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Abstract: 
Policymakers have an interest in identifying the differences in behavior patterns—namely, 
habitual caloric intake and physical activity levels—that contribute to demographic variation in 
body mass index (BMI) and obesity risk. While disparities in mean BMI and obesity rates 
between whites (non-Hispanic) and African-Americans (non-Hispanic) are well-documented, 
the behavioral differences that underlie these gaps have not been carefully identified. 
Moreover, the female-specificity of the black-white obesity gap has received relatively little 
attention. In the National Health and Nutrition Examination Surveys (NHANES) data, we 
initially observe a very weak relationship between self-reported measures of caloric intake and 
physical activity and either BMI or obesity risk, and these behaviors appear to explain only a 
small fraction of the black-white BMI gap (or obesity gap) among women. These unadjusted 
estimates echo previous findings from large survey datasets such as the NHANES. Using an 
innovative method to mitigate the widely recognized problem of measurement error in self-
reported behaviors—proxying for measurement errors using the ratio of reported caloric intake 
to estimated true caloric needs—we obtain much stronger relationships between behaviors and 
BMI (or obesity risk). Behaviors can in fact account for a significant share of the BMI gap (and 
the obesity gap) between black women and white women and are consistent with the presence 
of much smaller gaps between black men and white men. The analysis also shows that the 
effects smoking has on BMI and obesity risk are small-to-negligible when measurement error is 
properly controlled. 
 
JEL Classifications: I12, J15, J16 
 
Mary A. Burke is a senior economist at the Federal Reserve Bank of Boston. Her e-mail address is 
mary.burke@bos.frb.org. Frank W. Heiland is an assistant professor of economics in the School of Public Affairs, 
Baruch College/CUNY. His e-mail address is frank.heiland@baruch.cuny.edu. The authors are grateful for the 
comments of seminar and session participants at the Brookings Institution, Florida State University, Clark 
University, the Southern Economic Association meetings, the Western Economic Association International meetings, 
and the North American Econometric Society summer meetings. In particular, we want to thank Peyton Young, 
Carol Graham, Robin Simon, and Chris Foote for helpful discussions and suggestions. For research assistance we 
thank Kevin Todd, Carl Nadler, and the staff of the research library at the Federal Reserve Bank of Boston.  All 
errors are our own. 
 
This paper, which may be revised, is available on the web site of the Federal Reserve Bank of Boston at 
http://www.bos.frb.org/economic/wp/index.htm.   This version:  May 19, 2011 

 
The views expressed in this paper are those of the authors and do not necessarily represent those of the Federal 
Reserve Bank of Boston or the Federal Reserve System.    
 

mailto:mary.burke@bos.frb.org�
mailto:frank.heiland@baruch.cuny.edu�
http://www.bos.frb.org/economic/wp/index.htm�


1 Introduction

Since at least the late 1970s, obesity has been significantly more prevalent among non-Hispanic

African-American women (henceforth “black women”) than among non-Hispanic white American

women (henceforth “white women”).1 Table 1 gives age-adjusted obesity rates for white women

and black women, ages 20 to 74 years, over various time intervals between 1976 and 2006. These

rates are based on the National Health and Nutrition Examination Surveys, hereafter NHANES.2

In the 1976–1980 data, the obesity rate among black women exceeds that of white women by 15.6

percentage points. This gap is roughly unchanged in the 1988–1994 data (15.8 points) and becomes

even greater in subsequent periods, reaching a maximum of 21.8 percentage points in the 2003–

2006 data. In contrast, black men do not consistently exhibit higher obesity rates than white men.

In periods in which black men’s obesity rate exceeds that of white men by a significant margin,

the gap in rates falls far short of the difference observed among women—witness, for example, the

3.3 percentage-point gap among men in the 2003–2006 data, versus the 21.8 percentage-point gap

among women during the same period.

A recent editorial in the The American Journal of Clinical Nutrition draws attention to black

women’s higher obesity rate in relation to other sociodemographic groups, and argues that a

greater understanding of disparities in obesity risk is critical for the design of appropriate policy

interventions (Ogden 2009). While policymakers and researchers from a broad array of disciplines

are well aware of differences in obesity prevalence and mean body mass index (BMI) by race and

sex, systematic research into the causes of these patterns has been relatively scarce and the facts

underlying the disparities remain poorly understood.

In this paper, using data from the NHANES 1999–2006 surveys, we perform a gender-specific

multivariate analysis of obesity and BMI in order to determine the extent to which variation in

relevant behaviors—including food intake, physical activity, and smoking—contribute to gender-

1The definition of obesity employed by the Centers for Disease Control (CDC) is a body mass index (BMI)
value of 30 or greater. BMI is the ratio of weight, measured in kilograms, to squared height, measured in meters.

2The data are based on NHANES II, which covers 1976–1980, NHANES III (1988–1994), and NHANES 1999–
2004. Age-adjusted data by race and sex are not available in surveys prior to NHANES II.
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specific racial differences in outcomes. The analysis incorporates a new method for addressing

measurement error in self-reported behaviors and is informed by a conceptual model of BMI based

on biological and economic principles. To our knowledge, no previous paper has identified the

contribution of behavior patterns categorized along racial and gender lines to the outcomes of

interest using a large, nationally representative dataset such as NHANES. Although differences

in behaviors are merely proximate to differences in BMI and obesity—and causal links from food

intake and physical activity to BMI have been well established in previous studies—identifying

the behavioral patterns that bear on the racial and gender specificity of obesity helps point the

way toward appropriately targeted policy interventions.

NHANES data are advantageous in that weight and height values (and therefore BMI) are

measured by trained examiners rather than self-reported, and hence not subject to systematic bias.

The surveys also contain extensive data on food intake and physical activity patterns, although

these data are largely self-reported and subject to systematic biases in addition to random noise.3

To a greater extent than previous studies that make use of similar data, we employ rigorous

methods to mitigate measurement error in food intake and physical activity. These innovations

turn out to be quite important: after eliminating highly implausible observations and proxying for

remaining measurement error with a continuous index of data validity, we achieve large increases

in the explanatory power of caloric intake and physical activity and, hence, in the ability of these

factors to account for gender-specific racial differences in mean BMI and obesity.

Among women, we find that lower levels of physical activity in both work-related and leisure-

time pursuits contribute significantly to black women’s higher mean BMI and greater obesity

prevalence. While higher caloric intake predicts higher BMI and increased obesity risk among

women (as expected), the difference in mean caloric intake between black women and white women

is small and imprecisely measured, suggesting that dietary intake may not contribute much to racial

disparities in BMI and obesity. Our findings related to measurement error indicate, however, that

3Accelerometer-based measures of physical activity are available for some subjects in NHANES 2003–2006; these
also are subject to measurement error based on user compliance, in addition to potential sample-selection bias.
See, for example, Beyler et al. 2008.
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caloric intake patterns likely play a greater role than that implied by racial differences in self-

reported intakes, since we present evidence that black women underreport calories to a greater

extent than white women.

Black men report lower caloric intake than white men, behavior that, all else equal, would

predict lower BMI and obesity risk compared to white men. However, black men’s greater tendency

to be sedentary has a partly offsetting effect. Furthermore, black men appear to underreport

calories to a greater extent than white men, and this disparity helps to reconcile the existence of

a small but positive black-versus-white BMI gap among men in the uncontrolled data.

Smoking has been negatively associated with BMI in previous studies (Perkins 1993 and Chou,

Grossman, and Saffer 2004, among many others). In the NHANES 1999–2006 data, black women

are significantly less likely to smoke than white women, while black men are more apt to smoke

than are white men. However, we find that smoking patterns contribute at best only marginally

to race-by-gender patterns in BMI (or obesity) when measurement error in caloric intake and

physical activity are mitigated. This result occurs because smoking acts on BMI (if at all) only

indirectly, via its influences on caloric intake and/or caloric expenditure. While the measured

effects of smoking on BMI and obesity in our models are more robust among men than among

women, smoking’s contribution to racial patterns in BMI among men is physiologically, if not

statistically, insignificant.

Our findings cannot rule out the possibility that variation in unobserved biological endowments—

such as basal metabolism—contribute to the large racial disparity in female outcomes. However,

our findings suggest that the contribution of such factors declines when measurement error in

behaviors is mitigated. In addition, racial differences in such endowments would have to be more

pronounced among women, or even specific to women, in order to explain the residual differences

in BMI and obesity risk by race and sex.

Numerous studies across various disciplines have documented the presence of racial disparities

in mean BMI and obesity prevalence in the United States over various (mostly fairly recent) time
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periods.4 Some of these have pointed out the gender specificity of the black-white patterns in

particular, such as Burkhauser and Cawley (2008). Other studies (Kumanyika 1987) have offered

numerous hypotheses to explain black women’s excess obesity prevalence, yet do not come to any

firm conclusions and do not address the problem of gender specificity. A number of studies have

investigated the contribution of socioeconomic status to racial and/or race-by-gender patterns in

BMI and/or obesity risk, and have concluded, nearly uniformly, that the demographics of obesity

are highly robust to controls for household income, educational attainment, and other indicators

of status.5 To our knowledge, no previous study has undertaken a systematic analysis of how

behaviors (including food intake, physical activity, and smoking) contribute to mean BMI and

obesity rates categorized by race and gender using a large nationally representative dataset.

Rashad (2006) also uses self-reported data on caloric intake and physical activity from NHANES

surveys (waves I, II, and III) to estimate a structural model of BMI determination. Her main ob-

jective is to identify the contributions to BMI of exogenous variation in food intake and cigarette

smoking, as predicted by instruments such as restaurant prices and cigarette taxes. She acknowl-

edges potential measurement error in self-reported caloric intake and attempts to mitigate it using

a simple heuristic strategy. In gender-specific, ordinary-least-squares (OLS) models that use (ad-

justed) caloric intake measures directly, the estimated effects of caloric intake on BMI are an order

of magnitude smaller than our own estimates, suggesting possible attenuation bias.6 The use of

instruments might in principle be expected to mitigate attenuation bias, but the effects of caloric

intake on BMI are in most cases smaller—and have lower or no significance—in the instrumental

variables (IV) models compared to OLS models.7 These results highlight the need for a more

4An early report documenting excess weight by race and gender was published by the Bureau of State Services
in 1954. Kuczmarski et al. (1994) document trends in obesity prevalence and mean BMI by race and sex for
NHANES surveys spanning the years 1960–1991. Flegal et al. (1998) update these trends for the NHANES III
(1988–1994) survey, and Ogden et al. (2006) describe the trends for NHANES 1999–2004. Komlos and Brabec
(2010) examine obesity trends by birth cohort and race for the period 1882–1986.

