Falck, Oliver

Working Paper

Das Scheitern junger Betriebe: Ein Überlebensdauermodell auf Basis des IAB-Betriebspanels

Passauer Diskussionspapiere - Volkswirtschaftliche Reihe, No. V-32-05

Provided in Cooperation with:
University of Passau, Faculty of Business and Economics

Suggested Citation: Falck, Oliver (2005) : Das Scheitern junger Betriebe: Ein Überlebensdauermodell auf Basis des IAB-Betriebspanels, Passauer Diskussionspapiere - Volkswirtschaftliche Reihe, No. V-32-05, Universität Passau, Wirtschaftswissenschaftliche Fakultät, Passau

This Version is available at:
http://hdl.handle.net/10419/55825

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sollten die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Das Scheitern junger Betriebe
Ein Überlebensdauermodell auf Basis des IAB-Betriebspanels

Oliver Falck

Diskussionsbeitrag Nr. V-32-05

Volkswirtschaftliche Reihe
ISSN 1435-3520

Korrespondenzadresse:
Oliver Falck, Universität Passau, Lehrstuhl für Volkswirtschaftslehre mit Schwerpunkt Wirtschafts- und Sozialpolitik, Innstraße 27, 94032 Passau, Telefon: ++49 (851) 509 25 43, Fax: ++49 (851) 509 25 42, oliver.falck@uni-passau.de

Für den Inhalt der Passauer Diskussionspapiere sind die jeweiligen Autoren verantwortlich. Es wird gebeten, sich mit Anregungen und Kritik direkt an die Autoren zu wenden.
Das Scheitern junger Betriebe
Ein Überlebensdauermodell auf Basis des IAB-Betriebspansels

Zusammenfassung

JEL Klassifikation: D21, C41, L10, M13, R10.

Gliederung

1. Einleitung... 4
2. Determinanten des Scheiterns junger Unternehmen.......... 4
3. Datengrundlage ... 10
4. Schätzmethode .. 13
5. Multivariate Analyse ... 16
 5.1 Variablenauswahl .. 16
 5.2. Ergebnisse ... 20
6. Schlussfolgerungen .. 21
Literatur ... 23
1. Einleitung

2. Determinanten des Scheiterns junger Unternehmen
In empirischen Studien zum Scheitern von neu gegründeten Betrieben erweist sich die Betriebsgröße als wesentliche Einflussgröße. Man spricht von der liability of smallness. Die besondere Anfälligkeit von Kleinbetrie-

Andere empirische Studien finden heraus, dass die Schließungswahrscheinlichkeit während der ersten Monate nach Gründung zunächst bis zu einem Maximum ansteigt und dann zu fallen beginnt.\(^4\) Diese so genannte liability of adolescence wird üblicherweise damit erklärt, dass es einer gewissen Zeit bedarf, die Erfolgsaussichten des Vorhabens zu testen und zu beurteilen.

Während über die Bedeutung der Betriebsgröße als zentrale Bestimmungsgröße der Überlebensdauer von neu gegründeten Betrieben weitgehend Einigkeit herrscht, wird die Frage, ob eher die Betriebsgröße zum Gründungszeitpunkt oder die aktuelle Betriebsgröße die Überlebenswahrscheinlichkeit beeinflusst, unterschiedlich beantwortet. So kommen Mata/Portugal/Guimaraes (1995) zu dem Ergebnis, dass die aktuelle Größe einen stärkeren Einfluss auf die Überlebenswahrscheinlichkeit hat als die Größe zum Gründungszeitpunkt. Sie begründen ihr Ergebnis damit, dass in der aktuellen Betriebsgröße die Fähigkeit der Anpassung an ein sich änderndes Umfeld implizit berücksichtigt wird. Geroski/Mata/Portugal (2002) betonen, dass die Betriebseigenschaften zum Gründungszeitpunkt eine längerfristige Wirkung auf die Überlebenswahrscheinlichkeit haben.

\(^1\) Vgl. Aldrich/Auster (1986).
\(^2\) Vgl. Aldrich/Auster (1986).

