
Barnes, Michelle L.; Gumbau-Brisa, Fabià; Lie, Denny; Olivei, Giovanni P.

Working Paper

Closed-form estimates of the New Keynesian Phillips Curve
with time-varying trend inflation

Working Papers, No. 09-15

Provided in Cooperation with:
Federal Reserve Bank of Boston

Suggested Citation: Barnes, Michelle L.; Gumbau-Brisa, Fabià; Lie, Denny; Olivei, Giovanni P. (2009) :
Closed-form estimates of the New Keynesian Phillips Curve with time-varying trend inflation,
Working Papers, No. 09-15, Federal Reserve Bank of Boston, Boston, MA

This Version is available at:
https://hdl.handle.net/10419/55627

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/55627
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

                                    No.  09-15 
 

Closed-Form Estimates of the New Keynesian Phillips Curve 
with Time-Varying Trend Inflation 

 
Michelle L. Barnes, Fabià Gumbau-Brisa, Denny Lie, and Giovanni P. Olivei 

 
Abstract: 
We compare estimates of the New Keynesian Phillips Curve (NKPC) when the curve is specified in 
two different ways. In the standard difference equation (DE) form, current inflation is a function of 
past inflation, expected future inflation, and real marginal costs. The alternative closed form (CF) 
specification explicitly solves the DE form to express inflation as a function of past inflation and a 
present-discounted value of current and expected future marginal costs. The CF specification places 
model-consistent constraints on expected future inflation that are not imposed in the DE form. In a 
Monte Carlo exercise, we show that estimating the CF version of the NKPC gives estimates that are 
much more efficient than the estimates obtained from the DE specification. We then compare DE 
and CF estimates of the NKPC with time-varying trend inflation on actual data. The data and 
estimation methodology are the same as in Cogley and Sbordone (2008). We show that DE and CF 
estimates differ substantially and have very different implications for inflation dynamics. As in 
Cogley and Sbordone, it is possible to estimate DE specifications of the NKPC where lagged 
inflation plays no role once trend inflation is taken into account. The CF estimates of the NKPC, 
however, typically imply as large a role for lagged inflation as for expected future inflation. These 
estimates thus suggest that trend inflation is not in itself sufficient to explain the persistent dynamics 
of inflation.  
 
JEL Classifications: E12, E31, E52 
 
Michelle L. Barnes is a senior economist and policy advisor, Fabià Gumbau-Brisa is a senior economist, and Giovanni P. 
Olivei is a vice president and economist, all at the Federal Reserve Bank of Boston. Their e-mail addresses are, 
michelle.barnes@bos.frb.org, fabià.gumbau-brisa@bos.frb.org, , and giovanni.olivei@bos.frb.org respectively. Denny Lie is 
a research associate at the Federal Reserve Bank of Boston and is affiliated with Boston University. His email address is 
dlie@bu.edu. 
 
This paper, which may be revised, is available on the web site of the Federal Reserve Bank of Boston at 
http://www.bos.frb.org/economic/wp/index.htm. 
 
The views and opinions expressed in this paper are those of the authors and do not necessarily represent the views of the 
Federal Reserve Bank of Boston or the Federal Reserve System. 
 
This version: December 29, 2009 



1 Introduction

In this paper we illustrate the di¤erences that arise from estimating a New Keynesian Phillips

curve (NKPC) when the relationship is expressed in two di¤erent but related forms. The �rst

form, which we call the "di¤erence equation" (DE) speci�cation, is the standard Euler equation

formulation where in�ation is a function of past in�ation, expected next-period in�ation, and the

driving process for in�ation. The second form, which we call the "closed form" (CF) speci�cation,

takes the DE form and solves out iteratively for in�ation expectations to obtain an expression where

in�ation is a function of past in�ation and the expected present discounted value of the driving

process for in�ation. The CF speci�cation imposes model-consistent constraints on expectations

which are not imposed in the DE form. In essence, the CF speci�cation recognizes that in�ation

needs to satisfy the DE form at any point in time, and forces in�ation expectations to behave

accordingly. While the CF version of the NKPC implies the DE version, the opposite is not always

true.

When estimating the DE form of the NKPC, next-period in�ation is instrumented by means

of some unconstrained reduced-form model for in�ation. If this unconstrained reduced-form model

were identical to the "true" data generating model, then the DE and the CF speci�cations would

be equivalent. But it is fair to assume that any unconstrained reduced-form for the "true" model

underlying actual data is bound to be, at best, an approximation. If this is the case, then the DE

and CF speci�cations are not equivalent. Absent such equivalence, it becomes important to ask

whether estimates of economically relevant structural parameters di¤er when the relationship at

hand is expressed in closed form rather than in the di¤erence equation form.

In this paper, we show that deep parameter estimates of the NKPC obtained from the DE

and CF speci�cations can di¤er substantially. The CF estimates are much more precise and more

robust to a particular form of misspeci�cation. This is shown both in the context of a Monte

Carlo exercise and on actual U.S. data. For the estimation on actual data, we use a NKPC with

time-varying coe¢ cients as in Cogley and Sbordone (2008). These authors estimate a DE form of

the NKPC, and we show how the estimates change when we consider instead the CF speci�cation.

The empirical exercise is conducted using the same data and the same estimation methodology

as in Cogley and Sbordone. The DE estimates imply that, once taking into account time-varying

trend in�ation, the NKPC is purely forward-looking. The corresponding CF estimates, however,

�nd an important role for lagged in�ation. Indeed, according to the CF estimates lagged and
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expected future in�ation enter the Euler equation form of the NKPC with rather similar weights.

Another important dimension in which the DE and CF estimates di¤er is the frequency with which

prices are readjusted optimally. In the DE speci�cation this frequency is estimated at 3.9 months,

while in the CF speci�cation it is close to one year.1 Overall, the CF estimates of the NKPC with

time-varying trend in�ation suggest that U.S. in�ation has an important persistent component that

cannot be accounted for entirely by time-varying trend in�ation or by persistence in the in�ation

driving process.

There is now a large literature on estimating NKPC models.2 The forward-looking component

in the NKPC is usually derived from a micro-founded problem in which �rms cannot reset prices

optimally in every period. Firms then take into account not only current market conditions, but

also expected future conditions when setting prices optimally. This mechanism alone provides

no role for lagged in�ation in the NKPC. But in actual data, in�ation can be highly persistent

and purely forward-looking versions of the NKPC often �t the data worse than "hybrid" versions

where current in�ation depends not just also on expected next period in�ation, but also on past

in�ation. The dependence on past in�ation is frequently introduced through some ad-hoc pricing

mechanism (for example, indexation or "rule-of-thumb" price setters). This is unsatisfactory for

many purposes, as the mechanism lacks micro-foundations. The work by Cogley and Sbordone is

innovative in the literature in that it explores the possibility that the persistence in the in�ation

process is due to a time-varying in�ation target rather than to some ad-hoc element in �rms�price

setting decisions.3 There is considerable evidence that the Federal Reserve�s in�ation target has

not remained constant over time (Ireland, 2007), and this raises the possibility that variations

in the target are an important source of in�ation persistence. The empirical �ndings in Cogley

and Sbordone do indeed favor a purely forward-looking Phillips curve where in�ation persistence

results entirely from a time-varying in�ation target. These �ndings, therefore, are consistent with a

price-setting framework that does not have to rely on some form of ad-hoc backward-looking price

1Our CF estimates �nd an important role for indexation to past in�ation. In the presence of indexation,
�rms change prices every period (some are re-optimizing, while others are not). Hence the frequency of price
re-optimization in this case cannot be directly compared to micro-evidence based on price changes alone.

2See, among others, Galí and Gertler (1999), Galí, Gertler, and López-Salido (2005), Rudd and Whelan
(2006), and Sbordone (2002).

3Kozicki and Tinsley (2002) is the �rst study to explicitly consider time-varying trend in�ation when
estimating a NKPC. Cogley Sbordone, however, provide a full derivation of the NKPC with time-varying
in�ation from the �rms�optimization problem, and their empirical exercise is tightly linked to the theoretical
model.
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adjustment.4

The implications of Cogley and Sbordone�s �ndings are very important when thinking about

in�ation dynamics. As long as the in�ation target is not moving, in�ation is purely forward-looking

and as persistent as its driving process. Consider for example a situation in which real marginal

costs drop below their steady-state level and are expected to revert to the steady state in one year.

Then in�ation drops immediately and returns to its target level in one year, in sync with real

marginal costs.5 The same is true for a markup shock. A one-period markup shock, for example,

has only a one-period e¤ect on in�ation. Instead, when in�ation is not purely forward-looking,

the adjustment of in�ation to movements in real marginal costs or to markup shocks is slower.

A one-period negative markup shock, for example, results in lower current in�ation. Given the

dependence of next-period in�ation on current in�ation, this in turn lowers in�ation in the next

period. Indeed, in�ation converges only asymptotically to the target, despite the one-time shock.

These di¤erences in in�ation dynamics can have substantial implications for the design of optimal

monetary policy.6

While the focus of this paper is the NKPC model, our Monte Carlo results on the di¤erence

between DE and CF estimates generalize to other macro relationships that can be written in the

form of an Euler equation. The Monte Carlo �ndings favor the CF speci�cation over the DE

speci�cation in terms of precision of the estimates. Additionally, the CF estimates are less sensitive

to a form of misspeci�cation that appears to be relevant in Cogley and Sbordone�s setup on actual

U.S. data. Using their same data and estimation method, we replicate Cogley and Sbordone�s

benchmark �ndings based on a DE speci�cation of the NKPC with time-varying trend in�ation.

This speci�cation allows for one-lag in�ation indexation. We then show that even maintaining

the DE speci�cation, some of the parameter estimates change substantially when allowing for

two-lag in�ation indexation. In particular, lagged in�ation enters signi�cantly in the NKPC. The

dependence of current in�ation on lagged in�ation is even stronger and more precisely estimated

when we use CF versions of the NKPC.

The estimation procedure we use in the paper involves two steps. The �rst step produces a

forecasting rule for in�ation and real marginal costs based on an unconstrained vector autoregression

4The usual ad-hoc assumption of Calvo (1983) pricing notwithstanding.
5The NKPC model in Cogley and Sbordone features terms other than real marginal costs as additional

driving processes, but their role in explaining in�ation dynamics is estimated to be very small.
6See, for example, Benigno and López-Salido (2006) and Steinsson (2003).
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(VAR). Given the estimated forecasting rule, the second step uses minimum-distance methods to

estimate the deep parameters of the NKPC. The forecasting rule is the same when estimating the

DE and CF speci�cations, and this allows to isolate the e¤ects of imposing the additional model-

consistent constraints in the CF speci�cation. In this respect, our work contributes to previous

literature (Fuhrer, Moore, and Schuh, 1995, and Fuhrer and Olivei, 2005) that compared DE and

CF relationships, albeit in di¤erent settings and using di¤erent estimation methods. In those

papers, the CF relationship is estimated in a single stage by means of full-information methods,

so that the forecasting rule di¤ers from the reduced-form forecasting rule used to estimate the DE

speci�cation. Moreover, in this paper we provide a formal explanation for the di¤erence in the DE

and CF estimates. We also illustrate how to improve on the DE estimates by placing some of the

model-consistent constraints without the need to resort to the closed-form model solution. This is

particularly convenient when the closed form is di¢ cult to compute and in instrumental variables

estimation settings where the closed form involves in�nite sums of present-discounted values which,

at best, can only be approximated. In this regard, our paper links the estimation problem of Euler

equations to the minimum-distance and GMM estimators literature on the gains in e¢ ciency that

result from imposing additional constraints (Kodde, Palm, and Pfann, 1990, and Hayashi, 2000,

ch.3).