5See, for example, Burke and Heiland (2008), Mujahid et al. (2005), Chang and Lauderdale (2005), Chou,
Grossman, and Saffer (2004), Denney et al. (2004), and Zhang and Wang (2004).

6Rashad’s caloric intake measure is adjusted for measurement error and also adjusted for an estimate of the
physical activity level.

7Rashad attributes the decline to the removal of endogeneity bias, although endogeneity could result in either
a downward or an upward bias on the effect of calories, depending on assumptions. See our discussion below.
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sophisticated strategy for mitigating measurement error in self-reported behaviors related to BMI.

Our goal is to identify race and gender variation in health behaviors that help to account,

in a proximate sense, for race and gender variation in BMI and obesity. While an analysis of

proximate causes begs the question of why behaviors differ, for policy purposes it may be easier to

target behaviors rather than underlying causes of such behaviors. For example, suppose that less-

educated individuals are more likely to drink sugar-sweetened soft drinks than are well-educated

individuals (for causal reasons) and that consuming such drinks contributes to a high BMI. While

it remains to be seen, a tax on soft drinks may be a more cost-effective way to reduce soft drink

consumption (and BMI) than a policy seeking to redress differences in education, however noble

the latter goal.

Our analysis contributes to the debate concerning the contribution of metabolic endowments

to observed demographic patterns in obesity— since variations not explained by behaviors must

be attributable to such endowments, barring the imperfections of the empirical estimation. In par-

ticular, we show that failing to address self-reporting bias in behaviors could lead to the mistaken

conclusion that individual behaviors explain only a modest portion of the difference in mean BMI

between black women and white women, with the corresponding implication that basal metabolism

must differ systematically between these groups.

The remainder of the paper is organized as follows: Section II presents the conceptual model

of how BMI is produced. Section III describes the data and sample selection. Section IV explains

our method for mitigating measurement error in self-reported behaviors, Section V describes the

empirical analysis, and Section VI discusses policy implications and questions for future research.
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2 Conceptual Framework

An individual’s choice of weight represents a complex problem.8 In the proximate or structural

sense, one’s body weight at a point in time, denoted W T
i , is a stock that reflects lifetime energy

balance, or caloric intake net of caloric expenditure, depicted as follows:

W T
i = W 0

i + κ

T∑

t=1

(EI t
i − TEEt

i ). (1)

In the above equation, W 0
i is weight at birth (measured in kilograms), EI t

i is total energy

intake or food consumption in a given period (measured in kilocalories or kcal), and TEEt
i is

total energy expenditure in a given period (also measured in kcal). The term κ is a constant

that translates energy balance in a given period (measured in kcal) into change in body weight

(measured in kilograms). For example, if EI t
i exceeds TEEt

i , energy balance is positive and body

weight increases over the period. Ignoring childhood and adolescence, when weight and height

are generally increasing over time, we focus on adulthood and adopt the stylized assumption that

weight is largely stable over time. Holding height constant as well, we can apply the energy balance

equation to BMI as well, although the value of κ will differ.9 In order to maintain weight or BMI

at a stable value over time, a necessary condition is that EI t
i = TEEt

i within each period.

While the basic energy-balance relationship appears straightforward, caloric intake and caloric

expenditure are determined by a complex array of putatively voluntary choices and largely invol-

untary biological processes. In order to analyze BMI empirically, we have to abstract considerably

from such complexity. The goal is to develop a simple optimization framework that will guide the

empirical estimation of BMI as a function of (endogenous) behavioral choices such as food intake

and physical activity. Such estimation seeks to identify behavioral factors that may account for

(in a proximate sense) gender-specific racial variation in BMI and obesity.

8Because we are focusing on adults, we assume height is fixed so that only changes in weight can induce changes
in BMI, and therefore one’s weight choice is equivalent to making a BMI choice.

9While it is more realistic to think of a lifecycle path of BMI than a fixed value, we abstract from age in the
discussion immediately following. We control for age differences in the empirical analysis.
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The following equation represents BMI as the joint product of individual choices and biological

factors, subject to an implicit stability condition:

BMIs
i = G(EIs

i , PALs
i , gi, εi). (2)

In the above equation, BMIs
i refers to the stable BMI value that results when the individual

adopts a daily caloric intake level equal to EIs
i and a daily physical activity level equal to PALs

i .

The physical activity level (PAL) is defined formally as the ratio of total daily energy expenditure,

TEEs
i (in kcal), to the basal metabolic rate, BMRs

i (also measured in kcal). The basal metabolic

rate, in turn, refers to the calories expended per day just in maintaining basic involuntary bodily

functions, such as breathing, while in a resting (not sleeping) and fasting state.10 As such, the

PAL represents the average energy-intensity of physical activities performed in a typical day,

where energy-intensity is expressed in relation to energy (kcal) expended at rest.11 Intuitively,

PAL increases with time spent in sports and other voluntary activities, and with the intensity

of the chosen activities. Beginning from any initial BMI value, an individual who fixes her daily

choices at EIs
i and PALs

i will eventually stabilize at BMIs
i . This stable BMI value also depends

on the individual’s gender, denoted gi, and on an idiosyncratic metabolic endowment, εi, which is

described below. We posit that the individual chooses a physical activity level (PAL) rather than

total energy expenditure (TEE) — based on the fact that it is harder to observe caloric expenditure

than to observe time spent and intensity of physical activities. Total energy expenditure is chosen

indirectly, however, as a function of PAL and other factors, and can be expressed as follows:

10The term “resting metabolic rate” or RMR is sometimes used interchangeably with BMR. However,
measurement standards are stricter for basal metabolism than for resting metabolism. See, for example,
http://www.caloriesperhour.com/tutorial BMR.php.

11The PAL is equivalent to the average MET score of activities in a given day, where a MET, or metabolic
equivalent, is defined as the calories expended per minute of an activity relative to calories expended per minute at
rest. The estimated range of PAL values for sustainable lifestyles runs from 1.2 to 2.5, where 1.2 is indicative of a
bed-bound or chair-bound individual and 2.5 represents a very physically active individual (Scrimshaw, Waterlow,
and Schurch 1994).
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TEEs
i = PAEEs

i (PALs
i , BMIs

i , gi) + BMRs
i (BMIs

i , gi, εi). (3)

In the above equation, the stable value of total energy expenditure, TEEs
i (in kcal), is separated

into two components: physical-activity-related energy expenditure, denoted as PAEEs
i , which

depends on the chosen (stable) physical activity level (PALs
i ), the (stable) BMI value, and gender,

gi; and the basal metabolic rate (BMRs
i ), defined above. BMR depends on the individual’s current

BMI value, her gender, and on the idiosyncratic metabolic endowment, εi. The dependence of both

components of energy expenditure on BMI reflects the fact that a larger body requires more energy

to perform a given amount of work. This dependence also means that a stable BMI must satisfy a

fixed-point condition, since the BMI depends on total energy expenditure, which in turn depends

on the BMI. The idiosyncratic endowment, εi, acts as a random shock to the relationship between

BMR and BMI. Given this heterogeneity, a stable BMI may vary across individuals for identical

behavior choices.12

Individuals have their own preferences regarding food intake, physical activity level, and BMI

itself. In addition, they face constraints such as income, food prices, and the cost of engaging

in physical activity. Taking the BMI production function, G[.], as given, individuals can be

seen as jointly choosing their BMI, food intake, and physical activity level to maximize utility

subject to constraints. For a given individual and a given BMI value, we assume there is a unique

combination of behavioral choices that maximize utility subject to achieving the given BMI. Given

indirect (maximized) utility as a function of BMI, individuals choose their BMI to maximize utility

globally, and optimal behaviors consistent with the chosen BMI are implied.13

Optimal BMI is expressed as a function of behaviors, preferences, endowments, and constraints,

12The PAEE may also vary idiosyncratically, although we abstract from such variation for simplicity. This
simplification results in only a minor loss of generality.

13Optimal BMI is taken to be unique subject to individual parameters. A parameterized structural model of BMI
appears in Burke and Heiland (2007), which gives necessary and sufficient conditions for the existence of optimal
and stable BMI.

8



as follows:

BMI∗
i = K[EI∗

i (μi, pi, εi), PAL∗
i (μi, pi, εi)]. (4)

In the above equation, gender has been dropped for simplicity and the relationship is assumed

to be gender-specific. Note that the function K[.] differs from the function G[.] in the previous

equation because the latter equation imposes optimality conditions in addition to stability. The

term μi denotes a vector of individual preferences over food, physical activity, and BMI. Such

preferences may reflect physiological factors (an inherent taste for various foods) as well as social

and cultural factors such as body size norms and the importance of sports in social life, all of

which are taken as exogenous to the individual. Constraints are given by pi, a vector that includes

income, food prices, and the cost of engaging in physical activity.14

The use of tobacco can also be incorporated into the model of BMI. While smoking should have

no independent effect on energy balance once total caloric intake and total caloric expenditure

are taken into account, empirical analysis often finds that smoking has a significant (negative)

association with BMI (see, for example, Chou, Grossman, and Saffer 2004). Previous research has

found that nicotine may raise the resting metabolic rate (Perkins et al. 1989) and inhibit food

consumption via a number of pathways (Miyata et al. 1999 and Grunberg 1982). Since caloric

intake and caloric expenditure are typically measured with error, smoking likely acts as a proxy for

unmeasured variation in these factors. The choice to smoke (or not to quit once a smoking habit

is established) is likely to be simultaneous with BMI if individuals perceive the effects of smoking

on body weight. The optimization framework can be readily extended to include smoking as an

additional choice available to the individual, under assumptions analogous to those governing the

choices of food intake and physical activity.

