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Abstract 

Public Self-Insurance and the Samaritan’s Dilemma in a Federation 

Tim Lohse and Julio R. Robledo* 

Motivated by recent disasters, this paper analyzes the risk sharing aspect in a federation. 

The regions can be hit by a shock leading to losses that occur with an exogenous 

probability and in a stochastically independent way. The regions can spend effort on self-

insurance to reduce the size of the loss. Being part of a federation has two countervailing 

welfare effects. On the one hand, there is the well known welfare increase due to risk 

pooling. On the other hand, the self-insurance effort is a public good, because all regions 

benefit from the reduction of the loss. There exists a Samaritan’s dilemma kind of effect 

whereby regions reduce their self-insurance effort potentially leading to an overall 

welfare decrease. The central government can solve this dilemma by committing to fixed 

rather than variable transfers. This induces regions that behave non-cooperatively to still 

choose the efficient level of self-insurance effort. 

Keywords: Intergovernmental transfers, self-insurance, disaster policy 

JEL classification: H77, H41, H72
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1 Introduction

Disasters like the 9/11 terrorist attacks, the 2005 hurricane Katrina or the earthquake and subse-

quent nuclear catastrophe in Japan in 2011 caused huge financial losses in a specific geographic area

of the U.S. and Japan, respectively. These disasters have revealed an hitherto implicit underlying

insurance structure of fiscal federations. Being part of a bigger country or federation allowed the

regions to share risk and to shift (partially) the financial burden of the losses. Consider as an

example hurricane Katrina. According to Wildasin (2008b) (p. 510), total federal relief might have

approached or even exceeded the total sum of losses. Conditioning relief transfers generously on

the occurred losses mitigates incentives for ex ante disaster avoidance and preparation and thereby

causes a Samaritan’s dilemma (Buchanan, 1975). Samaritan’s dilemmas in a federation are also

present with questions such as fighting unemployment and poverty. A U. S. state e. g. could stim-

ulate its economy by appropriate local investments. However, to achieve a certain level of income

for all its citizens, such a state could alternatively rely on federally administrated unemployment

benefits for the jobless and federal payments for the poor - and not invest in its economy.

This paper analyzes risk sharing in a federation, takes into account this Samaritan’s dilemma

and proposes a potential solution.1 We consider a model of two regions and a central government.

The regions can be hit by a shock leading to losses that occur with an exogenous probability and in

a stochastically independent way. To reduce the size of the loss, the regions can invest in a public

good that serves as a self-insurance device, i.e. it reduces the size of the loss for both regions at

the same time but the probability of the loss remains constant.2 The regions are part of a superior

jurisdiction which allows for risk consolidation on an aggregate level. This has a positive effect on

all regions’ expected payoff, if the regions are risk averse. Apart from that, an individual region

can also undertake investments to reduce the size of the loss.3

However, being part of a federation, there is a double incentive not to invest in self-insurance.

First, in case a disaster strikes, the affected region can rely on support from the central government,

which redistributes income from the region not being hit by a shock to the region hit by a shock.

So investing in self-insurance effort in effect reduces potential future support. Second, due to the

insurance effect within the federation, the investment in self-insurance becomes a public good and

the regions contribute to this public good privately. In general, we would expect underprovision of

this public good. Sovereign countries and supra-national organizations face a similar situation. If all

countries may suffer a loss, the countries are better off if they pool the risk. However, independent

countries face the same incentive problem as dependent regions within a federation. Individually,

each country has an incentive to minimize its own investment in loss reduction, while from a

1Throughout the paper, we will focus without loss of generality on regions within a federation, but our analysis

also applies to boroughs joining a city or to sovereign countries joining a supra-national organization.
2The terms self-insurance and self-protection were coined by Ehrlich and Becker (1972) for situations where the

size of the loss and the probability of the loss can be influenced, respectively. Newer contributions in the insurance

literature (Kunreuther and Heal (2003), Muermann and Kunreuther (2008), Lohse et al., forthcoming) and the

public economics literature (Ihori and McGuire (2007), Ihori and McGuire, 2010) have extended the analysis of

self-insurance and self-protection to the case where they are the outcome of a collective effort.
3In the case of an earthquake, the region can impose appropriately stable building regulations. For flood protec-

tion, the region can build levees to prevent flooding. To prevent poverty, investments in education and infrastructure

could be done.
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joint perspective it would still be efficient to invest in the public insurance good. The problem

is exacerbated here because the individual sovereign countries cannot in principle be coerced to

contribute to the public good, so participation in the insurance scheme must be ex ante voluntary.

One can think of international agreements as delivering a self-commitment device that ex-ante

makes all individual countries better off.4

To sharpen the focus of our analysis, we do not consider explicitly public goods and related

direct spillover effect. Our model has no taxation and no redistribution. The purely selfish regions

can mitigate uncertainty by self-insurance investment, and it is this self-insurance effort which has

the character of a public good. In order to study the interaction between this public self-insurance

and central government’s transfers, we derive first the optimal level of regional self-insurance effort

in case of autarky, as a benchmark case. This situation is compared to the first-best federation

equilibrium where the central government can determine regions’ self-insurance effort as well as

an equalizing transfer scheme. The first-best self-insurance level of such federation equilibrium

turns out to be smaller than the level under autarky which shows the risk consolidation effect of

the federation. In case of non-cooperative regions, the first-best outcome is not feasible any more

and the regions have an incentive for free-riding. In case of a second-best setting with first the

central government designing and committing to a transfer scheme and second the regions deciding

about their self-insurance effort, in equilibrium second-best transfers are higher than first-best ones,

whereas the regions’ self-insurance levels are comparatively lower.

A core finding of our analysis is the following: Despite the widely held belief that joining a

federation increases a region’s welfare, this is not necessarily the case - Oates’ (1972) well-known

decentralization theorem seems to return through the back door. In fact, the welfare increase

due to pooling risks in a federation may be partially or even fully outweighed by a Samaritan’s

dilemma kind of effect since regions in a federation reduce their self-insurance effort.5 As a solution

to overcome the Samaritan’s dilemma, the central government should commit to fixed (rather than

variable) transfers at the first-best level. Even if regions behave in a non-cooperative way, with fixed

transfers, they choose the first-best level of self-insurance. This finding has far reaching economic

policy implications and provides e. g. an economic rationale for the 1996 U.S. welfare reform under

which block grants were introduced.

The remainder of the paper is organized as follows. The next section reviews the related

literature whereas section 3 sketches the model’s benchmark case of autarky. In the following

sections 4 and 5 we derive the first-best and second-best federation equilibriums, respectively, and

provide a welfare analysis. Section 6 concludes.

4An analysis of self-enforcing risk sharing arrangements without commitment is provided by Kocherlakota (1996)

and Genicot and Ray (2003).
5Konrad (1994) presents a model where individuals know that a public good is to be privately provided in the

future. This distorts effort incentives, because the individuals aim to reduce their disposable income to shift the

burden of the public good provision to the other individuals. Similarly, Coate (1995) argues that unconditional

transfers to the poor by the altruistic rich have negative efficiency effects. However, in our setting there is no

altruism. By providing a federal insurance mechanism, the federal government sets the wrong incentives for the

regions to choose the efficient self-insurance level. This leads to an inefficiently low level of self-insurance and to an

inefficiently large loss.
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2 Related literature

The general issue of risk sharing in a federation has been addressed prominently by Persson and

Tabellini (1996a, 1996b). They study risk sharing arrangements in a political economy setting

with a local and a national government. The local policy redistributes across individuals and

affects the probability of aggregate shocks, whereas the federal policy shares international risk.

