Ui� :

Remark 1. If f 2 D�; then f is strictly decreasing. To see this, suppose that f is a
positive function with domain N such that the ratio f(t + 1)=f(t) is nondecreasing,
but f is not strictly decreasing. Then there is some � such that f(� +1) � f(�); and
furthermore f(t + 1) � f(t) for all t > �: Thus f(t) � f(�) > 0 for all t > �; which
implies

P1
t=1 f(t) = +1 and hence f =2 D�:

3.3. Public Correlation Device. The notation �PC(G; f) will be used for the
game that results when period t begins with a realization !t 2 [0; 1] of a uniformly
distributed public random variable that is observed by all period t players ((i; t))i2N
before they choose their actions. In this game, a period t history is an element of
At� [0; 1]t; and a strategy �it for player (i; t) speci�es �i 2 �Ai or ai 2 Ai as a Borel
function of the period t history and the period t realization of the public signal. If A
is in�nite, then �it is required to map into Ai:
A strategy pro�le � induces a probability distribution over A for the realization

of the period t action pro�le at: The payo¤ for player (i; �) for a strategy pro�le �
is E�

P1
t=0 f(t)ui(a

�+t); where E� denotes the expectation taken with respect to the
the probabilities induced by �:

2If j 6= i; then we interpret player (i; t) and player (j; t) as the period t selves of two present-biased
decision makers. Another possibility is that ((i; t))1t=0 and ((j; t))

1
t=0 are two dynasties of decision

makers such that each generation of a dynasty cares about future generations of its own dynasty,
but ignores the welfare of members of the other dynasty.
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3.4. Subgame Perfection. In both �(G; f) and �PC(G; f); a subgame that is
identical to the game itself starts after each period t history. In �PC(G; f) a subgame
also starts after each realization of the public signal. A strategy pro�le � is a subgame
perfect equilibrium of �(G; f) if and only if the following is true for all i 2 N , all
t 2 N and all histories h 2 At of play up to period t : Given that the history of play
has been h; and that all other current and future players will play as suggested by
�, it is optimal for player (i; t) to also use the action that � suggests. In �PC(G; f);
a strategy pro�le � is a subgame perfect equilibrium if and only if each player (i; t)
�nds the action that � suggests optimal after each history h 2 At � [0; 1]t of play up
to period t and each realization !t 2 [0; 1] of the public signal in period t:

4. Two Ways to Represent Patience
The folk theorem states that su¢ ciently patient players can get any payo¤ vector
v 2 F� in a subgame perfect equilibrium if they are su¢ ciently patient. With ex-
ponential discounting, f(t) = �t; patience is naturally measured by the parameter �:
To construct folk theorems that can be used in a wider class of discount functions
we �rst have to �gure out how to represent patience. One possibility is to say that
decision makers are patient if

P1
t=1 f(t); the weight placed on all future periods, is

large. Another possibility is to use f(1) to measure patience, with the interpretation
that decision makers are patient if f(1) is large. If f(t) = �t; then both

P1
t=1 f(t)

and f(1) are monotonically increasing in � and both ways to measure patience are
equivalent to measuring patience by the parameter �:
We will only let f(1) represent patience when the decision makers are present-

biased. This rules out the possibility that for example a discount function f with
f(1) = 0:99 but f(t) = 0 for all t > 1 is considered patient. To determine the relation
between the two measures of patience for f 2 D�; we can use that for such f we
have that f(t) � f(1)t for all t: It follows that

P1
t=1 f(t) �

f(1)
1�f(1) for all f 2 D

�:

So for such f the sum
P1

t=1 f(t) is necessarily large if f(1) is large. To see that the
reverse implication does not hold, consider the quasi-exponential discount function
f(t) = ��t with �; � 2 (0; 1). For this function f(1) is large when �� is large, which
requires that � is large. By contrast,

P1
t=1 f(t) = �

�
1�� explodes when � approaches

1 for any �xed �:
In more intuitive terms, f(1) is large when the decision makers are insensitive

to postponements from the current period to the next. For
P
f(t) to be large it is

su¢ cient that the decision makers are insensitive to postponements from periods far
into the future so that f(t+ 1)=f(t) is large for large t:

Remark 2. All propositions below have immediate consequences for quasi-exponential
and hyperbolic discounting. Folk theorems for quasi-exponential discounting are im-
plied by using that if f(t) = ��t with �; � 2 (0; 1); then lim(�;�)!(1;1) f(1) = 1, and
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for any �xed � we have that lim�!1
P
f(t) = +1: Folk theorems for hyperbolic

discounting are implied by using that if f(t) = (1 + �t)�
=� with 0 < � < 
; then
lim(�;
)!(0;0) f(1) = 1; and for any �xed � we have that lim
!�

P
f(t) = +1:

5. Two-Player Stage Games
In two-player stage games there is an action pair where each player minmaxes the
other player. Fudenberg and Maskin (1986) use this action pair to develop a two-
player folk theorem for exponential discounting, and we will follow the same route.
Heuristically, suppose that two present-biased decision makers initially agree to

repeat some strictly individually rational action pair a 2 A: If one of the decision
makers deviate from this suggested path of play, then a minmax phase starts where
the mutual minmax action pair is played for T periods, after which the decision
makers go back to playing a: Deviations during the minmax phase are punished by
restarting the minmax phase.
This strategy pro�le is subgame perfect if f is such that