14The direct cost of physical activity in terms of displeasure is captured by preferences.
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2.1 Empirical estimation of BMI and the problem of measurement

error in self-reported behaviors

There are several obstacles to estimating the equilibrium relationship between BMI and behavioral

choices using self-reported data on behaviors such as those contained in the NHANES. First, for

even a simple parameterization, optimal BMI is nonlinear in both food intake and the physical

activity level (see Burke and Heiland 2007). Second, behavior choices are endogenous in the

production of BMI. Third, and the main object of our concern here, behavioral choices are likely

to be measured with error for reasons discussed below.15 We address each of these limitations and

interpret the results accordingly. First, while the (nonlinear) structural model of optimal BMI

cannot be estimated directly, it can be shown formally that a linear model offers a reasonable

approximation to the nonlinear model. In order to discuss the remaining estimation issues, it is

useful to express this approximate linear model as follows:

BMIs
i = α + βEIs

i + γPALs
i + μ ∗ εi. (5)

The above equation represents a linear approximation of the structural model of equilibrium

BMI. It assumes that all variables, including BMI, energy intake (EI), and the physical activity

level (PAL), are observed at their respective (and mutually consistent) steady-state equilibrium

values. The term εi represents the idiosyncratic metabolic endowment, which has marginal effect

μ on BMI, where μ < 0 implies that those individuals with a large metabolic shock (i.e. faster

basal metabolic rate) will have lower BMI in equilibrium, all else equal. Ignoring the issue of

measurement error in behaviors for the moment, we first address the estimation bias that may

arise because behaviors are potentially endogenous with respect to the unobserved endowment

term, εi, which also affects BMI directly yet is unobserved in our data. If behaviors are correlated

15Reverse causality—from BMI to behavior—is a separate problem. We assume that BMI and behaviors are
determined simultaneously, such that BMI cannot precede behavior. In a fully rational model, any feedbacks from
BMI to constraints or preferences (such as occur in models of habit-formation) would be fully anticipated, hence
restoring the assumption of simultaneity.
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with the metabolic endowment—for example, if an individual with a lower metabolic endowment

chooses to eat less than someone with a higher endowment (as occurs in the model of Burke and

Heiland 2007)—the estimated effect of calories on BMI will be biased downward relative to the

(positive) treatment effect.16 By similar reasoning, if an individual chooses to engage in more

(less) physical activity to offset a lower (or higher) endowment, the estimated effect of physical

activity will be biased towards zero relative to (expected negative) treatment effect.17 Since we

cannot rule out the dependence of behaviors on the metabolic endowment, we take these possible

biases into account in the remaining discussion. We also note that we are not primarily concerned

with demonstrating the existence of treatment effects on BMI of food intake and physical activity,

as in broad terms these effects are already well established.

Turning now to the issue of measurement error, recall that the structural relationship described

in equation 5 assumes that individuals are in steady state, in which neither BMI nor relevant

behaviors fluctuate over time. In reality, of course, such behaviors, and also BMI, may fluctuate

significantly over time within an individual around average levels and may exhibit long-term trends

in a particular direction. Ignoring trends, fluctuations around steady-state imply that snapshots

of behaviors and BMI at a point in time—even if perfectly accurate—constitute noisy measures

of average or habitual (i.e., steady state) behaviors and outcomes.18 Given this potential for

classical measurement error, the estimated relationships between behaviors and BMI are likely to

be attenuated in the data, ignoring other sources of bias. Given the design of the NHANES surveys,

the data on caloric intake are potentially more noisy than the data on physical activity: caloric

intake data represent either a single day’s calories (in the 1999–2006 sample) or the average caloric

intake across two separate days (in the 2003–2006 sample), whereas physical activity questions ask

16While this example seems reasonable, positive bias or zero bias are possible under alternative assumptions
regarding the correlation between metabolism and caloric intake.

17Behaviors are also endogenous with respect to individual preferences and constraints; however, these factors do
not directly produce BMI in the physiological sense and hence do not separately enter equation 5 once behaviors
are included.

18Behaviors could be observed at steady-state values and yet be inconsistent with an observed (non-steady-state)
BMI. For example, this will be the case for an individual who recently lost weight due to an illness and just resumed
her habitual eating pattern, since it will take time to revert back to her steady-state BMI.
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about activities in a “typical” day, week, or month, rather than activities on a specific day or set

of days.19 Concerning measurement error in BMI itself, we remind the reader that our BMI values

are not based on self-reported weight and height but on weight and height values measured by

trained examiners. For any given individual, the BMI value we observe may nonetheless deviate

from its long-run average or steady-state value; however, any given one-day fluctuation in energy

intake (or energy expenditure) will result in a much smaller (percentage) change in BMI over

the day. For example, an individual who fasts for a day, thereby reducing caloric intake by 100

percent, will lose less than 1 percent of body weight.20 As a stylized approximation of these facts,

we assume that observed BMI represents its steady-state value and yet we do not assume that

observed behaviors necessarily represent their respective steady-state values.

Fluctuations around steady state are not the only potential source of measurement error in

behaviors. Evidence from previous studies finds that self-reported dietary practices tend on av-

erage to understate food intake (Macdiarmid and Blundell 1998). There are several reasons for

such self-reporting bias: first, individuals may have an imperfect recall of food intake; second,

individuals may deliberately fail to report certain food items and/or may understate true portion

sizes; third, prior to the interview people may eat less than normal.21 In cases of deliberate under-

reporting, individuals may feel that their food intake is excessive and may be ashamed to report

true consumption to the interviewer—an example of a “social desirability” effect, or bias toward

giving a socially normative response.22 In cases of deliberate undereating prior to the interview,

subjects may (consciously or not) feel compelled to consume a socially normative level of food

intake based on the knowledge that they will have to reveal their intake to an interviewer.

19Some yes/no questions about physical activity participation refer to activities conducted in the past 30 days,
whereas questions that elicit frequency and duration of activity instruct subjects to describe activity in a “typical”
day, week, or month.

20Weight loss percentage will vary by individual; the figure is an approximate upper-bound, assuming no change
in physical activity level from normal habits.

21In the NHANES surveys, individuals are asked to report all items consumed in previous 24-hour period. They
know in advance they will be asked to recall intake but are not instructed to write things down as they go, because
doing so may induce restraint relative to habitual intake.

22Social desirability effects are a long-standing concern in organizational research. See, for example, Ganster et
al. 1983. Effects have been observed in survey data on political attitudes (Streb et al. 2008) and church attendance
(Smith 1998), among other contexts.
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Given its motivating causes, underreporting is likely to be more severe among individuals

with high true caloric intake, thus resulting in non-classical measurement error (Macdiarmid and

Blundell 1998). Specifically, we expect a negative covariance between true caloric intake and its

measurement error (defined as self-reported calories minus true calories). When measurement error

has this latter property, Black, Berger, and Scott (2000) show that, under relatively weak condi-

tions, the estimated coefficient on reported calories will be biased towards zero.23 Therefore, both

potential sources of measurement error in caloric intake—mean-zero fluctuations and systematic

self-reporting bias—are expected to bias the coefficient on calories in the same direction.

There is evidence that self-reports of physical activity on average overstate true activity levels,

due to imperfect recall as well as due to social desirability effects (Beyler et al. 2008). Similar

to the predicted biases in caloric intake reports, measurement error in physical activity might

be negatively correlated with true activity levels. However, based on our measures of physical

activity, we expect overstatement of activity to be less severe than understatement of caloric

intake. For example, we use discrete measures of both leisure-time physical activity and “usual”

daily activities in the regression analysis. Still, we expect that the effects of physical activity on

BMI will be biased towards zero based on the potential for noise and systematic reporting biases.

To mitigate the potential biases caused by measurement error in self-reported behaviors, we

adopt two complementary strategies. First, we identify self-reports of food intake that appear

invalid in relation to the reported physical activity level and exclude invalid observations from

the regression. Note, as explicated below, that we cannot determine whether the reported food

intake is too low or too high in an absolute sense, only whether it appears inconsistent with

the reported physical activity level, which may also be biased up or down. Second, because

the exclusion criterion has relatively low sensitivity when using single-day food intake data, we

construct a continuous proxy for the measurement error in food intake relative to physical activity

and add this as a control variable in some models. The error proxy helps to correct for residual

23The necessary condition is that the sum of the variance of the measurement error and the (negative) covariance
of true intake and measurement error must be positive. Our results suggest that the coefficient on self-reported
calories is indeed biased towards zero relative to the coefficient on true caloric intake.
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underreporting bias as well as classical attenuation bias.

The validity criterion springs from the steady-state condition stated above, EIs
i = TEEs

i ,

which states that an individual’s daily total energy intake must exactly match her daily total

energy expenditure in order to maintain a stable BMI. Recall also that total energy expenditure

depends on BMI, which takes its steady-state value in the condition. Dividing both sides of the

steady-state condition by the basal metabolic rate (BMR), we obtain the related condition:

EIs
i /BMRs

i = TEEs
i /BMRs

i , (6)

which simply states that, in steady state, the ratio of daily energy intake to the BMR must

equal the ratio of total energy expenditure to the BMR. The former ratio is called the energy-

intake ratio, while the latter ratio is the physical activity level or PAL, defined above. Using

this notation, we can rewrite equation 6 as follows: EIs
i /BMRs

i = PALs
i . We will work with

these ratios, rather than with caloric intake and caloric expenditure levels directly, because self-

reports of physical activity can be more readily translated into PAL values—which are comparable

across individuals—than into actual levels of caloric expenditure.24 If, in the data, the estimated

energy-intake ratio (based on self-reported intake and estimated BMR) differs markedly from the

estimated PAL value (based on self-reported engagement in physical activities), the self-reported

behaviors, with respect to either food intake and/or physical activity, are likely to be inconsistent

with steady-state behavior, plus or minus reasonable mean-zero fluctuations.

Consistent with this intuition, Black (2000) describes a method for constructing a 95-percent

confidence interval for the energy-intake ratio which is centered around an assumed PAL value.

In our application of the method, we construct PAL values (and associated confidence intervals)

that are specific to each individual, based on responses to the NHANES physical-activity ques-

tionnaire.25 Each confidence interval allows for (homoscedastic) within-subject variance in caloric

24The energy-intake ratio is calculated by dividing reported caloric intake by a predicted value of BMR. The
BMR-prediction equation, due to Mifflin et al. 1990, predicts BMR as a linear function of weight, height, age, and
sex.

25We map the NHANES physical-activity data into PAL values using guidelines drawn from the NHANES and
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intake and caloric expenditure, respectively. These variance estimates are based on previous stud-

ies (cited in Black 2000) in which individual energy intake and/or expenditure were measured

over extended periods using sophisticated methods. The fewer days on which caloric intake is

observed, the wider the confidence interval. Because we observe at most two days’ worth of caloric

intake reports, our confidence intervals are fairly generous. Nonetheless, based on these intervals

we exclude roughly 24 percent of relevant observations among women and 21 percent among men.

The exclusion criterion identifies a greater number of implausibly low reports of food intake than

implausibly high reports, indicating (and also mitigating) a bias toward underreporting of caloric

intake.