Their results indicate a trade off between federal risk sharing and moral hazard and federal risk

sharing and redistribution, respectively. Both papers focus on political economy outcomes under

alternative fiscal constitutions. Lockwood (1999) considers the fact that local public goods may

give rise to spill over effects. He studies the central government’s trade off between providing

insurance and offering direct corrective incentives for local public goods. His approach focuses on

insurance through the provision of a public good, while in our setting, insurance itself is the public

good. Mansoorian (2000) considers risk sharing among individuals within and across regions in a

federation with population mobility and infinite horizons. He finds that the regional authorities will

not fully exploit gains from interregional risk sharing when population mobility is imperfect. In the

Nash equilibrium there is complete risk sharing among the individuals within each region. Regional

authorities that care about their reputation may be able to commit to an efficient allocation.

Even though problems like soft budget constraints and bailouts in a federation have been ad-

dressed previously (e.g. by Inman, 2003, Oates, 2005), due to the disasters mentioned above, the

more specific question of how to deal with catastrophes and the related losses in a federation has

recently drawn much attention. Wildasin (2008b) discusses implications of hurricane Katrina for

public finance in the U.S. He suggests to establish mandatory disaster reserves, i.e. each state

should be required to contribute to a fund out of which he could get relief in case of disaster.

Although being controlled by Federal regulations the funds would remain property of each state

and would not provide relief for other states. Of course, the potential fund of Delaware, where

annual flood losses, expressed as a proportion of state personal income, were on average in the last

50 years than 0.01% would be able to cover financial losses of floods much easier than the potential

fund of North Dakota with a 0.89% (Wildasin, 2007). Therefore, even with these funds existing,

transfers from the federal government would still be required and the question how to design them

would still be relevant.

In a general equilibrium model Wildasin (2008a) investigates who should finally pay for the loss

of a disaster. His model consists of a federation with a central government which cannot commit to

any ex post policy and two regions out of which just one is in danger and which are populated by

mobile households. The probability of a disaster can be reduced by appropriate investments which

influence households in their decision where to reside. It turns out that the disaster relief should

fully be financed by risk-neutral owners of immobile resources.

In a recent paper, closest to ours, Goodspeed and Haughwout (2011) apply the Persson and

Tabellini setting to examine the effects of natural disasters in a federation where local levels may

influence the probability of the related losses in a self-protection manner. In line with Bordignon

et al. (2001) they show that when the federal government is committed to full insurance against

disasters, the local level has incentives to underinvest in costly protective measures since the benefit

of a reduction of the probability of the loss is shared by all. Compared to a first-best setting,

second-best transfer levels (and the corresponding local investment levels) can be greater or smaller
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depending on the relative probability of a disaster. Our self-insurance model applies and extends

Goodspeed and Haughwout’s approach to a self-insurance situation.

3 The case of autarky

Consider two isolated regions indexed by i = 1, 2, each of them ruled by its own government.6

In every period, region i earns from its citizens a constant tax revenue given by R. The regions

are assumed to be symmetric in the sense that their tax revenue R is equal. This allows to focus

entirely on insurance incentives and rules out redistribution motives. The time structure comprises

two periods. In each period j = 1, 2 region i has income Yij , where the first index refers to the

region i = 1, 2 and the second index stands for the period j = 1, 2.

In the first period, income is certain. Income in the second period is uncertain, because with

probability p there occurs a loss L. Such a situation will be referred to as a loss situation L leading

to low future income. In contrast, with probability 1−p the regions end in a high income situation

H with no loss. What is crucial is that each region may influence the size of the loss L by investing

Ii (at a normalized price of one per unit of I) to reduce the size of the potential loss L in the second

period, L(Ii). We assume I < L(Ii) to avoid a corner solution I = 0.

The income level in period 1 is given by

Yi1 = R− Ii, i = 1, 2. (1)

Utility from this income is derived from a strictly monotonically increasing and strictly concave

utility function u(Yi1) = u(R− Ii). The uncertain income in period 2 is

Yi2 =

{

R− L(Ii) with probability p,

R with probability 1− p.
(2)

Utility from second period income stems from a strictly monotonically increasing and strictly con-

cave utility function v(·).7 The loss probabilities of the two regions are stochastically independent

from each other.8 Realistically, we assume that the loss is decreasing in the self-insurance invest-

ment with diminishing returns, e. g., ∂L(I)/∂I < 0 and ∂2L(I)/∂I2 > 0. For the sake of simplicity

and without loss of generality, we assume that there is no borrowing and no discounting.

In the case of isolated and independent regions, which we will call autarky, each regional gov-

ernment chooses its level of self-insurance investment Ii to maximize the sum of utilities in periods

1 and 2

maxIiUi := u(R− Ii) + pv(R− L(Ii)) + (1− p)v(R), (3)

6In the following, we will always speak of regions and of a central government, but our model applies to any

pairing of hierarchical administrative institutions, e. g. countries and supra-national organization like the EU, or

villages within larger regions. By considering only two entities, there are no problems of subgroup formations who

may destabilize risk sharing arrangements as in Genicot and Ray (2003).
7By denoting second-period utility differently than the first-period one, we just want to avoid confusion in the

analysis, but we do not make any assumption on different degrees of risk aversion etc.
8Here we make the usual assumption in the literature that the risks are not correlated across the regions. If they

were, then insurance would lose much of its appeal since a loss would affect all regions more or less equally and there

would be no true risk consolidation. Kunreuther and Heal (2003) analyze the case of interdependent risks in a static

setting.
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where the first summand is the first period utility, and the other two summands are the expected

utility in the second period. Ui denotes the total intertemporal utility of region i.

The condition that implicitly describes the payoff maximizing self-insurance level under autarky

(denoted by superscript A) is9

∂u(R− IAi )

∂Yi1

∂Yi1
∂Ii

= −p
∂v(R− L(IAi ))

∂Yi2

∂Yi2
∂L

∂L(IAi )

∂Ii
, (4)

By the symmetry of the regions we obtain IA1 = IA2 = IA. The left hand side (LHS) is the marginal

cost of loss reduction in units of marginal utility in period one. The right hand side (RHS) gives

the marginal benefit of loss reduction, i. e, the expected decrease of the loss, in units of marginal

utility in period two. Hence, regional governments optimally choose the self-insurance effort to

equalize probability adjusted marginal utilities over time. To allow an easy comparison with later

conditions, we will use condition (4) rearranged as follows:

∂u(R− IAi )

∂Yi1
·
∂Yi1
∂Ii

∂L(IAi )

∂Ii

= −p
∂v(R− L(IAi ))

∂Yi2

∂Yi2
∂L

, (5)

and prove the following lemma that will be used frequently in our analysis:

Lemma 1

The marginal utility cost of self-insurance, measured in units of marginal loss reduction, i. e., the

LHS of equation (5), is an increasing function of self-insurance investment. The marginal benefit

of loss reduction, measured in units of marginal utility in period two, i. e., the RHS of equation

(5), is a decreasing function of self-insurance investment.

Proof. See Appendix.

Lemma 1 is also related to the concavity of the payoff function (3) in I. The latter proves that

condition (5) describes a utility maximum.

