
Jamison, Julian; Owens, David; Woroch, Glenn A.

Working Paper

Social and private learning with endogenous decision
timing

Working Papers, No. 09-11

Provided in Cooperation with:
Federal Reserve Bank of Boston

Suggested Citation: Jamison, Julian; Owens, David; Woroch, Glenn A. (2009) : Social and private
learning with endogenous decision timing, Working Papers, No. 09-11, Federal Reserve Bank of
Boston, Boston, MA

This Version is available at:
https://hdl.handle.net/10419/55609

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/55609
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 1

 

No. 09‐11 

Social and Private Learning with Endogenous Decision Timing 

Julian Jamison, David Owens, and Glenn Woroch 
Abstract 

Firms often face choices about when to upgrade and what to upgrade to. We discuss this in the 

context of upgrading to a new technology (for example, a new computer system), but it applies 

equally  to  the  upgrading  of  processes  (for  example,  a  new  organizational  structure)  or  to 

individual choices (for example, buying a new car). This paper uses an experimental approach 

to  determine  how  people  address  such  problems, with  a  particular  focus  on  the  impact  of 

information flows. Specifically, subjects face a multi‐round decision, choosing when (if ever) to 

upgrade  from  the  status quo  to either a  safe or a  risky new  technology. The  safe  technology 

yields more than the status quo, and the risky technology may yield either less than the status 

quo or more than the safe technology. Every round, subjects who have not yet upgraded receive 

noisy  information about  the  true quality of  the  risky  technology. Our  focus on  the  timing of 

endogenous choice is novel and differentiates the results from previous experimental papers on 

herding and cascades. We find that, in the single‐person decision problem, subjects tend to wait 

too  long before choosing  (relative  to optimal behavior).  In  the second  treatment,  they observe 

payoff‐irrelevant choices of other subjects. This turns out to induce slightly faster decisions, so 

the  “irrationality” of  fads  actually  improves profits  in our  framework.  In  the  third  and  final 

treatment, subjects observe payoff‐relevant choices of other subjects  (that  is, others who have 

the same value for the risky technology but independent private signals). Behavior here is very 

similar  to  the second  treatment, so having “real”  information does not seem  to have a strong 

marginal effect. Overall we  find  that social  learning, whether or not  the behavior of others  is 

truly informative, plays a large role in upgrade decisions and hence in technology diffusion. 
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1 Introduction

Individuals and organizations routinely have the option to undertake large, sunk

investments in technologies that could drastically alter how they operate. Typ-

ically, these expenditures come with significant risk: besides uncertainty as to

whether a new technology will live up to its promises, the return on investment

depends on factors outside their control such as cost of complements, market

conditions, and macroeconomic trends. Present day examples include the deploy-

ment of an advanced computing or communications system or the adoption of

green technologies to conserve energy and reduce pollution. While adoption initi-

ates the stream of benefits from the innovation — whether those take the form of

lowered costs or a new revenue source — delay allows a firm to gather additional

information on the prospects of the technology’s profitability.

This paper employs laboratory experiments to investigate patterns of behavior

that govern firm and industry adoption of innovations as they balance the tension

between acting quickly and waiting for more information. In our experiments,

subjects choose between a safe and a risky innovation and decide when to under-

take the adoption as well. Prior to adoption, subjects earn a return associated

with a status quo technology that is smaller than the return on the safe innova-

tion. We implemented three treatments that are nested in terms of the amount of

information made available to the subjects. In addition to knowledge of the risk

and return properties of the three technologies, each subject observes a private,

informative signal of the true return of the risky innovation, and in two of the

three treatments, the prior adoption decisions of other subjects as well. Two of

our treatments assign “private values” for the outcome of the risky innovation to

subjects, while they have a “common value” in the third treatment, borrowing

terminology from auction design. Adoptions are irreversible, so delay is the only

means to acquire this additional information. Delay is not costless, however, since

subjects incur an opportunity cost equal to the difference between the per-period

profitability of the safe innovation and the status quo technology.

We are particularly interested in the relationships among the flows of informa-

tion, in the choice between the safe and risky innovation, and in the timing of

the adoption. In particular, to what extent do subjects delay adoption to gather

private and public information, and do the two sources of information impact

timing in different ways?

The laboratory experiments offer tests of several behavioral hypotheses. From
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a purely decision-theoretic perspective, subjects may rely solely on their private

information to decide whether to opt for the risky alternative, ignoring completely

the choices made by others. Delay would derive from the firm’s desire to gather

more private information to make a better choice between the two investment

alternatives.

At the other extreme, subjects may simply ignore their private information and

imitate the adoption decisions of others who acted earlier. While such unreflective

imitation can accelerate the diffusion of an innovation through the population, it

can also lead to industry-wide selection of an inferior technology. Furthermore,

such conformity could also create perverse incentives, as when a firm adopts early

to steer the industry toward one technology rather than another.

This paper contributes to the literature on the causes and patterns of the adop-

tion and diffusion of innovations. In this vast literature, we seek to contribute to

the portion that deals with how information is used by potential adopters to se-

lect among available innovations and to decide when to adopt them. As Geroski

(2000) notes in his survey of the economics of diffusion, economists are generally

puzzled how, in practice, superior technologies diffuse slowly through the popula-

tion. Indeed, many of the contributions to this literature propose causes for the

observed delay in adopting improvements over the status quo. We are particularly

interested in the diffusion research that investigates whether all the information

available to members of the industry is employed in making the choice among

several potential innovations. In particular, is the best technology chosen given

the available information?

Various answers have been offered to these questions depending on the mod-

eling approach taken. Perhaps the best known among these is the “epidemic

model,” which assumes growth in penetration of a new technology is proportional

to the size of the population that has already adopted. The narrative that accom-

panies this specification claims that potential adopters who have not yet adopted

have an equal chance of encountering each individual in the population, and when

they encounter an adopter, there is a given chance they will follow suit and adopt

the innovation. Adopters, in effect, communicate or infect some fraction of the

non-adopters in each period. The penetration of the innovation grows according

to a familiar S-shaped curve.

Griliches (1957) and Mansfield (1961) conducted some of the earliest econo-

metric estimates of the diffusion of process innovations. Importantly, they focused

attention on the role of firms’ specific conditions in determining the diffusion of
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innovations over time. Rogers (1962) focused, instead, on how communication

between adopters and non-adopters caused the spread of innovations, with partic-

ular emphasis on the heterogeneity across potential adopters in their receptiveness

to new technology.1

A second model of innovation diffusion — one that Geroski (2000) refers to as

the “probit model” — relies on heterogeneity among firms to explain the timing

of adoptions. Differences in firms’ costs, demands, or resources lead to differing

optimal dates for adoption of an innovation, and collectively lead to gradual diffu-

sion of the innovation as the cost of adoption decreases. Our experimental design

precludes communication among subjects, except when prior adoption decisions

are publicly reported. It also suppresses any heterogeneity among subjects, aside

from the unobserved characteristics of the individuals selected to participate in

our experiments. The purpose of this design is to isolate the role of informa-

tion flows as the cause of adoption decisions. In addition, subjects earn rewards

that are independent of any other subject’s action. We designed the experiments

so as to avoid “payoff externalities,” as they can cause herding behavior among

subjects, which could be difficult to separate from that caused by “informational

externalities.”