PT
t=1 f(t) and f(T ) are

both su¢ ciently large. That
PT

t=1 f(t) is large implies that the decision makers do
not want to deviate from a and start the minmax phase because being minmaxed
during the next T periods is painful. That f(T ) is large implies that the decision
makers want to conform during the minmax phase because the desire to escape the
minmax phase T periods into the future is stronger than the desire to myopically best
reply in the current period. The problem is that to make

PT
t=1 f(t) large requires

that the length of the minmax phase T is long, and this is in con�ict with having
f(T ) large. For all f 2 D� with f(1) su¢ ciently large we can �nd a T with the
desired properties. Therefore Fudenberg and Maskin�s (1986) two-player folk theorem
generalizes as follows:

Proposition 1. Suppose a 2 A is strictly individually rational in the two-player
stage game G: Then there exists � 2 (0; 1) such that for all f 2 D� with f(1) > �
there is a subgame perfect equilibrium of �(G; f) in which a is played in each period.

For �nite stage games with just a few actions for each player this proposition will have
few implications. In for example a prisoner�s dilemma the only strictly individually
rational action pair is the action pair where both players cooperate.
The appendix proves Proposition 1 by way of proving a more general result that

can be useful if there are many strictly individually rational action pairs. This more
general result is that if (at)1t=0 is such that ui(a

t) � vPi + " for all t 2 N; i = 1; 2
and some " > 0; then there exists � 2 (0; 1) such that for all f 2 D� with f(1) > �
there is a subgame perfect equilibrium that generates the outcome path (at)1t=0. For
su¢ ciently patient decision makers, the outcome (at) can be supported by letting a
deviation from at in period t start a minmax phase after which the decision makers
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return to the outcome (at): The reason is that ui(at) is bounded away from the
minmax payo¤ vPi by the positive number ":
Suppose that we add a public correlation device to the picture. Then the decision

makers can use the public signals to play a probability distribution over A, and any
feasible payo¤vector v 2 F can be the expected payo¤vector in a given period. With
public signals Proposition 1 transforms:

Corollary 1. Let G be a two-player stage game. For all v 2 FP there exists � 2
(0; 1) such that for all f 2 D� with f(1) > � there is a subgame perfect equilibrium
of �PC(G; f) in which v is the expected payo¤ vector in each period.

If for example G should happen to be a prisoner�s dilemma, then Corollary 1 applies
to any feasible payo¤ vector that dominates the payo¤s that the players get when
both defect. It is crucial here that FP consists of strictly individually rational payo¤
vectors. Chade, Prokopovych and Smith (2008) give an example of a weakly indi-
vidually rational payo¤ vector that is not a subgame perfect payo¤ for f 2 D� with
f(1) arbitrarily close to 1, but leave open the question if the same thing can happen
for a strictly individually rational payo¤ vector. Corollary 1 answers this question
negatively.

6. n-Player Stage Games
6.1. Pure Actions. If the stage game has more than two players, then there may
not exist an action pro�le where the players minmax each other since an action of
player 1 that punishes player 2 may be good for player 3: With the mutual minmax
strategy pro�le we studied in section 5, the incentives to punish a deviator are cre-
ated by a threat. To prove the folk theorem for games with more than two players
Fudenberg and Maskin (1986) develop the idea that another way to create incentives
to punish a deviator is to reward punishers for punishing another decision maker.
Consider a strategy pro�le � where the decision makers initially repeat some

strictly individually rational action pro�le a 2 A: If decision maker i deviates from this
suggested path of play, then a sequence of action pro�les that is speci�c for decision
maker i starts: This i�th punishment path consists of two phases: �rst decision maker
i is minmaxed during T periods, and then an action pro�le a(i) 2 A which is bad for
player i but good for players j 6= i is played. Deviations from a punishment path are
punished in the same way as deviations from a: if decision maker i deviates from a
punishment path, then the i�th punishment path starts or restarts.
For decision maker i 6= j; the incentive to conform to � when play is on the j�th

punishment path is that in the long run play then ends up in the action pro�le a(j)
and not the action pro�le a(i): In this sense, � rewards decision maker i for minmaxing
decision maker j:We will say that the stage game allows player-speci�c punishments
from a if it is possible to �nd action pro�les a(1); : : : ; a(n) with the desired properties:
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De�nition 2. The stage game G allows player-speci�c punishments from a 2
A if there is a collection (a(i))i2N of strictly individually rational action pro�les such
that ui(a) � ui(a(i)) and ui(a(j)) > ui(a(i)) for all i 2 N and all j 6= i:

When player-speci�c punishments can be constructed is well known. Later we will
discuss this and apply a result from Abreu, Dutta and Smith (1994) on this topic.
The strategy pro�le � outlined above is subgame perfect if the decision makers

want to avoid starting their punishment path when a or a(i) is supposed to be played;
and if a punishment path is started, then the punishers want their reward after the
minmax phase more than they want to avoid the costs of minmaxing another decision
maker. If the discount function f is such that