4 The first-best federation equilibrium

4.1 The time structure

Suppose now that both regions are part of a broader unit or country ruled by a benevolent central

government. This central authority is able to implement and enforce an income transfer mechanism

between the regions after a loss has occurred. This redistribution scheme is described by transfers

T i
MN , M,N ∈ (H,L). The superscript i denotes the region. The index MN denotes the state of

region 1 (M) and region 2 (N), where M and N can both be equal to L (region has been hit by

a loss and has a low income) and H (region is in a high income situation). We assume that the

transfers are self-financing and that the central government does not profit from its efforts. For a

given outcome MN we obtain:

T 1
MN + T 2

MN = 0, M,N ∈ {H,L}. (6)

9This payoff function is strictly concave in I, see Appendix.
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This assumptions means that T 1
MN = −T 2

MN always holds. This allows us to drop the superscripts

and to simplify our notation, since the transfer received by region M will always equal the transfer

paid by region N and viceversa. Without loss of generality, we will adopt the perspective of region

1, i. e., we will add the transfer to the payoff of region 1 and subtract it from the payoff of region

2. Of course, this is just a notation issue, since transfers can be either positive or negative.

The transfers TMN can be fixed to a specific amount T̂ , or they can be conditional on the size

of the loss L. The realization of the loss is not known yet when the transfer scheme is designed.

When the transfer payments are calculated, the loss will have occurred or not, and so the size of the

loss can be used to compute the transfer payments according to the central government’s scheme.

The time structure of our model is as follows:

1. In the first stage, the central government designs and commits to a redistribution scheme for

the regions.

2. In the second stage, regional governments choose an investment level I1 and I2 taking into

account the scheme announced by the central government.

3. In the third and final stage, income is realized and the regions have suffered a loss or not.

Transfers are realized according to the scheme chosen in Stage 1.

If the central government implements a redistribution scheme, income in the second period for

region 1 is given as

Y12 =







R− L(I1) + TLL with probability p2,

R− L(I1) + TLH with probability p(1− p),

R+ THL with probability (1− p)p,

R+ THH with probability (1− p)2,

(7)

and for region 2:

Y12 =







R− L(I2)− TLL with probability p2,

R− L(I2)− THL with probability (1− p)p,

R− TLH with probability p(1− p),

R− THH with probability (1− p)2,

(8)

We assume throughout the paper that the self-insurance investment levels I1 and I2 are not

observable. If the self-insurance investment I was observable, a central government aiming to

implement an investment level Î could simply setup the following transfer scheme:

T =

{

T̂ for Î

0 else
(9)

and in effect coerce the regions to choose Î.10

10One may argue that self-insurance is observable. For our results it is sufficient to assume that the investment

level I is not verifiable. Consequently, the central government cannot implement a transfer scheme directly dependent

on the self-insurance level. In practice, we hold this assumption to be realistic.
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4.2 First-best transfers

First, as a benchmark case, let us analyze the case of an economic federation with a benevolent

central government that has the power to choose both the transfer scheme and the self-insurance

effort levels of the regions. Alternatively, such a scenario could resemble a centralized country in

which regional governments have no decision power. For this first-best outcome where the central

government is able to dictate both the transfer scheme and the self-insurance effort choices, we can

analyze the decisions one after the other as follows. Since the central government controls every

decision, it does not matter whether the regional transfers are fixed or conditional on the size of

the loss. The benevolent central government will always maximize the joint welfare of its regions.

The central government’s first-best welfare maximization problem with respect to the efficient

transfers TMN is:

max
TMNM,N∈{H,L}

W = U1 + U2 = u(R− I1) + u(R− I2)

+p2(v(R− L(I1) + TLL) + v(R− L(I2)− TLL))

+(1− p)2(v(R+ THH) + v(R− THH)) (10)

+(1− p)p (v(R+ THL) + v(R− L(I2)− THL))

+p(1− p) (v(R− L(I1) + TLH) + v(R− TLH)) ,

where we have already used that transfers are self-funding. The first order conditions are:11

∂v(R− L(I1) + TLL)

∂Y12
=

∂v(R− L(I2)− TLL)

∂Y22
, (11)

∂v(R+ THH)

∂Y12
=

∂v(R− THH)

∂Y22
, (12)

∂v(R+ THL)

∂Y12
=

∂v(R− L(I2)− THL)

∂Y22
, (13)

∂v(R− L(I1) + TLH)

∂Y12
=

∂v(R− TLH)

∂Y22
. (14)

Transfers are chosen such that second-period marginal utilities are equalized. This requires that

second-period income is identical across regions, implying a complete income equalization. If none

of the regions has suffered a loss, there is no reason for redistribution and transfers will be zero,

THH = 0. In the case only one region is affected by a loss, the efficient transfer scheme entails

a transfer from the region H that is not affected by a loss to the region L being affected by the

loss. Full risk-sharing leads to R + THL = R − L(I2) − THL and R − L(I1) + TLH = R − TLH ,

respectively. It follows that THL = −1
2L(I2) and TLH = 1

2L(I1). If both regions have experienced

a loss, there may be a transfer if the regions have chosen different self-insurance levels. However,

we will see below that the first-best entails equal self-insurance investment levels also leading to

zero transfers, TLL = 0, for this case.

11The second order condition holds because the cross partial derivatives are zero and the Hessian matrix is a

diagonal matrix. The diagonal elements are the second order derivatives of the objective function (10) with respect

to TLL, THH , THL, and TLH , which are negative by the concavity of u and v. Thus the Hessian matrix is negative

definite.
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The central government sets the first-best regional government’s investment level in loss reduc-

tion Ii, i = 1, 2 by maximizing the joint payoff of the regions, for given ex-post equalization of

income levels:

max
I1,I2

W = u(R− I1) + u(R− I2)

+p2(v(R− L(I1) + TLL) + v(R− L(I2)− TLL))

+(1− p)2(v(R) + v(R)) (15)

+(1− p)p2v(R−
1

2
L(I2))

+p(1− p)2v(R−
1

2
L(I1))

where we have already inserted first-best income equalizing transfers. The first order conditions

with respect to Ii, i = 1, 2 are12

∂u(R− I1)

∂Y11

∂Y11
∂I1

∂L(I1)

∂I1

= −p2
∂v(R− L(I1) + TLL)

∂Y12

∂Y12
∂L

− p(1− p)
∂v(R− 1

2L(I1))

∂Y12

∂Y12
∂L

(16)

∂u(R− I2)

∂Y21

∂Y21
∂I2

∂L(I2)

∂I2

= −p2
∂v(R− L(I2)− TLL)

∂Y22

∂Y22
∂L

− p(1− p)
∂v(R− 1

2L(I2))

∂Y22

∂Y22
∂L

(17)

Conditions (16) and (17) are symmetric. It follows that I1 = I2, and TLL = 0 is a solution to

the maximization problem. For I1 = I2, conditions (16) and (17) are identical and collapse to the

single condition

∂u(R− I∗)

∂Yi1

∂Yi1
∂I

∂L(I∗)

∂I

= −p2
∂v(R− L(I∗))

∂Yi2

∂Yi2
∂L

− p(1− p)
∂v(R− 1

2L(I
∗))

∂Yi2

∂Yi2
∂L

. (18)

which implicitly defines the first-best level of self-insurance I∗. To sum up, I1 = I2 = I∗ and

TLL = 0, THL = −TLH = T ∗ = −1
2L(I

∗) are a solution to the first-best problem. It is the only

solution, because the objective function (15) is strictly concave and continuously differentiable, so

the optimization problem has only one local maximum. This local maximum is also the global

maximum because TLL = 0 and THH = 0 are already at the boundary and because THL and TLH

cannot be at the border given that the autarky solution is an interior solution.