Subjects’ decision problems in our experiments resemble a third class of adop-

tion models in which profitability of innovations is uncertain and private signals

are observed that can reduce that uncertainty. Jensen (1982, 1988) generates

gradual diffusion of an innovation because firms possess different amounts of in-

formation about the uncertain profitability of the innovation. Firms reduce this

uncertainty by delaying adoption and acquiring private signals. In that case, firms

either adopt immediately if they are sufficiently optimistic about the technology’s

prospects, or delay for an uncertain number of periods until they reach a mini-

mum level of confidence about its profitability.

While adopter heterogeneity is again the cause of diffusion in this class of

models, it derives from the different sequences of signals drawn by the firms. In

contrast, Kapur (1995) generates diffusion without private signals, but by having

firms observe adoption decisions of other firms in the industry. Firms then enter

into “waiting contests” as each one prefers to free ride on the information gener-

ated by earlier adopters.

1Ellison and Fudenberg (1993) provide a formal analysis of some of the diffusion dynamics that were discussed
by Rogers. Their model allows for an additional source of learning that occurs when potential adopters can
observe the consequences of adoptions made by their neighbors, as well as which technology they chose. The
subjects in our experiments, on the other hand, do not observe the payoffs earned by their peers.
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While many econometric studies of diffusion models have been undertaken, few

laboratory experiments have been conducted to test various hypotheses. Among

the exceptions are the papers by Isaac and Reynolds (1988, 1992) and Zizzo (2002)

that test several theories of R&D competition and patent races in a laboratory

setting. In another laboratory experiment narrowly focused on the impacts of sub-

sidies, Aalbers et al. (2007) examine adoption behavior of professional managers.

These papers, along with the bulk of the econometric literature on adoption and

diffusion of innovation, take into account the connection between the profitability

of the innovation and its impact on product market competition. In particular,

profitability of the innovation depends on the firm’s position in the order of adop-

tion and on the structure of the product industry. In our treatments, we simplify

the experimental task for our subjects by suppressing any such interaction. And

while we recognize that downstream competition among potential adopters is a

critical feature of the adoption decision, as are any other “payoff externalities”

that could arise among subjects, we choose to examine those aspects separate

from the potential for “information externalities.”

Our experimental design, together with the hypotheses about adoption behav-

ior, has been greatly influences by the rapidly growing body of research on social

learning games and experiments. Theoretical models in that literature analyze

sequential investment games played by rational agents who have access to both

private and public information. These models have been preoccupied with the

possibility that adopters choose to imitate prior adoptions as a means to free ride

on the information gathered by others. Banerjee (1992) and Bikhchandani, Hirsh-

leifer, and Welch (1992) find Bayesian-Nash equilibria in which potential adopters

choose to ignore their private signals and simply imitate adoption decisions of pre-

decessors. In those papers, agents have the opportunity to act at a single time in

a pre-determined order. Chamley and Gale (1994) and Chamley (2004) consider

equilibrium of a private-signal, common-value game in which players are free to

choose the timing of a binary investment. They find that, in Bayesian equilib-

rium, players delay their choice, and that the extent of delay is directly related

to the duration of a period and inversely related to the number of players. Zhang

(1997) also allows for endogenous timing in a binary investment game in which

time is continuous. He finds that, in equilibrium, agents engage in delay to learn

from others, but once investment begins to occur, subsequent investments occur

rapidly.

A number of laboratory experiments have sought to gauge the incidence of in-
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formation cascades and herding behavior. Anderson and Holt (1997) was the first

in a series of laboratory experiments to test the theoretical predictions of informa-

tion cascades. Designing experiments that adhere closely to the fixed timing setup

found in Bikhchandani et al. (1992), they find that their subjects demonstrate a

high level of agreement with theoretical predictions. For instance, subjects fail to

make their choice between two investments either on their private information or

on Bayesian updating of observed prior adoptions in a small percentage (4 per-

cent) of cases. Less than a third (31.7 percent) of cascades were on the wrong

investment, and infrequently (26 percent) subjects would follow their private sig-

nal when they should have followed prior adoptions.

A series of laboratory experiments followed Anderson and Holt (1997); they

differ in minor ways from their original setup, and yielded more or less the same

results. Of particular importance to this study, all of these experiments imposed

a pre-determined order on subject decision-making, as specified in the Bikhchan-

dani et al. (1992) model. One exception is Sgroi (2003), who allowed subjects

to choose the timing of their adoption. He found that subjects would, indeed,

delay adoption to learn about others’ private information, but that herding be-

havior persisted; in fact, reverse cascades appeared to become more numerous.

Celen and Kariv (2004a) were the first to distinguish between herd behavior and

information cascades in a laboratory setting. Drehmann, Oechssler, and Roider

(2007) conducted online experiments in which subjects also chose the timing of

their investments. Compared with a dozen articles implementing the structure of

Bikhchandani et al. (1992), their online subjects rely on the private signals to

a much greater extent. They also follow their private signal when they should

follow prior adoptions in a larger portion of the cases (34 percent) than in the

experimental results.

In our laboratory experiments, subjects can choose at any time a safe innovative

technology (B), or a risky innovative technology (C) having the same expected

payoff. They earn a lower return from a status quo technology (A) each round

that they delay before adopting. Treatment P is based on private values because

the outcome of the risky innovation is randomly assigned across the subjects.

Subjects receive a noisy signal about its true value at the beginning of the eight

rounds. Treatment PO is identical to treatment P except that subjects also learn

the total number of B and C adoptions up to the current round. Since the private

value structure is maintained, this adoption information should have no value for

subjects. Treatment CO, on the other hand, begins by drawing a value for the
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risky innovation that is common for all subjects, in which case public knowledge

of prior adoptions should be informative.

To establish a benchmark against which to evaluate the experimental results,

we solve for the Bayesian-Nash equilibrium strategies for the subjects in each

of the three treatments. Using backward induction, we should expect that risk-

neutral payoff maximizers will adopt one of the two innovations in the first period

according to which one is favored by their first signal. This solution applies to

treatments P and PO, since observation of prior adoptions contains no payoff-

relevant information. Turning to treatment CO where payoff from C is perfectly

correlated across subjects, we do not characterize all the Bayesian-Nash equilibria

because of the size of the state space of the game. We do expect, however, that

subjects will conform to this equilibrium prediction by adopting the innovation

indicated by their first signal. As a result, equilibrium behavior will have some

subjects delay adoption and observe the behavior of others.

In the discussion of our results, we focus on the (sometimes) competing in-

fluences of private and social learning. Private learning is the influence that a

subject’s private information has on her decisions. Social learning refers to the

influence that the observation of others’ actions has on decisions. In treatment

PO, subjects have the opportunity to be influenced by others, although this ob-

servation is not statistically relevant. We categorize such an influence as “social

learning,” and reserve the term “Bayesian learning” for the influence in treatment

CO, where Bayesian updating can take place as a result of this observation.

The results of the three treatments reveal preferences for adopting one inno-

vation or another, for the timing of the adoption decisions, and for the overall

profits earned by the subjects. On average, subjects show a slight preference for

the safe innovation (B) over the risky one (C). Their adoption decisions signif-

icantly improve upon pure randomization, indicating that subjects incorporate

private and public information into their decision-making. Surprisingly, they do

a better job at picking the better of the two innovations when they receive non-

informative reports on prior adoptions in treatment PO than when those reports

contain valuable information as in the case of treatment CO.