The rest of the paper proceeds as follows. In section 2 we describe the DE and CF relationships

in the context of a simple NKPC model, and discuss the two-stage estimation procedure. We then

provide an explanation for the gain in e¢ ciency from estimating the CF relationship and provide

some Monte Carlo evidence. In section 3 we consider a NKPC model that allows for time-varying

trend in�ation and compare DE and CF estimates based on actual U.S. data. Section 4 o¤ers some

concluding remarks.

2 A Simple New Keynesian Phillips Curve Framework: Estima-

tion Methodology and Monte Carlo Simulations

In order to convey the main points of the paper, in this section we use a conventional �xed-

coe¢ cients setup for the New-Keynesian Phillips curve. This setup does not allow for a time-

varying in�ation target, and thus it is simpler than the time-varying coe¢ cients version of the

NKPC developed in Cogley and Sbordone. We do so for simplicity of exposition, as our main
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results do not hinge on these speci�cs. We consider the same NKPC speci�cation as in Christiano,

Eichenbaum, and Evans (2005).7 In this framework, �rms that do not change optimally their price

in a given period through the Calvo (1983) random drawing can still update their current price.

The updating follows an indexation mechanism based on the previous period aggregate in�ation

rate, and the degree to which indexation occurs is governed by the parameter � 2 [0; 1], with � = 0

denoting absence of indexation (and thus no mechanical updating) and � = 1 full indexation. The

latter case yields a NKPC relationship that depends almost as much on expected future in�ation

as on lagged in�ation. In this setup, the di¤erence equation (DE) speci�cation of the NKPC takes

the following form8

�t = ��t�1 + �(Et�t+1 � ��t) + �mct + ut: (1)

In equation (1), � denotes in�ation andmc real marginal costs, while Et is the expectations operator

conditional on the available information at time t. The parameter � is a discount factor, while �

is a function of the model�s structural parameters, with � = (1 � �)(1 � ��)=(� + ��!). In this

expression, (1 � �) denotes the �rms�probability of adjusting prices optimally each period, � is

the elasticity of substitution among goods, and ! is the elasticity of �rms�marginal costs to their

own output (a measure of the degree of strategic complementarity in pricing decisions across �rms).

The unpredictable error term u is assumed to be i.i.d., and can be thought of as capturing potential

misspeci�cations in the relationship or shocks to �rms�desired mark-up. Rearranging (1) gives the

following expression for period t in�ation

�t =
�

1 + ��
�t�1 +

�

1 + ��
Et�t+1 +

�

1 + ��
mct + eut: (2)

From either (1) or (2), it is possible to obtain a closed-form representation of in�ation conditional

on the expected discounted path of real marginal costs. Since the relationship in (2) holds in every

period, the one-period-ahead discounted in�ation expectations can be written as

�Et�t+1 =
��

1 + ��
�t +

�2

1 + ��
Et�t+2 +

��

1 + ��
Etmct+1: (3)

Similarly, the two-period-ahead discounted in�ation expectations are

�2Et�t+2 =
�2�

1 + ��
Et�t+1 +

�3

1 + ��
Et�t+3 +

��2

1 + ��
Etmct+2;

7See also Sbordone (2002).
8See Woodford (2003) and Christiano, Eichenbaum, and Evans (2005) for a derivation.
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and so on. Substituting iteratively these expressions into (2) or, equivalently, summing the left-

hand and the right-hand sides of these expressions from time t onward, we obtain the closed-form

(CF) representation of the NKPC9

�t = ��t�1 + �
1X
i=0

�iEtmct+i + ut: (4)

The di¤erence between equations (1) and (4) is that the CF representation explicitly incorporates

model-consistent expectations about future in�ation, whereas in (1) expectations about future in�a-

tion �the second term on the right-hand side of equation (2) �are unconstrained linear projections.

The main results in our paper hinge on the way inference about the NKPC�s structural parameters

changes when estimating the CF representation (4) instead of the DE speci�cation (1).

2.1 Estimating the NKPC Structural Parameters

The ultimate goal of the estimation procedure is to provide inference about the NKPC structural

parameters �, �, �, �, and ! (or a subset of these parameters), which we collect in the vector

 = [�; �, �, �; !]0. The procedure in Cogley and Sbordone exploits cross-equations restrictions

between the NKPC structural parameters and the parameters of a reduced-form VAR. Consider

a (column) vector of variables x that includes, possibly among others, in�ation and real marginal

costs. We assume that the law of motion for x can be represented by a reduced-form VAR of order

p. De�ning the vector zt = (x0t;x
0
t�1; :::;x

0
t�p+1)

0; it is possible to rewrite the VAR(p) in �rst-order

form as

zt = Azt�1 + "z;t; (5)

where A is a square matrix of coe¢ cients.10 For simplicity and without loss of generality, we are

omitting constants.11 In what follows, we assume that the solution to the NKPC model for the

variables in x has a reduced-form representation that is captured by (5). This relationship is then

used to form expectations about the variables of interest, in�ation and real marginal costs. We can

9The closed-form representation of in�ation can also be obtained from equation (1) by forward iteration
of Et(�t+j � ��t+j�1), j � 1.
10 If xt contains n variables, then zt is a vector of size n � p: Hence the matrix Ais (n � p)� (n � p) ; with the

VAR coe¢ cients in the �rst n rows. The matrix A has all roots inside the unit circle.
11The intercepts play a central role in the NKPC with time-varying trend in�ation considered in section

3. In the present setup, they are immaterial.
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express the conditional expectation of a variable yt+k 2 xt+k at time t� 1 as

Et�1yt+k = e
0
yA

k+1zt�1; (6)

where the vector e0y selects variable yt�1 in zt�1. Consider then taking expectations as of t � 1 of

the NKPC written in the DE form (2) using the forecasting rule (6). We have

e0�Azt�1 =
�

1 + ��
e0�Izt�1 +

�

1 + ��
e0�A

2zt�1 +
�

1 + ��
e0mcAzt�1; (7)

with I denoting an identity matrix that conforms withA. The left-hand side of (7) is the expectation

of in�ation from the reduced-form VAR. The right-hand side is the expectation of in�ation based on

the NKPC model. Equation (7) says that if the NKPC in (1) is the true data generating process for

in�ation, the reduced-form forecast and the NKPC-based forecast for in�ation must be the same.

Imposing that (7) holds for all realizations of z, equation (7) can be rearranged and simpli�ed to

obtain a vector of non-linear restrictions involving the VAR coe¢ cients matrix A and the NKPC

structural parameters  :

e0�A = ���e0�A+ �e0�I+ �e0�A2 + �e0mcA � gD(A; ); (8)

or

FD(A; ) � e0�A� gD(A; ) = 00; (9)

where 00 is a column vector of zeros with same size as e�, and the superscript D indicates that the

expressions correspond to the DE speci�cation.

The estimation procedure in Cogley and Sbordone involves two steps. The �rst step consists of

estimating the law of motion for x from an unrestricted reduced-form VAR as in (5). This yields an

estimated coe¢ cients matrix bA. Given this estimate, the second step involves searching for values
of the NKPC structural parameters  that minimize the squared deviation of gD(bA; ) from e0� bA,
that is b D� argmin FD(bA; ) � FD(bA; )0: (10)

So far, we have illustrated the estimation procedure using the NKPC written in the DE form

(2). The same reasoning applies to the NKPC written in closed form, equation (4). In this case,

time t� 1 expectations of the NKPC conditional on the forecasting rule (6) are

e0�Azt�1 = �e0�Izt�1 + �e
0
mc(I� �A)

�1Azt�1; (11)
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and the vector of non-linear restrictions involving the VAR coe¢ cients matrix A and the NKPC

structural parameters  takes the form

e0�A = �e0�I+ �e
0
mc(I� �A)�1A � gC(A; ); (12)

or

FC(A; ) = e0�A� gC(A; ) = 00: (13)

where the superscript C indicates that the expressions correspond to the CF speci�cation. The

�rst step of the estimation procedure remains the same as before, while the second step involves

searching for values of the NKPC structural parameters  that minimize the squared deviation of

gC(bA; ) from e0� bA, that is
b C= argmin FC(bA; ) � FC(bA; )0: (14)

To summarize, the minimum-distance problems in (10) and (14) are both based on a system

of implicit equations Fi(A; ) = 00, for i 2 fD;Cg. The system of equations has k equations

and l unknowns, where l is equal to the size of the structural parameter vector  , and k is the

size of the square VAR matrix A.12 This system of equations provides the basis for the estimation

method. Hence, when we replace A with its approximation bA in (10) and (14), the goal is to choose

the estimate of  that makes the vector Fi(bA; ) as close as possible to zero. The minimization
problems in (10) and (14) di¤er, even if the NKPC is the "true" data generating process for in�ation

and bA is the same in both minimizations. The reason for this di¤erence is that A is estimated with

sampling error. Then, as long as the system of equations is over-identi�ed (k > l), the estimatesb D and b C are also going to be di¤erent. It is only in the special case of exact identi�cation (k = l)

that b D = b C . With an over-identi�ed system, gD(A; ) equals gC(A; ) only when A is known.

In this case, there exists a  such that (8) and (12) hold exactly. Then it does not matter which

speci�cation (DE or CF) of the NKPC is being estimated, since in�ation forecasts generated from

the reduced-form VAR with the true matrix A �the second element on the right-hand side of (7)

�are perfectly model-consistent.

To see how the CF speci�cation imposes model-consistent constraints on expectations that are

12The number of equations in the VAR is given by n, and p is the order of the VAR. Then k = n � p.
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not imposed on the DE form, note that it is possible to write gD(bA; ) as follows
gD(bA; ) � ���e0� bA+ �e0�I+ �e0� bA2 + �e0mc bA

= �e0�I+ �e
0
mc(I� � bA)�1 bA+ �k(bA; )bA

= gC(bA; ) + �k(bA; )bA;
where

k(bA; ) = e0� bA� �e0�I� �e0mc(I� � bA)�1 bA:
It is then apparent that for gD(bA; ) to equal gC(bA; ), the restrictions k(bA; ) = 00 must be

imposed. These restrictions are model-consistent, and represent all of the constraints on in�ation

expectations�formation implied by the NKPC at any point in time. They need to be satis�ed in

order to obtain the closed-form of the NKPC, but they are not exploited in the di¤erence equation

form from which gD(bA; ) derives. In this case, expectations about future in�ation �the second
element on the right-hand side of (7) �are mechanically formed with the estimated bA: Hence, they
do not take explicitly into account that the behavior of future in�ation is, too, constrained to follow

the NKPC relationship. The absence of such a constraint is inconsequential only when the true

matrix A in the forecasting rule (6) is known, as in this case the mechanical projections coincide

with the model-consistent in�ation forecasts.