P1
t=1 f(t) is large, then the length of

the minmax phase T can be chosen such that
PT

t=1 f(t) is large but at the same timePT
t=1 f(t)=

P1
t=T+1 f(t) is small. That

PT
t=1 f(t) is large ensures that the minmax

phase is painful so that the decision makers want to avoid starting their punishment
path. That

PT
t=1 f(t)=

P1
t=T+1 f(t) is small guarantees that if a punishment path

is started, then the punishers want their reward after the minmax phase more than
they want to avoid the costs of minmaxing. Therefore Fudenberg and Maskin�s (1986)
pure-action folk theorem for more than two players generalizes as follows:

Proposition 2. Suppose that the stage game G allows player-speci�c punishments
from a 2 A: Then there exists M 2 R such that for all f 2 D with

P1
t=1 f(t) > M

there is a subgame perfect equilibrium of �(G; f) in which a is played in each period.

If the stage game is �nite, then not many action pro�les will allow player-speci�c
punishments, perhaps none will. Therefore, Proposition 2 as stated above is more
likely to have signi�cant implications if Ai is an interval for each i: A typical game
in which player-speci�c punishments can be created from any strictly individually
rational action pro�le is the Cournot game with a continuum action space. The
initially suggested a 2 A is then an action pro�le which gives each player a positive
pro�t. The action pro�le a(i) 2 A can be a pro�le where the sum of the players
pro�ts is the same as with a, but player i gets a smaller market share and every other
player gets a larger market share.
If there are public signals, then it will usually be possible to construct player-

speci�c punishments even if the stage game is �nite. Fudenberg and Maskin (1986)
show that with public signals, player-speci�c punishments can be created if a full
dimensionality condition holds. Abreu, Dutta and Smith (1994) replace the full
dimensionality condition with the weaker and clarifying condition that no two players
have equivalent utilities. Mailath and Samuelson (2006) provide an enlightening
overview of these and other results. We can apply Abreu et al.�s result to Proposition
2 to produce a corollary for the case when the stage game is played with a public
correlation device.
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De�nition 3. The stage game G satis�es non-equivalent utilities (NEU) if for
all i 2 N and all j 6= i there do not exist constants c; d 2 R with d > 0 such that
ui(a) = duj(a) + c for all a 2 A:

Corollary 2. Let G be a stage game that satis�es NEU. For all v 2 FP there exists
M 2 R such that for all f 2 D with

P1
t=1 f(t) > M there is a subgame perfect

equilibrium of �PC(G; f) in which v is the expected payo¤ vector in each period.

To apply Proposition 2 or Corollary 2 to quasi-exponential or hyperbolic discounting,
or any other functional form for the discounting, one only needs to know for which
values of the parameters that

P
f(t) is large. The results hold for the function space

D rather than the smaller space D�; that is, present-biasedness is not required.

6.2. Mixed Actions. The propositions above only state that payo¤s v 2 FP

are subgame perfect payo¤s when decision makers are su¢ ciently patient. Since vi
may be strictly smaller than vPi ; the set FP may be a proper subset of F�. So
far we have avoided the di¢ culty associated with mixed actions which is that if a
player uses a mixed action then he must be indi¤erent between all pure actions in
its support. Fudenberg and Maskin (1986) show that it is possible to deal with this
problem when F� has full dimension by adjusting future payo¤s di¤erently depending
on which action pro�les that are realized when the players use mixed actions. Abreu,
Dutta and Smith�s (1994) folk theorem shows that the weaker condition NEU is
su¢ cient to ensure that any v 2 F� is an equilibrium payo¤ for su¢ ciently patient
players. Exponential discounting simpli�es things, but it is not crucial for Abreu et
al.�s argumentation:

Proposition 3. Let G be a �nite stage game that satis�es NEU. For all v 2 F� there
exists � 2 (0; 1) such that for all f 2 D� with f(1) > � there is a subgame perfect
equilibrium of �PC(G; f) in which v is the expected payo¤ vector in each period.

This proposition uses f(1) to represent patience. For the special cases of quasi-
exponential and hyperbolic discounting, Lemma 2 in the appendix implies mixed-
action folk theorems that do not require that f(1) is large. These folk theorems,
stated below, show that a large f(1) should be thought of as a su¢ cient but not a
necessary form of patience for the mixed-action folk theorem.

Claim 1 [Quasi-Exponential Discounting]. Let G be a �nite stage game that satis�es
NEU, and let �PC(G; �; �) denote the game �PC(G; f) with f(t) = ��

t: For all v 2 F�

and all � 2 (0; 1] there exists � 2 (0; 1) such that for all � 2 (�; 1) there is a subgame
perfect equilibrium of �PC(G; �; �) in which v is the expected payo¤ vector in each
period.
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Claim 2 [Hyperbolic Discounting]. Let G be a �nite stage game that satis�es NEU,
and let �PC(G;�; 
) denote the game �PC(G; f) with f(t) = (1 + �t)�
=�: For all
v 2 F� and all � > 0 there exists �
 > � such that for all 
 2 (�; �
) there is a subgame
perfect equilibrium of �PC(G;�; 
) in which v is the expected payo¤ vector in each
period.

