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1.  Introduction 

 Frank (1987) states: “Our utility-maximization framework has proven its 

usefulness for understanding and predicting human behavior.  With more careful 

attention to the specification of the utility function, the territory to which this model 

applies can be greatly expanded.”  This is a particularly germane observation with respect 

to game theorists, who simply tend to assume that they are given the full and correct final 

preferences of players in a game—and that their object is to analyze the resulting 

strategic interactions.  Where these preferences come from, and especially what 

differences might arise between the payoff to an individual and his or her ultimate 

preference over outcomes, has generally not been considered to be within the purview of 

game theory.  However, as Frank points out, this necessarily limits game theory’s scope.  

For instance, it is probably not an exaggeration to say that all game theorists feel that no 

rational player should ever knowingly play a strictly dominated strategy.  And yet this is 

exactly what robustly occurs in the one-shot Prisoner’s Dilemma.  The fault lies not with 

the theory, but with the inattention as to its application. 

 This paper attempts to provide a general and formal theoretical link between the 

base payoffs in a game and the resulting final utilities or preferences.  The discrepancy is 

due to the fact that players care about the utilities of the other players in the game, for 

example, due to altruism.  The main reason to formalize this link is to provide applied 

and experimental economists with a model for this pervasive interaction, so they are not 

forced to come up with new (and ad hoc) formulations every time it is relevant.  A second 

reason lies in the theorists’ stock-in-trade: to gain a better understanding of the process.  
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The jump from payoffs to the calculation of final utilities goes on all the time in almost 

all games, so we should have a model (or, better yet, several competing models) of how it 

happens and what it implies. 

 We introduce a general definition of games with synergistic utility.  Synergistic 

utility functions capture the idea that utility increases in one’s own payoff, and may 

increase or decrease in others’ utilities.  Sufficient technical conditions are imposed for 

the concept to be well-defined, but otherwise the formulation is general enough to allow 

maximal variety in specific applications.  All players are fully rational (including being 

expected-utility maximizers) and no new equilibrium concepts are introduced.  A specific 

example, the linear synergistic utility function, is introduced and analyzed in greater 

detail.  Several applications of the theory are given, including: cooperation in the 

Prisoner’s Dilemma, overproduction in Cournot oligopoly, extended play in the centipede 

game, and interior solutions in the dictator game. 

 The paper proceeds to section 2, in which some of the related literature, both 

applied and theoretical, is discussed and compared with the synergistic utility concept.  In 

section 3, the formal model, including the central definition, is given.  Next, section 4 

illustrates the theory with examples both of different synergistic utility functions and of 

their application to different games of interest.  Section 5 addresses several topics from 

game theory, such as incomplete information, in the context of synergistic games.  

Finally, section 6 briefly concludes. 

 

2.  Literature 
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 The literature relating to altruism and interdependent preferences is wide and 

diverse, with each paper seemingly taking its own course depending on the topic at hand 

and the immediate goals of the authors.  The first broad category can be construed as 

considering the various applications of altruistic-like tendencies in specific situations.  In 

the overlapping generations (OLG) macroeconomics literature, this includes the famous 

paper by Barro (1974) on Ricardian equivalence, and the subsequent paper by Kotlikoff, 

Razin, and Rosenthal (1990) which disputes the finding.  The models in these papers 

have “dynasties” in which the current generation cares about their descendants’ 

consumption as well as their own. Bisin and Verdier (1998, 2001) study the Prisoner’s 

Dilemma in the context of cultural transmission, modeling altruism with the addition of a 

positive constant.  All of these papers model altruism in one direction only, that is, there 

is no feedback effect between the players.  In labor economics, Rotemberg (1994) studies 

workplace relations. He determines under what conditions cooperation can be obtained 

and when this benefits the employer, but defines altruism only insofar as an employee’s 

utility is the sum of payoffs to the group.  Rotemberg states that, “Cooperative outcomes 

for either individual in the Prisoner’s Dilemma obtain only when both individuals feel 

altruistic toward each other.”  As we shall see, this claim contradicts the conclusions of a 

synergistic utility model, in which an altruistic player may desire to cooperate even when 

facing a nonaltruistic opponent. 