In addition to the sample restriction, we contribute an additional method for mitigating mea-

surement bias. In particular, we construct a continuous proxy for the joint measurement error in

self-reported behaviors, termed “EI-check,” short for “energy-intake check.” To compute EI-check,

we divide the energy-intake ratio by the PAL. Since in steady state these two latter quantities are

equal to each other, we obtain the following result:

EI checks ≡ (EIs
i /BMRs

i )/PALs
i = 1. (7)

Note that this condition holds for all individuals in steady state, regardless of the individual’s BMI.

For convenience of exposition in the empirical analysis, we multiply EI-check by 100 with no loss

of generality.26 If all individuals were observed in steady state, we should obtain EI-check values

of 100 uniformly, as in the equation above. A value less than 100 indicates that the energy intake

ratio falls short of the PAL, which will occur if energy intake is understated, holding PAL at its

steady-state value, or if physical activity is overstated, holding intake at its steady-state value. For

analogous reasons, EI-check will exceed 100 when self-reported energy intake is overstated relative

from the World Health Organization (FAO/WHO/UNU 2001).
26Ignoring the normalization, the measure is equivalent to the ratio of daily energy intake (in calories) to daily

energy expenditure (in calories). This is seen by dividing the left-hand side of equation 6 by the right-hand side,
where BMR cancels out of the resulting ratio.
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to self-reported physical activity.27 As such, EI-check acts as an index of the joint measurement

error in self-reported behaviors. Under classical measurement error alone, deviations of EI-check

from 100 would be random with respect to true behaviors and BMI, and the expected value of

EI-check would still be 100. With the non-classical measurement error of the kind discussed above,

we expect EI-check to be less than 100 on average (bias toward understatement of caloric intake)

and it may exhibit a negative covariance with true (steady-state) caloric intake.28

Including EI-check in the regression should alleviate the expected bias on the coefficients on

caloric intake and physical activity under certain conditions. We can illustrate how the control

works by writing a modified version of equation 5 as follows:

BMIs
i = α̂ + β̂EISR

i + γ̂PALSR
i + μ ∗ εi + ωi. (8)

In the above modification, EISR
i and PALSR

i refer to self-reported (SR) behaviors, and the co-

efficients are denoted β̂ (and α̂, and so on), rather than simply β, to reflect potential biases in

the empirical estimation of the model. The new term, ωi, represents the joint contribution of

unmeasured variation in behaviors (both energy intake and physical activity) to BMI.29 Referring

back to equation 5, any two individuals with the same true (steady-state) values of food intake and

physical activity (age and gender constant) have the same steady-state BMI in expectation; their

respective realized steady-state BMI values will differ from each other only if the individuals have

different metabolic endowments (different εi). Among individuals with the same set of self-reported

behaviors, however, variation in BMI may reflect either variation in metabolic endowments, εi,

or variation in measurement error in behaviors, ωi. Because we observe neither εi nor ωi in the

27As explained above, survey design predicts that physical activity reports are less susceptible to small-sample
fluctuations than caloric intake data. PAL values are also somewhat immune to deliberate overstatement, because
the scale of estimated PAL values has an upper bound.

28If measurement error in self-reported caloric intake has a negative covariance with true caloric intake, we may or
may not obtain a negative covariance between EI-check and true intake. For example, if all individuals understate
caloric intake by 15 percent, we will have a negative covariance between true food intake and its measurement
error, whereas EI-check will equal 85 uniformly (assuming no error in PAL values). A similar argument applies to
measurement error in physical activity.

29Since our mitigation strategy cannot separately assess the measurement error in these components, we represent
the joint contribution of measurement error as a single factor.
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data, variation in BMI conditional on the observed factors could reflect either of these unobserved

effects, and correlations between either unobserved factor and any of the regressors could lead to

biased coefficient estimates.

If we assume, for the moment, that εi is orthogonal to the observed variables, then the only

potential source of bias is measurement error. In particular, ωi may be correlated with either

self-reported energy intake, self-reported physical activity, or both. (Under classical measurement

error, such correlation is guaranteed.) When we include EI-check in the regression, EI-check acts

as a proxy for ωi, the purpose of which is to pick up the variation in BMI—conditional on self-

reported behaviors—that can be attributed to the joint measurement error in behaviors. If the

proxy works as intended, the estimated relationship between self-reported caloric intake and BMI

will be closer to its expected value in the absence of measurement error, and similarly for the

relationship between self-reported physical activity patterns and BMI.

Two caveats are in order. Including EI-check does nothing to alleviate the bias to estimated

coefficients that may arise (discussed above) if the metabolic endowment (εi) is correlated with the

observed behaviors. Furthermore, the correction method itself depends on certain assumptions.

To calculate EI-check, we use predicted values of the basal metabolic rate rather than measured

values, which are unavailable in NHANES. These predictions assume, for lack of better information,

that all individuals have the mean value (zero) of the metabolic endowment. Therefore, our

estimates of EI-check are themselves subject to error. For example, an individual with a low

EI-check (based on our estimate) would appear to be understating her food intake relative to

her (estimated) caloric needs, but she may simply have a lower-than-expected BMR (relative to

our estimate) and hence have lower caloric needs/expenditures than estimated. (In this example,

our estimated EI-check values would be correlated with the unobserved metabolic endowments,

resulting in inconsistent estimation.) As a result, we may attribute too much variation in BMI

to variation in measurement error and too little to variation in metabolic endowments. However,

Black (2000) argues that low metabolic endowments are likely not sufficient to explain improbably

low values of self-reported food intake, basing this claim on a study by Pryer et al. (1997) involving
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sophisticated measurements of caloric needs and corresponding self-reports of food intake. In the

latter study, self-reported intakes fell below measured caloric needs on average, and by a larger

margin among subjects with greater caloric needs. For the method to work as intended, we must

assume in general that our EI-check values are uncorrelated with the metabolic endowment.

3 Data and Sample Selection

The empirical analysis is conducted using data from the NHANES, a nationally representative se-

ries of cross-sectional studies conducted by the Centers for Disease Control (CDC). The NHANES

data include observations of weight, height, and other physical features measured by direct ex-

amination, as well as information about demographic and socioeconomic characteristics, life cir-

cumstances, behavioral choices, and health conditions, collected via in-person interviews. The

empirical analysis here uses the NHANES surveys from the years 1999–2006.30 NHANES data for

2007 and later are also available, but changes in the design of the physical activity questionnaire

beginning in 2007 make it difficult to compare activity levels in the later data with the earlier

data.31

We restrict the NHANES samples to individuals between the ages of 20 to 65 years who had

their height and weight measured by direct examination.32 Imposing a maximum age of 65 years

helps to minimize differences in the age distribution across groups and across survey periods. We

select a minimum age of 20 years because we are interested in fully developed adults and, beginning

at age 20, the adult criterion for obesity applies. We do not exclude any racial categories from the

analysis, although our study focuses on the discrepancies between just two groups: non-Hispanic

whites and non-Hispanic blacks. Pregnant women—based on self-reported pregnancy status—

30We pool the 1999–2006 data as recommended in the NHANES analytical guidelines (National Center for Health
Statistics 1996). Complex survey design is accounted for using Stata’s “svy” commands.

31Since 1999, the survey has been conducted annually, with statistics reported in two-year increments.
32In interview sessions conducted prior to the physical examinations, individuals gave self-reports of weight and

height. Individuals who were not subsequently examined are excluded. This omission minimizes measurement error
and does not affect representativeness, since survey weights are provided that pertain to use of the examination-only
sample.
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are excluded from the sample on the grounds that BMI during pregnancy is likely to be above its

typical value. The sample that results from these criteria will be called the “full” regression sample.

We impose additional sample-selection criteria related to the validity of self-reports of food intake

relative to physical activity, as described below, to create an alternative, “validity-restricted”

sample. The respective sample sizes for women are 6,225 (full) and 4,730 (validity-restricted), and

for men sample sizes are 6,208 (full) and 4,879 (validity-restricted).

We describe the construction of variables used in the empirical analysis in the Appendix.

4 Empirical Analysis

The goal of the empirical analysis is to identify behaviors that may account for gender-specific

racial variation in BMI and obesity. We first describe raw differences in food intake, physical

activity, and smoking behavior by race and sex. Then we estimate empirical models of BMI and

obesity status separately for men and women as functions of these behavioral measures. Descriptive

statistics and regression are performed for each of the full sample and the validity-restricted sample.

Results are given in Tables 3 through 11.

4.1 Descriptive analysis of behavior

Table 3 shows the mean values of the variables of interest by sex and race, calculated for each full

regression sample and validity-restricted regression sample, respectively. As expected, statistically

significant differences in mean BMI and obesity rates between blacks and whites are specific to

women. The black-white female obesity gap appears slightly greater in the restricted sample than

in the full sample, indicating that the restrictions are more likely to exclude obese white women

(relative to non-obese white women) than to exclude obese black women.

Both black women and black men are significantly more likely to be classified as sedentary (en-

gaging in no leisure-time physical activity) than their white counterparts, although the gap in the

sedentary fraction is greater for black women than black men. White women are significantly more
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likely to fall into the “vigorous activity” category (highest level of leisure-time physical activity)

than black women. White men are also more likely to achieve “vigorous activity” than black men,

although the gap in the men’s shares is smaller than it is for women and becomes insignificant in

the validity-restricted sample. In normal daily activities, black women are significantly more likely

than white women to sit most of the time (31 percent versus 25 percent, in either sample). In con-

trast, black men and white men are about equally likely (21 percent and 22 percent, respectively)

to report sitting for most of the day. Daily caloric intake appears marginally higher among black

women than white women, but the difference is not statistically significant in either sample. Black

men report lower caloric intake than white men, but the difference is only marginally significant

(p-value .09) in the restricted sample. White women are significantly more likely to smoke (26

percent are current smokers) than black women (22 percent), while the opposite holds for men—31

percent of white men and 35 percent of black men are smokers. (Smoking figures are for the full

sample; the rates in the restricted sample are not significantly different.)

In the full sample, the mean EI-check value is significantly less than 100 (the benchmark value

for valid reporting) for each of the four demographic groups of interest, indicating an average bias

toward underreporting of caloric intake relative to physical activity. For each group, the mean of

EI-check increases significantly in the restricted sample and moves closer to 100. In the restricted-

sample, black women have a lower average, at 92.7, than white women, at 94.4, although the

difference is not significant. Also for the restricted sample, black men report a significantly lower

mean EI-check (95.5) than white men (98.6). These values indicate that, even after eliminating

extreme cases, the reported caloric intake still falls below the estimated caloric needs on average,

and more so for women than men.