7. Open Problems
7.1. Di¤erential Time Preferences. Suppose that instead of one common dis-
count function f there is a collection (fi)i2N of discount functions with one discount
function fi for each decision maker i: Proposition 1, Corollary 1 and Proposition 3
then continue to hold if the phrase �f(1) > �� is replaced with �fi(1) > � for all
i 2 N�. The strategy pro�le with player-speci�c punishments is also subgame perfect
if fi(1) is large for all i 2 N; or if there is some T such that

PT
t=1 fi(t) is su¢ -

ciently large and
PT

t=1 fi(t)=
P1

t=1 fi(t) is su¢ ciently small for all i 2 N: A precise
formulation of this modi�ed Proposition 2 is provided in the appendix with a proof.
The content of Corollary 1 and 2 is weaker with di¤erential time preferences

because, as emphasized by Lehrer and Pauzner (1999), the convex hull of u(A) then
no longer contains all feasible payo¤ vectors when there is repeated interaction. By
arranging payo¤s so that impatient decision makers get high payo¤s initially and
patient decision makers get high payo¤s later it is possible to break out of this convex
hull. It is an open question which feasible payo¤s outside the convex hull of u(A)
that are subgame perfect payo¤s for su¢ ciently patient decision makers when time
preferences are both di¤erential and inconsistent.

7.2. Subgame Perfection and Individual Rationality. In repeated games
with time-consistent preferences we know that a subgame perfect equilibrium gives
each player a payo¤that is weakly above his minmax payo¤ in the stage game. This is
because the equilibrium strategy must be at least as good as myopically best replying
in each period. In the present model with potentially time-inconsistent preferences
the same argument does not apply because player (i; 0) can be punished not only by
players acting in player role j 6= i, but also by his future selves ((i; t))1t=1. These future
selves in turn could �nd it optimal to carry out the punishment because otherwise
they will be punished by their future selves. As the following example from Vieille
andWeibull (2009) shows, such chains of punishments can give player (i; 0) a subgame
perfect payo¤ in �(G; f) that is below

P1
t=0 f(t)v

P
i :

Example 1. Consider the trivial two-player stage game G with A1 = f0; 1g; A2 =
f1g; u1(a) = u2(a) = a1: Let f 2 D be such that f(1) = 1; and let (at)1t=0 be the
outcome with a01 = 0 and at1 = 1 for all t > 1: A strategy pro�le is de�ned by
the following instructions: play the outcome (at)1t=0; if decision maker 1 deviates,
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then restart (at)1t=0: This strategy pro�les requires that player (1; 0) plays 0; and the
punishment for deviating is that otherwise player (1; 1) plays 0: If player (1; 1) is
required to play 0; then the incentives are given by the threat that otherwise player
(1; 2) plays 0; and so on in an in�nite sequence of threats. This strategy pro�le is a
subgame perfect equilibrium because player (1; 0) gets

P1
t=1 f(t) for conforming and

f(0) +
P1

t=2 f(t) for deviating, and these numbers are equal since f(0) = f(1) = 1:
The strategy pro�le gives player (1; 0) the payo¤

P1
t=1 f(t) which is less than the

minmax payo¤
P1

t=0 f(t)v
P
1 = 1 +

P1
t=1 f(t):

Some restriction on which discount functions that are allowed is necessary to ensure
that subgame perfection implies individual rationality. Chade, Prokopovych and
Smith (2008) show that quasi-exponentiality is enough: with f(t) = ��t and � � 1;
all subgame perfect equilibria of �(G; f) give player (i; 0) a payo¤that is weakly aboveP1

t=0 f(t)v
P
i : It is an open question if there is a weaker condition which ensures that

subgame perfection implies individual rationality. Vieille and Weibull (2009) provide
the solution to this problem for the case of one time-inconsistent decision maker.
Their Proposition 3.1 implies that if there is one decision maker, then it is su¢ cient
to require that discount functions are strictly decreasing. If all actions give distinct
payo¤s there is then a unique subgame perfect equilibrium in which the optimal action
is used in each period.

8. Conclusion
Fudenberg and Maskin (1986) show that if payo¤s are discounted exponentially, then
repeated games permit many subgame perfect outcomes if the decision makers who
interact with each other are su¢ ciently patient. It was shown here that the same is
true also for present-biased decision makers.
More speci�cally, if the stage game has only two players, then the folk theorem

holds for present-biased decision makers when patience is represented by the discount
factor between the next and the current period. If player-speci�c punishments can
be constructed, then the folk theorem holds for present-biased decision makers when
patience is represented by the sum of the discount factors for all future periods. As
shown by Abreu, Dutta and Smith (1994), such player-speci�c punishments can be
created when there are public signals and the utilities of the stage game are not equal
for any two players.
The discount factor between the next and the current period is large when decision

makers are insensitive to a one-period postponement from the current period. But,
for the sum of all discount factors to be large it is su¢ cient that decision makers are
insensitive to postponements from periods far into the future. The present analysis
therefore shows that for the purpose of the folk theorem, present-biased decision
makers can sometimes be considered patient even if they are highly sensitive to a
one-period postponement from the current period.
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9. Appendix
All proofs have a similar structure. We �rst de�ne a number � or M and then show,
by explicitly constructing a subgame perfect equilibrium, that this number has the
desired property.