The question of interest, therefore, is how inference about  , given the estimated bA, changes
when in the second stage of the estimation process we use the closed form instead of the di¤erence

equation version of the NKPC. Before taking our estimation to actual data, we address this issue

�rst from an analytical standpoint and provide Monte Carlo results.

2.2 The e¢ ciency gains from imposing model-consistent constraints on in�ation

expectations

In this subsection we illustrate the e¤ect of placing model-consistent constraints on in�ation ex-

pectations when estimating the DE speci�cation of the NKPC. Suppose that we are interested in

estimating the NKPC in DE form, but we require that the same equation be valid for at least two

consecutive periods. The two equations involved in the estimation, therefore, are the following

Et�1�t = Et�1 f��t�1 + �(�t+1 � ��t) + �mctg (15)

Et�1�t+1 = Et�1 f��t + �(�t+2 � ��t+1) + �mct+1g : (16)

9



These two equations can be translated into two sets of cross-equation restrictions, with each set

containing k restrictions:13

c0 (A; ) � FD (A; ) = 00 (17)

c1 (A; ) � e0�A
2 � �e0�A+ ��e0�A2 � �e0MCA

2 � �e0�A3 = 00: (18)

Given the de�nitions in (8) and (9), it is immediate to show that

c1 (A; ) = c0 (A; ) �A: (19)

In addition, since the square matrix A is full rank, equation (19) implies that the following must

be true

c1 (A; ) = 0
0 , c0 (A; ) = 0

0: (20)

Because of (19) and (20), we do not need to estimate the model parameters taking into account

all of the 2 �k cross-equation conditions in (17) and (18). Instead, the 2 �k conditions are equivalent

to the following k constraints

c�1 (A; ) � c0 (A; )� �c1 (A; ) = 00

= FD (A; ) � (I+ �A) = 00: (21)

The minimum-distance estimation of  in this case yields estimates

b D+1� argmin FD(bA; ) � (I+ � bA) � (I+ � bA)0 � FD(bA; )0; (22)

where the superscript D+ j indicates that we are imposing that the DE formulation of the NKPC

holds for j consecutive additional periods. The use of (I + � bA) in (22) forces the minimum-
distance estimation to penalize speci�c errors and correlations among the errors in FD(bA; ). The
minimization problem in (22), imposes explicitly the model discipline on in�ation expectations by

acknowledging that the di¤erence equation NKPC (1) should also apply at t + 1: In this way, the

estimation takes into account that speci�c violations of the cross-equation restrictions FD (A; ) =

00 have greater consequences for the behavior of in�ation than others. The DE problem in (10),

instead, disregards the interactions among these errors. In essence, the DE speci�cation (1) is

13Recall that A is a full-rank square matrix of size k:
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more agnostic about the way in which in�ation expectations are formed, and attaches the same

importance to all cross-equation restrictions in FD (A; ) = 00.

Of course, we may want to discipline expectations not only one period ahead, but also two

periods ahead. Following the same logic that resulted in (21), the sets of cross-equation restrictions

involved in this problem (a total of 3 � k constraints) are now equivalent to the k constraints

c�2 (A; ) � FD (A; ) �
�
I+ �A+ �2A2

�
= 00:

More generally, we may want to require model-consistent expectations for up to j periods ahead in

time. By induction, the set of k cross-equation restrictions is then given by

c�j (A; ) � FD (A; ) �
�
I+ :::+ (�A)j

�
= 00: (23)

It then follows that imposing model discipline on in�ation expectations at any future point in time,

the in�nite number of model-consistent constraints on expectations is equivalent to the following k

restrictions

c�1 (A; ) � lim
j!1

FD (A; ) �
�
I+ :::+ (�A)j

�
= FD (A; ) � (I� �A)�1 = 00; (24)

Combining the de�nitions (8), (9), (12), and (13), it is immediate to show that the DE and CF

cross-equation restrictions are related by

FD (A; ) � (I� �A)�1 = FC (A; ) :

The k cross-equation restrictions c�1 (A; ) = 0
0 are then the very same restrictions that need to

hold for the closed form NKPC:

c�1 (A; ) = F
C (A; ) = 00: (25)

Hence, as long as the NKPC model provides a good characterization of the data for every j

consecutive periods, the k cross-equation restrictions in c�j (A; ) provide more information about

the model dynamics than the k restrictions in FD (A; ) derived from the DE problem alone. This

additional information is the source of the gains in e¢ ciency from estimating the CF speci�cation

versus the DE speci�cation. The discussion so far also indicates that whenever the closed form is

too complex to solve or too di¢ cult to approximate reasonably well, it is possible to improve on the

11



DE estimates by imposing additional constraints. These take the form of the DE relationship being

iterated forward for j � 1 periods, possibly a much easier task than computing the closed form.

We have shown that this is equivalent to imposing the k cross-equation restrictions c�j (A; ) = 0
0:

In sum, the results in this section are related to the literature that illustrates the gains in

estimation e¢ ciency from imposing additional restrictions (see Gouriéroux, Monfort and Trognon,

1985, and Kodde, Palm, and Pfann, 1990). In our context, we show that this gain in e¢ ciency can

be obtained by imposing additional model-consistent restrictions on in�ation expectations. What is

particular about our setup is that these additional constraints can always be collapsed into k cross-

equations restrictions, no matter how many these constraints are. Indeed, we show that imposing

an in�nite number of restrictions on the future expected dynamics of in�ation results in the same

set of k cross-equation restrictions exploited in the estimation of the closed-form version of the

NKPC.

2.3 Monte Carlo Simulations

We now turn to analyze the properties of the estimated vectors of parameters b D and b C obtained
from the minimization problems in (10) and in (14), respectively, in the context of a Monte Carlo

exercise. We are interested in ascertaining whether the use of the closed form instead of the

di¤erence equation version of the NKPC yields to estimates of the vector of parameters  that,

in small samples, are noticeably di¤erent in terms of biasedness and e¢ ciency. We consider �rst

a case in which the NKPC being estimated is the true data generating process, so that there are

no misspeci�cation issues. We then consider one case of misspeci�cation that we deem relevant

in actual data. Speci�cally, we generate data from a NKPC where lagged in�ation enters as a

weighted average of t� 1 and t� 2 in�ation through the indexation mechanism, but then estimate

a NKPC speci�cation that only allows for lagged in�ation at time t� 1.

2.3.1 No misspeci�cation

The arti�cial data for in�ation in the Monte Carlo exercise are generated according to the NKPC

(1). For the marginal costs process, we use a simple univariate AR(2) law of motion. For each

of the Monte Carlo repetitions, we estimate a reduced-form VAR with two lags in in�ation and

marginal costs. The VAR estimation is carried out equation-by-equation via OLS. This provides us

with an estimated matrix bA(s), where s denotes the s-th repetition of the Monte Carlo experiment.
12



With this reduced-form coe¢ cients matrix, we can then estimate b D(s) using (10), and b C(s) using
(14).14

Several considerations about this Monte Carlo exercise are in order. First, note that the NKPC

we are estimating, whether in the CF or in the DE representation, is the true data generating

process for in�ation. In other words, there are no misspeci�cation issues in this exercise. Second,

the reduced-form process for real marginal costs, a univariate AR(2), is stylized but not overly

counterfactual. The improvement in adjusted R2 moving from the univariate AR(2) representation

of marginal costs to a multivariate reduced-form representation that, in addition to two lags of

real marginal costs, also includes two lags of in�ation, the federal funds rate, and GDP growth, is

only 1 percent in U.S. data over the period 1961:Q1 to 2003:Q4.15 The di¢ culty in working with

this larger information set is that, in order to generate simulated in�ation data, the NKPC in (1)

needs to be solved �rst using standard rational expectations solution methods. The solution entails

a constrained reduced-form representation of in�ation that depends on  and on the parameters

describing the unconstrained reduced-form dynamics of the other variables. When using an aug-

mented information set which, in addition to in�ation and marginal costs, also includes the Federal

funds rate and GDP growth,16 it is not possible to obtain unique or stable solutions for a range of

relevant values of  . For this reason, we �rst report results from Monte Carlo simulations where

the data generating process for real marginal costs is a simple univariate AR(2). In this case, it is

possible to �nd a stable and unique solution for the NKPC model under a wide range of values for

the vector  . We later show that our results do not change when the reduced-form dynamics of

real marginal costs rely on a larger set of variables.

The AR(2) speci�cation we use to generate the arti�cial data for marginal costs is the following

mcAt = 0:98mc
A
t�1 � 0:05mcAt�2 + "Amc;t; (26)

where variables have a superscript A to denote that these are arti�cially generated data. The

14 In this exercise, OLS estimates bA(s) are consistent as there are no misspeci�cation issues. The second-
stage estimation can thus be characterized as asymptotic least-squares. For the properties of asymptotic
least-squares, see Gouriéroux, Monfort, and Trognon (1985), and Gouriéroux and Monfort (1995, Ch. 9).
15The univariate AR(2) representation for real marginal costs we are using, which is given by equation

(26) in the text (where a constant has been omitted), has an adjusted R2 of 0:835 over the period 1961:Q1
to 2003:Q4. Granted, if real marginal costs are the relevant driving process for in�ation, then changes to the
stance of monetary policy should a¤ect real marginal costs. In other words, one would expect the Federal
funds rate to be a relevant component of the dynamics of real marginal costs. We consider in the next
subsection a Monte Carlo exercise with a larger information set which also includes the Federal funds rate.
16 In�ation, real marginal costs, the Federal funds rate, and GDP growth are the four variables that enter

the VAR considered in Cogley and Sbordone.
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AR(2) coe¢ cients are taken from estimating the process on actual U.S. data. With the AR(2)

representation for real marginal costs (26), it is easy to derive the constrained reduced-form solution

from which the arti�cial data for in�ation are generated, which is given by

�At = ��At�1 +
0:98� 0:05�

1� 0:98� + 0:05�2
�mcAt�1 �

0:05

1� 0:98� + 0:05�2
�mcAt�2 + �"

A
mc;t + "

A
�;t: (27)

This expression is a function of the vector  of structural parameters in the NKPC.