Turning to the timing of adoptions, roughly half of subjects in all treatments

do not adopt in the first round as prescribed by the equilibrium for P and PO.

One interpretation of this departure from equilibrium is that subjects seek to

learn from others by delaying. Interestingly, when subjects observe their peers,

that is, in treatments PO and CO, they adopt more quickly as a group. This
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suggests that early adopters apply “competitive pressure” on other subjects to

act, even when that action leads to an adoption different from the most popular

prior adoption. Profits earned by subjects appear to be related to their access to

information, in that subjects earn a higher profit when they have the opportunity

to observe their peers. This is, in large part, due to the competitive pressure

explained above.

The next section provides more details about our three experimental treat-

ments. The subsequent section solves the formal decision problems for each of

these three treatments as if the subjects were perfectly rational. We then report

the experimental results comparing the three treatments against one another and

against our theoretical predictions. We close the paper with a summary of our

conclusions.

2 Experimental Design and Procedures

All experiments were conducted using Experimental Social Science Laboratory,

or “Xlab,” at the University of California, Berkeley. The Xlab primarily recruits

undergraduate students as subjects, with some graduate students and university

staff members as well.

The experiment itself was conducted on laptop personal computers implement-

ing a z-Tree (Zurich Toolbox for Readymade Economic Experiments) program.

Workstations were separated from one another with physical partitions to preclude

subjects from looking at one another’s screens, and to discourage conversation.

Further, apart from the introductory period when subjects could ask clarifying

questions, no oral communication was allowed. Subjects participated in just one

experimental session and, hence, in just one treatment.

Subjects were offered monetary incentives for their participation in the experi-

ments. These were denominated in tokens during the experiment, and exchanged

at a rate told to subjects at the beginning of each session.2 When all subjects

had completed the experiment, payoffs were determined and individual checks

were issued in sealed envelopes. The average payout per subject per session was

$27.32.

Our experiments consist of seven different sessions. On average, 16.4 subjects

participated in each experimental session. Upon arriving, subjects were given

2The exchange rate was eight tokens per dollar in treatment P and twelve tokens per dollar in treatments
PO and CO.
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written instructions and ten minutes to read them. The instructions were then

read aloud by a researcher. Subjects were randomly assigned to groups, each

consisting of six members.3 They were not informed of the identities of the other

members of their group. In most cases, the subjects were asked to take a simple

quiz that tested their understanding of the rules before beginning the experiment.

They were not allowed to proceed until they answered the questions correctly.4

In each treatment, subjects participated in a series of 16 decision problems,

each of which consisted of eight rounds. The first of the 16 decision problems was

unpaid practice and the results were discarded, leaving data for 15 rounds per

subject. The number of rounds, decision problems, and size of groups were fixed

throughout all of the experimental treatments and sessions in order to maintain

comparability.

Across treatments, each subject’s task is to adopt one of two technologies, B or

C. As previously stated, they also decide when to adopt. Before they adopt, they

are on the inferior “status quo,” technology A. Each technology has a “value”

associated with it, which is a per-round payoff that accrues to each subject on

that technology. Technologies A and B had a value of 1 and 2 tokens per round,

respectively. Technology C’s value was stochastic, realizing values of 0 and 4 with

equal probability. We follow the classic ball and urn design of Anderson and Holt

(1997) in which subjects receive an informative but noisy private signal about the

realized value of technology C before they make their decision for round 1. Each

subject who declines to adopt technology B or C in round 1 remains active, and

receives further information about her decision.

Active subjects begin each round of a decision problem by observing a private

signal. If the value of technology C is 0, the subject receives a draw from an

“L-urn” (as in “low” payoff). That urn generates an “H” signal with a probabil-

ity of 1
3

and an “L” signal with a probability of 2
3
. If technology C’s value is 4,

then the signal is drawn from the H-urn, reversing the conditional probabilities

of the two signals: “H” arises with probability 2
3

and “L” with probability 1
3
. As

technology C’s value can be low or high with equal probability probability, its

conditional probability distribution given that the “L” signal is observed is 2
3

and
1
3
, respectively, for values of 0 tokens and 4 tokens.

In each round, active subjects make decisions among the technologies A, B,

and C. The option to choose the timing of one’s adoption decision sets our exper-

3This was not the case in treatment P , where there were no groups.
4This was done in all but the first round of sessions. No difference was found after adding the quiz.
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iment apart from the others. Most experimental studies of technology adoption

follow the traditional modeling of herding in which a subject occupies a predeter-

mined position in a sequence of decisions and has only one opportunity to make

a decision. We do preserve one property of that tradition, however, when we as-

sume that the choice of either B or C is irreversible. Once a subject adopts either

technology, she remains with that technology for the remainder of the decision

problem. If, instead, she remains with technology A, she retains the option to

adopt B or C, or to continue with technology A in the next round. For each round

that a subject chooses technology A, she draws a new signal from the correspond-

ing urn. In this way, technology A is the status quo that allows the subject to

acquire additional information about technology C.

The value of this additional information, even in theoretical terms, depends on

the experimental structure of the various treatments that we implement. Besides

an additional draw of the private signal, in most treatments subjects can observe

their peers’ adoption decisions. It is through this channel that social learning, if

it occurs, takes place.

2.1 The Three Treatments

We ran three different treatments over the course of our seven experimental ses-

sions. They were nested to identify the effects of private learning and social

learning — both Bayesian and non-Bayesian.

• Treatment P : Private Values, No Observation

In Treatment P , technology C’s value is independently determined for each

subject, and there is no observation. Subjects simply observe their private

signals and never observe what choices other subjects make, much less when

they make them. This is our baseline experiment as only private learning,

and no social learning, is possible.

• Treatment PO: Private Values, Observation

This treatment employs a payoff structure identical to that of treatment P .

Technology C’s value is determined independently for each subject. How-

ever, beginning in round 2 of each decision problem, subjects learn how

many members have, as of yet, adopted technologies B and C. Technology
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C’s value is completely uncorrelated across subjects, so Bayesian learning is

impossible.

• Treatment CO: Common Values, Observation

From the subjects’ perspective, treatment CO appears identical to treatment

PO. However, payoffs are perfectly correlated within groups: technology

C’s value is the same for all members of each group (0 or 4, each with

equal probability). This “common value” creates an opportunity for Bayesian

learning from prior actions of others.

Treatment P serves as a baseline, and explores the private learning process. As

there is no social interaction in this treatment, there can be no social learning. In

treatment PO, there is no Bayesian learning. Still, subjects observe the decisions

of five other subjects. If behavior in treatment PO differs from that in treatment

P , social learning is a possible explanation, while Bayesian learning is not. In

Treatment CO, technology C’s value is the same for all members of the group.

As subjects can update their beliefs on the value of technology C by observing

the choices of other members of her group, Bayesian learning is possible.

3 Theory

This section derives the optimal decision rule for subjects who participate in each

of the three experimental treatments. We assume that subjects are risk-neutral,

expected-utility maximizers who obey the basic laws of probability. Accordingly,

subjects will adopt the technology that maximizes their expected payoff, equal to

the (undiscounted) sum of the tokens they earn over the entire decision problem.