9.1. Proposition 1. Proposition 1 is implied by the following lemma:

Lemma 1. Let G be a two-player stage game and suppose v 2 R2 and (at)1t=0 are
such that ui(at) � vi > vPi for all t 2 N and i = 1; 2: Then there exists � 2 (0; 1) such
that for all f 2 D� with f(1) > � there is a subgame perfect equilibrium of �(G; f)
that generates the outcome path (at)1t=0:

Let v 2 R2 and (at)1t=0 be such that ui(at) � vi > vPi for all t 2 N and i = 1; 2: De�ne
� by � = maxb;b02A;i2N(ui(b) � ui(b0)) so that � is an upper bound on the deviation
gain from any action pro�le. For i = 1; 2; let pi 2 Ai be a solution to the problem
minmaxing player j 6= i:

pi 2 arg min
bi2Ai

�
max
bj2Aj

uj(b1; b2)

�
Let p be the action pro�le p = (p1; p2): Let � 2 (0; 1) and T 2 N be such that

TX
t=1

�t >
�

vi � ui(p)
; and

�T >
vPi � ui(p)
vi � ui(p)

;

for i = 1; 2: Such � and T exist since vi > vPi � ui(p) for i = 1; 2:3 Fix an arbitrary
f 2 D� with f(1) > �: Since f(t) � �t for all t 2 N; this f is such that

TX
t=1

f(t) (vi � ui(p)) > �; and (1)

ui(p)� vPi + f(T ) (vi � ui(p)) > 0; (2)

for i = 1; 2:
Let � be the following automaton: The set of states is f(t; s) : t 2 N; s =

0; 1; : : : ; Tg: The variable t says which period we are in. The variable s measures
3First pick T such that T > �

vi�ui(p) : Then the inequalities hold for all � su¢ ciently close to 1

since lim�!1

PT
t=1 �

t = T > �
vi�ui(p) and lim�!1 �

T = 1 >
vPi �ui(p)
vi�ui(p) :
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how far into the minmax phase the decision makers are when they are in the minmax
phase, and s = 0 if the decision makers are not in the minmax phase. The initial
state is (0; 0): The output function speci�es that at is played in state (t; s) if s = 0;
and that p is played in state (t; s) if s 6= 0: The transition rules are:

(t; 0): Go to state (t+ 1; 0) if at is played. If at is not played, go to state (t+ 1; 1):

(t; s); s =2 f0; Tg: Go to state (t+ 1; s+ 1) if p is played. If p is not played, go to state (t+ 1; 1):

(t; T ): Go to state (t+ 1; 0) if p is played. If p is not played, go to state (t+ 1; 1):

It remains only to show that � is a subgame perfect equilibrium. Suppose that
we are in state (� ; 0) in period � : It is optimal for player (i; �) to play as suggested
by � if, for all b 2 A;

ui(a
� ) +

1X
t=1

f(t)ui(a
�+t) � ui(b) +

TX
t=1

f(t)ui(p) +
1X

t=T+1

f(t)ui(a
�+t):

This inequality holds since ui(a�+t) � vi for t = 1; : : : ; T; and since f satis�es (1).
Let s 2 f1; : : : ; Tg: Suppose that we are in state (� ; s) in period � : It is optimal

for player (i; �) to play as suggested by � if

T�sX
t=0

f(t)ui(p) +
1X

t=T�s+1
f(t)ui(a

�+t) � vPi +
TX
t=1

f(t)ui(p) +
1X

t=T+1

f(t)ui(a
�+t): (3)

Since ui(a�+t) > ui(p) for t = T � s; : : : ; T � 1; (3) holds if

T�1X
t=0

f(t)ui(p) +
1X
t=T

f(t)ui(a
�+t) � vPi +

TX
t=1

f(t)ui(p) +
1X

t=T+1

f(t)ui(a
�+t):

This inequality holds since ui(a�+T ) � vi; and since f satis�es (2).

9.2. Corollary 1. The corollary is proven in the same way as Lemma 1. Given
any v 2 FP ; there exist � 2 (0; 1) and T 2 N such that (1) and (2) hold for all f 2 D�
with f(1) > �: This � has the desired property. The decision makers can use the
public signals to get the expected payo¤ vector v and let deviations start a minmax
phase of length T after which play returns to v:
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9.3. Proposition 2. Let a 2 A be such that there is a collection (a(i))i2N of
strictly individually rational action pro�les such that ui(a) � ui(a(i)) and ui(a(j)) >
ui(a(i)) for all i 2 N and all j 6= i: De�ne � by � = maxb;b02A;i2N(ui(b)� ui(b0)). Put

m1 = min
i2N

�
ui(a(i))� vPi

�
;

m2 = min
i2N;j2Nnfig

(ui(a(j))� ui(a(i))) ;

M =

�
�

m1

+ 2

�
�

m2

+
�

m1

+ 1:

The action pro�les (a(i))i2N are such that m1 > 0 and m2 > 0: We will see that this
choice of M works. Fix an arbitrary f 2 D with the property that

P1
t=1 f(t) > M:

Let T be a positive integer such that

�

m1

�
TX
t=1

f(t) � �

m1

+ 1:

Using the de�nition of m1 it follows that

TX
t=1

f(t)
�
ui(a(i))� vPi

�
� � (4)

for all i 2 N: We also have that
1X

t=T+1

f(t)m2 = m2

 1X
t=1

f(t)�
TX
t=1

f(t)

!