Altruism within the family has been studied since Becker (1974) and his Rotten 

Kid Theorem.  He models interdependent utilities using a basic additive form.  Bruce and 

Waldman (1990) compare this line of work to the Samaritan’s Dilemma and Barro-

Ricardian equivalence in a similar framework.  Other work applying some degree of 
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altruism includes Coate (1995), who studies insurance with rich and poor agents, and 

Collard (1975) working in a general equilibrium framework.  Note that these studies 

represent only a small sample of the work that employs altruism or interrelated utilities in 

some form or other.  In addition to the various subfields of economics already mentioned, 

these types of models have been used in disciplines ranging from law to philosophy to 

political science. 

The second general class of papers, on evolution and biology, are also closely tied 

to the theoretical psychology literature.  Frank (1987) belongs to this vein when he 

studies the commitment problem.  He finds that if one can choose to be a guilty type 

(perhaps through an evolutionary process) and show it, one can commit credibly.  This 

can be of great benefit, for instance in the provision of public goods. Wolpert et al. 

(2010) develop a general theoretical model along similar lines.  Bergstrom (1995) studies 

genetically predetermined behaviors, which is to say there is no free choice on the part of 

the players.  He finds that cooperation in the Prisoner’s Dilemma can be a stable outcome 

when players have preferences that take into account the payoffs (not the utility) of others 

and that genetic propagation occurs through imitation of successful strategies.  Once 

again, these are only a sample of the papers that consider this sort of evolutionary fitness 

paradigm.  All are distinguished from the present work in that this paper concerns 

rational players in a nondynamic setting, but it is interesting to note that some of the 

conclusions reached are similar. 

A third category consists of the relatively large number of experimental 

economics papers which have looked at a number of different games and found results 

that diverge from those predicted by the basic equilibrium concepts.  Dawes and Thaler 
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(1988) study experiments with public goods, ultimatum games, and the Prisoner’s 

Dilemma.  They discuss altruism as a general explanation but do not suggest a model.  

Palfrey and Rosenthal (1988) also study public goods provision where altruism consists 

of a single lump-sum addition to payoffs (from “doing the right thing”) when a player 

contributes.  Cooper et al (1992) consider altruism in the setting of cheap talk and 

coordination games.  One of the complications that arises from explaining the data in 

these and other games in this way is that it requires not only positive emotional 

interactions, such as altruism, but also negative interactions, such as spite (or at least 

retribution).  For instance, it is otherwise impossible to rationalize rejected offers in the 

ultimatum game.  Levine (1998) creates a relatively simple theory with utility linear in 

one’s own and one’s opponent’s payoffs (with a possibly negative weight on the 

opponent).  The parameters of his model are pinned down by matching data on ultimatum 

and centipede games.  Levine then tests the model, with some success, on public goods 

games and on market games.  The two main distinctions between his theory and the 

synergistic utility theory are that Levine’s players care about the payoffs rather than the 

utilities of their opponents and his inclusion of a reciprocity factor, so that how much a 

player cares about others depends on how much they care about him.  It turns out that a 

lot of the observed behavior can be explained without introducing this additional slight 

complexity, and that synergistic utilities can also rationalize some behavior (for example, 

in the dictator game) that Levine’s model, as it stands, cannot.  Charness and Haruvy 

(2002) experimentally test several models of altruism within a single framework. 

The final group of related papers are those from the game theory literature.  

Geanakoplos, Pearce, and Stacchetti (1989) introduce the concept of psychological games 
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(and psychological equilibrium) in which utility is a function not only of actions but also 

of beliefs over actions.  Among other things, this concept allows utility to depend on 

reactions of pleasure or anger, although only with respect to expected actions in a 

particular game.  Players do not explicitly care about the welfare of their opponents, 

although in theory it can always be incorporated into their preferences.  This is an 

extremely powerful and all-encompassing structure, but this breadth precludes finding a 

common thread from which to deduce or to explain the results observed across a variety 

of different games. Rabin (1993) instantiates this idea by introducing a fairness 

equilibrium, a more inherent concept which begins with a kindness function between the 

two players.  Because of the special nature of the equilibrium concept, Rabin’s results 

depend on the absolute level of the base payoffs and apply only to two-person games.  