The arti�cial data are generated by drawing shocks from a multivariate normal distribution,

where the variance-covariance structure of the shocks is estimated on actual data given the law

of motions described in (26) and (27).17 When generating the arti�cial data, we take zeros as

initial conditions for in�ation and marginal costs. This is equivalent to assuming that in�ation and

marginal costs are at their average levels, since we are not including constants in (26) and (27). For

each Monte Carlo repetition we discard the �rst 500 arti�cially generated observations. We then

estimate a reduced-form VAR of order 2 on the arti�cial data.18 The sample length for the VAR

estimation is set at S = 176, which corresponds to 44 years of data at quarterly frequency and is

thus consistent with the sample size typically used when estimating a NKPC on actual data.

Once we have estimated the VAR coe¢ cients matrix bA(s), we proceed to estimate b D(s) using
(10), and b C(s) using (14). To keep matters simple, we set � equal to 0:99 and assume that this
parameter value is known and not estimated. The two parameters in  that are left to estimate

are, therefore, � and �. As shown earlier, � is a function of the parameters (�; �; !; �; �) and only

one of the three parameters (�; �; !) can be estimated independently. We set � equal to 9:8 and

! equal to 0:43.19 We thus estimate the degree of price indexation � and the probability � that a

�rm will not be able to reset prices optimally in a given period. In generating the data, we set �

equal to 0:588,20 and consider di¤erent values for � �speci�cally, � = f0:1; 0:3; 0:5; 0:7; 0:9g �to

assess whether the degree of indexation a¤ects the properties of the estimated b D(s) and b C(s).
17The estimation period is 1961:Q1 to 2003:Q4. We estimate the errors in (26) and (27), with � = 0:5 and

� and � as described later in the text. For the purpose of estimating the errors and obtaining a variance-
covariance matrix of the shocks, we include a constant in (26) and in (27). The qualitative features of the
Monte Carlo exercises are not a¤ected by reasonable changes in the variance-covariance structure of the
shocks used when generating the data.
18The model-consistent reduced-form coe¢ cients matrix has zeros for the �rst and second lags of in�ation

in the marginal costs equation (26), and a zero for the second lag of in�ation in the in�ation equation (27).
However, when estimating the reduced-form VAR on the simulated data, we are not imposing those zero
restrictions on the coe¢ cients matrix. In other words, we are assuming that the econometrician knows that
the system is fully characterized by in�ation and marginal costs, but the econometrician does not know that
marginal costs follow a univariate AR(2) process.
19This is consistent with the values reported in Cogley and Sbordone (2008).
20Again, this value for � is consistent with the estimates reported in Cogley and Sbordone (2008).
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Results of the Monte Carlo exercises are depicted in Figures 1 and 2, which compare the

distributions of (b�D(s); b�C(s)) and (b�D(s);b�C(s)), respectively, for di¤erent parametrizations of �. Each
Monte Carlo exercise consists of 500 repetitions. It is apparent from the pictures that estimates

are better centered when the NKPC is estimated in closed form, that is, under the minimization

problem (14). This is especially clear when the true � in the in�ation data generating process gets

closer to unity. Then the bias in estimating � from the DE formulation of the NKPC becomes

noticeable, with an extremely large mass of estimates at � = 1. An estimated value of � equal

to unity implies an estimate of � equal to zero. In other words, the DE formulation largely fails

to detect that marginal costs are the driving process for in�ation when the degree of indexation

becomes relatively high. Instead, the corresponding distributions for the estimated � under the CF

speci�cation of the NKPC do not display mass at unity.

More importantly, the �gures also show that the CF estimation of the NKPC produces estimates

that are much more e¢ cient. The spread between the 95th and the 5th percentiles in the distribution

of b�C can be three times smaller than the same spread in the distribution of b�D. Comparing b�C
with b�D, the gain in e¢ ciency is somewhat less pronounced but still evident, especially so when
the true � in the in�ation data generating process approaches unity. For example, when the true �

is set equal to 0:7, the spread between the 95th and the 5th percentiles in the distribution of b�C is
less than half the same range in the distribution of b�D.

It is worth recalling that the estimated coe¢ cients matrix bA(s) from the reduced-form VAR

that is used for the estimation of (�; �) is the same in the two minimization problems (10) and

(14). The di¤erence in the precision of the estimates is thus only the result of the CF speci�cation

imposing model-consistent expectations about future in�ation, as discussed previously.

We have mentioned in the previous section that the e¢ ciency of the DE estimates can be

improved by imposing additional constraints on in�ation expectations. In particular, we have

shown that the set of cross-equation restrictions in this case is

c�j (A; ) � FD (A; ) �
�
I+ :::+ (�A)j

�
= 00:

Figure 3 illustrates that a small j is su¢ cient to approach the e¢ ciency of the closed form estimates,

which corresponds to the limiting case as j goes to in�nity. Setting j = 4 already generates a

substantial improvement in e¢ ciency compared to the DE estimates (which correspond to j = 0).

The �gure also shows that in some instances the gains in e¢ ciency from just having j = 1 are

quite large. Note that, at quarterly frequency, j = 4 means that we are imposing model-consistent
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constraints on the evolution of expected future in�ation for only one year. We �nd this requirement

rather conservative for a model of in�ation dynamics.

2.3.2 Robustness

We now check that the large gains in e¢ ciency from estimating the NKPC in closed form in

our baseline Monte Carlo exercise are still present when considering alternative speci�cations of

the reduced-form dynamics for marginal costs. We illustrate two cases that we deem especially

important. In the �rst case, the information set is still restricted to in�ation and marginal costs,

but we allow feedback from lagged in�ation in the evolution of marginal costs over time. This

is a particularly relevant case because the NKPC, as shown in (4), implies that current in�ation,

once controlling for the impact of lagged in�ation, is a predictor of the present discounted value of

current and future marginal costs. The econometrician may not observe all of the variables useful

for forecasting marginal costs, but knowing in�ation is enough because in�ation reveals to the

econometrician the forecast of the present discounted value of current and future marginal costs.

Therefore, an implication of the NKPC setup is that in�ation should Granger-cause marginal costs

if �rms have information useful for forecasting marginal costs beyond the history of that variable.

To capture such a feature of the NKPC model, we now assume that, instead of following an AR(2)

process, the reduced-form equation for marginal costs is given by

mcAt = 0:17�
A
t�1 + 0:14�

A
t�2 � 0:31�At�3 + 0:90mcAt�1 + 0:14mcAt�2 � 0:13mcAt�3 + "Amc;t: (28)

Equation (28) constrains the sum of the coe¢ cients on lagged in�ation to sum to zero. This is done

to ensure uniqueness and stability of the solution for in�ation given plausible parametrizations

of  . The process in (28) is data consistent once the zero-sum restriction on the coe¢ cients for

lagged in�ation is imposed.21 The Monte Carlo procedure follows the same steps as before, with

the modi�cation that the estimated reduced-form VAR to retrieve bA(s) in each replication is now
of order 3. The parametrization of  is the same as in our baseline exercise. The results for

� 2 f0:1; 0:3; 0:5; 0:7; 0:9g are shown in Figures 4 and 5. The distributions of b�C and b�C are tighter
and better centered than the corresponding distributions for b�D and b�D. In all, these �ndings are
21The process in (28) with the zero restriction on the sum of coe¢ cients for lagged in�ation was estimated

over the period 1961:Q1 to 2003:Q4. There is some evidence in the data, though not overwhelming, in favor
of such a speci�cation: In an unconstrained regression of real marginal costs on three lags of in�ation and
three lags of marginal costs, the test of the hypothesis that the sum of coe¢ cients on lagged in�ation is
di¤erent from zero has a p-value of 0:126.
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very similar to the baseline case in which there is no feedback from lagged in�ation in the dynamics

of marginal costs.

Using a larger information set which, in addition to in�ation and marginal costs, also includes

the Federal funds rate and GDP growth, does not change the conclusion that estimates of � and

� obtained from the CF speci�cation of the NKPC are better centered and more e¢ cient than the

corresponding estimates obtained from the DE speci�cation. This is shown in Figures 6 and 7 for

� 2 f0:1; 0:3; 0:5; 0:7; 0:9g. In this exercise, real marginal costs depend only on lagged marginal

costs and lagged GDP growth:

mcAt = �0:07dyAt�1 + 0:18dyAt�2 + 0:16dyAt�3 + 0:80mcAt�1 + 0:37mcAt�2 � 0:21mcAt�3 + "Amc;t,

where dy denotes GDP growth. This process is consistent with actual data once we impose the

restrictions that lagged in�ation and the lagged Federal funds rate do not enter the reduced-

form process for real marginal costs. Again, we place these restrictions to ensure uniqueness and

stability of the rational expectations solution for in�ation given plausible parametrizations of  .

The reduced-form data generating processes for GDP growth and the Federal funds rate include

three lags of each variable in the information set, and are consistent with actual data. In the

Monte Carlo procedure, we use an estimated reduced-form VAR of order 3 to retrieve bA(s) in each
replication. The estimation results, overall, are very similar to the results obtained in the baseline

exercise.

2.3.3 Misspeci�cation of the Indexation Mechanism

We consider here a particular form of misspeci�cation in the estimation of the NKPC. The true

NKPC is now given by the following expression

�t = �(��t�1 + (1� �)�t�2) + �(Et�t+1 � �(��t + (1� �)�t�1)) + �mct + ut: (29)

In this NKPC setup, �rms that do not reset their prices optimally in a given period follow an

indexation mechanism which is not based on last period�s in�ation only, but on a weighted average

of in�ation over the past 2 periods, where 0 � � � 1 denotes the weight placed on last period�s

in�ation.

The reason for considering such a speci�cation is that estimating the in�ation process as a

function of two lags of in�ation and two lags of real marginal costs over the period 1961:Q1 to
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2003:Q4 yields the following estimates

�t = 0:51�t�1 + 0:36�t�2 + 0:096mct�1 � 0:078mct�2 + "�;t (30)

(0:07) (0:07) (0:033) (0:033)

where standard errors are in parenthesis.22 The second lag of in�ation is highly signi�cant and,

while not as large as the �rst lag, economically relevant. This result, together with the fact that lags

of in�ation are not especially important in an estimated reduced-form equation for real marginal

costs over the same period, raises the possibility that a NKPC speci�cation as in (29) provides a

better characterization of the data than the speci�cation in (1), which constrains � to unity.

We investigate the misspeci�cation bias that arises when the data generating process for in�ation

follows a NKPC as in (29) with � < 1, but one estimates a NKPC, either in the DE or in the CF

version, with � constrained to equal unity. For this purpose, we set up a Monte Carlo exercise

which is very similar to our baseline exercise in section 2.3.1. In�ation and marginal costs are the

only two variables in the information set. Real marginal costs follow the same reduced-form AR(2)

process as in (26). In generating the data, we set � equal to 0:6. The other parameters (�,�,�,!)

are set as before, and we consider di¤erent values for �. The VAR used to retrieve the matrix bA(s)
in each Monte Carlo replication is of order 2. The misspeci�cation in this exercise arises from the

fact that the estimated NKPC, both in the DE and the CF speci�cations, constrains � to unity.