Während das Branchenumfeld in ökonometrischen Überlebendaueranalysen von Unternehmen umfassend berücksichtigt wird, gilt dies nicht für

Darüber hinaus dürfte das competitive Umfeld, in dem Unternehmen agieren, einen zentralen Einfluss auf die Überlebenswahrscheinlichkeit von Unternehmen haben. Neben Konzentrationsmaßen wie dem Herfindahl-Index wird in Studien auch die Anzahl der Gründungen in der selben Branche und/oder Region als Grad für die Wettbewerbsintensität verwendet. Von einer großen Anzahl an konkurrierenden Neugründungen wird ein starker Konkurrenzdruk erwartet, der zu einer hohen Schließungswahrscheinlichkeit führt.\(^11\)

Neben den genannten Einflussfaktoren werden in empirischen Studien häufig weitere Betriebscharakteristika wie die Rechtsform, ausländisches

\(^8\) Vgl. exemplarisch Audretsch/Mahmood (1995), die die nationale Arbeitslosenquote sowie den Zinssatz berücksichtigen.

Sowohl Ausgründungen als auch neu gegründete Betriebe in bereits existierenden Mehrbetriebsunternehmen dürften eine überdurchschnittliche Überlebenswahrscheinlichkeit haben. Diese Neugründungen haben gegenüber eigenständigen Neugründungen den Vorteil, dass sie auf bereits vorhandenes Wissen über Organisation, Zulieferer- und Kundenbeziehungen zurückgreifen können und deshalb eine überdurchschnittliche Überlebenswahrscheinlichkeit haben.13

Tabelle 1 gibt einen Überblick über die erwarteten Einflüsse verschiedener Variablen auf die Überlebendauer von Betrieben.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Erwarteter Einfluss auf die Überlebensdauer von Betrieben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsgröße</td>
<td>+</td>
</tr>
<tr>
<td>Wachstumsrate der Beschäftigten im Betrieb</td>
<td>+</td>
</tr>
<tr>
<td>Mindestoptimale Betriebsgröße</td>
<td>-/+</td>
</tr>
<tr>
<td>Wachstumsrate der Beschäftigten in der Branche</td>
<td>-/+</td>
</tr>
<tr>
<td>Technologisches Regime (Innovationsvorteil in Kleinbetrieben)</td>
<td>+</td>
</tr>
<tr>
<td>Wachstumsrate des Bruttoinlandsproduktes</td>
<td>+</td>
</tr>
<tr>
<td>Wachstumsrate der Beschäftigten in der Region</td>
<td>+</td>
</tr>
<tr>
<td>Agglomeration</td>
<td>+</td>
</tr>
<tr>
<td>Gründungen in der Branche / Region</td>
<td>-</td>
</tr>
<tr>
<td>Rechtsform</td>
<td>-/+</td>
</tr>
<tr>
<td>Ausländisches Eigentum</td>
<td>-/+</td>
</tr>
<tr>
<td>Staatliche Zuschüsse</td>
<td>+</td>
</tr>
<tr>
<td>Ausgründung</td>
<td>+</td>
</tr>
<tr>
<td>Neu gegründeter Betrieb in Mehrbetriebsunternehmen</td>
<td>+</td>
</tr>
</tbody>
</table>

13 Vgl. Brüderl/Preisendörfer/Ziegler (1992).
3. Datengrundlage

\[\text{Abbildung 1: Fallzahlen im IAB-Betriebspanel für Westdeutschland 1993-2002} \]