Nevertheless, he is able to draw several fairly general conclusions.  Sally (2001) takes a 

similar but somewhat more extended approach, building on the “psychological distance” 

between players.  He develops the sympathetic equilibrium concept, and finds that it is 

sometimes possible to choose cooperation in the one-shot Prisoner’s Dilemma.  As in 

Rabin’s paper, reciprocity is the starting point and again, essentially because of 

reciprocity, it is unclear how to extend the results to more than two players.  Returning to 

the traditional equilibrium concepts, the approach used in Bergstrom (1989,1999) is 

perhaps closest to the present paper.  He presents a general model in which a player’s 

utility is an increasing transformation of  the given player’s payoff and the other players’ 

utilities.  One distinction with the synergistic utility concept is that Bergstrom takes a 

fixed-point rather than a limit-point approach.  He is able to explain cooperation in the 

Prisoner’s Dilemma, although this approach does lead to some rather counterintuitive 
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conclusions in other situations.  Note that this paper is not pursuing a behavioral 

approach, since all players in the synergistic model are fully rational with standard 

preferences over final utility (and we use standard equilibrium concepts), but it does 

explore some of the same questions. 

 

3.  Model 

 One way to introduce an altruism-like aspect in a formal game-theoretic model is 

to add a positive constant to payoffs following a “good” action, such as contributing in a 

public goods game or cooperating in the Prisoner’s Dilemma.  This is plausible in some 

circumstances, but does not capture the positive or negative benefits that a player may 

receive depending on the welfare of his or her opponents.1  These benefits can be 

captured most simply by adding a proportion of the opponents’ payoffs to that of the 

player in question.  This approach, however, has an inherent inconsistency: for instance, 

if the benefit arises not just from doing good, but instead from being glad that a fellow 

player is happy, then it should be the other player’s utility and not payoff that matters.2

 It is not unreasonable to ask why utilities should not be a function of own utility 

and others’ utilities.  The short answer is that this too is inconsistent: preferences are 

utilities, they are not defined subsequent to utilities.  As an example, consider an altruistic 

  

That is, rational players will be farsighted and will think through more than one step of 

the process.  In general, then, final utilities will be a function of one’s own payoff and of 

the final utilities of the other players. 

                                                           
1 Throughout the paper “opponent” will be used interchangeably with “other player,” whether or not the 
particular relationship happens to be adversarial. 
2 One caveat is that this may not apply as fully in a corporate setting, where firms are likely to care about 
the profits of other firms and not the indirect feelings caused by profits. 
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player with an indifferent (entirely self-concerned) opponent.  The opponent will 

necessarily always have final utility equal to base payoff.  If the altruist has utility equal 

to a weighted average between own payoff and the other’s utility, her final utility will lie 

somewhere in between the two original payoffs.  If, however, her utility is a weighted 

average between own utility and the other’s utility, her final utility must equal that of her 

opponent no matter what her original payoff.  In fact, under these assumptions it is not 

uncommon that the final utilities of both players will depend only on their altruism types 

and will be wholly independent of their original payoffs, an undesirable feature.3

 Before proceeding to the formal model, the interpretation of the base payoffs 

needs to be clarified.  The base payoffs are already objects in utility space, so these 

should not be thought of as monetary payoffs or profits.  Rather, the base payoffs can be 

considered as the utility resulting from the outcome if it were in a one-person setting, or 

in a setting where the effects of the outcome on other players are unknown.  Alternately, 

the base payoffs are the utilities of thoughtless players, to whom it has not yet occurred 

that there are other players and/or what implications that consideration might entail.  We 

assume, as ever, that players already include in their base preferences any positive 

feelings that arise from simply doing good or being fair, or on the flip side any negative 

feelings directly arising from an act of, say, betrayal.  What they do not include are 

preference changes due to the realized utility of one’s opponents in a particular outcome 

of the game.

 

4

 We are given a game G with I players and payoffs 

 

iv .  A synergism type for a 

player i is an element iθ  drawn from a type-space Θ .  Denote the vector of synergism 
                                                           
3 The author has worked considerably with this alternate model and is more than willing to share the results 
of these pursuits with anyone who is interested. 
4 Note that we are assuming, as we must, the possibility of interpersonal comparison of utility. 
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types for the I players by θ.  Let f be a real-valued function taking as arguments I real 

numbers (interpreted as welfare measures for oneself and one’s opponents, respectively) 

and as parameters the elements of Θ .  Hence RR →Θ×If : .  So f is the same for all 

players, but each has a separate synergism type.  The base payoff for player i is 0
ii uv = .  