4.2 Regression analysis

Table 4 shows the results of linear (OLS) regressions of female BMI against various groups of

regressors for each of two different samples of women. Both samples are unrestricted or “full”
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samples, as defined above. The first four columns of the table report results pertaining to the

NHANES 1999–2006 data, including all women aged 20-65 years who reported at least one day of

food intake and with non-missing values for all other regressors. Columns 5 through 8, included as

robustness analysis, report results pertaining to NHANES 2003–2006, including all women aged

20-65 years who reported two days of food intake and who had non-missing values for all other

variables. Intake values used in regressions in Columns 7 and 8 represent the average of Day 1

intake and Day 2 intake.33 Results for the 2003–2006 sample are qualitatively and quantitatively

similar to those for the 1999–2006 data and are not discussed separately.

The first row in each column of Table 4 gives the estimated difference in mean BMI between

black women and white women conditional on the other covariates. The baseline difference (con-

trolling for age and foreign-born status) is 4.0 units (model 1)—roughly 23.5 pounds for a woman

of average height (5 feet 4 inches). Model 3 includes the leisure-time physical activity categories,

daily activity categories, smoking status, and daily food intake, in addition to the baseline con-

trols. While many of the behavior variables have significant effects on BMI in the directions we

would expect, the black-white difference in (conditional) mean BMI remains large and significant,

at 3.5 units.

Models 2 and 4 are similar to models 1 and 3, respectively, but in each case we add the EI-check

variable as a control for measurement error. When EI-check is included, the effects of (most of)

the behavior variables become larger and/or more statistically significant. For example, between

models 3 and 4 the effect of the variable “stands”—which refers to standing rather than sitting

during normal daily activities—increases in absolute value by a factor of roughly 3, from -0.9 to

-2.9. Also, the effect of caloric intake increases from zero to a statistically significant value of 0.015.

(The effects of smoking, discussed below, constitute an exception to this pattern.) Consequently,

the conditional black-white gap in female mean BMI becomes significantly smaller in model 4 (2.3

units), which conditions on behaviors as well as on EI-check, than in model 3 (3.5 units), which

33NHANES 1999–2006 data include indicators for the day of the week on which a given day’s food intake was
reported. Results are robust to including these indicators as control variables and the effects of the indicators are
generally not significant (results not shown).
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conditions on behaviors only.

R-squared values are substantially higher when EI-check is included.34 Between models 1 and 2

the increase in R-squared reflects the (negative) correlation between BMI and EI-check. Between

models 3 and 4, the increase reflects the fact that the explanatory power of certain behaviors

is enhanced when EI-check is included. In addition, the explanatory power of EI-check itself

increases when behaviors are included: note the greater absolute coefficient on EI-check in model

4 compared to model 2. The negative coefficient on EI-check (for example, in model 2) means

that, all else equal, an individual with a lower value of EI-check—that is, for whom reported

caloric intake appears lower in relation to her estimated caloric needs—has a higher BMI than an

individual with a higher value of EI-check. This result agrees with previous findings (for example,

Pryer et al. 1997) that higher-BMI individuals underreport caloric intake more than lower-BMI

individuals.

Table 5 shows results of linear regressions of female BMI performed on restricted samples,

from which we exclude observations with invalid reports of food intake based on the criteria

described above. The restrictions result in a loss of 1,495 observations in each of models 1 through

4 (808 observations in models 5 through 8). The R-squared values are in most cases greater

under the restricted samples (in all but models 2 and 6), an expected consequence of using less

noisy data. However, the gain in explanatory power from sample restriction (for example, seen

in comparing the restricted-sample version of model 3 to the full-sample model 3) is considerably

less than the gain in explanatory power from adding EI-check (seen comparing models 3 and 4

for either the restricted or full sample.) Compared to the estimates from corresponding models

on the full sample, the point estimates of the black-white difference in (conditional) mean BMI

are smaller for the restricted sample (for each of models 1 through 8), reaching a low of 1.6 in

model 4. However, the pairwise differences between the coefficients in the corresponding models

are generally not significant. The effect of caloric intake becomes significant in model 3 due to

the sample restriction (in the absence of EI-check), but the effect remains attenuated compared

34All R-squared values are adjusted R-squareds.
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to model 4, in which EI-check is included. As predicted, sample restrictions alone do not fully

mitigate the measurement error in reporting of food intake.

Tables 6 and 7 show the results of Poisson models of obesity risk for women for each of the

four samples described in the context of the linear regressions.35 The first row in each column

indicates the estimated ratio of relative obesity risk for black women compared with white women,

conditional on the other covariates, and subsequent rows indicate the remaining coefficients of

relative risk. The results follow the same basic patterns seen in the linear models.

Looking at Table 6, between model 1 and model 4, the marginal effect of black race on female

obesity risk (relative to whites) falls significantly, from 1.65 to 1.24. Again, the effects of caloric

intake and physical activity on BMI are stronger and/or more significant when EI-check is included,

and the augmented model accounts for a greater portion of the black-white obesity gap. Restricting

the sample (Table 7) increases the estimated effect of caloric intake on obesity risk (comparing

model 3 in the restricted and full samples), but including EI-check results in a much greater

amplification of food’s effect. Sample restriction alone does not have significant consequences for

the impact of physical activity on obesity risk, with the exception that the effect of “standing”

becomes significantly less than one between the full and restricted versions of model 3.

Tables 8 through 11 provide analogous results for men. In linear models on the full sample,

black men have a somewhat higher mean BMI than white men in the baseline models (model

1 and model 5), yet the differences become insignificant in models 4 and 8. For the restricted

sample, no significant differences in mean BMI between blacks and whites are observed. Again,

including EI-check (models 4 and 8) strengthens the effects of caloric intake and physical activity

on BMI and results in large increases in explanatory power. In general, the marginal effects of

caloric intake and physical activity categories (such as “vigorous” leisure-time activity) on BMI

(or obesity risk) are weaker for men than for women and maximum R-squared values (observed

35Given the high prevalence of obesity in the subject population, odds ratios from a logistic regression do not
approximate relative risks of obesity and are therefore hard to interpret. According to McNutt et al. (2003),
a Poisson regression produces reliable estimates of relative risks and conservative confidence intervals. Logistic
regressions with identical right-hand side variables yield qualitatively similar results.
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in models 4 and 8) are also lower for men. The coefficient on EI-check is negative and significant

in all models, but the point estimates are smaller for men than for women.

The contrasts that we observe between results pertaining to women and results pertaining to

men are consistent with prior evidence that BMR has a higher variance among men than women

(Mifflin et al. 1990). Recall that the variance in basal metabolism (around its predicted value)

enters the model residuals and introduces noise into the calculations of EI-check. Therefore, a

higher variance in BMR predicts a lower R-squared and an attenuated coefficient on EI-check,

such as we observe for men compared to women. A noisier EI-check among men would also help

to explain the finding that caloric intake and physical activity have weaker effects on BMI and

obesity risk because a noisier EI-check will do less well as an antidote to attenuation bias.

In models that exclude EI-check, being a current smoker is associated with significantly lower

BMI for both men and women, and with lower obesity risk in most models, compared to the BMI

of nonsmokers. Unlike the effects of caloric intake and physical activity, the effects of smoking on

BMI (or obesity risk) generally become smaller and/or lose significance when EI-check is included,

although smoking’s effects are more robust among men than among women. As explained above,

smoking has no effect on BMI in the theoretical model of BMI that includes perfect measures

of caloric intake and caloric expenditure. In an empirical model, however, smoking may proxy

for unmeasured variation in intake and/or expenditure.36 By including EI-check as a proxy for

measurement error, smoking’s proxy effect is apparently reduced. Since we suspect that EI-check

is noisier for men, it also makes sense that EI-check would draw less explanatory power from

smoking in the case of men compared to the case of women.

Taking the estimated effects of behaviors on BMI in the multivariate analysis, combined with

the demographic patterns in the behaviors themselves, we can get a quantitative sense of how these

36Whether smoking proxies primarily for caloric intake or caloric expenditure is subject to debate. While smoking
has been found to cause acute increases in resting metabolism (for example, Perkins et al. 1989), Perkins (1992)
finds that the chronic effects of smoking on resting metabolism are negligible. In addition, Stamford et al. (1986)
find that weight gain after smoking cessation is largely explained by increased caloric intake rather than changes in
resting metabolism. Smoking’s effects on food intake may reflect a number of mechanisms: nicotine may suppress
appetite and/or dull taste buds and smoking can serve as a physical and psychological substitute for eating (Miyata
et al. 1999 and Grunberg 1982).
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behaviors help to account for the black-white BMI gap among women. In results from NHANES

1999–2006 data for the restricted sample (Table 5), the female BMI gap falls by approximately

2.1 units between the baseline model (model 1) and the most inclusive model (model 4). Of

these 2.1 BMI units, roughly 0.51 units are accounted for by the 34-calorie-per-day gap in mean

caloric intake between black women and white women (seen in Table 3). Lower levels of physical

activity among black women (across various indicators) jointly account for about 1.03 units, while

the contribution from smoking is negligible. The lower average value of EI-check among black

women accounts for 0.57 units, which means that a significant portion of the BMI gap may owe to

racial differences in caloric intake and physical activity that are obscured by measurement error.

However, we cannot neatly separate out the contribution of measurement error in caloric intake

from measurement error in physical activity, nor can we rule out the possibility that EI-check

proxies (at least partly) for unmeasured variation in basal metabolism.