\[\text{Quelle: in Anlehnung an Bellmann (2002, S. 181)}\]
alle Betriebe bis zum Ende des Beobachtungszeitraums überleben, müssen bei der Schätzung von Hazardfunktionen, die die bedingte Wahrscheinlichkeit der Schließung eines Betriebes zu einem Zeitpunkt \(t \) beschreiben, Berücksichtigung finden.\(^{15}\) Das verwendete Sample besteht schließlich aus 9273 Betrieben. Davon schließen 334 im Beobachtungszeitraum. Ein Betrieb wird als geschlossen angenommen, wenn er zwei Jahre in Folge nicht mehr antwortet. Aufgrund der hohen Beteiligungsbe reitschaft an der Befragung seitens der Betriebe scheint dies ein vertretbares Kriterium: Im Jahre 1993 waren 71% zu einem Interview bereit; bei wiederholt befragten Betrieben in Folgewellen waren es sogar bis zu 85%.\(^{16}\) Abbildung 2 stellt die auf Basis einer nicht parametrischen Schätzung berechnete \textit{Kaplan-Meier}-Hazardfunktion dar.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{hazard_function}
\caption{\textit{Kaplan-Meier}-Hazardfunktion, Analysezeit in Jahren}
\end{figure}

Es zeigt sich ein glockenförmiger Verlauf der Hazardfunktion. Fritsch/Bri xy/Falck (2004: 10) ermitteln dagegen auf Basis der dem Betriebspanel zugrunde liegenden Grundgesamtheit mit dem Betriebsalter monoton fal-

4. Schätzmethode
Ein gängiges Konzept in der ökonometrischen Überlebensdaueranalyse ist das bereits eingeführte Konzept der Hazardfunktion. Die Hazardfunktion gibt im vorliegenden Fall die Wahrscheinlichkeit der Schließung eines Betriebes zum Zeitpunkt t an unter der Bedingung, dass der Betrieb bis zum Zeitpunkt t aktiv ist:

\[h(t) = \lim_{\Delta t \to 0} \frac{P(t \leq T < t + \Delta t \mid T \geq t)}{\Delta t} = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{S(t)} \] (1)

Dabei ist \(f(t) \) die Dichtefunktion, \(F(t) \) die Verteilungsfunktion und \(S(t) \) die Überlebensfunktion. Die Überlebensfunktion ist \(S(t) = \exp(-\Lambda(t)) \) mit

\[\Lambda(t) = \int_0^t h(u)du \] als kumulierter Hazardfunktion.

Für den vorliegenden Fall links trunktierter und rechtszensierter Beobachtungen lautet die gemeinsame Likelihoodfunktion in allgemeiner Form:

\[L = \prod_{i=1}^N \left[\frac{f(T_i)}{S(E_i)} \right] \left[\frac{S(T_i)}{S(E_i)} \right]^{c_i} = \prod_{i=1}^N \left[h(T_i)^c \left(\frac{S(T_i)}{S(E_i)} \right)^{c_i} \right] \] (2)

Dabei ist \(c_i \) der Zensierungsindikator. \(c_i \) nimmt den Wert eins für Untersuchungseinheiten an, deren Verweildauer im Beobachtungszeitraum endet und den Wert null für Untersuchungseinheiten, die zum Ende des Beo-

\[^{17} \text{Perez/Castillejo (2004) haben jüngst eine Studie auf Basis eines spanischen, vom Aufbau dem IAB-Betriebspanel ähnlichen Datensatzes präsentiert. Sie ermitteln darin ebenfalls einen glockenförmigen Verlauf der nicht-parametrischen Kaplan-Meier-Hazardfunktion.} \]

\[^{18} \text{Vgl. Lancaster (1990: 6-10)} \]

bachtungszeitraumes noch leben. E_i gibt den Zeitpunkt des Eintritts in
das Sample an.
Nach Logarithmieren ergibt sich die Log-Likelihoodfunktion:
\[
\ln L = \sum_{i=1}^{N} \left[c_i \ln h(T_i) + \ln \left(\frac{S(T_i)}{S(E_i)} \right) \right]
\] (3)

Üblicherweise wird ein semi-parametrisches Hazardmodell, das von Cox (1972) erstmals vorgeschlagen wurde, verwendet. Die Kovariablen X ver-
schieben zu jedem Zeitpunkt t je nach Einfluss die baseline-
Hazardfunktion $h_0(t)$ proportional nach oben bzw. nach unten.\(^{20}\)
\[
h_t(t, X_i) = h_0(t) \cdot \lambda_i, \quad \lambda_i = \exp(X_i \beta)
\] (4)