The LHS of equation (18) represents the marginal cost of self-insurance due to an income

decrease in the first period. The RHS displays the marginal benefit from such self-insurance, given

by the marginal expected increase in period 2 utility. In contrast to the case of autarky, the presence

of the transfers has inserted an externality because now one region’s investment affects the other

region’s utility. Investments in self-insurance in region i also benefit region j (i 6= j), because the

12Again, the Hessian matrix is a diagonal, negative definite matrix, see Appendix, so the payoff function is concave

in I1 and I2.
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utility and income equalizing transfer is smaller. This marginal benefit only accrues in the situation

where one region suffers a loss and the other region is spared. Therefore, the positive externality

is weighted with the probability p(1 − p) for this case. The first-best transfer T ∗ = −1/2L(I∗)

ensures that the ex-post income levels are equalized.

As a means of comparing the self-insurance effort level under autarky with the first-best level in

a federation, we have to compare the self-insurance levels IA and I∗ resulting from conditions (5)

and (18), for which we will use the shorthand notation LHSA(IA) = RHSA(IA) and LHS∗(I∗) =

RHS∗(I∗), respectively.

Proposition 1

[First-best federation equilibrium] The first-best self-insurance level in a federation is smaller than

the efficient level under autarky,

I∗ < IA, (19)

and a region’s utility in a federation is higher than under autarky,

U∗ > UA, (20)

where U∗ and UA denote the intertemporal utility of each individual region in a first-best federation

situation and under autarky, respectively.

Proof. In order to compare the self-insurance effort level under autarky with the first-best level

in a federation, we have to compare the self-insurance levels IA and I∗ resulting from conditions

(5) and (18). The LHS of both conditions are equal, so any difference in I will result from the

RHS. For a given self-insurance level Î, the RHS∗ is smaller than the RHSA, since the transfer

T ∗ increases the argument and decreases marginal utility in the case where one region is hit by a

loss and the other region is not. It follows that the LHS must be smaller, too, which by Lemma 1

means that the self-insurance investment level I is smaller. Thus, the I∗ that solves condition (18)

is smaller than the IA that solves condition (5). To compare the utility levels, consider the levels

under autarky UA with first-best self-insurance level in a federation U∗:

UA(IA) = u(R− IA) + pv(R− L(IA)) + (1− p)v(R) (21)

U∗(I∗) = u(R− I∗) + p2v(R− L(I∗)) + (1− p)2v(R) + 2(1− p)pv(R−
1

2
L(I∗)). (22)

It follows that

UA(IA) < u(R− IA) + p

(

pv(R− L(IA)) + (1− p)v(R−
1

2
L(IA))

)

+(1− p)

(

(1− p)v(R) + pv(R−
1

2
L(IA))

)

= u(R− IA) + p2v(R− L((IA))) + (1− p)2v(R) + 2(1− p)pv(R−
1

2
L(IA))

= U∗(IA) < U∗(I∗),

where the first inequality follows by the concavity of v (see Figure 1) and the second inequality

follows from the fact that I∗ maximizes W which given the definition of W in (15) implies I∗

maximizes U∗. QED.
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v(R)
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y

Figure 1: The concavity of the payoff function ensures that the first best payoff in a federation is

higher than under autarky (insurance effect).

The intuition behind Proposition 1 is clear. In autarky, a region earns the full marginal benefit

of its self-insurance effort. In contrast, in a federation, with a probability p(1 − p) one region is

affected by a loss and the other region is not, in which case the ex-post rich region pays a transfer

to the ex-post poor region. This redistribution reduces the marginal benefit of self-insurance. The

regions have an incentive to build a federation and to consolidate the risk, but this risk consolidation

reduces the efficient level first-best level of self-insurance. However, their welfare level increases,

since they have an additional instrument to consolidate the risk, namely the insurance in the

federation.

4.3 First-best and non-cooperative regions for a variable transfer scheme

Consider now the situation in which the central government is not able to impose a self-insurance

level on the regions and the two regions act non-cooperatively for a given transfer scheme announced

by the central government. Is the first-best outcome feasible? Each region maximizes its own

regional payoff in a non-cooperative way, taking the central governments’ transfer scheme and the

behavior of the other region as given (Nash behavior). First, we look at the case where the central

government has chosen a variable transfer conditional on the size of the loss. The first-best transfer

is TLH = 1/2L(I1) and THL = −1/2L(I2) if one of the regions suffers a loss and the other does

11



not. If both regions end up in the same state, transfers are zero, THH = TLL = 0. This transfer

scheme is taken into account by region 1 when calculating its payoff

U∗1 = u(R− I1) + p2v(R− L(I1)) (23)

+p(1− p)v(R− 1/2L(I1)) + (1− p)pv(R− 1/2L(I2)) + (1− p)2v(R).

Region 2’s payoff is analogous. Since both regions are symmetric and the transfer scheme is also

symmetric, the interior payoff maximizing solution is identical for both regions. It follows that both

regions will choose the same self-insurance effort and will have the same income before the possible

realization of the loss. If both regions end up in the same state, transfers are zero, THH = TLL = 0.

Consider without loss of generality region 1. It chooses the investment level to maximize the payoff

given by (23). The FOC implicitly describing the non-cooperative choice IN1 is:

∂u(R− IN1 )

∂Y11

∂Y11
∂I1

∂L(IN )

∂I1

= −p2
∂v(R− L(IN1 ))

∂Y12

∂Y12
∂L

−
1

2
p(1− p)

∂v(R− 1/2L(IN1 ))

∂Y12

∂Y12
∂L

, (24)

where the superscript N denotes the self-insurance effort in the non-cooperative Nash behavior

setting. The second-order conditions hold again due to the concavity of u and v and the assumptions

about L(I).

The structure of condition (24) is similar to the structure of the first-best condition (18) and

the terms can be interpreted in a similar way. However, when choosing the self-insurance effort

level, region 1 only takes into account the effect on its utility in stage 2 and disregards the positive

externality on region 2. Therefore, the marginal benefit for the situation when there is an income

transfer (for which the probability is p(1− p)) is half as big as in the first-best situation.

Proposition 2

[Free-riding incentive] Suppose the central government designs a transfer scheme with a variable

transfer that depends on the loss and that equalizes ex-post income levels. If the regions choose their

self-insurance effort non-cooperatively in a Nash way, both regions choose the same self-insurance

level IN1 (T ∗) = IN2 (T ∗) = IN (T ∗) which is smaller than the first-best level I∗ in a federation:

IN (T ∗) < I∗. (25)

Proof. To establish (25), we compare the non-cooperative self-insurance level IN with the

first-best level I∗, and thus use conditions (24) and (18). The RHSN (I) for the non-cooperative

equilibrium with first-best transfers (24) is smaller than the RHS∗(I) for the first-best condition

(18), RHSN (I) < RHS∗(I), because the former non-cooperative condition does not include the

positive externality of the self-insurance investment. Analogous to the proof of Proposition 1 it

follows that IN (T ∗) < I∗. QED.

The intuition is that in the second stage, regional governments take the transfers set by the

central government into account. Thus, when they make the non-cooperative decision in the first

period on how much to invest in loss reduction, they invest too little in self-insurance effort. If

the self-insurance effort levels I1 and I2 are not observable and not verifiable and/or the central

government has no power to coordinate the regional governments towards the first-best outcome,
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the first-best outcome is not feasible. The regions may be sovereign countries and the central

government may be a supranational organization. It follows that the central government takes into

account the behavior of the regions and when designing a a second-best transfer scheme in Stage

1.