Estimation results for � and �, with � = f0:1; 0:3; 0:5; 0:7; 0:9g, are reported in Figures 8 and 9,

which compare the distributions of (b�D(s); b�C(s)) and (b�D(s);b�C(s)) for the di¤erent parametrizations of
�. It is apparent that when the the NKPC is estimated in the DE form via the minimum-distance

problem (10), the estimates (b�D;b�D) are biased. The estimate for � is upward biased, with the
estimation procedure often failing to identify real marginal costs as the driving process for in�ation.

The estimate for � is downward biased. In other words, the estimates point to less indexation to

past in�ation than is actually present in the true data generating process. When the NKPC is

estimated in closed form via the minimum-distance problem (14), estimates for � are well centered.

There is some downward bias, instead, when estimating �. However, the bias is not as large as with

the DE speci�cation, as the �gure clearly shows.

22Augmenting the information set to include lagged GDP growth and lagged policy rates does not materially
alter the estimates of the coe¢ cients on lagged in�ation in (30). The median estimates of the two lags of
in�ation in the in�ation equation from the reduced-form VAR used by Cogley and Sbordone, which is
estimated with Bayesian methods, are 0:40 and 0:32 respectively.
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In all, the results in this section highlight the importance of correctly specifying the indexation

rule in the NKPC. This is true both in the DE and in the CF speci�cations of the NKPC, though

it is apparent that the CF version is less prone to su¤er from this misspeci�cation bias than the

DE counterpart.

3 Estimates of the NKPC with Time-Varying Trend In�ation

Given our Monte Carlo �ndings, we now turn to estimating a NKPC with time-varying trend

in�ation on actual data. We �rst provide a brief description of the DE and the CF representations

of the NKPC in this setup, and then describe the estimation method and the empirical �ndings.

3.1 Model Setup

The framework is the same used by Cogley and Sbordone, with the exception that we allow the

indexation mechanism to depend on two lags of in�ation. Speci�cally, we have

Pt(i) = (�
�
t�1�

1��
t�2 )

�Pt�1(i)

where Pt(i) is the price set by �rm i when it cannot reoptimize at time t, and �t = Pt=Pt�1 is the

period t gross rate of in�ation. In this expression, and as in section 2, � 2 [0; 1] measures the degree

of indexation, while � 2 [0; 1] represents the weight given to t�1 aggregate in�ation relative to t�2

aggregate in�ation. This indexation mechanism is more general than Cogley and Sbordone�s, and

it nests their setup as a special case when � = 1. Cogley and Sbordone characterize the dynamics

of in�ation when trend (steady-state) in�ation is time-varying. As such, the setup di¤ers from the

simple NKPC equation of the previous sections, which was derived by log-linearizing the �rst-order

conditions of the Calvo pricing model around a zero-in�ation steady-state. The log-linearization

is now taken around a steady-state where trend in�ation changes over time. It is assumed that

trend in�ation is an exogenous process that evolves as a random walk. The distinguishing feature

of this type of setup, compared to the more standard setup with zero trend in�ation, is that the

coe¢ cients in the NKPC are a function of trend in�ation and as a result they are time-varying.

Since our departure from Cogley and Sbordone�s setup is very minor, we leave the full details

of the derivation of the NKPC to appendices A and B. In the rest of this section, we provide

the equilibrium relationships of the model with time-varying trend in�ation that we use at the
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estimation stage. The �rst of these relationships is the restriction between trend in�ation and

steady-state real marginal costs, which as in Cogley and Sbordone takes the form

�
1� ��(1��)(��1)t

�(1+�!)=(1��) "1� �qgy��(1+!)(1��)t

1� �qgy�(��1)(1��)t

#
= (1� �)(1+�!)=(1��) �

� � 1mct; (31)

where q is the steady-state real discount factor, gy is the steady-state growth rate of output, � is

gross trend in�ation, mc steady-state real marginal costs, and the other parameters are de�ned in

the previous sections. Denoting by a hat the log-deviation of a variable from its steady-state value,

we can write the NKPC as follows

b�t = ��(b�t�1�bg�t )+�(1��)(b�t�1�bg�t�1�bg�t )+�tEt(b�t+1���b�t��(1��)(b�t�1�bg�t ))+�tcmct+t bDt
(32)

where bg�t = ln(�t=�t�1) is the growth rate of trend in�ation and bD is de�ned recursively as

bDt = '1tEt(bqt;t+1 + bgyt+1) + '1t(� � 1)Et fb�t+1 � ��b�t � �(1� �)(b�t�1 � bg�t )g+ '1tEt bDt+1: (33)
Some coe¢ cients in (32) and (33) are time-varying. Compared to the standard NKPC speci�cation

with zero trend in�ation, this speci�cation entails, in addition to the growth rate in trend in�ation,

other terms summarized by bD . It is possible to iterate forward equation (32) to obtain an in�nite-

horizon speci�cation that takes the form

b�t = ��(b�t�1 � bg�t ) + �(1� �)(b�t�1 � bg�t�1 � bg�t ) + �t 1X
i=0

�itEtcmct+i + t 1X
i=0

�itEt bDt+i (34)

which we refer to as the closed-form (CF) version of the NKPC.23 The expression in (34) is not

entirely "closed-form" in that bDt is a function of past, current, and expected future in�ation, as
(33) shows. Forward iteration of (33) also indicates that obtaining a closed-form representation for

in�ation in this setup is complicated unless indexation is full (� = 1) or steady-state in�ation is zero.

Still, the quasi closed form in (34) imposes model-consistent expectations on the process followed by

future in�ation that are not imposed in the DE form (32). These restrictions on expected in�ation

are of the same kind as the restrictions imposed by the CF speci�cation (4) relative to DE form

(2) in the standard constant coe¢ cients setup with zero trend-in�ation.

23 In deriving (34), we use the "anticipated utility" assumption that Et�t+i

iY
k=0

�t+kcmct+i = �t�
i+1
t Etcmct+i and

Ett+i

iY
k=0

�t+k bDt+i = t�
i+1
t Et bDt+i for any i > 0, as in Cogley and Sbordone.
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3.2 Estimation Approach

We want to compare estimates of the deep structural parameters  =(�; �; �; �) obtained from the

DE form (32) with the estimates obtained from the CF representation (34). The econometric

approach has already been discussed in section 2.1 and replicates Cogley and Sbordone. Forecasts

of the relevant variables pertaining to the NKPC are obtained by means of a reduced-form VAR.

In the present context in which trend in�ation is time-varying, the reduced-form VAR has drifting

coe¢ cients. The �rst-order form of the VAR can then be written as

zt = �t +Atzt�1 + "z;t; (35)

where the coe¢ cients in �t and At are assumed to evolve as a random walk. The evolution of the

coe¢ cients in At is constrained by re�ecting barriers, so that the roots of At at each point in time

lie inside the unit circle. The conditional expectation of a variable yt+k at time t� 2 is then given

by

Et�2yt+k = e
0
yA

k+2
t�2 (zt�2 � �t�2); (36)

where e0y is the selection vector for variable yt�2 in zt�2.

Given the forecasting rule (36) and equations (32) and (33), we obtain the conditional expec-

tation of in�ation based on information at t� 2 in the DE form as follows

e0�A
2
t�2bzt�2 = e�D1;t�2e0�At�2bzt�2 + (1� �)e�D2;t�2e0�bzt�2 + e�Dt�2e0mcA2t�2bzt�2

+dD1t�2e
0
�A

3
t�2bzt�2 + dD2t�2'1t�2e0�Jt�2A4t�2bzt�2

+dD3t�2(e
0
QJt�2A

2
t�2bzt�2 + e0gyJt�2A3t�2bzt�2); (37)

where

Jt � (I�'1tAt)�1:

The full derivation of (37) and the de�nition of coe¢ cients is left to the appendix. We take

expectations as of t � 2 because the indexation mechanism is based on two lags of in�ation, and

this allows to ignore the terms involving the growth rate of trend in�ation.24 As assumed by Cogley

and Sbordone, expectations are formed using an "anticipated utility" framework (Kreps, 1998, and

Cogley and Sargent, 2008), where at each point in time agents expect all model coe¢ cients to stay

24As already mentioned, trend in�ation evolves as a (driftless) random walk, and therefore the expected
future growth rate of trend in�ation is zero.
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constant at their current values going forward. The vector of cross-equation restrictions implied by

the conditional expectation in (37) is then

e0�A
2
t�2 = e�D1;t�2e0�At�2 + (1� �)e�D2;t�2e0�I+ e�Dt�2e0mcA2t�2

+dD1t�2e
0
�A

3
t�2 + d

D
2t�2'1t�2e

0
�Jt�2A

4
t�2

+dD3t�2(e
0
QJt�2A

2
t�2 + e

0
gyJt�2A

3
t�2)

� gD(�t�2;At�2; ) . (38)

and the distance between expected in�ation as of t� 2 and model-consistent in�ation is given by

FD1 (�t�2;At�2; ) � e0�A2t�2 � gD(�t�2;At�2; ) = 00:

In contrast, for the CF speci�cation of the NKPC in (34) the conditional expectation of in�ation

based on information at t� 2 is now

e0�A
2
t�2bzt�2 = e�C1;t�2e0�At�2bzt�2 + (1� �)e�C2;t�2e0�bzt�2 + e�Ct�2e0mcKt�2A

2
t�2bzt�2

+dC0t�2e
0
�Kt�2At�2bzt�2 + dC1t�2e0�Kt�2A

2
t�2bzt�2

+dC2t�2e
0
�Kt�2A

3
t�2bzt�2 + dC2t�2'1t�2e0�Kt�2Jt�2A

4
t�2bzt�2

+dC3t�2(e
0
QKt�2Jt�2A

2
t�2bzt�2 + e0gyKt�2Jt�2A

3
t�2bzt�2); (39)

where

Kt � (I� �tAt)�1:

We leave again the derivation of (39) and the de�nition of coe¢ cients to the appendix. The vector

of cross-equation restrictions implied by the conditional expectation in (34) is then given by

e0�A
2
t�2 = e�C1;t�2e0�At�2 + (1� �)e�C2;t�2e0�I+ e�Ct�2e0mcKt�2A

2
t�2

+dC0t�2e
0
�Kt�2At�2 + d

C
1t�2e

0
�Kt�2A

2
t�2

+dC2t�2e
0
�Kt�2A

3
t�2 + d

C
2t�2'1t�2e

0
�Kt�2Jt�2A

4
t�2

+dC3t�2(e
0
QKt�2Jt�2A

2
t�2 + e

0
gyKt�2Jt�2A

3
t�2)

� gC(�t�2;At�2; ): (40)

As in the one-period ahead formulation, the relevant distance for the estimation is

FC1 (�t;At; ) � e0�A2t � gC(�t;At; ) = 00:
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The function gC(�t;At; ) imposes model-consistent constraints that are not captured in g
D(�t;At; ):

The intuition behind these additional constraints is the same as in the constant coe¢ cients formu-

lation of the NKPC examined in section 2.