Das Modell erfreut sich auf Grund der Tatsache, dass die baseline-
Hazardfunktion $h_0(t)$ nicht näher spezifiziert werden muss, in der Ökono-
metrie großer Beliebtheit. Allerdings wird die starke Annahme des propor-
tionalen Einflusses der Kovariablen zu jedem Zeitpunkt häufig verletzt.
Eine Methode zur Überprüfung der Proportionalitätsannahme ist die Ver-
wendung der Schoenfeld- bzw. scaled-Schoenfeld-Residuen. Aus diesen
lässt sich nach Grambsch/Therneau (1994) eine Prüfgröße berechnen, die
zur Überprüfung der Proportionalitätsannahme einzelner Variablen im Mo-
dell bzw. für das gesamte Modell herangezogen werden kann.\(^{21}\) Wenn die
Testgrößen nicht signifikant sind, kann die Proportionalitätsannahme nicht
verworfen werden. Für das Gesamtmodell ergibt sich in der vorgestellten
Spezifikation für die Prüfgröße ein Wert von 18.65 (p-Wert 0.0169). Es ist
daher davon auszugehen, dass die Proportionalitätsannahme verletzt
wird. Alternativ wird daher ein accelerated failure time model verwendet.\(^{22}\)
Dieses zeichnet sich dadurch aus, dass es sich durch Logarithmieren li-
nearisieren lässt.
\[
\ln(t_i) = X_i \beta + z_i
\] (5)
\[
\ln(t_i, Y_i) = z_i
\]

Aus der zweiten Form der Gleichung 5 ist zu ersehen, dass es sich bei \(\psi_i = \exp(-X_i \beta) \) um einen Zeitskalierungsfaktor handelt, der für Werte größer eins die Ausfallwahrscheinlichkeit erhöht und damit die Überlebensdauer reduziert bzw. für Werte kleiner eins die Ausfallwahrscheinlichkeit reduziert und damit die Überlebensdauer erhöht. Zum Verständnis dieses Modells führt Allison (1995: 62) folgende Veranschaulichung an: Eine Faustregel besagt, dass ein Hundelebensjahr sieben Menschenlebensjahren entspricht. In Kalenderjahren bedeutet das demnach, dass Hunde schneller altern als Menschen. Ist nun \(h(t, X) \) die Hazardfunktion von Hunden, dann beschreibt \(h(t, X = 0) \) die Hazardfunktion von Menschen. \(\psi \) nimmt den Wert sieben an. Salopps gesagt gilt also für \(\psi > 1 \) die Uhr schneller, für \(\psi < 1 \) langsamer. Durch Differentiation \(\beta_k = \frac{\delta \ln(t_i)}{\delta X_k} \) zeigt sich, dass die Regressionskoeffizienten \(\beta_k \) die proportionalen Veränderungen der Überlebensdauer bei Veränderung des Wertes eines Regressors um eine Einheit und Konstanthaltung der anderen Regressoren angeben.23 Des Weiteren ist \(z_i \) ein skalieter Störterm.

Im accelerated failure time model ist nun die zugrunde liegende Verteilung näher zu spezifizieren. Der in der nicht-parametrischen Schätzung gefundenen glockenförmige Verlauf der Hazardfunktion legt eine log-logistische Verteilung für die Hazardfunktion im accelerated failure time model nahe. Diese Verteilung hat gegenüber der sonst häufig unterstellten Exponentialverteilung den Vorteil, dass sie neben monotonen Verläufen auch Verläufe wie den oben gefundenen glockenförmigen Verlauf zulässt.24

\[
h(t, X) = \frac{\psi_i^{1/\gamma} t^{(1/\gamma - 1)}}{\gamma[1 + (\psi_i t)^{1/\gamma}]} \tag{6}
\]