Among men, we observe only a small BMI gap between blacks and whites in the baseline

model, and the gap is significant only for the unrestricted sample (Table 8). In the comprehensive

models, the gaps do not differ significantly from zero. Taking the estimated BMI gaps for the

restricted sample at face value, the gap declines by roughly 0.36 units between model 1 and

model 4 (Table 9). Lower levels of physical activity among black men can jointly account for

most (roughly 0.3 units) of this gap. Complicating the picture, lower caloric intake by black men

predicts a negative BMI gap of about 0.54 units and their higher smoking rate predicts a further

negative gap of 0.03 units. However, the latter effects are more than offset by the fact that black

men have a lower mean EI-check than white men, a difference which predicts a positive BMI gap

of 0.64 units. The data suggest, therefore, that any excess BMI among black men likely reflects a

greater tendency towards sedentary behavior. This may be offset at least partly by lower caloric

intake, but black men’s lower reported intake is called into question by the EI-check analysis.
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5 Discussion and Conclusion

Using NHANES data from 1999–2006, we describe the contribution that behavioral factors make

to explaining the gender-specific differences in mean BMI and obesity risk between blacks and

whites in the United States. Using an innovative strategy to mitigate measurement error in self-

reported behaviors, we find that a combination of lower physical activity levels and higher caloric

intakes can account for roughly half of the difference in mean BMI between black women and

white women and more than half of black women’s excess obesity risk. Among men, the relatively

small black-white gaps in BMI and obesity in uncontrolled data are most likely due to black

men’s greater tendency to be sedentary, a difference which may be offset partly by lower caloric

intake among black men. However, for both men and women, the significant contribution of

joint measurement error in self-reported behaviors implies that we cannot determine the relative

contributions of physical activity and caloric intake with precision. When measurement error in

caloric intake and physical activity are mitigated, smoking’s contribution to racial differences in

BMI, among both women and men, becomes small-to-negligible.

Our analysis shows that measurement error, if uncontrolled, may severely limit the ability to

explain the variation in BMI on the basis of self-reported caloric intake and physical activity.

When we take steps to minimize measurement error, the effects of calories consumed and physical

activities on outcomes become much stronger (and smoking’s effects become weaker), enabling

these behaviors to account for a larger share of the black-white BMI gap (or obesity gap) for

women and enabling higher R-squared values in all linear regressions. If we were to take at face

value the results of the uncontrolled models, we might be led to believe that the lion’s share of the

BMI gap (or the obesity gap) is driven by a systematic racial difference in basal metabolism, a

relatively immutable factor. Our findings indicate that the role of any such differences is likely to

be limited. In studies that have measured basal metabolism directly among diverse subject pools,

evidence of systematic racial differences has been inconclusive (Martin et al. 2004; Sharp et al.

2002; Weyer et al. 1999; Carpenter et al. 1998; Foster, Wadden, and Vogt 1997; and Yanovski
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et al. 1997). One caveat to this argument is that our control methods themselves are subject to

error and our models may understate the contribution of unobserved factors (basal metabolism,

in particular) to the outcomes of interest.

The fact that behaviors related to diet, physical activity, and smoking can account for a

significant portion of the obesity gap between black women and white women is important from

a policy perspective. While wholesale behavioral change is hard to achieve, our findings suggest

that a combination of modest, sustained adjustments on both sides of the energy balance equation

may go a long way towards closing the BMI and obesity gaps between black women and white

women. For example, our results imply that a relatively small reduction in caloric intake—such

as 50 calories per day—could reduce relative obesity risk among black women by 10 percent.

While black women engage in significantly less leisure-time physical activity than white women,

interventions aimed at increasing black women’s participation in such activities only address one

portion of overall physical activity. Our results indicate that normal daily activities, which likely

pertain to actions on the job or related to home production, may have a significant impact on

BMI and obesity risk. If leisure-time is scarce, targeting leisure-time activities may be less effective

than, for example, encouraging employers to facilitate physical activity during the workday among

workers required to sit most of the time.

Our findings raise the obvious question of why behaviors differ between black women and

white women. Using our conceptual framework, black women can be seen as choosing a higher

BMI simultaneously with higher caloric intake and lower physical activity levels. The implication is

that there must be underlying, gender-specific racial differences in preferences, constraints, and/or

biological endowments that predict behavioral differences. Concerning preferences, a number of

studies find evidence that black women hold a higher ideal BMI than white women (for example,

see Anderson et al. 1992, Furnham and Alibhai 1983, Cusumano and Thompson 1997, and

Burke and Heiland 2008). Other studies find that black women in particular face lower social

and economic penalties associated with obesity (Averett and Korenman 1996, 1999 and Cawley

2004). While socioeconomic status (or SES, based on income and education) is widely cited
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as an important underlying determinant of BMI and obesity risk, both black women and black

men have significantly lower socioeconomic status than their white counterparts, rendering the

explanation insufficient to capture gender specificity. In any event, previous research has shown

that the stylized facts are largely robust to controls for socioeconomic status (Burke and Heiland

2008). Concerning constraints, previous research has shown that African-Americans tend to live

in neighborhoods that provide greater exposure to fast food restaurants, reduced access to fresh

produce, and restricted opportunities for safe exercise (for example, Currie et al. 2009 and Lovasi

et al. 2009). However, it is not known whether the differences in such constraints apply to (or

influence) African-American women to a greater extent than African-American men. Further

investigation of underlying determinants remains a critical area for future research.

While so far we have emphasized the female-specificity of the black-white obesity gap, this

fact breaks down among the younger cohorts in our sample. As seen in Table 2, black men in

the youngest age group (20–29 years) have a 50 percent higher obesity rate than white men the

same age (full sample) and black men ages 30–39 years have a roughly 20 percent higher obesity

rate than their white counterparts. The relative risks are still significantly smaller than those

observed among women in the same age groups—note that the black-white female obesity gap

is also greatest within the youngest age cohort—but the emergence of excess obesity risk among

young black men raises important questions for public policy and future research.
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Table 1: Obesity Rates (in Percentages) of U.S. Adults Ages 20–74 years, by Gender, Race, and
Poverty Status1

1960–62 1971–74 1976–80 1988–94 1999–02 2003–06

20–74 Years, Age adjusted3

Total population:
Both sexes 13.3 14.6 15.1 23.3 31.1 34.1
Male 10.7 12.2 12.8 20.6 28.1 33.1
Female 15.7 16.8 17.1 26.0 34.0 35.2

Not Hispanic or Latino:
White, male — — 12.4 20.7 28.7 33.0
White, female — — 15.4 23.3 31.3 32.5
Black/African American, male — — 16.5 21.3 27.9 36.3
Black/African American, female — — 31.0 39.1 49.6 54.3

Percent of poverty level:2

Below 100% — 20.7 21.9 29.2 36.0 35.9
100%–less than 200% — 18.4 18.7 26.6 35.4 36.7
200% or more — 12.4 12.9 21.4 29.2 33.1

Sources: NHES I, NHANES II, NHANES III, NHANES 1999–2006
Notes: —Data not available. 1Based on CDC Trend tables and Chartbook Tables in Excel format, 2006 Edition, Table 73
(http://www.cdc.gov/nchs/hus.htm). 2Poverty level is based on family income and family size. Persons with unknown poverty level
are excluded. 3Age adjusted to the 2000 standard population using five age groups: 20–34 years, 35–44 years, 45–54 years, 55–64 years,
and 65 years and over (65–74 years for estimates for 20–74 years).
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Table 2: Obesity Rates (in Percentages) of U.S. Adults Ages 20-65 years, by Gender, Race, and
Regression Sample, NHANES 1999–2006

Women Men
Whites Blacks Whites Blacks

Full Restricted Full Restricted Full Restricted Full Restricted
N=2,817 N=2,206 N=1,403 N=977 N=2,920 N=2,386 N=1,311 N=932

Age
Ages 20–29 Years 21.3 16.9 47.7 44.1 21.4 19.8 32.6 30.3

(2.2) (2.4) (3.9) (5.1) (2.3) (2.3) (3.3) (3.6)
Ages 30–39 Years 27.7 24.4 50.3 47.6 27.5 26.1 33.5 34.6

(2.6) (2.8) (3.5) (4.6) (2.0) (2.4) (3.2) (4.3)
Ages 40–49 Years 36.5 35.7 52.1 50.0 33.9 33.1 31.8 27.8

(2.2) (2.6) (3.0) (3.7) (2.3) (2.7) (2.7) (3.0)
Ages 50–65 Years 37.5 35.5 53.8 51.5 36.0 33.3 33.9 31.5

(1.9) (2.0) (2.9) (3.4) (1.8) (2.1) (2.6) (3.4)
Foreign-born Status
Not U.S.-born 17.6 16.0 27.6 25.4 26.0 26.7 13.5 12.3

(3.4) (3.4) (4.1) (4.9) (4.3) (4.6) (2.8) (3.5)
U.S.-born 32.7 30.4 53.0 50.6 30.8 29.1 35.2 33.3

(1.3) (1.3) (1.8) (2.4) (1.3) (1.3) (1.8) (2.2)
Education
High School Dropout 38.7 33.7 50.6 46.2 33.9 32.2 29.6 28.6

(2.6) (3.0) (3.1) (4.4) (3.9) (4.6) (2.4) (3.0)
High School Graduate 37.1 32.9 53.0 50.6 31.8 29.6 34.4 31.1

(1.8) (1.9) (3.4) (4.0) (1.7) (2.0) (2.7) (3.0)
Some College 28.9 27.9 50.5 48.8 29.5 28.2 34.3 32.6

(1.5) (1.7) (2.3) (2.9) (1.6) (1.6) (2.9) (3.3)
Income
Low Income 37.8 32.7 53.0 48.6 28.6 27.9 29.3 27.4

(1.7) (2.2) (2.5) (3.1) (1.9) (2.4) (2.3) (2.9)
Middle Income 35.1 32.6 55.0 53.6 33.6 31.8 36.2 32.3

(2.8) (2.9) (3.4) (3.9) (2.7) (2.9) (2.8) (3.5)
High Income 28.0 27.0 43.2 43.4 30.0 28.0 35.5 34.4

(1.5) (1.7) (3.3) (3.5) (1.6) (1.7) (2.8) (3.7)
Physical Activity
Sedentary 41.1 38.2 52.9 50.0 35.5 32.8 29.6 28.8

(1.6) (1.7) (2.4) (2.7) (2.0) (2.2) (2.3) (3.2)
Light Activity 38.4 36.2 57.3 56.4 31.9 31.9 31.5 31.5

(2.1) (2.3) (4.5) (5.4) (2.2) (2.5) (3.4) (4.0)
Moderate Activity 29.1 24.5 47.5 49.8 30.4 28.8 41.4 37.8

(3.0) (2.9) (5.0) (5.0) (3.3) (3.3) (4.5) (4.7)
Vigorous Activity 20.3 18.6 43.3 35.1 26.5 24.6 34.8 31.1

(1.7) (1.9) (2.8) (3.3) (1.8) (2.0) (2.8) (3.3)
Sits 39.9 39.6 51.7 48.6 36.5 35.6 33.1 33.5

(2.3) (2.6) (3.2) (3.4) (2.3) (2.6) (3.8) (4.1)
Stands 32.2 29.2 52.1 50.7 31.0 28.7 34.5 32.7