Following the motivation above, we define );,();,( 01
iiiiiii uvfvvfu θθ −− ==  and in 

general );,( 1
i

n
ii

n
i uvfu θ−

−= .  At each round, players recalculate their opponents’ utility 

levels and then adjust their view of their own utility in response, continuing ad infinitum.  

Finally, let n
iniiii uvvu

∞→−
∞ = lim);,( θ .  Of course this limit may not always exist. 

 

Definition:  Given Θ , a function RR →Θ×If :  is a synergistic utility function if 

 (i)  f is everywhere both continuous and strictly increasing in its first argument 

 (ii)  f is everywhere both continuous and either strictly increasing, decreasing, or 

      constant in each of its other real arguments 

 (iii)  there exists Θ∈Eθ  such that for all vectors v in IR , 1E );( vf =θv  

 (iv)  for all Θ∈θ , 0);( =θ0f  

 (v)  for all Θ∈θ  and all v in IR , );( θv∞u  exists (as defined above). 

 

 Stated otherwise, requirement (i) posits that utility must be increasing in one’s 

own payoff.  Requirement (ii) asks that utility, if it is affected by someone else’s payoff, 

always be affected in the same direction.  This could be weakened, but imposes no 
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untoward restrictions5.  Requirement (iii) imposes that there exists a traditional game-

theoretic type, that is, one who has utility equal to own payoff regardless of the other 

players in the game.6

 

  Requirement (iv) is a moderately weak normalization that rules out 

adding arbitrary constants to the utility: essentially it states that you can’t get something 

for nothing.  And finally, requirement (v) insures that utilities exist in all cases and are 

well-defined. 

Definition:  If G is a game with payoffs iv , then we say (G, f, θ) is a game with 

synergistic utility (a synergistic game) if it is identical to G except that utility is given by 

);,( iiiii vvuu θ−
∞=  for all i, and f is a synergistic utility function. 

 

Proposition 1:  If (G, f, θ) is a synergistic game, then );,( iiii uvfu θ−=  for all i. 

 

 Proposition 1 says that the limit utilities, which necessarily exist, satisfy a fixed-

point property.  The proof follows straightforwardly from the definitions and the 

continuity of f.  One can imagine defining synergistic utilities directly as solutions to the 

fixed-point equation, but this definition has several weaknesses.  First, the motivation for 

synergistic utilities—that players update their own welfare by taking into account the 

welfare of the other players—leads directly to the limit process.  Secondly, the fixed-

                                                           
5 Note, however, that it does not allow sufficient flexibility for very much reciprocity.  This is by design: 
we see how much can be accomplished in as simple a setting as possible. 
6 E stands for economist or egotist, as the reader prefers. 
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point solution may exist even if the limit does not.7

f v ui i= + −2

  For example, suppose that we have 

two altruistic players of the same type; in particular we assume  for both.8

v v1 2 1= =

  

If  then the limit diverges, as would be expected (utilities go to infinity as each 

player gets happier and happier contemplating the situation).  The fixed-point solution, on 

the other hand, yields u u1 2 1= = − , which appears unreasonable.  Thus the limit is 

central to the definition, but Proposition 1 may provide a short-cut in explicit 

calculations. 

 

Proposition 2:  In a synergistic game, utilities iu  are continuous in payoffs v. 

 

Proof:  Let IRv∈  have associated synergistic utilities IRu∈ .  Take any sequence 

∞
=1}{ nnv  such that vv =

∞→ nn
lim .  We wish to show that uu =

∞→ nn
lim .  If not, there exists 

0>ε  such that ∅=∩ ∞
=1}{),( nnB uu ε .  From the definition of synergistic utility, 

m

m
uu

∞→
= lim  and hence there exists M such that 2),( ε<md uu  for all Mm ≥ .  But since f is 

continuous, we know that 11 lim nn
uu

∞→
= , and iterating 22 lim nn

uu
∞→

= , … so that in particular 

M
nn

M uu
∞→

= lim .  Thus we can choose N  with the property that 2),( ε<M
n

Md uu  for all 

Nn ≥ .  But now εεε =+<+≤ 22),(),(),( uuuuuu MMM
N

M
N ddd , implying ),( εuu BM

N ∈ .  