\(\psi_i \) ist dabei der bereits beschriebene Skalierungsfaktor und \(\gamma > 0 \) bestimmt die Gestalt der Funktion. Für \(\gamma \geq 1 \) ergibt sich eine monoton fallende Funktion. Für \(\gamma < 1 \) ergibt sich ein glockenförmiger Verlauf. In der vor-

23 Damit unterscheidet sich die Interpretation der Regressionskoeffizienten von der im Modell mit proportionalen Hazardraten. Im Modell mit proportionalen Hazardraten geben die Regressionskoeffizienten die proportionale Veränderung der Hazardrate bei Veränderung des Wertes eines Regressors um eine Einheit und Konstanthaltung der anderen Regressoren an.

gestellten Modellspezifikation ergibt sich für γ ein signifikanter Wert von 0.5430, der zu einem glockenförmigen Verlauf der Hazardfunktion führt. Weiterhin zeigt eine grafische Überprüfung, in der die Kaplan-Meier-Schätzwerte der kumulativen Hazardfunktion gegen die kumulativen Cox Snell Residuen aus dem vorgestellten Modell geplottet werden, dass die Werte sehr nah an der 45° Linie liegen. Dies ist ein Indiz dafür, dass das vorgestellte Modell die Daten gut repräsentiert.\footnote{Vgl. Hosmer/Lemeshow (1999: 303).} Lediglich für große Zeitwerte ist eine gewisse Abweichung festzustellen, was durchaus für Modelle mit rechts zensierten Daten üblich ist.

5. Multivariate Analyse

5.1 Variablenauswahl
Um einen ersten Anhaltspunkt zu erhalten, welche der in der Literatur diskutierten und im IAB-Betriebspanel zur Verfügung stehenden Variablen in die multivariate Überlebensdaueranalyse aufgenommen werden sollten, werden für verschiedene Variablen, die die untersuchten Betriebe in Cluster einteilen, nicht-parametrische Tests zur Überprüfung der Gleichheit der survival-Funktion durchgeführt. Unterscheiden sich die survival-Funktionen für einzelne Gruppen, legt dies nahe, dass die die Gruppen trennende Variable einen wesentlichen Einfluss auf die Überlebenswahrscheinlichkeit einzelner Betriebe hat und in die multivariate Analyse aufgenommen werden sollte. Tabelle 2 gibt die Ergebnisse für die Variablen Bundesland, Branche, Großbetrieb (=1 für Betriebe mit mehr als 200 Beschäftigten), staatliche Investitionsförderung (=1 bei Erhalt einer staatlichen Förderung), Forschungs- und Entwicklungsabteilung (=1, wenn FuE Abteilung vorhanden), Niederlassung (=1, wenn Betrieb eine Niederlassung eines Mehrbetriebsunternehmens ist), Rechtsform (=1, wenn Gesellschaftsform Kapitalgesellschaft), Ausgründung (=1, wenn Betrieb als Ausgründung entstanden ist) wieder. Es wurde sowohl ein log-rank- als auch ein Wilcoxon-Test zur Überprüfung der Gleichheit der survival-Funktionen durchgeführt.

Tabelle 2: Tests zur Überprüfung der Gleichheit von survival-Funktionen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Log-rank</th>
<th>Wilcoxon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfgröße</td>
<td>Prüfgröße</td>
</tr>
<tr>
<td></td>
<td>p-Wert</td>
<td>p-Wert</td>
</tr>
<tr>
<td>Bundesland</td>
<td>180.25</td>
<td>169.22</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Branche</td>
<td>25.57</td>
<td>22.79</td>
</tr>
<tr>
<td></td>
<td>0.0294</td>
<td>0.0637</td>
</tr>
<tr>
<td>Großbetrieb</td>
<td>53.22</td>
<td>50.93</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Staatliche Investitionsförderung</td>
<td>9.87</td>
<td>8.47</td>
</tr>
<tr>
<td></td>
<td>0.0017</td>
<td>0.0036</td>
</tr>
<tr>
<td>FuE-Abteilung</td>
<td>0.60</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>0.4387</td>
<td>0.3209</td>
</tr>
<tr>
<td>Neu gegründeter Betrieb in Mehrbetriebsunternehmen</td>
<td>0.09</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>0.7588</td>
<td>0.4269</td>
</tr>
<tr>
<td>Rechtsform</td>
<td>3.51</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td>0.0612</td>
<td>0.0533</td>
</tr>
<tr>
<td>Ausgründung</td>
<td>5.50</td>
<td>7.81</td>
</tr>
<tr>
<td></td>
<td>0.0190</td>
<td>0.0052</td>
</tr>
</tbody>
</table>