5 The second-best federation equilibrium

As shown in the previous section, the first-best equilibrium is not feasible if regions act non-

cooperatively. The central government has to take into account such behavior when designing its

transfers. The resulting situation is a second-best setting.

5.1 The second-best transfers

We solve the game backwards and start from Stage 2, the last stage where an action is taken.

Without loss of generality we consider region 1. Its payoff maximizing non-cooperative choice for

a given transfer scheme is:

U1 = u(R− I1) + p2v(R− L(I1)) (26)

+p(1− p)v(R− L(I1) + TLH) + (1− p)pv(R− THL)) + (1− p)2v(R).

It chooses the investment level I1 to maximize the payoff given by (26). The FOC implicitly

describing the non-cooperative choice IN1 is:

∂u(R− IN1 )

∂Y11

∂Y11
∂I1

∂L(IN )

∂I1

+ p2
∂v(R− L(IN1 ))

∂Y12

∂Y12
∂L

+ p(1− p)
∂v(R− L(IN1 ) + TLH)

∂Y12

∂Y12
∂L

= 0, (27)

where the superscript N denotes the self-insurance effort in the non-cooperative Nash behavior

setting. The second-order conditions hold again due to the concavity of u and v and the assumptions

about L(I). This FOC defines a reaction function IN1 (TLH) for region 1. Lemma 2 shows that this

reaction function has a strictly negative slope.

Lemma 2

Consider a Nash non-cooperative setting where one region suffers a loss and the other does not. If

the central government increases (in absolute terms) the ex-post transfer from the richer, no loss

region to the poorer, loss affected region, the regions have an incentive to decrease their investment

in self-insurance, i. e.
∂IN1
∂TLH

< 0 and
∂IN2
∂THL

> 0. (28)

Proof. See Appendix.

These reaction functions from Lemma 2represent the individual non-cooperative response of the

regions for a given transfer scheme of the central government. Intuitively, the self-insurance efforts

in a non-cooperative situation decrease if the ex-post transfers increase because self-insurance is a

public good and the regions contribute to it privately. In such contribution games, the individual
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agents do not take into account the positive externality on the other players and thus reduce their

effort compared with the first-best level.

In Stage 1, the central government designs a transfer scheme to maximize the joint payoff of the

regions, taking into account the regions’ reaction functions IN1 (TLH) and IN2 (THL). The second-best

maximization problem

maxTLH ,THL
WSB = u(R− IN1 (TLH)) + u(R− IN2 (THL)) (29)

+p2
(
v(R− L(IN1 (TLH))) + v(R− L(IN2 (THL)))

)
+ (1− p)22v(R)

+(1− p)p
(
v(R+ THL) + v(R− L(IN2 (THL))− THL)

)

+p(1− p)
(
v(R− L(IN1 (TLH)) + TLH) + v(R− TLH)

)
.

has the first order conditions with respect to TLH (SB denotes second-best)

p(1− p)
∂v(R− TSB

LH )

∂Y22
= p(1− p)

∂v(R− L(IN1 (TSB
LH )) + TSB

LH )

∂Y12
(30)

+
∂IN1
∂TLH

·

[
∂u(R− IN1 (TSB

LH ))

∂Y11

∂Y11

∂IN1

+p2
∂v(R− L(IN1 (TSB

LH )))

∂Y12

∂Y12
∂L

·
∂L

∂IN1

+p(1− p)
∂v(R− L(IN1 (TSB

LH )) + TSB
LH )

∂Y12

∂Y12
∂L

·
∂L

∂IN1

]

The analogous symmetric condition, obtained from the derivative with respect to THL, has been

omitted for the sake of brevity.13 The last three lines contain the individual maximization of a

region and are equal to zero following FOC (27), such that (31) simplifies to14

p(1− p)
∂v(R− TSB

LH )

∂Y22
= p(1− p)

∂v(R− L(IN1 (TSB
LH )) + TSB

LH )

∂Y12
(31)

Proposition 3

[Second-best federation equilibrium] If the central government designs a second-best transfer scheme

with variable transfers that takes into account the regions’ best-response behavior to the announced

transfer scheme,

1. the second-best transfers are always strictly greater in absolute terms than the corresponding

first-best transfers,

TSB
LH = −TSB

HL =: TSB > T ∗,

2. the self-insurance level in the second-best non-cooperative setting is smaller than in the first-

best situation

IN (TSB) < I∗,

13The second order condition holds if WSB is a concave function in TLH and THL. A sufficient condition for

concavity of the second best maximization problem is ∂L

∂IN
1

·

∂IN
1

∂TLH

< 1, which holds in the present model, see

Appendix.
14Alternatively, we could have applied the envelope theorem to obtain (31) directly.
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3. and the second-best transfers are equal in relative terms to the corresponding first-best trans-

fers, i. e. in both situations the transfers are equal to half the loss:

TSB =
1

2
L(IN (TSB)).

Proof. To prove the first part, consider the simplified second best condition (31), which we

repeat here for the sake of clarity and to introduce the notation LHSSB and RHSSB:

LHSSB :=
∂v(R− TSB)

∂Y22
=

∂v(R− L(IN1 (TSB)) + TSB)

∂Y12
=: RHSSB. (32)

LHSSB is increasing in TSB, while RHSSB is decreasing in TSB. This second result follows from
∂IN1
∂TLH

·
∂L

∂IN1
< 1 (see Appendix). The corresponding FOC for the first best transfer T ∗ is condition

(14):

LHS∗ :=
∂v(R− T ∗)

∂Y22
=

∂v(R− L(I∗) + T ∗)

∂Y12
=: RHS∗. (33)

Now substitute T ∗ for TSB in RHSSB and let us compare the resulting RHSSB(T ∗) to RHS∗(T ∗).

By Proposition 2, IN (T ∗) < I∗, such that L(IN (T ∗)) > L(I∗). The loss becomes larger and the

argument smaller, so marginal utility increases and we obtain RHS∗(T ∗) < RHSSB(T ∗). Suppose

now TSB < T ∗. Then, it follows that

LHS∗(T ∗) = RHS∗(T ∗) < RHSSB(T ∗) < RHSSB(TSB) = LHSSB(TSB) = LHS∗(TSB). (34)

The first inequality follows from the result above, the second inequality from our assumption

TSB < T ∗ and from the fact that RHSSB is decreasing in T since ∂L
∂IN

1

·
∂IN

1

∂TLH
< 1. The inequality

chain above means

LHS∗(T ∗) < LHS∗(TSB), (35)

which is equivalent to T ∗ < TSB, since the LHS of both first best and second best conditions are

increasing in the transfer T . This contradicts the assumption TSB < T ∗ and proves TSB > T ∗.

The second part follows from IN1 (TSB) < IN1 (T ∗) < I∗, where the first inequality is due to

the fact that TSB > T ∗ by part 1 and that IN is decreasing in T by Lemma 2, while the second

inequality is due to Proposition 2.

To show the third and last part of the proposition, consider again the FOC (31). By the

concavity of the maximization program, if the marginal utilities in LHSSB and RHSSB are equal,

the arguments must be equal, too:

R− TSB
LH = R− L(IN1 (TSB

LH )) + TSB
LH (36)

Rearranging leads to the third part of the proposition. QED.