Before formalizing the subject’s decision problem, note that three events occur

within each of the eight rounds. At the beginning of round t, all active subjects

draw a private signal of the state of nature of technology C. Given the outcome

of that draw and all previous draws, and given observed adoptions of all other

subjects up through round t − 1 in the case of treatments PO and CO, each

subject chooses from among the three technologies, where choice of status quo

technology A is equivalent to postponing the decision between B and C for at

least one more round. At the end of the round, payoffs are realized according to

which technology was chosen in the round, although tokens are not awarded until

the end of the decision sequence.

11



We need some notation to begin with. Let Vj(h, t) denote the expected value

of technology j ∈ {A,B, C} earned by a subject in round t when she has observed

h private signals to be H up through and including round t. Then πj(h, t) =

Vj(h, t)×(9−t) gives the total expected profit from technology j over the remainder

of the decision problem if technology j is chosen in that round. Finally, let X∗(h, t)

be a subject’s set of optimal choices, that is, j ∈ X∗(h, t) if πj ≥ πk∀k ∈ {A,B, C}.
For treatments P and PO, the solution is an optimal decision rule that maps

their information sets into a probability distribution over the three technologies.

Because in treatment CO a subject’s optimal action may also depend on the

observed adoptions made by others, subjects’ payoffs become interdependent.5

As a consequence, we must look for equilibrium noncooperative strategies for a

subject. Of course, subjects could also condition their adoptions on these observed

adoptions in treatment PO, but, in theory, it would not offer any monetary benefit

to subjects.

3.1 Treatments P & PO

Since treatments P and PO pose decision problems that are technically equiva-

lent, we characterize a single optimal decision rule for both in this section.

If the timing of decisions were exogenous, ruling out delay as an option, then

the optimal decision rule would be quite simple. Subjects would simply adopt

technology B when h < l, where l is the cumulative number of L draws, and they

would adopt technology C when h > l.

The opportunity to delay by remaining with the status quo technology A

complicates the characterization of the optimal decision rule. The calculations

of expected payoffs for technologies B and C are quite simple: VB = 2 and

VC(h, t) = 4×P4(h, t), where P4(h, t) denotes the probability that VC = 4 given h

and t. As the prior is 50 : 50 on the two states of nature, the posterior simplifies

to:

P4(h, t) =
2h

2h + 2t−h
. (1)

The probability that technology C’s value is zero is P0(h, t) = 1− P4(h, t). Sub-

stituting l = t− h, the cumulative number of L signals received, into equation 1,

and simplifying, yields

P4(h, t) =
2h−l

2h−l + 1
. (2)

5Though payoffs remain independent of other subjects’ actions
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Equation 2 reveals a key insight. P4(h, t) depends only on (h − l). In other

words, the likelihood of C having the high-value realization 4 depends only on

how many more H draws than L draws have been observed, and not on the to-

tals: P4(1, 1) = P4(4, 7), for example. Also note that we implicitly assume that

subjects’ perception of probability is not affected by the order of the signals, but

only by their cumulative number.

VA(h, t) is more difficult to compute. Given (h, t), we must consider the prob-

ability of receiving a private signal of H or of L in round t + 1, and multiply

these by X∗(h + 1, t + 1) and X∗(h, t + 1), respectively. One must also consider

the fact that the optimal action in the next period may be to again remain with

technology A.

As continuation strategies depend on future private signals, it is necessary to

compute PH(h, t), the probability that the next private signal is H. Recall that

such a signal may come from either realization for C’s value, 0 or 4:

PH(h, t) =
2

3
× P4 +

1

3
× P0. (3)

In any round, πA is the value of A (which is 1) plus the expected value of the best

choice in the next round, given a signal of H or L, times (8 − t), the number of

rounds remaining after a decision in round t + 1:

πA(h, t) = 1 + [PH × πM(h + 1, t + 1) + (1− PH)× πM(h, t + 1)]× (8− t), (4)

where

πM(h, t) = max{πA(h, t), πB(h, t), πC(h, t)}, (5)

that is, π evaluated for X∗(h, t).

Of course, in round t + 1, it may again be optimal choice to delay by choosing

the status quo technology A, and then again in round t+2, and so on. Due to this

complication, and the finite number of rounds in our setup, we solve the decision

problem using backward induction, starting with the last round where subjects’

optimal decisions are obvious.

A large number of continuation strategies need to be examined to construct

the optimal decision rule, but a few observations greatly reduce the number of

candidates. Note, first, that opting for the status quo technology A amounts to
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purchasing information about the value of the risky technology, C. Eventually, all

subjects adopt either B or C. Therefore, if any subject knows in round t that she

will adopt technology B or C in round t+1 , then she should make that adoption

in round t. A subject should delay choosing B or C only if the next signal has

the potential to change her decision.

Second, the amount of information acquired by delay is more costly if h > l,

because of the asymmetry in uncertainty between B and C. If h > l, then

VC > VB = 2, that is, if a subject were forced to choose between B and C, she

should opt for C since max{VB, VC} > 2. If h ≤ l, on the other hand, then

max{VB, VC} = 2. Therefore, for h > l, VC(h, t) − VA(h, t) > VB(l, t) − VA(l, t).

In other words, because the opportunity cost of remaining with technology A

is higher when h > l, information will be more valuable when h < l. As a

consequence:

πB(h, t) > πA(h, t) ⇒ πC(t− h, t) > πA(t− h, t)

and

πA(h, t) > πC(h, t) ⇒ πA(t− h, t) > πB(t− h, t). (6)

Relation 6 means that, for a given l− h, if subjects prefer adopting technology B

to remaining with technology A, they would prefer adoption of technology C to

remaining with A if h − l took on the same value. Further, for a given h − l, if

subjects prefer remaining with technology A to adopting technology C, then they

prefer A over B for l − h of the same value.

An active subject in round 8 has no reason to choose technology A because

delay is no longer possible. Hence,

X∗(h, 8) =





B for h < 4

{B,C} for h = 4

C for h > 4

. (7)

As early adoption dominates later adoption, we know that a subject should

adopt technology C as soon as h = 4, and technology B as soon as l = 4,

whenever those events occur. This also makes any decision in round 7 trivial,
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since after the draw in that round either l ≥ 4 or h ≥ 4. Therefore,

X∗(h, 7) =

{
B for h < 4

C for h ≥ 4
. (8)

The decision in round 6 is trivial for h < 3 and h > 3, but the case for h = 3

is not as simple. For h = 3, VB = VC = 2. Remaining with technology A would

allow a subject to make a more informed decision between technologies B and C

in round 7 (as shown above, subjects will adopt in round 7 no matter what). The

drawback is an additional round of earning only A’s value of 1. She will adopt

technology B if she receives one more L signal, and technology C if she receives

one more H signal. Thus, πA(6, 3) is 1 plus the probability of L times πB(3, 7) plus

the probability of H times πC(4, 7), or (using the fact that the current symmetry

implies equal probabilities for H and L signals):

πA(3, 6) = 1 + PH × πB(3, 7) + (1− PH)× πC(4, 7)

= 1 +

[
1

2
× 21

21 + 1
× 4 +

1

2
× 2

]
× (8− 6) =

17

3
.

πB(3, 6) = 2× (9− 6) = 6.

πC(3, 6) =
1

2
× 4× (9− 6) = 6.