(1.6) (1.7) (2.2) (3.0) (2.1) (2.3) (2.3) (2.8)
Light Lifting 21.2 17.7 47.5 41.9 25.4 24.4 33.5 26.7

(2.2) (2.1) (3.4) (5.3) (2.2) (2.4) (4.1) (4.4)
Heavy Lifting 34.1 31.1 42.2 35.4 27.8 26.1 24.9 24.8

(6.8) (7.6) (8.9) (11.8) (2.0) (2.4) (3.9) (4.6)
Smoking

Nonsmoker 32.5 32.2 52.0 49.1 31.5 30.4 37.2 35.2
(1.7) (1.9) (2.2) (3.1) (1.9) (2.0) (2.5) (3.2)

Former Smoker 31.5 27.2 49.3 47.3 29.8 27.9 28.7 27.0
(1.3) (1.4) (2.7) (3.3) (1.5) (1.6) (1.9) (2.7)

Current Smoker 28.7 23.0 45.4 42.4 23.6 21.8 24.7 24.2
(1.7) (1.6) (3.3) (4.3) (1.8) (1.8) (2.3) (3.0)

Source: Authors’ calculations based on NHANES 1999–2006.
Notes: Standard errors given in parentheses.
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Table 3: Sample Means, Dependent and Independent Variables, by Gender, Race, and Regression
Sample, NHANES 1999-2006

Women Men
Whites Blacks Whites Blacks

Full Restricted Full Restricted Full Restricted Full Restricted
N=2,817 N=2,206 N=1,403 N=977 N=2,920 N=2,386 N=1,311 N=932

BMI 27.84 27.377 31.59 30.78 28.18 27.97 28.47 28.00
(0.21) (0.22) (0.31) (0.23) (0.16) (0.16) (0.26) (0.29)

Obese 0.32 0.27 0.51 0.49 0.31 0.29 0.33 0.31
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Age 42.58 42.67 40.41 40.51 41.87 42.10 39.57 39.40
(0.32) (0.33) (0.38) (0.37) (0.31) (0.36) (0.45) (0.50)

Ages 20–29 Years 0.19 0.18 0.22 0.22 0.21 0.20 0.26 0.27
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

Ages 30–39 Years 0.23 0.23 0.26 0.26 0.23 0.23 0.24 0.25
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Ages 40–49 Years 0.26 0.27 0.26 0.26 0.25 0.26 0.25 0.24
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Ages 50–65 Years 0.33 0.33 0.26 0.26 0.32 0.32 0.25 0.24
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

Not U.S.-born 0.05 0.05 0.08 0.08 0.05 0.05 0.11 0.11
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Sedentary 0.30 0.30 0.49 0.51 0.27 0.27 0.39 0.38
(0.01) (0.02) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Light Activity 0.24 0.25 0.19 0.20 0.19 0.20 0.15 0.17
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)

Moderate Activity 0.14 0.15 0.10 0.10 0.15 0.15 0.10 0.11
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Vigorous Activity 0.33 0.30 0.22 0.19 0.39 0.37 0.35 0.33
(0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Sits 0.25 0.25 0.31 0.31 0.22 0.22 0.21 0.21
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.02)

Stands 0.53 0.53 0.52 0.53 0.43 0.43 0.52 0.52
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02)

Light Lifting 0.20 0.19 0.14 0.13 0.21 0.21 0.16 0.16
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Heavy Lifting 0.03 0.03 0.02 0.03 0.14 0.14 0.11 0.11
(0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

Total Kcal 1878.80 2030.53 1894.14 2064.58 2767.56 2866.38 2587.42 2792.43
(15.59) (15.64) (29.89) (26.59) (23.71) (22.88) (34.33) (38.73)

Nonsmoker 0.51 0.51 0.66 0.65 0.43 0.44 0.49 0.49
(0.01) (0.01) (0.02) (0.03) (0.02) (0.01) (0.02) (0.02)

Former Smoker 0.23 0.23 0.12 0.12 0.26 0.26 0.16 0.17
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02)

Current Smoker 0.26 0.26 0.22 0.23 0.31 0.30 0.35 0.34
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

EI-check 86.64 94.44 84.84 92.70 95.02 98.55 88.22 95.51
(0.76) (0.64) (1.51) (1.16) (0.82) (0.68) (1.18) (1.15)

Source: Authors’ calculations based on NHANES 1999–2006.
Notes: Standard errors given in parentheses.
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Table 4: Determinants of BMI, Linear Regressions, Females Aged 20–65 Years, Full Sample

NHANES 1999–2006 NHANES 2003-2006

(1) (2) (3) (4) (5) (6) (7) (8)

Black 4.004∗∗∗ 3.911∗∗∗ 3.531∗∗∗ 2.283∗∗∗ 4.224∗∗∗ 4.071∗∗∗ 4.042∗∗∗ 2.471∗∗∗
(0.335) (0.307) (0.342) (0.251) (0.491) (0.421) (0.524) (0.410)

Ages 30–39 1.208∗∗∗ 1.201∗∗∗ 0.879∗∗ 1.386∗∗∗ 1.409∗∗ 1.379∗∗ 1.166∗ 1.565∗∗∗
(0.365) (0.360) (0.361) (0.293) (0.622) (0.637) (0.591) (0.477)

Ages 40–49 2.422∗∗∗ 2.395∗∗∗ 1.927∗∗∗ 3.010∗∗∗ 2.721∗∗∗ 2.790∗∗∗ 2.361∗∗∗ 3.520∗∗∗
(0.388) (0.379) (0.382) (0.290) (0.458) (0.461) (0.458) (0.465)

Ages 50–65 3.028∗∗∗ 2.827∗∗∗ 2.353∗∗∗ 4.943∗∗∗ 3.113∗∗∗ 3.020∗∗∗ 2.553∗∗∗ 5.605∗∗∗
(0.338) (0.355) (0.349) (0.302) (0.500) (0.534) (0.520) (0.475)

Not Born US -2.799∗∗∗ -2.616∗∗∗ -3.190∗∗∗ -0.713∗∗ -3.018∗∗∗ -3.014∗∗∗ -3.229∗∗∗ -0.722∗
(0.345) (0.369) (0.308) (0.288) (0.455) (0.516) (0.415) (0.406)

Light Activity -0.231 -0.304 -0.025 0.165
(0.296) (0.186) (0.529) (0.297)

Moderate Activity -2.049∗∗∗ -1.491∗∗∗ -1.477∗∗∗ -0.488
(0.393) (0.239) (0.474) (0.292)

Vigorous Activity -2.400∗∗∗ -5.516∗∗∗ -2.010∗∗∗ -5.004∗∗∗
(0.306) (0.221) (0.527) (0.369)

Current Smoker -1.305∗∗∗ -0.220 -0.698∗ -0.036
(0.219) (0.191) (0.359) (0.341)

Former Smoker 0.601 0.407 1.212∗ 0.614
(0.406) (0.317) (0.711) (0.501)

Stands -0.943∗∗∗ -2.916∗∗∗ -0.831 -2.843∗∗∗
(0.247) (0.254) (0.526) (0.448)

Light Lifting -2.035∗∗∗ -5.370∗∗∗ -1.824∗∗∗ -5.530∗∗∗
(0.393) (0.332) (0.617) (0.508)

Heavy Lifting -1.332∗∗ -7.459∗∗∗ -1.607 -7.898∗∗∗
(0.625) (0.492) (0.975) (0.878)

Total Kcal 0.0002 0.0149∗∗∗ 0.0006 0.0166∗∗∗
(0.0002) (0.0005) (0.0004) (0.0008)

EI-check -0.041∗∗∗ -0.327∗∗∗ -0.054∗∗∗ -0.370∗∗∗
(0.003) (0.010) (0.007) (0.017)

Constant 26.080∗∗∗ 29.707∗∗∗ 28.457∗∗∗ 30.291∗∗∗ 26.004∗∗∗ 30.595∗∗∗ 26.955∗∗∗ 29.895∗∗∗
(0.311) (0.432) (0.491) (0.396) (0.476) (0.892) (1.006) (0.806)

R2 (adj.) 0.067 0.112 0.105 0.522 0.073 0.123 0.103 0.546
N 6,225 6,225 6,225 6,225 2,868 2,868 2,868 2,868

Source: Authors’ calculations.
Notes: Standard errors are reported in parentheses. All regressions also control for Mexican, other Hispanic, and other Race/Ethnicity.
∗Statistically significant at the .10 level; ∗∗at the .05 level; ∗∗∗at the .01 level.
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Table 5: Determinants of BMI, Linear Regressions, Females Ages 20–65 Years, Restricted Sample

NHANES 1999–2006 NHANES 2003–2006

(1) (2) (3) (4) (5) (6) (7) (8)

Black 3.684∗∗∗ 3.605∗∗∗ 2.970∗∗∗ 1.593∗∗∗ 4.043∗∗∗ 4.044∗∗∗ 3.355∗∗∗ 1.875∗∗∗
(0.344) (0.315) (0.375) (0.242) (0.450) (0.426) (0.492) (0.355)

Ages 30-39 1.641∗∗∗ 1.602∗∗∗ 1.551∗∗∗ 2.080∗∗∗ 2.127∗∗∗ 2.072∗∗∗ 2.131∗∗∗ 2.106∗∗∗
(0.393) (0.382) (0.393) (0.266) (0.611) (0.624) (0.520) (0.376)

Ages 40-49 2.959∗∗∗ 2.890∗∗∗ 2.809∗∗∗ 3.777∗∗∗ 3.260∗∗∗ 3.293∗∗∗ 3.285∗∗∗ 4.031∗∗∗
(0.408) (0.398) (0.387) (0.255) (0.499) (0.476) (0.501) (0.414)

Ages 50-65 3.456∗∗∗ 3.301∗∗∗ 3.564∗∗∗ 5.855∗∗∗ 3.458∗∗∗ 3.400∗∗∗ 3.816∗∗∗ 6.192∗∗∗
(0.423) (0.422) (0.415) (0.292) (0.593) (0.601) (0.542) (0.426)

Not Born US -2.648∗∗∗ -2.670∗∗∗ -2.582∗∗∗ -0.525∗ -2.655∗∗∗ -2.645∗∗∗ -2.455∗∗∗ -0.322
(0.382) (0.399) (0.333) (0.285) (0.438) (0.473) (0.374) (0.406)

Light Activity -0.254 -0.259 0.105 0.272
(0.323) (0.208) (0.592) (0.278)