This is a contradiction, and so we’re done.               � 

 
                                                           
7 In general, of course, there may be several fixed-point solutions, while there is necessarily at most one 
limit point.  This is another reason to choose the limit definition, although in synergistic games as defined 
multiplicity won’t be a problem. 
8 Note that since f is simply a function of bound variables, whether we write the other players’ welfare 
functions as v or u is a matter of clarity and convenience only. 
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 Proposition 2 gives us another general property of synergistic utility functions, but 

this is about as much as can be said in complete generality.  It may be helpful at this 

point, in part to clarify the definitions, to consider some examples of potential synergistic 

utility functions.  We say potential because for the moment we ignore condition (v), and 

we leave Θ  unspecified.  The most obvious is probably the linear formulation 

∑
≠

+=
ij

j
j

i ubavf .  Here ),( ba=θ  and IR⊆Θ .  On the other hand, f av b ui i= + −( )2  

is impermissible, for instance, because it violates (ii).  The effect of an increase in the 

other player’s utility on one’s own should be independent of the absolute levels involved.  

Thus, f av b ui i= + −( )3  is once again acceptable.  Cobb-Douglas formulations, more 

common in macroeconomics, look like f v ui
a

i
b= −( ) ( )  and require that “consumptions” 

be nonnegative.  However, upon taking logs, this is equivalent to the original linear 

form.9 a = 1  All of the above satisfy condition (iii) by choosing  and b = 0 , and satisfy 

condition (i) if a > 0.  Examples of applications of these utility functions to particular 

games, along with an additional nonlinear formulation, are given in Section 4. 

 To apply the theory in a specific situation, one must choose an appropriate ),( Θf  

pair and show that this pair yields a synergistic utility function.  We do this now for the 

two-player linear case, though it is easy to extend it to more players. 

 

Proposition 3:  Let )1,1(),0( −×∞=Θ  and ),( ba=θ .  Then iiii buavuvf −− +=);,( θ  is a 

synergistic utility function. 

 

                                                           
9 Note that we cannot then independently choose the cardinalization for taking expected utilities. 
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Proof:  We have the recursive equations 1
21111
−+= nn ubvau  and 1

12222
−+= nn ubvau , or  
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Now n
in

u
∞→

lim  is simply the ith row of the 3rd column of the matrix above so it too exists 

(and in fact this gives an explicit formula for it).  Naturally, this is the same solution one 

would find from solving the system of two fixed-point equations.  It is clear that 

conditions (i)-(iv) also hold.                 � 

 

 Note that the perverse example mentioned earlier, which had 2=b , is not 

allowed in this scenario.  Nonlinear synergistic utility functions will have their own 
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requirements for Θ .10

 

  Turning to another question that can be answered given a specific 

synergistic utility function, it is well known that positive linear transformations of any 

player’s payoffs leaves the strategic structure (that is, the preferences over final 

outcomes) of a game unaffected.  This result carries over to synergistic games as much as 

possible (it is clear that multiplying only one player’s payoffs by some constant may 

substantively change utilities in an interdependent setting). 

Proposition 4:  In a linear synergistic game, preferences over outcomes are unaffected if 

 (a) all player’s payoffs are multiplied by the same positive constant, or 

 (b) any or all players have a constant added to their payoffs 

 

Proof:  (a) Since f is linear in iv  (or in fact more generally whenever f is homogeneous of 

degree one in iv ), utilities all along the limiting sequence, and hence also final utilities, 

will also be multiplied by this constant.  So then, by the standard result, preferences 

remain the same. 

 (b) Adding a constant to one player’s payoffs affects all players, but only to the 

extent of adding some constant to each of their payoffs.  Although this constant may be 

different for each player, it is the same for a given player across his or her outcomes.  