Thus,

X∗(h, 6) =





B for h < 3

{B,C} for h = 3

C for h > 3

. (9)

Similar to round 7, equation 9 renders the analysis for round 5 trivial:

X∗(h, 5) =

{
B for h < 3

C for h ≥ 3
. (10)

In round 4, subjects should clearly adopt B if h < 2, and C if h > 2.

We now need to determine X∗(2, 4). The tradeoff is very similar to that when
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h = 3 and t = 6, but more rounds remain in the future:

πA(2, 4) = 1 + PH × πC(3, 5) + (1− PH)× πB(2, 5)

= 1 +

[
1

2
× 21

21 + 1
× 4 +

1

2
× 2

]
× (8− 4) =

31

3
.

πB(2, 4) = πC(2, 4) = 10.

So,

X∗(h, 4) =





B for h < 2

A for h = 2

C for h > 2

. (11)

As πA(2, 4) > πB(2, 4) = πC(2, 4), subjects benefit from remaining with tech-

nology A when h = 2 and t = 4. Compared with round 6, there are more rounds

in the future to reap the benefit of the additional information, and hence the ad-

ditional information becomes worth the opportunity cost (of 1 token per round).

Given that X∗(2, 4) = A, equilibrium predictions for round 3 behavior are less

trivial than for rounds 5 and 7. As X∗(1, 4) = B and X∗(3, 4) = C, we also

know that X∗(0, 3) = B and X∗(3, 3) = C. We must find X∗(1, 3) and X∗(2, 3).

Statement 6 shows us that if X∗(1, 3) = B, then X∗(2, 3) = C. Therefore, we

compare πA(1, 3) to πB(1, 3):

πA(1, 3) = 1 + PH × πA(2, 4) + (1− PH)× πB(1, 4)

= 1 +
4

9
× 31

3
+

5

9
× 2× (8− 3) =

301

27
≈ 11.15

πB(1, 3) = 2× (9− 3) = 12.

Here we have used PH(h, t) = 2
3
× P4 + 1

3
× P0 (as stated above), along with

P4 = 2
2+4

, and likewise for PL.

As πB(1, 3) > πA(1, 3), X∗(1, 3) = B. By statement 6, X∗(2, 3) = C. Intu-

itively, the opportunity cost of waiting is higher when h > l, as the choice of

option A forgoes a higher expected value in that case.

X∗(h, 3) =

{
B for h < 2

C for h ≥ 2
. (12)

Given the calculations above, the predictions for round 2 are simple. Because
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X∗(1, 3) = B and X∗(2, 3) = C, X∗(0, 2) = B and X∗(2, 2) = A. Note that delay

is costly, and further that delay is costlier (relatively speaking) in later rounds,

when there is less to gain from the resultant information. Therefore, since we

know from above that X∗(2, 4) = A, it must also be true that X∗(1, 2) = A:

X∗(h, 2) =





B for h = 0

A for h = 1

C for h = 2

. (13)

The only calculation remaining is that for round 1. Again, we will simplify

the analysis through the use of statement 6, and begin by comparing πA(0, 1) and

πB(0, 1):

πA(0, 1) = 1 + PH × πA(1, 2) + (1− PH)× πB(0, 2)

= 1 +
4

9
× 15 +

5

9
× (8− 1)× 2 =

139

9
≈ 15.44.

πB(0, 1) = 2× (9− 1) = 16.

Here we have calculated πA(1, 2) = 1 + (0.5× 2 + 0.5× 2/3× 4)× (8− 2) = 15.

Hence,

X∗(h, 1) =

{
B for h = 0

C for h = 1
. (14)

We have characterized the entire decision space. C ∈ X∗(h, t) if h ≥ l and

B ∈ X∗(h, t) if h ≤ l, except for (h, t) = (1, 2) or (2, 4), where X∗(h, t) = A.

Importantly, BNE predicts that subjects in treatments 1 and 2 adopt immedi-

ately according to private information, adopting technology B following a private

signal of L and technology C following a private signal of H. The ex ante ex-

pected payoff of this strategy is (0.5× 2 + 0.5× 2
3
× 4)× (9− 1) = 56

3
≈ 18.67. A

complete characterization of the optimal decision rule calls for X∗ to include B if

h ≤ l and C if h ≥ l, except when X∗(1, 2) = X∗(2, 4) = A.

3.2 Treatment CO

Characterization of optimal behavior by subjects who participate in treatment

CO is complicated by the possibility of strategic interaction. In this treatment,
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when a subject delays adoption in treatment CO, she not only draws an addi-

tional private signal, but also can observe prior adoptions of B and C made by

fellow subjects as well as the number who opt to remain with the status quo

A. The value of these observations to a subject turns on her ability to infer the

private signals that induced the adoptions. Subjects who adopt in earlier rounds

effectively confer an informational externality on later adopters, with no means

to internalize the benefits. Consequently, too many subjects may delay adoption

in order to gain this information, and consequently too little social learning takes

place as subjects decline to bear the cost of informing the others through their

early adoption decisions. The externality creates an interdependence in subjects’

payoffs for which we need to apply methods of game theory to find an equilibrium.

We begin by asking whether obeying the decision rule constructed for treat-

ments P and PO form an equilibrium when adoption decisions are publicly an-

nounced. Specifically, suppose that all round 1 subjects adopt B when they draw

L, and C when they draw H. Can one of the subjects do better by delaying

adoption in round 1 regardless of which signal she receives, and then making the

best adoption decision in round 2 after drawing a second signal? Because all

other subjects implement the optimal decision rule, a subject who delays effec-

tively observes six additional private signals. We will show that this deviation is

profitable, so that it cannot be a Bayesian-Nash equilibrium for all subjects to

adopt in round 1 by following their private signals.

The deviating individual would choose option A in the first round and view

the equivalent of six additional signals. There are 7 different situations that the

deviating subject could find herself in in round 2 (h = 0 . . . 6) if the private signal

is L, or (h = 1 . . . 7) if the private signal is H. The subject’s profit-maximizing

option after viewing the signal will be to choose either option B or C in round

2.6 Therefore, the deviating player’s continuation strategy for round 2 will be to

adopt technology C in round 2 if h ≥ 4, and technology B if h < 4.

Calculation of the expected value of remaining with technology A requires the

determination of the probability of each number of additional H draws, the tech-

nology that they would adopt in each case, and its expected value. Assume, for

example, that a player’s private signal is L. The probability that each other sub-

ject in the group receives a signal of L, and therefore adopts technology B, is 2
3
.

6Essentially, deviating subjects view seven signals. Because this is an odd number of signals, h − l 6= 0 and
subjects will adopt with certainty in round 2. We know this since by construction all other subjects have already
adopted, so it is identical to a treatment P problem — where it is never profitable to delay adoption once there
is a signal imbalance.
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Therefore, the probability that a subject learns the outcome of i additional H’s

is

Pr(ha = i) =
6!

i!× (6− i)!
× 4

9

i

× 5

9

(6−i)

. (15)

Subjects will adopt technology B if there are three or fewer H draws, but

technology C if there are four or more H draws. Of course, the expected value

of adopting C will depend on the number of H signals. Therefore, the number of

H’s affects not only the probability that a subject adopts technology C, but also

C’s expected value. The benefit of remaining with technology A must account for

this:

πA(0, 1) = 1 +

(
2×

3∑
i=0

Pr(ha = i) + 4×
6∑

i=4

Pr(ha = i)× 2i

2i + 27−i

)
× 7 ≈ 19.24,

and VB(0, 1) = 2× 8 = 16.