Since the loss is always greater, the insurance transfers are also larger. Ex post, the central

government always aims to equalize income levels across regions and it has no instrument to induce

the individual regions to increase their self-insurance efforts ISBN , which depend negatively on the

transfer level. Although the second-best transfers are equal to the corresponding first-best transfers

in relative terms (i. e., relative to the realized loss), TSB = 1
2L(I

N (TSB)), due to the insurance

pooling in the federation the second-best self-insurance levels are always smaller in absolute terms

than in the first-best situation: IN (TSB) < I∗.
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5.2 Welfare analysis

A regions’ utility level in the second-best outcome is

USB(IN (TSB)) = u(R−IN (TSB))+p2v(R−L((IN (TSB))+(1−p)2v(R)+2(1−p)pv(R−
1

2
L(IN (TSB))).

(37)

This utility level is always strictly smaller than the first-best level in a federation, since according to

Proposition 3, the second-best self-insurance effort is smaller than the first-best, ISB = IN (TSB) <

I∗. By Proposition 1, this also means that the self-insurance effect is smaller than in autarky,

IN (TSB) < IA. It remains to establish whether the regions’ payoff is smaller in the second-

best situation or under autarky. Two effects are at work. Under autarky, each region chooses the

individually efficient self-insurance level. However, there is no pooling of the risk like in a federation.

Being risk averse, this non-pooled risk carries a greater risk premium than in a federation. Joining

a federation means that the risks are pooled (positive effect). However, it introduces a Samaritan’s

dilemma kind of effect and leads the regions to reduce their self-insurance effort (negative effect).

It turns out that, depending on the parameters, each effect may dominate. In other words, joining

a federation may increase, but also decrease the individual region’s welfare.

Proposition 4

[Utility in the second-best federation equilibrium] Utility of a region in the second-best federation

equilibrium can be smaller or greater than welfare under autarky:

USB(IN (TSB))
>
=
< UA(IA), (38)

depending on the preferences of the regions and specially depending on the probability p of the loss

outcome.

Proof. Remember from (21) that UA(IA) = u(R−IA)+pv(R−L(IA))+(1−p)v(R). It suffices

to show by construction that depending on the probability p, sometimes welfare is higher under a

second-best federation and sometimes under autarky. Suppose p = 0. Then we obtain

USB(ISB) = u(R− ISB) + v(R) > u(R− IA) + v(R) = UA(IA), (39)

because ISB < IA. By continuity, there exists an ǫ > 0 such that p = ǫ and the inequality (39)

still holds. Suppose now p = 1. It follows

USB(ISB) = u(R− ISB) + v(R− L((ISB) < u(R− IA) + v(R− L(IA)) = UA(IA) (40)

⇐⇒ u(R− ISB)− u(R− IA) < v(R− L(IA))− v(R− L((ISB) (41)

(R− ISB −R+ IA) · u′(ŷ) < (R− L(IA)−R+ L(ISB)) · v′(ỹ) (42)

with ŷ ∈ [R− ISB, R− IA] and ỹ ∈ [R− L(IA), R− L(ISB)]

⇐⇒ (IA − ISB) · u′(ŷ) < (L(ISB)− L(IA)) · v′(ỹ), (43)

where the step with ŷ and ỹ follows from the Mean Value Theorem and the last inequality holds

because IA− ISB < L(ISB)−L(IA) by our assumptions regarding the loss function L and u′(ŷ) <
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Figure 2: If the loss is sufficiently likely, the concavity of the payoff function ensures that the

payoff in a federation is higher than under autarky, i. e. that the insurance effect dominates the

disincentive effect.

u′(ỹ) by the concavity of the payoff functions u(·) = v(·). Figure 2 illustrates this second case, the

distance ∆1 is always smaller than ∆2. Again, by continuity, there exists an ǫ > 0 such that for

p = 1 − ǫ the inequality (40) still holds. This proves that welfare can be higher under autarky or

in the second best equilibrium. QED.

The ambiguity of Proposition 4 reflects the countervailing effects at work. Under autarky, each

region has the right incentive to choose the efficient self-insurance level. Under a federation, the

risk consolidation has a positive effect, but this risk reduction causes a Samaritan’s dilemma and

decreases the incentive to spend the first-best level of self-insurance effort. Whether the autarky

or the federation setting lead to a higher payoff for the regions, depends on the specific parameters

of the payoff function and on the distribution of the probability of loss.

5.3 The superiority of block grants

Until now, we have assumed a variable transfer in the second-best setting. In the first-best full

information situation, it does not matter whether the central government implements a variable

transfer (which varies with the loss to equalize ex-post income levels across the regions) or whether

the central government implements a fixed transfer, which in the following we will denote with an
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upper bar. Both transfers lead to the same first-best self-insurance effort levels. However, in a

second-best non-cooperative setting, the design of the transfer scheme has a big effect and fixed

and variable transfers do not lead to the same second-best outcome.

In the previous sections, we have analyzed the case of a variable transfer. Suppose that the

central government has chosen a fixed transfer given by THL = −TLH = T
∗

= −1
2L(I

∗). Then,

the payoff for region 1 is

U∗1 = u(R− I1) + p2v(R− L(I1)) (44)

+p(1− p)v(R− L(I1) + T
∗

LH) + (1− p)pv(R+ T
∗

HL) + (1− p)2v(R).

Region 1 chooses the investment level I1 to maximize the payoff (44). The region’s FOC implicitly

describing the non-cooperative choice IN1 is:

∂u(R− IN1 )

∂Y11

∂Y11
∂I1

∂L(IN )

∂I1

= −p2
∂v(R− L(IN1 ))

∂Y12

∂Y12
∂L

− p(1− p)
∂v(R− L(IN1 ) + 1

2L(I
∗))

∂Y12

∂Y12
∂L

, (45)

Proposition 5

Consider a federation where the central government designs and implements a transfer scheme with

fixed transfers given by the first-best transfer levels THL = −TLH = T
∗

= −1
2L(I

∗). If the regions

choose their self-insurance effort non-cooperatively in a Nash way, both regions choose the same

self-insurance level IN1 (T
∗

) = IN2 (T
∗

) = IN (T
∗

) which coincides with the first-best level I∗:

IN (T
∗

) = I∗. (46)

Proof. For IN1 = I∗, the first-order conditions (18) and (45) are identical and are equal to zero

at IN1 = I∗. By the concavity of the objective function, this must be the only maximum of the

function. QED.

Proposition 5 shows that implementing fixed transfers leads to the first-best outcome while

variable transfers that depend on the size of the loss set the wrong incentives. Proposition 5 has

far reaching policy implications: Central governments should not aim to equalize income levels

across regions by granting variable transfers, but establish fixed transfer payments. This insight

may provide an economic rational for the (widely criticized, e.g. by Brueckner, 2000) U.S. welfare

reform of 1996 under which the existing matching grants were replaced by block grants. The states

thus have an incentive to invest the first-best effort level given the fixed transfer. A further example

are the federal transfer payments across regions in Germany. By law, the aim of the transfers is

to “equalize living standards” across the Bundesländer. Not surprisingly, the richer states criticize

that the poorer states invest too little in their well-being and rely too much in the intra-federal

transfers, since the receiving states get a higher transfer the poorer they are.15 The theoretically

derived superiority of block grants is also supported by Wildasin’s observation that matching-

grants “fail completely to induce efficient disaster-avoidance policies on the part of subnational

governments” (Wildasin, 2008a, p. 3).

15Rodden (2003) finds that under the German fiscal equalization scheme poor fiscal performance was even rewarded.
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6 Conclusion

This paper analyzes the risk sharing aspect in a federation consisting of two regions and a central

government. The regions can be hit by a uniform shock leading to losses that occur with an

exogenous probability and in a stochastically independent way. To reduce the size of the loss, the

regions can invest in a public good that serves as a self-insurance device, i. e. it reduces the size of

the loss for both regions at the same time.