This is clear from the explicit formulas found in the proof of Proposition 3.  But now, 

once again, the standard result applies.               � 

 

                                                           
10 For example, we might imagine that more generally one would require the derivative of f with respect to 
opponent’s utility to be bounded by 1. 
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 Although this result doesn’t hold in general for all synergistic games, it will hold 

in other particular settings.  We now turn to illustrating the theory with a spectrum of 

examples. 

 

4.  Examples 

 The proof of the pudding lies in the taste, and the believability of synergistic 

utilities lies in its potential applications.  For the time being, we confine ourselves to the 

linear synergistic utility function analyzed above, f av bui i= + − .  We first define three 

types of players to convey some idea of the range of possibilities.  Although unnecessary, 

it is convenient to choose them such that a b+ = 1; this keeps the magnitude of the 

utilities directly comparable to those of the base payoffs.11

)0,1(E =θ

  The first type is the one 

required by part (iii) of the definition, .  This type always has final utility equal 

to base payoff regardless of the other players.  The second type is an altruist, denoted by 

S for socialist: ),( 2
1

2
1

S =θ .  This type approximately treats the two players equally.  

Finally, we define an unfriendly type: ),( 3
2

3
1

J −=θ .  In the game theory literature, this 

general type has been called spiteful, but that is perhaps too strong a condemnation for 

these preferences.  Rather, this player simply enjoys doing better than his or her 

opponent; the notation is thus Jones, for “keeping up with the Joneses.”12

                                                           
11 Most of the previous literature has instead chosen (in its own context) a = 1. 

  Note that since 

we apply the theory to single games, it is possible to switch types over time or in 

differing situations or against different players.  The model does not require players to be 

 
12 A similar Jones type appears in the macroeconomics consumption literature, so this is conceivably an 
example of micro keeping up with the macro Joneses. 
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one intrinsic type.  Also, it is fairly easy to see how to come up with multi-player 

analogies for these types. 

 The basic Prisoner’s Dilemma can be written as: 

 

Here C stands for cooperate and D for defect, as usual.  Of course the unique Nash 

Equilibrium (NE) is (D,D).  If two type E’s (economists) play against one another, the 

payoffs remain as these began and the game is unchanged.  So the unique NE is also the 

same.  We next consider an economist player 1 opposing a Jones player 2.  E’s utilities 

are the same as ever, while J’s may then be calculated using f (it takes only one step in 

this case).  We arrive at the following game form: 

 

The unique NE is again for both players to defect.  What is interesting, however, is that 

this outcome is no longer Pareto inefficient, as it was previously.  The economist is so 

unhappy that it makes the Jones player happy.  Of course, this outcome depends on the 

exact payoff structure and player 2’s type, but holds over a wide class.  Consider next a 

socialist player 1 against a Jones type: 

C D

C 0,0 -9,3

D 3,-9 -6,-6

Player 2

Player 1

C D

C 0,0 -9,7

D 3,-5 -6,2

type J

type E
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This game now has two pure NE, in both of which type J defects (unsurprisingly it turns 

out that types E and J always defect).  Type S is completely indifferent, and is thus 

willing to cooperate.  Of course this willingness is knife-edged; types near to S will be 

pushed in one direction or the other, some of them always cooperating.  The (C,D) 

equilibrium is [weakly] Pareto efficient in this case.  We now change player 2 to a type S 

as well: 

 

Cooperation is a dominant strategy here for both players; it is also the optimal outcome in 

the game.  This is the stereotypical result of altruistic cooperation in the Prisoner’s 

Dilemma.  The final combination of players that we consider is when player 1 is a type E 

once more: 

C D

C 0,0 -3,3

D 0,-3 -3,0

type J

type S

C D

C 0,0 -5,-1

D -1,-5 -6,-6

type S

type S
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The unique and strict NE is (D,C).  The surprising observation here is that it requires less 

inherent altruism to cooperate with a type E than with a type S.13

 Turning next to an example of a continuous game, we consider Cournot duopoly.  

In the simplest case with linear unit demand and zero marginal cost, price 

  This result can be 

explained by noting that defection hurts a type E opponent more than it does a type S 

opponent (who is consoled by the fact that one’s own payoff has been improved).  Hence 

a type S player will have a stronger incentive not to defect when playing against a type E.  

Recall that we have tried to put aside any issues of reciprocity. 

qp −= 1 , 

where q is the total quantity produced.  Payoffs are simply net profits, so )1( qqv ii −= .  