As πA(0, 1) > πB(0, 1) according to this strategy profile, adopting “honestly”

in the first round is not an equilibrium choice in treatment CO. Further, for the

same strategy profile, 21.73 = πA(1, 1) > πC(1, 1) = 21.33. This result rules out

an equilibrium in which X∗(1, 1) = C and X∗(0, 1) = A.7

Thus, in treatment CO, there can be no equilibrium in which all subjects

adopt with certainty in the first round. The information revealed in the decisions

of others would be too valuable for subjects to profitably follow such a strategy.

There is generally more motivation to delay adoption in treatment CO, as delay

yields more information.

4 Results

We now analyze the outcome of our laboratory experiments, focusing on the evi-

dence that would accept or reject the presence of private learning, social learning,

and Bayesian learning (as defined previously). Comparing adoption decisions

made in treatments P and PO, we find that subjects do tend to be guided by

their private signals. However, we also find that observation of earlier adoption

decisions tends to improve subject’s performance by inducing others to respond

to their private signals earlier, even if their decisions are not based on common

payoffs.

7This strategy profile reveal all subjects’ signals, making it a profitable deviation to wait and observe other
subjects’ choices.
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4.1 Private Learning

Private learning occurs when subjects take into account the signals they receive

in their choice of a technology. Delay in that choice recognizes the potential value

of private learning. The cleanest test of private learning, therefore, arises with

treatment P , because in that case subjects’ decision problem is not confounded

with other sources of information, real or imagined. Evidence of private learning

occurs when adoption of technology B decreases with increases in h, and that for

C increases. Figure 1 compares adoption frequencies of the two technologies for

round 1 private signals. Clearly, private learning occurs in round 1, as adoption

frequencies are lower for technology B and higher for technology C for h = 1 than

for h = 0. Across all subjects in treatment P , 38.2 percent adopted technology B

when they observed L while 14.1 percent adopted C; in comparison, 22.9 percent

adopted B and 31.7 percent adopted C when a H signal is observed.
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Figure 1: Treatment P Round 1

This leaves 46.5 percent of the subjects opting to wait at least one more round.

Some of those subjects decline to adopt in round 2 as well, with 42.0 percent

remaining active at least to round 3. Figure 2 plots the adoption decisions of

active subjects in treatment P , for rounds 2 and 3, against h.

Private learning clearly occurs in treatment P , insofar as the relative tendency

to adopt technology B decreases as h increases. Exceptions arise when the private

signals skew strongly toward one technology, for example when h = 0 or h = 3 in

round 3. Selection among subjects is one place to look for an explanation of this

anomaly. Note that subjects who viewed h = 3 in round 3 must have chosen to

delay adoption in round 2 with h = 2. Subjects less receptive to learning from
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(b) Round 3

Figure 2: Treatment P

their private signals are more likely to delay in this way, leaving only such subjects

active with h = 3 in round 3.

Private learning in treatments PO and CO is more difficult to isolate, since

subjects can also take account of prior adoption decisions of other subjects, even

when those decisions are not based on common payoffs. In the first round, how-

ever, subjects have only their private signal on which to base their decision. Figure

3 plots the round 1 adoption decisions for treatments P , PO, and CO, depending

on whether the subject observed an L or an H.

Figure 3 confirms that subjects’ round 1 decisions approximated optimal behav-

ior in all three treatments. Subjects adopted technology B with a lower frequency,

and C with a higher frequency, when an H was observed.

As discussed above, subjects in round 3 with h = 0 or h = 3 necessarily de-

layed their decision in round 2 with h = 0 or h = 2. Therefore, round 3 responses

to h = 0 or h = 3 may not represent typical preferences of the entire subject

pool; that is there is a selection bias concerning whom we observe in round 3.

More generally, beyond the first round, decisions observed in any round repre-

sent the preferences of subjects who choose to delay adoption to that particular

round. Many reasons to delay the adoption decision can be offered, including risk-

aversion (reluctance to adopt technology C), a desire to observe decisions of others

(in treatments PO and CO), or insensitivity to or mistrust of private signals. Sim-

ilarly, although the information available to subjects in round 1 is identical across
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Figure 3: Round 1

treatments, round 1 decisions are not. The nature of learning that a subject gains

from delaying beyond round 1 differs across the three treatments, as delay will

result in different information sets in round 2.

4.2 Social Learning

The first possible occurrence of social learning arises in round 2 of treatment PO,

after subjects have observed any adoption by other subjects in round 1. Those

decisions convey no material information, however, because the payoffs across

subjects are uncorrelated. Consequently, any effect the observation may have

on subsequent adoption decisions is not social learning in the sense of Bayesian

updating but rather a form of social influence. If round 2 adoption rates differ be-

tween treatments P and PO, then the cause for this difference cannot be Bayesian

updating.

Figure 4 shows the adoption rates that were recorded for technologies B and C

in treatments P and PO, plotted against values of h. There are two plots on each

axis for treatment PO, partitioning adoption decisions by the popular technology.

Technology B is dubbed the popular technology when a subject observes more of

the other subjects adopting technology B in the first round, and technology C if

the opposite is true. The bar labeled POB shows the fraction of active subjects

adopting in treatment PO when technology B is popular, while POC refers to

adoption when technology C is popular.
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Rationality suggests identically declining adoption rates in Figure 4(a) and

identically increasing rates in Figure 4(b). In other words, there is no reason for

the observation of others to influence decisions. If subjects are inclined to imitate

earlier adopters, on the other hand, we would expect the POB bar to be higher

than the POC bar in Figure 4(a), the opposite in Figure 4(b).
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Figure 4: Round 2 Adoption by Popularity: Treatments P and PO

In some cases, the popular technology is more frequently adopted: the fraction

adopting technology C (that is, POC) is slightly higher than the fraction for B

in treatment PO in Figure 4(b), for example. This is not a robust regularity,

however. For example, when h = 0, subjects adopt technology B more frequently

when technology C is popular than when technology B is popular.

A striking regularity emerges from Figure 4 that is not related to the adoption

of the popular standard per se. We find a higher level of adoption of either tech-

nology in treatment PO, no matter which technology is popular. Consider the

h = 0 case within Figure 4(a). Subjects in treatment P adopted technology B

(which has an expected value in this case of 2.5 times that of technology C) only

33 percent of the time. In treatment PO, this frequency increases to 72 percent

when B is the unpopular technology. It appears that subjects are influenced by

the ability to observe their peers, but they appear not to be inclined to take the

same actions as the earlier adopters.

The incidence of social learning in round 3 shares one characteristic with the

pattern found in round 2: subjects adopt both popular and unpopular technologies
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Figure 5: Round 3 Adoption by Popularity: Treatments P and PO

with a higher frequency when they can observe their peers. Further, anomalous

behavior is prevalent for h = 0 and h = 3, likely caused by the same selection

issues discussed above. An additional pattern emerges in round 3, however. Sub-

jects are more likely to adopt the popular technology in round 3. This suggests

another level of selection in our design. Subjects who delay decisions until round

3 appear to be more influenced by the decisions of others than the early adopters.