When trend in�ation varies over time, the long-run relationship given by equation (31) pro-

vides an additional constraint at the estimation stage, for both the DE and CF speci�cations.

Correspondingly, we de�ne

F2(�t;At; ) =
�
1� ��(1��)(��1)t

�(1+�!)=(1��) "1� �qgy��(1+!)(1��)t

1� �qgy�(��1)(1��)t

#
�(1��)(1+�!)=(1��) �

� � 1mct = 0
0:

The complete set of cross equation restrictions to be satis�ed at each point in time is then given by

F j
t �

h
F j
1 (�t;At; ) ; F2 (�t;At; )

i
F j(�) �

h
F j 0
1 ; :::;F j 0

T

i0
for j � fD; Cg ;

where

� = f�t;AtgTt=1 :

As in the constant coe¢ cients case, estimation is a two step procedure. Now we �rst use Bayesian

methods to characterize the posterior distribution of � from a set of M estimates b� = f b�igMi=1.

In the second step we obtain the structural parameter estimates

b Di = argminF D( b�i)
0 � F D( b�i) for i = 1; ::;M

for the DE form of the NKPC, and

b Ci = argminF C( b�i)
0 � F C( b�i) for i = 1; :::;M

for the CF speci�cation.

We use the same data and Bayesian estimation procedure as Cogley and Sbordone to obtainb�:25 The technical aspects of the estimation and the data are described in their paper. Here,

we just mention that the reduced-form time-varying VAR is of order 2 and has four variables:

in�ation, real marginal costs (as proxied by the labor share), output growth, and a nominal discount

factor based on the federal funds rate. Because the �rst stage Bayesian estimation yields an entire

posterior distribution f b�igMi=1, the second stage also provides a distribution of estimates fb Di gMi=1
and fb Ci gMi=1 .
25The code and data used by Cogley and Sbordone were retrieved from the American Economic Review

website.
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3.3 Estimation Results

Table 1 displays the estimation results.26 Note that, as in Cogley and Sbordone (2008), the para-

meters � and ! are not estimated and their values are set to 0.99 and 0.43, respectively. The �rst

speci�cation that we consider (denoted as DE_const in the table) replicates the baseline estimates

of Cogley and Sbordone and yields their same median estimates. This corresponds to the DE es-

timates b D with � constrained to equal 1. The indexation parameter � is estimated at zero, and
the estimated � implies that the median span of time between optimal price resets is 3.9 months.

We then consider the DE speci�cation without constraining � to equal unity. This allows the

indexation mechanism to depend not just on the �rst lag, but also on the second lag of in�ation.

As already mentioned, this is an important check on the speci�cation as the reduced-form in�ation

equation from the estimated VAR places a signi�cant weight on the second lag of in�ation. Our

Monte Carlo results in section 2.3 illustrate that the misspeci�cation bias from incorrectly con-

straining � to unity can be very large, especially so when the NKPC is estimated in the DE form

as in Cogley and Sbordone. Estimation results (denoted as DE_unconst in the table) show that

this simple modi�cation produces a very di¤erent estimate for �; suggesting misspeci�cation bias

when estimating the NKPC with � set to 1. The median estimated value for � jumps from zero in

the previous case to 0.63. While imprecisely estimated, the 90 percent con�dence interval does not

include zero. Moreover, � is estimated at 0.56, and its 90 percent con�dence interval is bounded

well away from one. This implies that the �rst and the second lags of in�ation in the indexation

mechanism receive approximately the same weight.

Next we consider the estimates obtained from the CF speci�cation of the NKPC. To highlight the

di¤erences in results when this speci�cation is used instead of the DE form, we report constrained

(� = 1) and unconstrained estimates. For the constrained case (CF_const in the table) the median

estimate of � is 0.51, with 90 percent con�dence bands that do not encompass zero. Note also that

the median estimate of � increases to 0.80, implying a median time between price re-optimization

of 9.3 months, more than twice the estimate obtained from the DE speci�cation. Moreover, the

90 percent con�dence intervals for this parameter in the DE and CF speci�cations have negligible

overlap.

Estimating the CF speci�cation that does not constrain � (CF_unconst in the table) yields a

median estimate of � equal to 0.88. This is an even larger estimate than the one obtained from

26We report as point estimate the median of the distribution for each parameter.
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the DE counterpart, and it is estimated much more precisely. The median estimate of �, at 0.86,

implies that re-optimization now occurs every 14.1 months. The indexation mechanism places a

larger weight on the �rst lag of in�ation than in the DE speci�cation; the median estimate is now

0.68. Still, the 90 percent con�dence interval for � does not contain unity. The median estimate

of � is 12.6, which implies a steady-state markup of 8.6 percent. This estimate for the steady-

state markup is somewhat lower than the steady-state markup of 11 percent estimated from the

corresponding DE speci�cation. In addition, the 90 percent con�dence interval for � tends to be

larger using the CF speci�cation, suggesting that when all of the model restrictions on expectations

are taken into account the link from marginal costs to in�ation becomes somewhat more uncertain.

In �gure 10 we illustrate the arguments discussed in section 2.2 regarding the e¤ects of adding

model-consistent constraints on expected in�ation when estimating the DE form (with � uncon-

strained). In the �gure, the horizontal axis indicates the number of additional periods j during

which expected future in�ation is constrained to evolve in a model-consistent way. Similar to our

Monte Carlo �ndings, the �gure shows that setting j = 4 results in a median estimate that is

already remarkably close to the CF estimate and much more precise than the original DE estimate

(j = 0 in the �gure).

3.4 Robustness Checks and Discussion of Results

We check that the estimated distributions for �; �; and � for the CF case do not change substantially

when we discard the estimates for �; �; and � associated with estimated values of � above 40.27

The results of this exercise are reported in Table 2. The 90 percent con�dence interval for the

remaining estimates of � is substantially reduced, while the median estimate (at 12.4) remains

virtually the same. Changes in median estimates and con�dence bands for the other parameters

are negligible. We also considered versions of the NKPC which omit terms involving the discount

factor, output growth and terms involving higher order leads of in�ation. Estimation results for

the same four speci�cations discussed in the previous section are reported in Table C1 in appendix

C. In comparing the estimates from the DE and CF speci�cations, the main conclusions from the

previous section remain unaltered. The only results worth mentioning are that (i) the 90 percent

con�dence bands for � are now much tighter when estimating the CF speci�cation, and (ii) the

estimated � is now very similar across di¤erent speci�cations.

27This represents roughly the top decile of the distribution of � in the CF estimates.
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In all, the estimation �ndings from the CF speci�cation of the NKPC with two lags of in�ation

in the indexation mechanism, which we favor on the basis of the Monte Carlo simulations from

section 2.3, are noticeably di¤erent from the estimates obtained from the DE speci�cation with �

set to 1. The results indicate that lagged in�ation plays an important role in explaining in�ation

dynamics even when controlling for time-varying trend in�ation. When interpreting these �ndings,

note that having � equal to 1 implies that the NKPC (expressed in the DE form) assigns about the

same weights to lagged in�ation and to expected future in�ation.28

Our estimate of � from the closed-form representation of the NKPC is similar to estimates

obtained previously in the literature, albeit using di¤erent methods and mostly without considering

trend in�ation. An even split between past and future in�ation when characterizing in�ation

dynamics in the NKPC appears to be common to those estimation procedures which, like ours,

take explicitly into account the constraints placed by the NKPC on all future expectations of

in�ation (Fuhrer and Moore, 1995, Fuhrer and Olivei, 2005).29 Still, it is important to stress that

in our setup expectations are formed using the same reduced-form VAR in both the DE and the CF

speci�cations of the NKPC. In this sense, the CF speci�cation does not use more information at the

estimation stage compared to the DE form, nor it uses di¤erent equations to complete the model.

The only additional information embedded in the closed form of the NKPC are the model-consistent

constraints placed on future expectations.

The autocorrelation properties of detrended in�ation are one important dimension of the data

that are better captured by a high value of �. After removing the time-varying trend, the �rst

autocorrelation of in�ation in the data over the period 1960:Q3 to 2003:Q4 is equal to 0.81. Fuhrer

(2009) notes that with � equal to zero the �rst autocorrelation implied by the NKPC is very low,

and argues that a � close to one is necessary to match this crucial feature of the data.

4 Conclusions

We show that estimates of the deep parameters in the New Keynesian Phillips curve (NKPC) can

di¤er substantially when the NKPC is estimated in the di¤erence equation (DE) form versus the

closed form (CF). In Monte Carlo simulations, we illustrate how the addition of model-consistent

28This case would correspond to the NKPC considered in Christiano, Eichenbaum, and Evans (2005).
29The �nding of a � signi�cantly di¤erent from zero is also consistent with work by Kozicki and Tinsley

(2002) which explicitly considers time-varying trend in�ation.
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constraints embedded in the closed form (which do not necessarily hold in the DE form) yields

to more e¢ cient and less biased estimates. On actual data, moving from the DE speci�cation

(Cogley and Sbordone 2008) to the CF version of the NKPC yields di¤erent conclusions about the

importance of lagged in�ation in the NKPC. The estimate for the indexation parameter � goes from

zero in the DE form to almost one using the CF speci�cation, thus assigning almost the same weight

to lagged in�ation and expected future in�ation. The estimation of the closed form thus suggests

that accounting for time-varying trend in�ation does not eliminate the need for lags of in�ation in

the NKPC. To some extent, this result holds for the estimates based on the DE speci�cation when

we consider a richer indexation mechanism. In addition, the CF speci�cation implies that prices

are re-optimized much less frequently than what is suggested by the DE form (approximately 12

months versus 4 months).