� m2

��
�

m1

+ 2

�
�

m2

+
�

m1

+ 1�
�
�

m1

+ 1

��
= �+ �

�
�

m1

+ 1

�
� �+ �

TX
t=1

f(t):

Using the de�nition of m2 it follows that

1X
t=T+1

f(t)(ui(a(j))� ui(a(i))) � �
TX
t=0

f(t) (5)

for all i 2 N and all j 6= i:
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For i 2 N; let p(i) be an action pro�le where player i is minmaxed. That is, p(i) 2
A is such that ui(p(i)) = vPi and pi(i) 2 Ai is a best reply to p�i(i) 2 A�i: Put a(0) = a
and let � be the following automaton: The set of states is fa(i) : i 2 N [ f0gg [
f(p(i); s) : i 2 N; s = 1; : : : ; Tg : The initial state is a(0): The output function speci�es
that a(i) is played in state a(i); and that p(i) is played in state (p(i); s): The transition
rules are:

a(j): Remain in state a(j) unless a single player deviates from a(j): If a single player
that acts in player role i deviates from a(j); go to state (p(i); 1).

(p(j); s); s < T: Go to state (p(j); s + 1) unless a single player deviates from p(j): If a single
player that acts in player role i deviates from p(j); go to state (p(i); 1):

(p(j); T ): Go to state a(j) unless a single player deviates from p(j): If a single player that
acts in player role i deviates from p(j); go to state (p(i); 1):

It remains only to show that � is a subgame perfect equilibrium. Suppose that in
period � we are in state a(j) for some j 2 N [ f0g: It is optimal for player (i; �) to
play as suggested by � if, for all b 2 A;

ui(a(j)) +
1X
t=1

f(t)ui(a(j)) � ui(b) +
TX
t=1

f(t)vPi +
1X

t=T+1

f(t)ui(a(i)): (6)

Since ui(a(j)) � ui(a(i)); (6) holds if
TX
t=1

f(t)
�
ui(a(i))� vPi

�
� ui(b)� ui(a(j)):

This inequality holds since f satis�es (4).
Suppose that in period � we are in state (p(j); s) for some j 2 N and some

s 2 f1; : : : ; Tg: If i = j; then it is optimal for player (i; �) to play as suggested by
� since a deviation cannot increase the payo¤ in the current period or any future
period. If i 6= j; then it is optimal for player (i; �) to play as suggested by � if, for
all b 2 A;
T�sX
t=0

f(t)ui(p(j)) +
1X

t=T�s+1
f(t)ui(a(j)) � ui(b) +

TX
t=1

f(t)vPi +

1X
t=T+1

f(t)ui(a(i)): (7)

By de�nition of �; (7) holds if

1X
t=T+1

f(t) (ui(a(j))� ui(a(i))) � �
TX
t=0

f(t):

This is precisely the inequality (5) which f does satisfy.
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9.4. Corollary 2. It follows from the analysis in Abreu, Dutta and Smith (1994)
that if G satis�es NEU, and if v 2 FP ; then there is a collection (v(i))i2N of payo¤
vectors from F such that vi > vi(i) > vPi and vi(j) > vi(i) for all i 2 N and all j 6= i:
This result is stated as proposition 3.5.1 in Mailath and Samuelson (2006). Using
these payo¤ vectors, the corollary is proven in the same way as Proposition 2 but
vi replaces ui(a) and vi(j) replaces ui(a(j)): The decision makers now use the public
signals to get the expected payo¤ vector v initially, and v(i) if the i�th punishment
path is started.

9.5. Proposition 3. The key to proving Proposition 3 is to prove the following:

Lemma 2. Let G be a �nite stage game that satis�es NEU. For all v 2 F� there exist
m and (MT )

1
T=1 such that for all f 2 D with

PT
t=1 f(t) > m and

P1
t=1 f(t) > MT for

some T 2 f1; 2; : : :g there is a subgame perfect equilibrium of �PC(G; f) in which v
is the expected payo¤ vector in each period.

Assume, for now, that this lemma is true. Let m and (MT )
1
T=1 be the numbers whose

existence Lemma 2 guarantees. Let T be a positive integer such that T > m; and
let � 2 (0; 1) be such that

PT
t=1 �

t > m and
P1

t=1 �
t > MT : Then

PT
t=1 f(t) > m

and
P1

t=1 f(t) > MT for all f 2 D� with f(1) > �: So, by Lemma 2, for all f 2 D�
with f(1) > � there is a subgame perfect equilibrium of �PC(G; f) with the payo¤s
v: Thus Proposition 3 is implied by Lemma 2. To prove the lemma we �rst de�ne m
and (MT )

1
T=1 and then follow the proof in Abreu, Dutta and Smith (1994), henceforth

ADS, as closely as is possible in the current setting.