Given the insurance effect in a federation due to risk consolidation, in a federation the first-best

self-insurance level will always be smaller than in an autarky situation. Since the cost of the loss

is shared, risk averse regions are willing to take bigger risks, i. e., they reduce their self-insurance

efforts. However, given the federal transfer mechanism, the individual regions have an incentive

to further reduce the self-insurance effort suboptimally if there is no central government with full

information and coercive power. The Nash equilibrium of the private contributions to public self-

insurance in a non-cooperative setting is always smaller than the first-best equilibrium level. If

the central government takes this incentive situation into account, it will redesign the regional

insurance mechanism with the aim of increasing the self-insurance effort choice of the individual

regions. The resulting second-best self-insurance efforts in the non-cooperative setting will still be

lower than the first-best effort level, leading to second-best redistribution transfers that are always

larger (in absolute terms) than the corresponding first-best transfers.

Despite the widely held belief, that joining a federation increases a region’s welfare, we show

that this is not necessarily the case. The welfare increase due to pooling risks in a federation may be

partially or even fully outweighed by a Samaritan’s dilemma kind of effect which encourages regions

in a federation to reduce their self-insurance effort. This theoretical warning about the potential

welfare reduction for an increase in centralization is empirically somewhat affirmed by Toya and

Skidmore (2010). They show that more decentralized countries have less disaster-induced deaths.

A potential solution to overcome the Samaritan’s dilemma is a central government’s commitment

to fixed rather than variable transfers at the first-best level. This will internalize the public goods

and induce the non-cooperatively behaving regions to choose an efficient level of self-insurance

effort. This insight implies that fixed block grants are welfare superior to grants depending on

some economic developments in a region which the region could influence by its own investments.

Some caveats may apply. First, our analysis does not deal with time inconsistencies. The

question whether changes in the timing of equalizing transfers to regions necessitates an adjustment

in federal corrective policy is addressed by Köthenbürger (2007). Second, our setting focuses on

public goods with self-insurance character. The related case of public goods that serve as a public

self-protection device is analyzed by Goodspeed and Haughwout (2011).

References

Bordignon, M., P. Manasse, and G. Tabellini (2001), “Optimal regional redistribution under asym-

metric information,” American Economic Review, 91(3):709–723.

Brueckner, J. K. (2000), “Welfare reform and the race to the bottom: Theory and evidence,”

Southern Economic Journal, 66(3):505–525.

19



Buchanan, J. M. (1975), “The samaritan’s dilemma,” in Phelps, E. S., ed., Altruism, Morality and

Economic Theory, pp. 71–85, Russell Sage Foundation, New York.

Coate, S. (1995), “Altruism, the samaritan’s dilemma, and government transfer policy,” American

Economic Review, 85(1):46–57.

Ehrlich, I. and G. S. Becker (1972), “Market insurance, self-insurance, and self-protection,” Journal

of Political Economy, 80(4):623–648.

Genicot, G. and D. Ray (2003), “Group formation in risk-sharing arrangements,” Review of Eco-

nomic Studies, 70(1):87–113.

Goodspeed, T. J. and A. Haughwout (2011), “On the optimal design of disaster insurance in a

federation,” mimeo.

Ihori, T. and M. C. McGuire (2007), “Collective risk control and group security: The unexpected

consequences of differential risk aversion,” Journal of Public Economic Theory, 9(2):231–263.

Ihori, T. and M. C. McGuire (2010), “National self-insurance and self-protection against adversity:

Bureaucratic management of security and moral hazard,” Economics of Governance, 11(2):103–

122.

Inman, R. P. (2003), “Transfers and bailouts: Enforcing local fiscal discipline with lessons from u.s.

federalism,” in Rodden, J., G. Eskeland, and J. Litvack, eds., Fiscal Decentralization and the

Challenge of Hard Budget Constraints, pp. 35–83., MIT Press, Cambridge.

Kocherlakota, N. R. (1996), “Implications of efficient risk sharing without commitment,” Review of

Economic Studies, 63(4):595–609.

Konrad, K. A. (1994), “The strategic advantage of being poor: Private and public provision of

public goods,” Economica, 61(241):79–92.

Köthenbürger, M. (2007), “Ex-post redistribution in a federation: Implications for corrective policy,”

Journal of Public Economics, 91(3-4):481 – 496.

Kunreuther, H. and G. Heal (2003), “Interdependent security,” Journal of Risk and Uncertainty,

26(2-3):231–249.

Lockwood, B. (1999), “Inter-regional insurance,” Journal of Public Economics, 72(1):1 – 37.

Lohse, T., J. R. Robledo, and U. Schmidt (forthcoming), “Self-insurance and self-protection as

public goods,” Journal of Risk and Insurance.

Mansoorian, A. (2000), “Risk sharing in a federation with population mobility and long horizons,”

Canadian Journal of Economics, 33(3):662–676.

Muermann, A. and H. Kunreuther (2008), “Self-protection and insurance with interdependencies,”

Journal of Risk and Uncertainty, 36:103–123.

Oates, W. E. (1972), Fiscal Federalism, Harcourt Brace Jovanovich, New York.

20



Oates, W. E. (2005), “Toward a second-generation theory of fiscal federalism,” International Tax

and Public Finance, 12(4):349–373.

Persson, T. and G. Tabellini (1996a), “Federal fiscal constitutions: Risk sharing and moral hazard,”

Econometrica, 64(3):623–646.

Persson, T. and G. Tabellini (1996b), “Federal fiscal constitutions: Risk sharing and redistribution,”

Journal of Political Economy, 104(5):979–1009.

Rodden, J. A. (2003), “Soft budget constraints and german federalism,” in Rodden, J. A., G. S.

Eskeland, and J. Litvack, eds., Fiscal Decentralization and the Challenge of Hard Budget Con-

straints, pp. 161–186, MIT Press, Cambridge.

Toya, H. and M. Skidmore (2010), “Natural disaster impacts and fiscal decentralization,” CESifo

Forum, 2/2010:43–55.

Wildasin, D. E. (2007), “Disaster policy in the us federation: Intergovernmental incentives and insti-

tutional reform,” in Proceedings of the 99th Annual Conference of the National Tax Association,

pp. 171–178.

Wildasin, D. E. (2008a), “Disaster avoidance, disaster relief, and policy coordination in a federa-

tion,” mimeo.

Wildasin, D. E. (2008b), “Disaster policies,” Public Finance Review, 36(4):497–518.