4.3 Bayesian Learning

In treatment CO, it is rational for subjects to take into account the observed

adoption by other subjects. As adoption decisions are perfectly correlated across

subjects, Bayesian updating can take place. Above we found that subjects behave

differently in treatment PO than in treatment P , and we interpreted this pattern

as evidence of social learning. As we discussed, however, any influence that ob-

servation has in treatment PO cannot be considered Bayesian learning. Of the

three treatments, Bayesian learning can take place only in treatment CO. In this

section, we examine whether the experimental outcomes confirm that subjects are

affected differently by peers’ decisions in treatment CO than in treatment PO.

Surprisingly, the effect of peer observation is very similar in treatments CO and

PO, suggesting that Bayesian updating is not the driving force behind this social

influence. Subjects appear more sensitive to their private information when they
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Figure 6: Round 2 Adoption by Popularity: Treatments PO and CO

can observe the actions of others, regardless of whether this influence is payoff

relevant or not.
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Figure 7: Round 3 Adoption by Popularity: Treatments PO and CO

We previously uncovered evidence that social learning is more prevalent among

subjects who delayed their adoption than among early adopters. Figure 7 suggests

that this may also be the case with Bayesian learning. While adoption decisions in
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treatments PO and CO were very similar in round 2, they were different in round

3. Figure 7(a) shows that subjects are more likely to adopt a popular technology

B in round 3 in treatment CO than in treatment PO. Figure 7(b) shows the

same for technology C.

4.4 Choice of Technology

We now turn to more general comparisons across treatments. Table 1 shows

the percentages of subjects who ultimately adopt technologies B and C in each

treatment. The differences across treatments are not significant, although subjects

were marginally more likely to adopt the risky technology, C, when they did not

observe other adoptions.

Technology Chosen

Treatment B C

P 51.2 48.2
PO 55.6 44.0
CO 52.5 47.3

Table 1: Ultimate Technology Choice by Treatment

Table 2 decomposes adoption decisions into cases where πC = 0 and those

where πC = 4. This enables separate evaluation of the decision processes based

on which is the more profitable technology.

Technology Chosen

πC = 4 πC = 0

Treatment B C B C

P 41.9 57.4 61.2 38.3
PO 40.8 58.5 70.8 29.0
CO 41.8 58.2 65.2 34.5

Table 2: Ultimate Technology Choice by Treatment

Looking across treatments, subjects choose the high-payoff technology in roughly

six out of 10 rounds. They tend to be slightly more successful using this deci-

sion rule when B is the high-payoff technology. In fact, subjects achieve roughly

the same measure of success across treatments when the risky technology, C is

the high-payoff technology. Notably, when πC = 0, they are most successful in

treatment PO. This is somewhat surprising, given that subjects presumably have

more information on which to base their decisions in treatment CO.
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4.5 Timing of Adoption Decisions

The theoretical predictions for treatments P and PO involve subjects adopting

technology B or C immediately according to their private signal: adopt C if

s1 = H and adopt B if s1 = L. Predictions for treatment CO are less clear. Re-

call that it is not an equilibrium for subjects to choose immediately in treatment

CO. Consequently, one might expect subjects to come to a decision earlier in

treatments P and PO. In any case, the timing of adoption decisions is a useful

metric to compare subjects’ performance across treatments.

Figure 8 shows the hazard rates8 across treatments for each treatment. Im-

mediate adoption (adoption in round 1) is clearly more prevalent in treatment

P , where observation does not take place. Conditional on reaching subsequent

rounds, however, adoption is more likely when subjects observe their peers. Figure
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Figure 8: Hazard Rates Across Treatments

9 shows the proportion of subjects in each treatment who have already made their

adoption decision. It shows that subjects tend to reach their adoption decisions

earlier in treatments PO and CO.

4.6 Profits

In our experiments, subjects have two motivations. They are incentivized to adopt

the high-payoff technology, and to do so quickly. Section 4.4 found few differences
8The hazard rate is the percentage of subjects adopting option B or C, conditional on not adopting before

the given round.
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Figure 9: Decision Rates Across Treatments

across treatments in terms of final adoption decisions. Section 4.5 shows subjects

in treatment P are more likely to adopt immediately, but also spend more time

overall in technology A.

Finally we turn to the hypothesis that subjects attempt to maximize their

profits, so profit is a useful measure of subject performance. Table 3 compares

average profits across treatments. Note that observation tends to help subjects

earn higher payoffs, even when payoffs are uncorrelated. Although these differ-

ences are insignificant at the 5 percent level, they provide anecdotal evidence that

the observation of one’s peers improves performance in our decision problem.

One explanation for this regularity can be found in the earlier overall adoption

rates in treatments PO and CO. Our results suggest that, for a certain class

of decision problems, the observation of one’s peers may improve performance

by causing some subjects to follow their private information earlier, even if the

decisions that they observe are uncorrelated to their own.

Treatment (Obs.) Profit (std. dev) Profit for V = 0 (std. dev) Profit for VC = 4 (std. dev)

P 16.5 (9.7) 9.7 (6.7) 22.8 (7.5)
PO 17.0 (9.0) 11.1 (6.4) 22.8 (7.2)
CO 17.2 (9.6) 10.0 (6.8) 23.2 (7.1)

Table 3: Profits by Treatment
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5 Conclusion

We explore the timing and selection of innovative technologies using laboratory

experiments that isolate the roles of private information and social learning. Im-

plementing three treatments that are nested by the amount of information made

available to subjects, we are able to gauge the extent to which that information

is incorporated into private and social technology adoption. Specifically, we find

that roughly half of all subjects do not follow the theoretical prescription to adopt

the technology favored by their first private signal, but instead they delay adop-

tion with the apparent intention of acquiring additional information. With social

information available (in this case knowing the decisions of others, whether this is

payoff-relevant or not), subjects are slightly less likely to choose in the first round

but more likely to choose thereafter. Since on average they choose earlier overall,

their profits are higher, although they are not significantly more likely to choose

the optimal new technology. This suggests that people pay attention to others

even if others’ choices should not affect them, and that relatively speaking they

pay more attention to the fact that others do something than to what in particular

others do. This has natural implications both for firms that are attempting to

maximize profits and for those that are attempting to predict what choices firms

will make. A natural extension to this work is to additionally include the possi-

bility of direct network payoff externalities. In a companion paper — Jamison,

Owens, and Woroch (2008) — we report on the results of a laboratory experiment

with that feature.
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Appendix: Experimental Instructions (treatment CO): 
 
Welcome to this experiment on decision making and thank you for being here.  You will 
be compensated for your participation in the experiment, though the exact amount you 
will receive will depend on the choices you and others make and on random chance (as 
explained below).  Please pay careful attention to these instructions, as a significant 
amount of money is at stake.   
 
Information about the choices that you make during the experiment will be kept strictly 
confidential.  Your name will appear only on the payment-receipt form and will not be 
linked to any specific choices you make.  You will not be asked to reveal your identity or 
the content of your decisions to anyone else (either the experimenter or other 
participants) at any time during or after the experiment.  In order to maintain privacy and 
confidentiality, please do not speak to anyone during the experiment and please do not 
discuss your choices with anyone even after the conclusion of the experiment.   
 