Defining m and (MT )
1
T=1: Let v 2 F�: ADS establish that there exists a collection

(xi)i2N of payo¤ vectors from F such that vi > xii > vi and x
j
i > x

i
i for all i 2 N and

all j 6= i: For all i 2 N; let N(i) be the subset of N that consists of all j 2 Nnfig for
which there exists a payo¤ vector cij 2 F such that

cijj 6= xij; c
ij
i = x

i
i; and

cijk � xkk for all k 2 N:

De�ne � by � = maxa;b2A;i2N(ui(a)� ui(b)): Let m be a real number such that

m >
�

xii � vi

for all i 2 N: Fix an arbitrary positive integer T; and let q 2 (0; 1) be such that

m � qT�1 > �

xii � vi
(8)
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for all i 2 N: Let MT be such that

n � jAj � �
MT �mini2N;j2N(i)

��cijj � xij�� < 1� q: (9)

Such a numberMT exists since A is a �nite set, q < 1; andmini2N;j2N(i)
��cijj � xij�� > 0:

Construction of strategy profile. Fix an arbitrary f 2 D with the property
that for some T 2 f1; 2; : : :g we have that

PT
t=1 f(t) > m and

P1
t=1 f(t) > MT : Let

q 2 (0; 1) be such that (8) and (9) holds. For all i 2 N; let mi be a pro�le of mixed
actions where player i is minmaxed. That is, mi 2 �A is such that ui(mi) = vi
and mi

i 2 �Ai is a best reply to mi
�i 2 �A�i: For all i 2 N and all j 2 N(i); let

pij : Aj ! [0;+1) be a function such that pij(aj) = 0 for some aj 2 Aj; and for all
aj; bj 2 Aj we have that

uj(aj;m
i
�j)� uj(bj;mi

�j) = (p
ij(bj)� pij(aj))(cijj � xij)

1X
t=1

f(t): (10)

Such a function pij exist since cijj 6= xij: The function pij is such that

��pij(bj)� pij(aj)�� =
�����uj(aj;mi

�j)� uj(bj;mi
�j)

(cijj � xij)
P1

t=1 f(t)

����� < �

MT �mink2N;l2N(k)
��ckll � xkl �� < 1� q

n � jAj ;

(11)
where the last inequality uses (9). Since pij(aj) = 0 for some aj 2 Aj; it follows from
(11) that pij(aj) <

1�q
n
for all aj 2 Aj: Therefore the functions (pij)i2N;j2N(i) are such

that for all i 2 N and all a 2 A we have thatX
j2N(i)

pij(aj) < 1� q:

This will ensure that the strategy pro�le � described below only uses well de�ned
probabilities.
Let � be a strategy pro�le with the following properties: The set of �states�is

fvg [
�
xi : i 2 N

	
[
�
cij : i 2 N; j 2 N(i)

	
[
�
mi : i 2 N

	
:

The initial state is v: The decision makers �play v�in state v; which means that in
state v the decision makers use the public signals to play a probability distribution
over A which gives the expected payo¤ v: After any public signal, a pure action a 2 A
should be played to ensure that defections can be detected. Analogously, the decision
makers play xi in state xi; and play cij in state cij: In state mi; the mixed action
mi 2 �A is played. The transition rules are:
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v: The next periods state is v unless a single player deviates. If a single player
acting in player role i deviates, play goes to state mi:

mi: Suppose that the observed action pro�le is a 2 A: For j 2 N(i); play goes to
state cij with probability pij(aj): Play goes to state xi with probability (1� q�P

j2N(i) p
ij(aj)): With probability q; play remains in state mi:

xi: The next periods state is xi unless a single player deviates. If a single player
acting in player role k deviates, play goes to state mk:

cij: The next periods state is cij unless a single player deviates. If a single player
acting in player role k deviates, play goes to state mk:

Verification of equilibrium. We �rst verify that it is optimal for player (i; �)
to play as suggested by � in state xi; even if there is a deviation which gives the
maximal deviation gain �: Thereafter we check that if j 2 N(i); then it is optimal for
player (j; �) to play as suggested by � in state mi: Finally we consider the remaining
states.
Suppose that we are in state xi in period � : A deviation by player (i; �) gives at

most the current gain �: Thereafter, player (i; �) is punished with the minmax payo¤
vi for as long as play remains in state m

i: After that, player (i; �) gets the payo¤ xii
again. This last assertion follows from ciji = x

i
i for all j 2 N(i): The probability that

state mi will last at least T periods is qT�1: Because of this, it is optimal for player
(i; �) to conform if

qT�1
TX
t=1

f(t)
�
xii � vi

�
� �:

This inequality holds since xii � vi > 0;
PT

t=1 f(t) > m; and m and q satisfy (8).
Let i 2 N; j 2 N(i) and suppose that we are in state mi in period � : Consider

the problem that player (j; �) faces: Player (j; �) can only a¤ect the probability of
the states cij and xi: Using aj in the current period has three e¤ects: it gives the
current payo¤ uj(aj;mi