The Monte Carlo �ndings give reasons to prefer the estimates from the CF speci�cation. How-

ever, these results come from an exercise in which the data are generated from the solution to the

NKPC model. In essence, the constraints imposed by the CF speci�cation of the NKPC hold by

construction. It is not clear which form one would prefer to use once the data-generating process

is not exactly the NKPC model. For example, it is possible that if agents do not form expecta-

tions about future in�ation in a manner that is consistent with the NKPC holding at each future

point in time, relying on the less-constrained DE form could prevent a source of misspeci�cation

bias. However, it is not necessary for expectations to be model-consistent ad in�nitum. A modest

amount of discipline on expectations (roughly one year) already closes most of the gap between

DE and CF estimates. Moreover, there is no reason to argue that misspeci�cation biases would

always penalize the CF speci�cation more than the DE form. We have discussed one form of mis-

speci�cation concerning the indexation lags that strongly biases the results in the DE form but has

much less impact on the CF estimates, both in a Monte Carlo exercise and in actual data. Finally,

even abstracting from misspeci�cation issues, the CF estimates are better able to capture the au-

tocorrelation properties of the deviations of in�ation from the time-varying trend in�ation. These

deviations are highly autocorrelated in the data, and this fact is hard to reconcile with a NKPC

that is purely forward-looking. Future research should explore the sensitivity of the estimates of

the deep parameters in the NKPC to variations in the estimation period, given some evidence that

in�ation persistence has declined in the most recent years.
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Figure 1: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed-form (CF)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 2: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed-form (CF)

0 0.5 1
0

50

100

150
 (median = 0.0915)  true ρ = 0.1

0 0.5 1
0

50

100

150
 (median = 0.0831)  true ρ = 0.1

0 0.5 1
0

50

100
 (median = 0.304)  true ρ = 0.3

0 0.5 1
0

50

100
 (median = 0.285)  true ρ = 0.3

0 0.5 1
0

50
 (median = 0.521)  true ρ = 0.5

0 0.5 1
0

50
 (median = 0.483)  true ρ = 0.5

0 0.5 1
0

50

100

150
 (median = 0.752)  true ρ = 0.7

0 0.5 1
0

50

100

150
 (median = 0.683)  true ρ = 0.7

0 0.5 1
0

100

200

 (median = 0.904)  true ρ = 0.9

0 0.5 1
0

100

200

 (median = 0.9)  true ρ = 0.9

DE                                                                 CF

Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 3: 90% con�dence interval width after imposing additional expectational restrictions�

(Monte Carlo results)
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Notes:
(1) j is the number of additional restrictions;
(2) j = 0 and j !1 correspond to the DE and CF speci�cations, respectively;
(3) estimates are based on the data generating process with the real
marginal cost follows an AR(2) process.
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Figure 4: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed-form (CF)

(Allowing for in�ation feedback in the marginal cost equation)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 5: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed-form (CF)

(Allowing for in�ation feedback in the marginal cost equation)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 6: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed-form (CF)

(Larger information set)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 7: Monte Carlo simulations, estimates of �
Di¤erence equation (DE) vs. closed-form (CF)

(Larger information set)
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Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 8: Monte Carlo simulations, � parameter

Di¤erence equation (DE) vs. closed-form (CF), with misspeci�cation�

0 0.5 1
0

100

200
 (median = 0.596)  true ρ = 0.1

0 0.5 1
0

100

200
 (median = 0.558)  true ρ = 0.1

0 0.5 1
0

100

200

300
 (median = 1)  true ρ = 0.3

0 0.5 1
0

100

200

300
 (median = 0.559)  true ρ = 0.3

0 0.5 1
0

200

400
 (median = 1)  true ρ = 0.5

0 0.5 1
0

200

400
 (median = 0.556)  true ρ = 0.5

0 0.5 1
0

500
 (median = 1)  true ρ = 0.7

0 0.5 1
0

500
 (median = 0.56)  true ρ = 0.7

0 0.5 1
0

500
 (median = 1)  true ρ = 0.9

0 0.5 1
0

500
 (median = 0.554)  true ρ = 0.9

DE                                                                 CF

� The data are generated with � = 0:6, but estimations are done with � = 1.
Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 9: Monte Carlo simulations, � parameter

Di¤erence equation (DE) vs. closed-form (CF), with misspeci�cation�
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� The data are generated with � = 0:6, but estimations are done with � = 1.
Notes:
(1) left and right panels correspond to DE and CF speci�cations, respectively;
(2) the vertical axis is the number of repetitions. Total number of repetitions is 500.
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Figure 10: Parameter estimates after imposing additional expectations restrictions�

Sample period: 1960:Q1�2003:Q4

(90% and 99% con�dence intervals � unconstrained �)
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�The restrictions (constraints) are added to the DE speci�cation.
Notes:
(1) j is the number of additional restrictions;
(2) j = 0 and j !1 correspond to the DE_unconst and CF_unconst
speci�cations, respectively.
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Table 1: Structural parameter estimates (median and 90% con�dence interval)

Sample period: 1960:Q1�2003:Q4

� � � �

DE_const 0 0.582 9.78 1
(0,0.16) (0.45,0.67) (7.56,12.49) �

DE_unconst 0.63 0.599 11.90 0.56
(0.28,1) (0.51,0.72) (10.27,14.80) (0.22,0.80)

CF_const 0.51 0.797 11.21 1
(0.25,0.91) (0.67,0.87) (8.04,81.67) �

CF_unconst 0.88 0.863 12.58 0.68
(0.75,0.99) (0.75,0.92) (10.86,94.97) (0.49 0.89)

Notes: (1) numbers in parentheses are 90% con�dence intervals;
(2) DE_const and CF_const correspond to di¤erence equation (DE)
and closed-form (CF) speci�cations with � = 1; (3) DE_unconst
and CF_unconst correspond to DE and CF cases with unconstrained
� , respectively; (4) DE_const is the benchmark case in Cogley and
Sbordone (2008).

Table 2: Structural parameter estimates (median and 90% con�dence interval)

Sample period: 1960:Q1�2003:Q4

(removing ensembles with � > 40)

� � � �

DE_const 0 0.582 9.78 1
(0,0.16) (0.45,0.67) (7.56,12.49) �

DE_unconst 0.63 0.599 11.89 0.56
(0.28,1) (0.51,0.72) (10.25,14.68) (0.22,0.80)

CF_const 0.49 0.804 10.76 1
(0.24,0.78) (0.70,0.87) (7.98,25.62) �

CF_unconst 0.87 0.868 12.38 0.68
(0.75,0.98) (0.78,0.92) (10.81,28.82) (0.49 0.89)

Notes: (1) numbers in parentheses are 90% con�dence intervals;
(2) DE_const and CF_const correspond to di¤erence equation (DE)
and closed-form (CF) speci�cations with � = 1; (3) DE_unconst
and CF_unconst correspond to DE and CF cases with unconstrained
� , respectively; (4) DE_const is the benchmark case in Cogley and
Sbordone (2008).
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Appendix A: Derivation of NKPC in di¤erence equation (DE) form

In this appendix, we derive the NKPC in di¤erence-equation (DE) form as described in (32) and

(33). We also show how to combine them into a �nal form used in the estimation procedure

described in section 3.2. and show the cross-equation restrictions implied by conditional expectation

based on information at t� 2. The NKPC derivation closely follows that in Cogley and Sbordone

(2008).30

First, let�s derive the log-linear approximation of the evolution of aggregate prices. Let Xt be

the optimal nominal price at time t chosen by �rms that are allowed to adjust their prices (with

probability (1��) in a Calvo setup). Based on our indexation mechanism, the price of an individual

�rm i that is not allowed to adjust (with probability �) evolves according to

Pt(i) = (�
�
t�1�

1��
t�2 )

�Pt�1(i) :

Hence, the aggregate price based on the CES aggregator is given by

Pt =
h
(1� �)X1��

t + �
�
(��t�1�

1��
t�2 )

�Pt�1
	1��i 1

1��
:

Dividing by the price level Pt, we have

1 = (1� �)x1��t + �
�
(��t�1�

1��
t�2 )

���1t
	1��

; (A1)

where xt is the optimal relative price at time t. Next de�ne stationary variables e�t = �t=�t,

g��t = �t=�t�1, g
y
t = Yt=Yt�1, and ext = xt=xt. Here, for any variable kt, kt is its time-varying trend.

(A1) can then be transformed in terms of these stationary variables to yield (after some algebra):

1 = (1� �)ex1��t x1��t

+�

24 e��(1��)(1��)t�2
e���(1��)t�1

e��(1��)t �
(1��)(��1)
t �

(g��t�1)
��(1��)(1��)(g��t )

��(1��)(1��)(g��t )
���(1��)

35 : (A2)

In the steady state where ext = e�t = g��t = 1, (A2) can be solved for xt as a function of �t:

xt =

"
1� ��(1��)(��1)t

1� �

# 1
1��

: (A3)

30Note that in Cogley and Sbordone (2008), the indexation is constrained to the �rst lag of in�ation, i.e. � = 1.
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De�ning b�t � ln e�t � ln(�t=�t) and bxt � ln ext, imposing (A3), and rearranging, the log-linear
approximation of (A2) around the steady state can be expressed as

bxt = � 1

'0;t
�(1� �)

�b�t�2 � bg��t�1 � bg��t �
� 1

'0;t
��
�b�t�1 � bg��t � (A3)

+
1

'0;t
b�t ,

where '0;t =
1���(1��)(��1)t

��
(1��)(��1)
t

.

Next, we take the log-linear approximation to the �rst-order condition (FOC) of �rms�pricing

problem. Identically to the one-lag indexation case in Cogley and Sbordone (2008), the �rms�FOC

can be written as

Et

1X
j=0

�jQt;t+jYt+jPt+j	
1��
tj

�
X
(1+�!)
t � �

� � 1MCt+j	
�(1+�!)
tj P �!t+j

�
= 0 ; (A4)

where Qt;t+j and MCt+j are the nominal discount factor and average marginal cost at t + j,

respectively. The variable 	tj enters in the CES demand function for any good i, Yt+j(i) =

Yt+j

�
Pt+j(i)	tj
Pt+j

�
, with

	tj =

8<: 1Qj�1
k=0

�
��t+k�

1��
t+k�1

�� j = 0

j � 1
(A5)

The second line of (A5) makes clear that prices are indexed to a weighted average of the �rst two

lags of in�ation if they are not set optimally. Combining (A4) and (A5) and rearranging leads to

X1+�!
t =

Ct
Dt

;

where Ct and Dt are recursively de�ned by

Ct =
�

� � 1YtP
�(1+!)�1
t MCt

+Et

h
�qt;t+1�

����(1+!)
t �

��(1��)�(1+!)
t�1 Ct+1

i
(A6)

Dt = YtP
��1
t

+Et

h
�qt;t+1�

��(1��)
t �

�(1��)(1��)
t�1 Dt+1

i
; (A7)
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where qt;t+1 now is the real discount factor. De�ning the stationary variables eCt = Ct

YtP
�(1+!)
t

andeDt = Dt
YtP

��1
t

, we have based on (A6) and (A7):

eCt =
�

� � 1mct

+Et

h
�qt;t+1g

y
t+1�

�(1+!)
t+1 �

����(1+!)
t �

��(1��)�(1+!)
t�1

eCt+1i (A8)

eDt = 1 + Et h�qt;t+1gyt+1�(��1)t+1 �
��(1��)
t �

�(1��)(1��)
t�1

eDt+1i : (A9)

Also note that eCteDt = Ct
Dt

1

P
(1+�!)
t

= x1+�!t ; (A10)

where xt � Xt=Pt. Evaluating (A8) and (A9) at the steady state leads to

Ct =
�
��1mct

1� �qgy��(1+!)(1��)t

Dt =
1

1� �qgy�(��1)(1��)t

Combining the two expressions above with (A3) and using (A10) leads to the steady-state restriction

(31). This restriction does not depend on � and hence is identical to the case in Cogley and Sbordone

(2008) with � = 1. Next, de�ne bCt = ln eCt
Ct
, bDt = ln eDt

Dt
, and cmct = ln mctmct

. Log-linearizing (A10)

yields

(1 + �!)bxt = ( bCt � bDt) . (A11)

Combining (A11) with (A3) and rearranging leads to an intermediate expression for b�t:
b�t = ��

�b�t�1 � bg��t �
+�(1� �)

�b�t�2 � bg��t�1 � bg��t � (A12)

+
'0;t

(1 + �!)
( bCt � bDt) :

We can obtain the expressions for bCt and bDt by log-linearizing (A8) and (A9). Combining the
resulting expressions with (A11) leads to equations (32) and (33) in the main text:

b�t = ��(b�t�1 � bg��t ) + �(1� �)(b�t�2 � bg��t�1 � bg��t )
+�tEt(b�t+1 � ��b�t � �(1� �)(b�t�1 � bg��t )) + �tcmct + t bDt (A13)

bDt = '1tEt(bqt;t+1 + bgyt+1) (A14)

+'1t(� � 1)Et
�b�t+1 � ��b�t � �(1� �)(b�t�1 � bg��t )	+ '1tEt bDt+1 ;

41



with the time-varying coe¢ cients given by

�t = �t'3t

�t = '2t(1 + '0t)

t =
�t('2t � '1t)

'1t

�t =
'0t

1 + �!