Tabelle 3: Tests zur Überprüfung der Gleichheit von survival-Funktionen, für Betriebsgröße kontrolliert

<table>
<thead>
<tr>
<th>Variable</th>
<th>Log-rank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfgröße</td>
</tr>
<tr>
<td>Bundesland</td>
<td>195.08</td>
</tr>
<tr>
<td>Branche</td>
<td>23.70</td>
</tr>
<tr>
<td>Staatliche Investitionsförderung</td>
<td>0.91</td>
</tr>
<tr>
<td>FuE-Abteilung</td>
<td>0.01</td>
</tr>
<tr>
<td>Neu gegründeter Betrieb in Mehrbetriebsunternehmen</td>
<td>1.35</td>
</tr>
<tr>
<td>Rechtsform</td>
<td>1.91</td>
</tr>
<tr>
<td>Ausgründung</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Zusätzlich wird in der multivariaten Analyse die Beschäftigtenentwicklung im betrachteten Betrieb als Indikator für die Anpassungsfähigkeit des Betriebes berücksichtigt. Diese wird als relative Veränderung der Anzahl der sozialversicherungspflichtigen Beschäftigten zum Vorjahr des Betrachtungsjahres berechnet.

Zur Charakterisierung des sektoralen und regionalen Umfeldes werden folgende Variablen zum Zeitpunkt der Betrachtung verwendet:

- Wachstumsrate der sozialversicherungspflichtigen Beschäftigten in der Branche (Quelle: Beschäftigtenstatistik der Bundesagentur für Arbeit).
• Wachstumsrate der sozialversicherungspflichtigen Beschäftigten im Bundesland (Quelle: Beschäftigtenstatistik der Bundesagentur für Arbeit).

• Gemeindetyp nach BIK26 (Quelle: IAB Betriebspanel): Der Gemeindetyp kategorisiert die Gemeinde, in der der Betrieb angesiedelt ist, nach ihrer Größe. Die Variable kann die Werte 0, 1, 2, ..., 9 annehmen, wobei die größten Gemeinden mit über 500.000 Einwohnern mit 0 und Gemeinden mit unter 2.000 Einwohnern mit 9 codiert sind.

• Wachstumsrate des preisbereinigten nationalen Bruttoinlandsprodukts (Quelle: Statistisches Bundesamt).

• Logarithmierte Anzahl der Neugründungen in der betrachteten Branche im jeweiligen Bundesland im betrachteten Jahr (Quelle: Beschäftigtenstatistik der Bundesagentur für Arbeit).

26 Räumliche Gliederungssystematik der Firma BIK Aschpurwis + Behrens GmbH.
5.2. Ergebnisse
In Tabelle 4 sind die Ergebnisse des *accelerated failure time models* mit zugrunde liegender log-logistischer Verteilung aufgeführt. Die Kovariablen im Modell sind zeitvariant.\(^{27}\)