�j); the probability p
ij(aj) that the next periods state is cij;

and a¤ects the probability that the next periods state is xi through the term �pij(aj):
Hence, the payo¤ for player (j; �) for the action aj is

uj(aj;m
i
�j) + p

ij(aj)
1X
t=1

f(t)
�
cijj � xij

�
+ C;

where C is some constant whose value player (j; �) cannot a¤ect. It follows that
player (j; �) is indi¤erent between two actions aj and bj from Aj precisely when

uj(aj;m
i
�j) + p

ij(aj)

1X
t=1

f(t)(cijj � xij) = uj(bj;mi
�j) + p

ij(bj)

1X
t=1

f(t)(cijj � xij):
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This inequality holds because pij was chosen such that (10) holds. Thus player j is
indi¤erent between all actions from Aj, so in particular player j is content with using
the mixed action mi

j:
Let i 2 N; j 2 N(i); k 2 Nnfig and l 2 N(k): Suppose that in period � we

are in one of the states v; xk; ckl; cij: If player (i; �) conforms, then he gets one of
the payo¤s vi; xki ; c

kl
i ; c

ij
i in all future periods. We have that vi; x

k
i ; c

kl
i and c

ij
i all are

weakly greater than xii; and also that a deviation by player (i; �) always starts the
same punishment path. Therefore, since it is optimal for player (i; �) to conform in
state xi even if there is a deviation which gives the maximal gain �; it is optimal
for player (i; �) to conform also in the states v; xk; ckl; cij: The only remaining case
to consider is when j =2 N(i) and we are in state mi in period � : ADS show that if
j =2 N(i); then mi

j is a best reply to m
i
�j: Thus, since player (j; �) cannot a¤ect the

probability distribution over states in the next period, it is optimal for player (j; �)
to play as suggested �:

9.6. Claim 1. Let m and (MT )
1
T=1 be the numbers whose existence Lemma 2

guarantees. Fix an arbitrary � 2 (0; 1]; and let T be a positive integer such that
�T > m: Then, for all � su¢ ciently close to 1; we have that

PT
t=1 ��

t > m andP1
t=1 ��

t > MT : So Claim 1 is implied by Lemma 2.

9.7. Claim 2. Let m and (MT )
1
T=1 be the numbers whose existence Lemma 2

guarantees. Fix an arbitrary � > 0. Let 
1 > � and T be such that
PT

t=1(1 +
�t)�
1=� > m: Such 
1 and T exist since lim
!�

P1
t=1(1 + �t)

�
=� = +1: Let �
 2
(�; 
1) be such that

P1
t=1(1 + �t)

��
=� > MT : Such �
 exists since lim
!�
P1

t=1(1 +

�t)�
=� = +1: Then, for all 
 2 (�; �
), we have that
PT

t=1(1 + �t)
�
=� > m andP1

t=1(1 + �t)
�
=� > MT : So Claim 2 is implied by Lemma 2

9.8. Di¤erential Time Preferences. Suppose that there is a collection (fi)i2N
of discount functions such that decision maker i uses fi to discount future payo¤s.
That is, player (i; �) acts to maximize

P1
t=0 fi(t)ui(a

�+t):

Claim 3. Suppose that the stage game G allows player-speci�c punishments from the
action pro�le a 2 A: Then there existsm 2 R and a sequence (MT )

1
T=1 of real numbers

with the following property: For all collections (fi)i2N of discount functions from D
such that for some T 2 f1; 2; : : :g we have that

PT
t=1 fi(t) > m and

P1
t=1 fi(t) > MT

for all i 2 N there is a subgame perfect equilibrium of �(G; (fi)) in which a is played
in each period.

Proof. Let �;m1 and m2 be de�ned as in the proof of Proposition 2. Let m be such
that m > �

m1
; and putMT =

�
m2
(T +1)+T for all positive integers T: Fix a collection
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(fi)i2N of discount functions such that
PT

t=1 fi(t) > m and
P1

t=1 fi(t) > MT for some
T 2 f1; 2; : : :g and all i 2 N: Then

TX
t=1

fi(t)
�
ui(a(i))� vPi

�
� �; and

1X
t=T+1

fi(t)(ui(a(j))� ui(a(i))) � �
TX
t=0

fi(t);

for all i 2 N and all j 6= i: Hence, with this choice of T; the strategy pro�le �
constructed in the proof of Proposition 2 is subgame perfect in �(G; (fi)): �

Claim 4. Suppose that the stage game G allows player-speci�c punishments from
the action pro�le a 2 A: Then there exists � 2 (0; 1) such that for all collections
(fi)i2N of discount functions from D� with fi(1) > � for all i 2 N there is a subgame
perfect equilibrium of �(G; (fi)) in which a is played in each period.

Proof. Let m and (MT )
1
T=1 be the numbers whose existence Claim 3 guarantees. Let

T be a positive integer such that T > m: Let � 2 (0; 1) be such that
PT

t=1 �
t > m

and
P1

t=1 �
t > MT : Then

PT
t=1 f(t) > m and

P1
t=1 f(t) > MT for all f 2 D� with

f(1) > �; so Claim 4 is implied by Claim 3. �
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