The unique NE with standard (that is, type E) players is for both to produce at 3
1=iq .  It 

is plausible, however, to model the firms as type J.  Perhaps it is a small market so that 

profits themselves are not important but beating the rival firm is critical for advertising.  

Or perhaps the managers are paid with yardstick competition incentives, so again what is 

important is to do better than the other firm.  The symmetric equilibrium in this case is 

that both produce 7
3=iq .  In the end of course neither firm actually does any better than 

the other, but each is willing to overproduce (“sacrificing” profits) in order to try to do so.  

                                                           
13 Contrast this once again with the quote from Rotemberg (1994) in Section 2. 
 

C D

C 0,0 -9,-3

D 3,-3 -6,-6

type S

type E
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Note also that this is much closer to the zero profit outcome of Bertrand competition, and 

in fact it converges to that outcome if the firms converge toward the full Jones type. 

 Experimental game theory has worked extensively not only with the Prisoner’s 

Dilemma but also with other games such as ultimatum, dictator, centipede, and public 

goods  As in the case of the Prisoner’s Dilemma, the results are often quite disparate from 

those predicted by standard theories.  For instance, no positive quantity should ever be 

rejected in an ultimatum game, yet this result is often observed in experiments.  This 

outcome can be explained using synergistic utilities: players similar to the Jones type will 

reject all offers up to some level (which will depend on the exact type chosen and on the 

type of the opponent).  Of course altruism alone, without some sort of negative analogue, 

can never rationalize these rejections.  Recall that it is possible to extend the theory to 

include reciprocity if desired, so a player’s type need not remain constant.  As has been 

documented previously (see section 2), altruism can explain extended play in a centipede 

game or a contribution made in a public goods game.  The point is that a simple theory, 

such as synergistic utilities, is sufficient to explain these wide-ranging outcomes. 

 In the so-called dictator game, player 1 simply decides how to divide an amount 

of money (typically around $10 in experiments) between himself or herself and an often 

anonymous opponent.  Player 2 has no action other than to accept the split as dictated.  

Traditional equilibrium concepts predict that player 1 should keep the entire amount, and 

previous models of altruism have not altered this prediction.  For instance, continuing 

with the types as defined above, if an altruistic type S opposes another type S, the optimal 

action is still to give nothing away.  No linear model can predict an interior solution, 

although in practice this is what the data clearly support.  We turn, then, to a nonlinear 
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synergistic utility function.  For simplicity we assume that player two is a type E, so that 

as always 22 vu = .  For player 1, we assume the altruistic formulation 211 uvu = .  In 

this case the optimal allocation is an even split, that is, $5 for each player.  This outcome 

is occasionally, though rarely, observed in experiments.  If we assume instead the slightly 

less magnanimous utility 212
1

12
1

1 uvvu += , then we find 54.8$1 ≈∗v .  In fact this result 

agrees remarkably well with the observed average division.  Naturally, this is meant only 

to illustrate the potential applicability of the theory, in addition to the fact that nonlinear 

functions do not simply provide generality but in fact may be necessary in practice. 

 

5.  Topics 

 Despite the fact that the game structure remains the same in synergistic games 

(only the payoffs have changed), there are several topics that take on new meaning in this 

context.  For instance, cooperative games with transferable utility will be difficult to 

analyze since some players may actually prefer having a smaller total surplus to divide 

(think of the type J above).  Evolutionary game theory, a popular subject of recent study, 

offers another example.  In the present setting, it is possible to discuss the evolutionary 

strengths not just of different strategies but also of different synergistic types.  What is 

unclear, however, is what to use as a measure of reproductive fitness.  One could argue 

that players with the highest welfare (final utility) will be the most productive and 

successful.  On the other hand, it may be that success is determined by physical rather 

than mental well-being, so that base payoffs (food or money leading to direct 

consumption) should enter the calculation of the dynamics.  A player might be happy that 

others do well, but this does not necessarily grant an increased chance of survival.  The 
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appropriate measure may depend on the particular situation.  Note that in the Prisoner’s 

Dilemma example of section 4, altruistic players, type S in the notation there, fare 

relatively poorly under either system. 