'1t = �qgy�
(��1)(1��)
t

'2t = �qgy�
�(1+!)(1��)
t

'3t = 1� '2t

Finally, iterating bDt in (A14) forward, substituting the resulting expression for bDt in (A13), con-
verting real discount factor bqt;t+j into nominal discount factor eQt;t+j , and rearranging lead to the
NKPC in DE form:

b�t = e�D1t �b�t�1 � bg��t �+ (1� �)e�D2t �b�t�2 � bg��t�1 � bg��t �
+e�Dt cmct
+dD1tEtb�t+1
+dD2tEt

1X
j=2

'j�11t b�t+j (PC-DE)

+dD3tEt

1X
j=0

'j1t

h bQt+j;t+j+1 + bgyt+j+1i ;
where the coe¢ cients are de�ned by

e�D1t = [�� � �t�(1� �)� t(� � 1)�(1� �)'1t] =�t

e�D2t = �=�t

dD1t = edD1t + dD3t
dD2t = edD2t + dD3t
dD3t = [t'1t]=�te�Dt = �t=�t

�t = 1 + ���t + t(� � 1)�'1t f� + (1� �)'1tgedD1t =
�
�t + t(� � 1)'1t

�
1� ��'1t � �(1� �)'21t

	�
=�tedD2t =

�
t(� � 1)'1t

�
1� ��'1t � �(1� �)'21t

	�
=�t
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Note that as in Cogley and Sbordone (2008), we use the "anticipated utility" assumption (Kreps,

1998) in deriving the NKPC in (PC-DE) so that Et
iY

k=0

'1t+k
bht+i = 'i+11t Et

bht+i for any variable
bht+i.

We note that there are two relevant limiting cases of (PC-DE). First, when � = 1 so that the

indexation is constrained to the �rst lag of in�ation, we have the NKPC in Cogley and Sbordone

(2008). Second, if the prices of non-adjusting �rms are fully indexed to a mixture of past in�ation

(�rst and second lags) and current trend in�ation, the NKPC collapses to the case with constant

coe¢ cients and where there is no extra lead terms beyond t + 1. Furthermore, under constant

trend case and when � = 1, one obtains the NKPC as in Christiano, Eichenbaum, and Evans

(2005) exhibited in (2).

Cross-equation restrictions Given the forecasting rule (36) and equation (PC-DE), we obtain

the conditional expectation of in�ation based on information at t� 2 in the DE form as follows

e0�A
2
t�2bzt�2 = e�D1;t�2e0�At�2bzt�2 + (1� �)e�D2;t�2e0�bzt�2 + e�Dt�2e0mcA2t�2bzt�2

+dD1t�2e
0
�A

3
t�2bzt�2 + dD2t�2'1t�2e0�Jt�2A4t�2bzt�2

+dD3t�2(e
0
QJt�2A

2
t�2bzt�2 + e0gyJt�2A3t�2bzt�2); (A15)

where Jt � (I� '1tAt)�1. Hence, the vector of cross-equation restrictions is given by

e0�A
2
t�2 = e�D1;t�2e0�At�2 + (1� �)e�D2;t�2e0�I+ e�Dt�2e0mcA2t�2

+dD1t�2e
0
�A

3
t�2 + d

D
2t�2'1t�2e

0
�Jt�2A

4
t�2

+dD3t�2(e
0
QJt�2A

2
t�2 + e

0
gyJt�2A

3
t�2)

� gD(�t�2;At�2; ) . (A16)

Appendix B: Derivation of closed-form (CF) NKPC

We derive the "closed-form" (CF) representation of NKPC based on (A13) and (A14) in appendix

A.

First, de�ne an auxiliary variable

bBt = b�t � ��(b�t�1 � bg��t )� �(1� �)(b�t�2 � bg��t�1 � bg��t ) ;
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so that

Et bBt+1 = b�t+1 � ��b�t � �(1� �)(b�t�1 � bg��t ) :
Note that the expectation above re�ects the fact that bg��t is an innovation process so that Etbg��t+j = 0
for j � 1. Using this de�nition, we can rewrite (A13) as

bBt = �tEt bBt+1 + �tcmct + t bDt : (B1)

Solving forward (B1) yields

bBt = �tEt

1X
j=0

�jtcmct+j + tEt 1X
j=0

�jt
bDt+j : (B2)

In deriving (B2) (and (B3) below), the "anticipated utility" assumption is used so that Et�t+j

jY
k=0

�t+kcmct+j =
�t�

j+1
t Etcmct+j and Ett+j jY

k=0

�t+k bDt+j = t�
j+1
t Et bDt+j for any j > 0. Next, solving forward

(A14), converting real discount factors into nominal ones, and rearranging lead to

bDt = '1tEt

1X
j=0

'j1t

h bQt+j;t+j+1 + bgyt+j+1i
��1t

�b�t�1 � bg��t �+ �2tb�t + �3tb�t+1 (B3)

+�3tEt

1X
j=2

'j�11t b�t+j ;
with the new coe¢ cients de�ned by

�1t = (� � 1)�(1� �)'1t

�2t = (� � 1)��'1t + (� � 1)�(1� �)'21t

�2t = �'1t � (� � 1)��'21t � (� � 1)�(1� �)'31t

We next remove the auxiliary variables bBt and bDt and derive the NKPC. Using the de�nition
of bBt, we reintroduce in�ation into (B2) so that

b�t = ��(b�t�1 � bg��t ) + �(1� �)(b�t�2 � bg��t�1 � bg��t )
+�tEt

1X
j=0

�jtcmct+j + tEt 1X
j=0

�jt
bDt+j : (B4)
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Finally, we substitute for bDt+j terms in (B4) using (B3) and rearrange the resulting expression to
obtain the CF representation of NKPC:

b�t = e�C1t(b�t�1 � bg��t ) + (1� �)e�C2t(b�t�2 � bg��t�1 � bg��t )
+e�Ct Et 1X

j=0

�jtcmct+j
+dC0tEt

1X
k=0

�kt
�b�t+k�1 � bg��t+k�

+dC1tEt

1X
k=0

�kt b�t+k
+dC2tEt

1X
k=0

�kt b�t+k+1 (PC-CF)

+dC2tEt

1X
k=0

�kt

1X
j=2

'j�11t b�t+j+k
+dC3tEt

1X
k=0

�kt

1X
j=0

'j1t

h bQt+j+k;t+j+k+1 + bgyt+j+k+1i ;
with the new coe¢ cients de�ned as follows

e�C2t = ��

e�C2t = �

e�Ct = �t

dC0t = �t�1t

dC1t = �t�2t

dC2t = t�3t

dC3t = t'1t

Cross-equation restrictions As before, given the forecasting rule (36), the t � 2 conditional

expectation of (PC-CF) is in the form

e0�A
2
t�2bzt�2 = e�C1;t�2e0�At�2bzt�2 + (1� �)e�C2;t�2e0�bzt�2 + e�Ct�2e0mcKt�2A

2
t�2bzt�2

+dC0t�2e
0
�Kt�2At�2bzt�2 + dC1t�2e0�Kt�2A

2
t�2bzt�2

+dC2t�2e
0
�Kt�2A

3
t�2bzt�2 + dC2t�2'1t�2e0�Kt�2Jt�2A

4
t�2bzt�2

+dC3t�2(e
0
QKt�2Jt�2A

2
t�2bzt�2 + e0gyKt�2Jt�2A

3
t�2bzt�2); (B5)
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where Kt � (I� �tAt)�1. Hence, the vector of cross-equation restrictions is given by

e0�A
2
t�2 = e�C1;t�2e0�At�2 + (1� �)e�C2;t�2e0�I+ e�Ct�2e0mcKt�2A

2
t�2

+dC0t�2e
0
�Kt�2At�2 + d

C
1t�2e

0
�Kt�2A

2
t�2

+dC2t�2e
0
�Kt�2A

3
t�2 + d

C
2t�2'1t�2e

0
�Kt�2Jt�2A

4
t�2

+dC3t�2(e
0
QKt�2Jt�2A

2
t�2 + e

0
gyKt�2Jt�2A

3
t�2)

� gC(�t�2;At�2; ): (B6)

Appendix C: Estimates under non-time-varying coe¢ cients

Table C.1 below displays the NKPC�s deep structural parameter estimates when we remove the time

variation in the NKPC coe¢ cients� and hence, these coe¢ cients do not depend on time-varying

in�ation trend� and terms involving higher order leads of in�ation. The resulting NKPC in DE

speci�cation is now as in (29), with the CF speci�cation given by

b�t = ��b�t�1 + �(1� �)b�t�2 + �Et 1X
j=0

�jcmct+j ;
where � = (1��)(1���)=(�+��!). The matrix At, however, is still assumed to be time-varying

and the two corresponding sets of restrictions in F j
t , for j � fD; Cg, are still imposed.

Table C.1: Structural parameter estimates (median and 90% con�dence interval)
Sample period: 1960.Q1�2003.Q4

(constant coe¢ cients and removing higher-order leads)

� � � �

DE_const 0 0.561 12.17 1
(0,0.11) (0.43,0.66) (7.96,15.31) �

DE_unconst 0.69 0.613 11.75 0.58
(0.36,1) (0.52,0.73) (10.23,13.96) (0.31,0.81)

CF_const 0.40 0.771 11.00 1
(0.16,0.66) (0.67,0.84) (8.69,15.50) �

CF_unconst 0.87 0.863 12.33 0.68
(0.72,0.99) (0.76,0.91) (10.80,18.24) (0.48 0.90)

Notes: (1) numbers in parentheses are 90% con�dence intervals;
(2) DE_const and CF_const correspond to di¤erence equation (DE)
and closed-form (CF) speci�cations with � = 1; (3) DE_unconst
and CF_unconst correspond to DE and CF cases with unconstrained
� , respectively; (4) DE_const is the benchmark case in Cogley and
Sbordone (2008).
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