The experiment will consist of a series of 16 problems, the first of which will be a 
practice problem for which you will not be paid. Each problem is called a Decision 
Sequence and is made up of 8 rounds.  During each Decision Sequence, you will decide if 
and when to move between three alternative courses of action: options A, B, and C. You 
will begin each Decision Sequence following the default option, A. During round 1 of 8, 
you will be asked to choose one of three options: to remain with option A, to switch to B, 
or to switch to C.  As long as you remain with A, you will be given the same three 
options during each subsequent round in the sequence.  After you switch to B or C, you 
will no longer have the opportunity to move between options.  You will remain with 
either B or C (depending on which one you selected) each subsequent round until the end 
of the sequence. For example, you may choose to remain in option A for the first three 
rounds, and then switch to option C in round 4. You must then remain in option C for the 
rest of that Decision Sequence. 
 
At the beginning of each sequence, you will be placed into a group with 5 other 
participants that are in the lab with you. Group assignments will be made randomly and 
will change at the end of each sequence. At the beginning of each round, you will be told 
how many of your group members were following each alternative (A, B, and C) as of 
the end of the previous round.   
 
There is a payoff associated with following each option.  For each round that you follow 
option A, you will receive 1 token.  For each round that you follow B, you will receive 2 
tokens.  The payoff for C in each decision sequence is the same for all members of your 
group and will be randomly determined at the beginning of each decision sequence; it 
will remain the same until the end of that decision sequence.  The payoff for C will either 
take a value of 0 tokens per round or 4 tokens per round, both being equally likely.  You 
will not be told if your group’s payoff for C is 0 or 4 in any given decision sequence, but 
at the beginning of each round you will be shown the result of a coin flip that will help 
you determine what the payoff for C is.  If the payoff for C is 0, the coin flip will result in 
an H with 1/3 probability and an L with 2/3 probability.  If the payoff for C is 4, the coin 



 

flip will result in an H with 2/3 probability and an L with 1/3 probability. The payoff for 
C will be the same for each member of your group in each decision sequence, but the 
coin flips themselves are generated randomly for each group member individually, and 
therefore may or may not be the same.  Figure 1, below, illustrates the payoffs. 
 

 
Figure 1. Payoffs for Options A, B, and C. 
 
Your payoffs for the 8 rounds in a sequence will be tallied at the end of the sequence.  
For example, if you decided to remain with option A for the first 4 rounds and then 
switched to option B, you would receive 4*1 + 4*2=12 tokens.  Your tokens from all 15 
Decision Sequences will be added at the end of the experiment and converted to U.S. 
dollars (the exchange rate is: 12 tokens = $1), and you will be given a check for that 
amount.   
 
The payoff for option C can be 4 or 0 tokens.  For example, if you remain with option A 
for the first two rounds and switch to option C in the third round, your payoff will be 
2*1+6*4=26 if the payoff for option C turns out to be 4, and your payoff will be 
2*1+6*0=2 if the payoff for C turns out to be 0. Note that the true value of the payoff for 
C will remain the same (either 0 or 4) for all 8 rounds of the Decision Sequence.  
 
For each round that you remain with option A, you will view a flip of the coin that will 
help you determine the payoff for option C. For example, if you choose option A during 
rounds 1, 2 and 3, you will see four flips of the coin (at the beginning of rounds 1-4).  
 
After all 8 rounds of a Decision Sequence, you will be told how many tokens you 
accumulated in that sequence. Then a new sequence will begin and you will go through 
the same process again.  Remember that payoff for C is independently chosen for each 
sequence, so the value of C’s payoff in previous sequences is not an indication of what it 
will be in future sequences.  After all 15 Decision Sequences, your tokens from all 
sequences will be added together, converted to dollars, and given to you in the form of a 
check. 

Option A = 1 token per round 
Option B = 2 tokens per round 

Option C = either 0 or 4 tokens per round.  Each is equally likely. 
 

Coin Flips: 

If C = 0 

= 1/3 chance 

= 2/3 chance 

If C = 4

 = 1/3 chance 

= 2/3 chance 



 

Computer Program Description 
To make your decisions you will use the computer in front of you. Right now, you can 
see an initial waiting screen. The program will be activated when the instructions are 
finished. 
 
Once the program is activated, you will be given a short quiz and go through a practice 
decision sequence to make certain that you correctly understand how the experiment will 
work.  After you have completed the quiz and the practice sequence, the experiment will 
begin.  At that time, a new window will pop up and replace the initial waiting window. 
The new window will resemble the one shown below. The upper-left of the screen 
informs you that you are in the first of 15 Decision Sequences. The upper-right of the 
screen shows how much time you have remaining to make your decision. You will have a 
total of 20 seconds to make your decision, after which the computer will choose option A 
for you. The center of the screen will inform you that you are in round 1 and tell you the 
result of a coin flip that will help you determine the payoff for option C. The screen 
below shows that the first flip of the coin resulted in an H. Finally, you are asked for your 
decision. You may choose option A, option B or option C by placing the cursor on the 
corresponding button and left-clicking. 
 

 



 

 
 
If you choose option B or C in the round 1, you remain with that option for the remainder 
of the rounds of the Decision Sequence. In this case, you will again see the waiting screen 
that is in front of you now, which will remain until the other participants are finished with 
the first Decision Sequence.  
 
If you choose option A in the round 1, you will see a similar screen as the second round 
begins. Notice that the upper-left of the screen shows that you are still in the first decision 
sequence. As shown in the upper-right, you will again have 20 seconds to make your 
decision, after which the computer will select option A for you. The screen will inform 
you that you are in the round 2. It will also show the options chosen by other members of 
your group in the previous round. Below, the screen shows that 6 group members chose 
A, while no group members chose B or C. Just underneath, the screen shows the result of 
a new coin flip. The screen shown below indicates that the coin flips for rounds 1 and 2 
resulted in an H and an L. Notice that you are shown the results of the coin flips for both 
round 1 and round 2.   
 

 
 



 

If you choose option B or C in round 2, you remain in that option and are therefore 
shown the waiting screen. If you choose option A in round 2, you will be told the result 
of an additional coin flip and be asked to make another decision.  
 
This process will repeat itself until you choose option B or option C, or until you 
complete round 8. After the Decision Sequence is over, you see the feedback screen. The 
feedback screen shows you the payoff for C, 0, and your profit for the round, 1 token. 
 

 
 
You have a maximum of 20 seconds to observe the feedback screen from the first 
Decision Sequence. You may click the OK button in the lower right corner of the screen 
when you are ready to proceed to the next Decision Sequence. After 20 seconds, you will 
proceed automatically.  
 
Then, the new  Decision Sequence will start, and the computer will again randomly place 
you into a group with 5 other participants, randomly select a coin, show more information 
and ask for a new decision. 
 



 

After the last round is finished, a final screen will pop up, informing you of your total 
earnings for this experiment. 
 

Rules 
 

Please do not talk with anyone during the experiment. We ask everyone to remain silent 
until the end of the last round. 
 
Your participation in the experiment and any information about your earnings will be 
used solely for research purposes. Your name and association to your decisions will be 
kept strictly confidential.  Your payment receipt and participation form will be the only 
places in which your name is recorded. 

 
Questions 

 
Any clarification questions should be asked at this time. Please raise your hand and wait 
for an instructor to come to your desk.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