 A related consideration, though more in the mode of full rationality, is the idea of 

segregation.  Since players are of different types, they may prefer to play against one type 

of opponent rather than another, and thus selectively associate.  Of course, they may not 

have the opportunity to make this choice, but if they do then it has long-term welfare (and 

hence possibly evolutionary) implications.  Returning once again to the Prisoner’s 

Dilemma example of the previous section, note that while types E and S always prefer an 

altruistic type S opponent, this is not necessarily true of type J players, who like to play 

type E’s (since the latter end up so unhappy).  So a plausible scenario is that S types play 

against themselves, while Js and Es pair off against one another.  This leaves the self-

centered economist types quite unhappy; their only hope is to run across extremely 

altruistic players, who will actually want to make them happy by cooperating (in effect, 

happily sacrificing themselves).  Recall that all players are fully utility maximizing at all 

times. 

 There is no doubt at least some element of reciprocity in almost all human 

interactions.  Synergistic utilities, as defined, make no allowance for this: a player’s 

degree of altruism is independent of the attitudes of the other players.  The work of Rabin 

(1993) and Sally (2001) depend explicitly on these added interactions, and similar 

constraints can be added to synergistic games.  One approach would be to require that 

players enter a game with their own individual synergistic type θ , but then require that 

all of the players play the game using the average θ  of the group (if Θ  is such that this 
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has meaning).  Another possibility is to add a reciprocity player, type R, who takes on the 

θ  of whomever he or she is playing.  As always, this is difficult to implement with more 

than two players.  The point is that players being subject to altruism, jealousy, and so on 

makes sense independently of any reciprocity arguments, so the simplest models of such 

behavioral tendencies will not include these traits as building blocks.  Yet including these 

tendencies may be necessary in order to fully explain either our own introspective 

assessments or all empirically observed behavior. 

 Finally, games with incomplete information take on an added dimension if it is 

possible to allow for players of synergistic type.  In general, there is no reason to assume 

that all players know each of their opponents’ type, synergistic or otherwise.  Fortunately, 

the entire game-theoretic apparatus developed to analyze this eventuality is still perfectly 

applicable.  In particular, the Bayesian equilibrium concepts apply just as well here.  As  

the presence of synergistic types are certainly payoff-relevant, signaling will be an 

important component to playing extensive-form synergistic games.  It may or may not be 

beneficial for a player in a given situation to reveal his or her synergistic type (consider, 

for instance, the discussion of segregation above).  In fact, aspects of synergistic games 

involving incomplete information seem perhaps to be the most fruitful line for future 

theoretical research using this model. 

 

6.  Conclusion 

 Game theorists assume that the payoffs in a game indicate players’ true 

preferences, which is to say that they already take into account welfare interactions 

between the players.  But in real-life situations, often the only information available is 
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about base payoffs, for example, firm profits or monetary payoffs in an experimental 

setting.  It is useful to have a specific model of altruism and other emotional aspects that 

influence preferences and welfare in order to link these payoffs to the ultimate utilities in 

a game.  The concept of synergistic utilities attempts to do this by providing a simple 

framework in which to address these concerns in various applied contexts.  In this model 

each player’s utility is a function of his or her own payoff and of the other players’ 

utilities.  Standard equilibrium concepts are sufficient, and since the process involves a 

transformation of payoffs only, the theory can be applied to arbitrary games with any 

number of players.  One special case, a linear formulation, was given and analyzed in 

more detail, followed by examples such as how both cooperation in the Prisoner’s 

Dilemma and positive gifts in the dictator game can be rationalized. 

 The main distinction between the present work and previous literature lies in the 

simplicity of synergistic games.  There is nothing new imposed on the game structure or 

analysis, since the only change made is in the numerical values of the payoffs.  Nor is an 

idea of reciprocity inherent or necessary to the model.  Nevertheless, many observed 

behaviors can be explained within this paradigm.  Note in particular that standard 

theories, ignoring any subtleties regarding preferences, have done exceptionally well in 

predicting behavior in market situations.  In these games, by definition, a player cannot 

influence the payoff of any other participant in the game (or at least has this impression).  

Hence a player with synergistic utility will behave exactly as a standard player would, 

which provides a robustness check on the theory.  Surely there will be more such checks 

to come. 
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