Tabelle 4: Ergebnisse des log-logistischen *accelerated failure time models*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Koeffizient</th>
<th>z-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logarithmierte Anzahl der sozialversicherungspflichtigen Beschäftigten im Betrieb</td>
<td>0.8135***</td>
<td>4.01</td>
</tr>
<tr>
<td>Wachstumsrate der sozialversicherungspflichtigen Beschäftigten im Betrieb</td>
<td>0.0008***</td>
<td>2.65</td>
</tr>
<tr>
<td>Wachstumsrate der sozialversicherungspflichtigen Beschäftigten in der Branche</td>
<td>0.0287*</td>
<td>1.74</td>
</tr>
<tr>
<td>Wachstumsrate der sozialversicherungspflichtigen Beschäftigten im Bundesland</td>
<td>0.0491**</td>
<td>2.01</td>
</tr>
<tr>
<td>Gemeindetyp</td>
<td>-0.0523***</td>
<td>-3.93</td>
</tr>
<tr>
<td>Wachstumsrate des Bruttoinlandsprodukts</td>
<td>1.099***</td>
<td>11.98</td>
</tr>
<tr>
<td>Logarithmierte Anzahl der Neugründungen in der betrachteten Branche des jeweiligen Bundeslandes</td>
<td>-0.1512***</td>
<td>-5.31</td>
</tr>
<tr>
<td>Mindestoptimale Betriebsgröße (ln)</td>
<td>-0.1090**</td>
<td>-2.22</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.5430</td>
<td></td>
</tr>
<tr>
<td>Anzahl der berücksichtigten Betriebe</td>
<td>9273</td>
<td></td>
</tr>
<tr>
<td>LR (\chi^2) (8)</td>
<td>715.77**</td>
<td></td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-854.83</td>
<td></td>
</tr>
</tbody>
</table>

* 10% Signifikanzniveau /** 5% Signifikanzniveau / *** 1% Signifikanzniveau

Wie erwartet stellt sich sowohl für die Beschäftigung sowie die Beschäftigungsentwicklung im Betrieb als Indikatoren für die Anpassungsfähigkeit ein signifikant positiver Einfluss auf die Überlebensdauer eines Betriebs heraus. Die *liability of smallness* findet sich damit im Sample bestätigt. Die Wachstumsrate der Beschäftigung in der Branche als Indikator für die Phase des Produktlebenszyklus, in der sich die Branche befindet, hat e-

\(^{27}\) Alternativ wurde ein Modell unter Berücksichtigung unbeobachteter, individueller Gamma-verteilter Heterogenität geschätzt. Der von Nielson/Gill/Andersen/Sørensen (1992) vorgeschlagene Likelihood Ratio Test zur Überprüfung, ob der Gamma-Varianz-Parameter im Modell berücksichtigt werden sollte, ist allerdings bei einem p-Wert von 1.000 nicht signifikant. Die \(\chi^2 \) -verteilte Prüfgröße nimmt dabei einen Wert von 0.00 an.
nen signifikant positiven Einfluss. Die Innovationsvorteile neu gegründeter (kleiner) Betriebe kompensieren wohl das hohe Risiko in frühen Phasen des Produktlebenszyklus. Hervorzuheben ist die Bedeutung des regiona-
len Umfelds für die Überlebendauer von Betrieben. Sowohl für den Ge-
meindetyp als auch für die Wachstumsrate der Beschäftigten im Bundes-
land ergibt sich ein signifikanter Einfluss. Die regionale Dynamik sowie der
Zugang zu differenzierten Arbeitsmärkten, die Nähe zu Forschungseinrich-
tungen, Lieferanten und einer Großzahl von Konsumenten in Agglomerati-
onen senken die Schließungswahrscheinlichkeit und erhöhen damit die
Überlebendauer von Betrieben signifikant. Auch die gesamtwirtschaftli-
che Entwicklung hat einen signifikant positiven Effekt auf die Überlebens-
dauer von Betrieben. Betriebe in einem kompetitiven Umfeld - gemessen
an der Anzahl der Neugründungen differenziert nach Branche und Bun-
desland - haben wie erwartet ein signifikant höheres Schließungsrisiko.
Betriebe in Branchen mit einer hohen mindestoptimalen Betriebsgröße
sind ebenfalls einem höheren Schließungsrisiko ausgesetzt. Der wettbe-
werbliche Druck auf neu gegründete Betriebe, die mindestoptimale Be-
triebsgröße zu erreichen, dominiert hier.