21



A Appendix

A.1 Concavity of payoff (3) under autarky

The FOC (4) with respect to Ii is

∂u(R− IAi )

∂Yi1
·
∂Yi1
∂Ii
︸ ︷︷ ︸

−1

+
∂v(R− L(IAi ))

∂Yi2
·
∂Yi2
∂L
︸ ︷︷ ︸

−1

·p ·
∂L(IAi )

∂Ii
= 0 (47)

⇐⇒ −
∂u(R− IAi )

∂Yi1
−

∂v(R− L(IAi ))

∂Yi2
· p ·

∂L(IAi )

∂Ii
= 0. (48)

Taking the derivative with respect to Ii results in the following SOC, which is negative:

−
∂2u(R− IAi )

∂Y 2
i1

·
∂Yi1
∂Ii
︸ ︷︷ ︸

−1

−
∂2v(R− L(IAi ))

∂Y 2
i2

·
∂Yi2
∂L
︸ ︷︷ ︸

−1

·

(
∂L(IAi )

∂Ii

)2

p−
∂v(R− L(IAi ))

∂Yi2
p
∂2L(IAi )

∂I2i
(49)

=
∂2u(R− IAi )

∂Y 2
i1

︸ ︷︷ ︸

−

+ p ·
∂2v(R− L(IAi ))

∂Y 2
i2

(
∂L(IAi )

∂Ii

)2

︸ ︷︷ ︸

−

−p ·
∂v(R− L(IAi ))

∂Yi2
︸ ︷︷ ︸

+

·
∂2L(IAi )

∂I2i
︸ ︷︷ ︸

+
︸ ︷︷ ︸

−

(50)

A.2 Proof of Lemma 1

Remember the FOC under autarky,

∂u(R− IAi )

∂Yi1
·
∂Yi1
∂Ii

∂L(IAi )

∂Ii

= −p
∂v(R− L(IAi ))

∂Yi2

∂Yi2
∂L

.

The derivative of the LHS of (5) with respect to Ii is (using
∂Yi1
∂Ii

= −1 and
∂Yi2
∂L

= −1):

−

︷ ︸︸ ︷

∂L(IAi )

∂Ii
·(−1) ·

−

︷ ︸︸ ︷

∂2u(R− IAi )

∂Y 2
i1

·(−1)− (−1) ·

+
︷ ︸︸ ︷

∂u(R− IAi )

∂Yi1
·

+
︷ ︸︸ ︷

∂2L(IAi )

∂I2i
(
∂L(IAi )

∂Ii

)2 > 0. (51)

The derivative of the RHS of (5) is:

− p · (−1) ·
∂2v(R− L(IAi ))

∂Y 2
i2

︸ ︷︷ ︸

−

·(−1) ·
∂L(IAi )

∂IAi
︸ ︷︷ ︸

−

< 0. (52)
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A.3 Concavity of first-best payoff (10) in a first-best setting

To calculate the Hessian matrix of the payoff function (10) we look at the derivatives with respect

to the four variables TLL, THH , THL, and TLH . Consider first the derivatives with respect to TLL

∂(10)

∂TLL

= p2
∂v(R− L(I1) + TLL)

∂Y1L
·
∂Y1L
∂TLL
︸ ︷︷ ︸

+1

+p2
∂v(R− L(I2)− TLL)

∂Y2L
·
∂Y2L
∂TLL
︸ ︷︷ ︸

−1

(53)

= p2
∂v(R− L(I2)− TLL)

∂Y1L
− p2

∂v(R− L(I2)− TLL)

∂Y2L

∂2(10)

∂T 2
LL

= p2 ·
∂2v(R− L(I1) + TLL)

∂Y 2
1L

·
∂Y1L
∂TLL
︸ ︷︷ ︸

+1

−p2
∂2v(R− L(I2)− TLL)

∂Y 2
2L

·
∂Y2L
∂TLL
︸ ︷︷ ︸

−1

(54)

= p2
∂2v(R− L(I1) + TLL)

∂Y 2
1L

+ p2
∂2v(R− L(I2)− TLL)

∂Y 2
2L

< 0

∂2(10)

∂TLL∂x
= 0, where x means any other variable. (55)

An analogous result obtains for the variable THH : the second derivative is negative and the cross

partial derivative is zero. Consider now the derivative with respect to THL:

∂(10)

∂THL

= (1− p)p
∂v(R+ THL)

∂Y1H
·
∂Y1H
∂THL
︸ ︷︷ ︸

+1

+(1− p)p
∂v(R− L(I2)− THL)

∂Y2L
·
∂Y2L
THL
︸ ︷︷ ︸

−1

(56)

= (1− p)p
∂v(R+ THL)

∂Y1H
− (1− p)p

∂v(R− L(I2)− THL)

∂Y2L
(57)

∂2(10)

∂T 2
HL

= (1− p)p
∂2v(R+ THL)

∂Y 2
1H

+ (1− p)p
∂v2(R− L(I2)− THL)

∂Y 2
2L

< 0 (58)

∂2(10)

∂THL∂x
= 0, where again xmeans any other variable. (59)

Again, we obtain for TLH an analogous result with a negative second derivative is and a zero

cross partial derivative. The Hessian matrix of the first-best maximization problem (10) is
















∂2(10)

∂T 2
LL

0 0 0

0
∂2(10)

∂T 2
HH

0 0

0 0
∂2(10)

∂T 2
HL

0

0 0 0
∂2(10)

∂T 2
LH
















(60)

This is a diagonal matrix where all the elements in the diagonal are negative. Thus, the matrix is

negative definite and the solution described by the FOCs is a local maximum.

In a similar way, the Hessian matrix of the payoff function (15) with respect to I1 and I2 is also
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a diagonal, negative definite matrix, since

∂(16)

∂I1
=

∂2u(·)

∂Y 2
11

(
∂Y11
∂L

)2
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∂L

)2 ( ∂L
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∂Y12
∂L
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∂I21

+p(1− p)
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(

−
1

2
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∂I1
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+ p(1− p)
∂v(·)
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12

(
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∂I2

+p(1− p)
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∂Y 2
12

∂Y12
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(

−
1

2

)(
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∂I2

)2

+ p(1− p)
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∂Y12

∂Y12
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∂2L

∂I22
< 0,

∂(16)

∂I2
=

∂(17)

∂I1
= 0.

This proves that the solutions to the FOC of (15) correspond to maxima of the payoff (10).

A.4 Proof of Lemma 2

To show the first result, consider the FOC corresponding to the maximization of (26),

∂u(R− IN1 )

∂Y11

∂Y11
∂I1

+ p2
∂v(R− L(IN1 ))

∂Y12

∂Y12
∂L

∂L(IN )

∂I1
+ p(1− p)

∂v(R− L(IN1 ) + TLH)

∂Y12

∂Y12
∂L

∂L(IN )

∂I1
= 0,

(61)

Apply the implicit function theorem to obtain

∂IN1
∂TLH

= −

∂FOC(61)

∂TLH

∂FOC(61)

∂IN1

. (62)

The denominator is negative due to the concavity of the objective function, so the sign of the

reaction function depends solely on the sign of
∂FOC(61)

∂TLH

, which is negative since

p(1− p)
∂2v(R− L(IN1 ) + TLH)

∂Y 2
12

︸ ︷︷ ︸

−

∂Y12
∂L

︸ ︷︷ ︸

−

∂L

∂IN1
︸︷︷︸

−

∂Y12
∂TLH
︸ ︷︷ ︸

+

< 0. (63)

This establishes
∂IN1
∂TLH

< 0. The second result follows in an analogous way using the analogous

reaction function IN2 (THL) that describes the individual payoff maximizing behavior for region 2.16

QED.

16Note that, since the transfers are defined from the perspective of region 1, a positive transfer to region 1 when

it has been hit by a loss is given when TLH > 0. Conversely, a positive transfer for region 2 arises when THL < 0.

So both results mean that the self-insurance effort level decreases, the greater the absolute transfer to a region when

it is the only region affected by a loss.
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A.5 Concavity of payoff (29) in a second-best setting

The FOC of (29) with respect to TLH is (31). The SOC of (29) with respect to TLH is given by

p(1− p)
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22

,

which is negative if 1−
∂L

∂IN1
·
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> 0. We can verify this using the results above:
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,

where
∂IN1
∂TLH

·
∂L

∂IN1
∈ (0, 1) follows because the denominator is greater than the numerator.
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