Interaktionsterme zwischen Branchen- und Regionsvariablen sowie zwi-
schen Betriebseigenschaften und Branchenvariablen wurden ebenfalls
versuchsweise aufgenommen. Diese erwiesen sich allerdings als insignifi-
kant. Wie erwartet waren die in Kapitel 5.1 neben der Betriebsgröße und
der Beschäftigtenentwicklung im Betrieb diskutierten Betriebscharakteristi-
ka insignifikant. Es bestätigt sich, dass die Betriebsgröße sowie die Be-
schäftigtenentwicklung im Betrieb die zentralen betrieblichen Bestim-
mungsgrößen für die Überlebenswahrscheinlichkeit von Betrieben sind.

6. Schlussfolgerungen

In der vorliegenden Analyse zum Scheitern junger Betriebe auf der Grund-
lage des IAB-Betriebspanels konnten die in der vielfältigen empirischen
Literatur zu diesem Feld gefundenen Ergebnisse weitgehend bestätigt
werden. Darüber hinaus konnte nachgewiesen werden, dass neben dem
sektoralen Umfeld insbesondere das regionale Umfeld einen wesentlichen
Einfluss auf die Überlebenswahrscheinlichkeit neu gegründeter Betriebe
hat. Dieses wurde bislang jedoch nur unzureichend berücksichtigt, obwohl die grundsätzliche Bedeutung der regionalen Dimension in den Wirtschaftswissenschaften anerkannt ist und eine lange Tradition hat.

Eine weitere Bestätigung dieser Ergebnisse könnte mit der Analyse der Betriebsdatei der Beschäftigtenstatistik der Bundesagentur für Arbeit erreicht werden, wenn diese im Sinne einer Betriebshistorie genutzt wird.28 Die Betriebsdatei verfügt zwar über kein umfassendes Set an betriebspezifischen Variablen, doch handelt es sich bei der Betriebsdatei um die Grundgesamtheit aller Betriebe mit mindestens einem sozialversicherungspflichtigen Beschäftigten. Damit enthält sie vor allem auch Kleinbetriebe, die häufig im Fokus der wirtschaftspolitischen Debatte stehen. Diese finden im IAB-Betriebspanel auf Grund der Art der Stichprobenziehung nicht ausreichend Berücksichtigung.

28 Zum Analysepotenzial der Betriebsdatei vgl. Brix/Fritsch (2002).
Literatur

West German firms. In: Journal of Industrial Economics, Bd. 46, S.
453-488.

sion Modelling of Time To Event Data, New York u.a..

Hymner, S. (1976): The international operations of national firms, Cam-
bridge (Mass.).

rica, Bd. 50, S. 649-670.

with Left-Truncated and “Case 1” Interval-Censored Data. In: Statisti-
tica Sinica, Bd. 13, S. 519-537.

Lancaster, T. (1990): The Econometric Analysis of Transition Data, Cam-
bridge (Mass.).

Logistic Approach. In: Small Business Economics, Bd. 14, S. 223-
237.

Marsili, O. (2002): Technological Regimes and Sources of Entrepreneur-

Mata, J./Portugal, P. (1994): Life Duration of New Firms. In: Journal of In-
dustrial Economics, Bd. 42, S. 227-245.

Mata, J./Portugal, P. (2002): The survival of new domestic and foreign

Mata, J./Portugal, P./Guimaraes, P. (1995): The survival of new plants:
start-up conditions and post-entry evolution. In: International Journal
of Industrial Organization, Bd. 35, S. 607-627.

Change, Cambridge (Mass.).

counting process approach to maximum likelihood estimation in
43.

Perez, S. E./Castillejo J. A. M. (2004): Life Duration of Manufacturing, Bei-

Steil, F. (1999): Determinanten regionaler Unterschiede in der Grün-
dungsdynamik, eine empirische Analyse für die neuen Bundesländer,
ZEW Wirtschaftsanalysen 34, Baden-Baden.

try Environment in Norwegian Manufacturing: A Semi-Proportional
Cox Model Approach. In: Small Business Economics, Bd. 14, S. 65-
82.