Moderate Activity -2.293∗∗∗ -1.517∗∗∗ -1.777∗∗∗ -0.797∗∗∗
(0.432) (0.236) (0.555) (0.286)

Vigorous Activity -2.673∗∗∗ -5.358∗∗∗ -2.880∗∗∗ -5.013∗∗∗
(0.335) (0.239) (0.534) (0.407)

Current Smoker -1.575∗∗∗ -0.577∗∗∗ -0.700 -0.136
(0.264) (0.209) (0.471) (0.359)

Former Smoker 0.207 -0.005 0.362 0.102
(0.419) (0.306) (0.470) (0.393)

Stands -1.223∗∗∗ -3.119∗∗∗ -1.100∗∗ -2.870∗∗∗
(0.296) (0.281) (0.504) (0.358)

Light Lifting -2.688∗∗∗ -5.791∗∗∗ -2.094∗∗∗ -5.558∗∗∗
(0.427) (0.358) (0.573) (0.442)

Heavy Lifting -2.400∗∗∗ -8.495∗∗∗ -2.860∗∗∗ -8.052∗∗∗
(0.645) (0.525) (1.042) (0.731)

Total Kcal 0.0027∗∗∗ 0.0151∗∗∗ 0.0036∗∗∗ 0.0158∗∗∗
(0.0002) (0.0005) (0.0006) (0.0008)

EI-check -0.041∗∗∗ -0.319∗∗∗ -0.050∗∗∗ -0.334∗∗∗
(0.005) (0.012) (0.009) (0.017)

Constant 25.217∗∗∗ 29.130∗∗∗ 22.529∗∗∗ 28.637∗∗∗ 24.867∗∗∗ 29.491∗∗∗ 19.873∗∗∗ 27.597∗∗∗
(0.328) (0.619) (0.616) (0.506) (0.514) (1.007) (1.162) (0.958)

R2 (adj.) 0.073 0.096 0.168 0.576 0.089 0.114 0.192 0.592
N 4,730 4,730 4,730 4,730 2,060 2,060 2,060 2,060

Source: Authors’ calculations.
Notes: Standard errors are reported in parentheses. All regressions also control for Mexican, other Hispanic, and other Race/Ethnicity.
∗Statistically significant at the .10 level; ∗∗at the .05 level; ∗∗∗at the .01 level.
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Table 6: Determinants of Obesity, Poisson Regressions, Females Ages 20–65 Years, Full Sample

NHANES 1999-2006 NHANES 2003-2006

(1) (2) (3) (4) (5) (6) (7) (8)

Black 1.654∗∗∗ 1.609∗∗∗ 1.522∗∗∗ 1.242∗∗∗ 1.702∗∗∗ 1.658∗∗∗ 1.639∗∗∗ 1.321∗∗∗
(0.074) (0.065) (0.071) (0.056) (0.097) (0.086) (0.098) (0.084)

Ages 30-39 1.238∗∗∗ 1.247∗∗∗ 1.170∗∗ 1.219∗∗∗ 1.382∗∗ 1.387∗∗ 1.307∗ 1.362∗∗
(0.100) (0.098) (0.092) (0.082) (0.195) (0.200) (0.176) (0.163)

Ages 40-49 1.499∗∗∗ 1.507∗∗∗ 1.386∗∗∗ 1.555∗∗∗ 1.620∗∗∗ 1.660∗∗∗ 1.514∗∗∗ 1.760∗∗∗
(0.117) (0.113) (0.107) (0.088) (0.138) (0.142) (0.118) (0.141)

Ages 50-65 1.566∗∗∗ 1.530∗∗∗ 1.418∗∗∗ 1.849∗∗∗ 1.629∗∗∗ 1.620∗∗∗ 1.484∗∗∗ 2.028∗∗∗
(0.109) (0.110) (0.101) (0.128) (0.174) (0.181) (0.152) (0.188)

Not Born US 0.574∗∗∗ 0.588∗∗∗ 0.538∗∗∗ 0.789∗∗∗ 0.565∗∗∗ 0.565∗∗∗ 0.544∗∗∗ 0.773∗∗
(0.048) (0.050) (0.044) (0.063) (0.058) (0.061) (0.054) (0.076)

Light Activity 0.991 1.016 1.027 1.085
(0.051) (0.049) (0.075) (0.069)

Moderate Activity 0.758∗∗∗ 0.879∗ 0.867 1.020
(0.058) (0.060) (0.083) (0.098)

Vigorous Activity 0.610∗∗∗ 0.368∗∗∗ 0.635∗∗∗ 0.396∗∗∗
(0.039) (0.027) (0.057) (0.045)

Current Smoker 0.850∗∗∗ 1.001 0.915 0.973
(0.040) (0.050) (0.066) (0.084)

Former Smoker 1.027 1.027 1.157∗ 1.078
(0.056) (0.049) (0.094) (0.068)

Stands 0.943 0.747∗∗∗ 1.014 0.794∗∗
(0.045) (0.038) (0.100) (0.073)

Light Lifting 0.705∗∗∗ 0.492∗∗∗ 0.747∗ 0.479∗∗∗
(0.064) (0.041) (0.107) (0.066)

Heavy Lifting 0.869 0.420∗∗∗ 0.957 0.489∗∗∗
(0.139) (0.060) (0.212) (0.097)

Total Kcal 1.0000 1.0020∗∗∗ 1.0001∗∗ 1.0022∗∗∗
(0.0000) (0.0001) (0.0000) (0.0001)

EI-check 0.993∗∗∗ 0.952∗∗∗ 0.992∗∗∗ 0.948∗∗∗
(0.001) (0.002) (0.001) (0.003)

N 6,225 6,225 6,225 6,225 2,868 2,868 2,868 2,868

Source: Authors’ Calculations.
Notes: Coefficients represent relative risks. Standard errors are reported in parentheses. All regressions also control for Mexican, other
Hispanic, and other Race/Ethnicity.
∗Statistically significant at the .10 level; ∗∗at the .05 level; ∗∗∗at the .01 level.
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Table 7: Determinants of Obesity, Poisson Regressions, Females Ages 20–65 Years, Restricted
Sample

NHANES 1999-2006 NHANES 2003–2006

(1) (2) (3) (4) (5) (6) (7) (8)

Black 1.703∗∗∗ 1.683∗∗∗ 1.504∗∗∗ 1.216∗∗∗ 1.785∗∗∗ 1.782∗∗∗ 1.621∗∗∗ 1.281∗∗∗
(0.098) (0.091) (0.092) (0.081) (0.130) (0.130) (0.113) (0.106)

Ages 30-39 1.347∗∗∗ 1.340∗∗∗ 1.294∗∗ 1.319∗∗∗ 1.625∗∗∗ 1.604∗∗∗ 1.592∗∗∗ 1.518∗∗∗
(0.142) (0.139) (0.129) (0.112) (0.259) (0.261) (0.233) (0.199)

Ages 40-49 1.711∗∗∗ 1.699∗∗∗ 1.630∗∗∗ 1.741∗∗∗ 1.894∗∗∗ 1.9100∗∗∗ 1.8582∗∗∗ 2.0341∗∗∗
(0.161) (0.156) (0.148) (0.122) (0.222) (0.219) (0.221) (0.230)

Ages 50-65 1.760∗∗∗ 1.721∗∗∗ 1.748∗∗∗ 2.111∗∗∗ 1.790∗∗∗ 1.757∗∗∗ 1.860∗∗∗ 2.335∗∗∗
(0.167) (0.164) (0.159) (0.170) (0.253) (0.245) (0.254) (0.267)

Not Born US 0.591∗∗∗ 0.587∗∗∗ 0.600∗∗∗ 0.844∗ 0.602∗∗∗ 0.603∗∗∗ 0.610∗∗∗ 0.899
(0.055) (0.056) (0.054) (0.073) (0.069) (0.073) (0.065) (0.102)

Light Activity 1.004 1.037 1.069 1.126
(0.059) (0.058) (0.090) (0.092)

Moderate Activity 0.710∗∗∗ 0.849∗∗ 0.865 1.080
(0.065) (0.068) (0.103) (0.121)

Vigorous Activity 0.572∗∗∗ 0.367∗∗∗ 0.546∗∗∗ 0.349∗∗∗
(0.048) (0.038) (0.056) (0.048)

Current Smoker 0.760∗∗∗ 0.899∗ 0.864 0.896
(0.045) (0.054) (0.090) (0.101)

Former Smoker 0.961 0.980 1.036 0.998
(0.064) (0.054) (0.095) (0.089)

Stands 0.865∗∗ 0.684∗∗∗ 0.970 0.780∗∗
(0.053) (0.043) (0.111) (0.081)

Light Lifting 0.591∗∗∗ 0.430∗∗∗ 0.703∗∗ 0.436∗∗∗
(0.065) (0.039) (0.100) (0.064)

Heavy Lifting 0.723∗ 0.359∗∗∗ 0.865 0.484∗∗∗
(0.138) (0.065) (0.207) (0.102)

Total Kcal 1.0004∗∗∗ 1.0020∗∗∗ 1.0005∗∗∗ 1.0022∗∗∗
(0.0000) (0.0001) (0.0001) (0.0001)

EI-check 0.993∗∗∗ 0.955∗∗∗ 0.990∗∗∗ 0.946∗∗∗
(0.001) (0.002) (0.003) (0.003)

N 4,730 4,730 4,730 4,730 2,060 2,060 2,060 2,060

Source: Authors’ calculations.
Notes: Coefficients represent relative risks. Standard errors are reported in parentheses. All regressions also control for Mexican, other
Hispanic, and other Race/Ethnicity.
∗Statistically significant at the .10 level; ∗∗at the .05 level; ∗∗∗at the .01 level.
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Table 8: Determinants of BMI, Linear Regressions, Males Ages 20–65 Years, Full Sample

NHANES 1999–2006 NHANES 2003–2006

(1) (2) (3) (4) (5) (6) (7) (8)

Black 0.536∗∗∗ 0.349 0.515 0.136 1.051∗∗ 0.506 0.877∗∗ 0.287
(0.298) (0.293) (0.310) (0.254) (0.408) (0.371) (0.399) (0.271)

Ages 30-39 1.208∗∗∗ 1.317∗∗∗ 0.939∗∗∗ 1.512∗∗∗ 1.631∗∗∗ 1.906∗∗∗ 1.466∗∗∗ 1.873∗∗∗
(0.246) (0.235) (0.247) (0.229) (0.319) (0.293) (0.315) (0.254)

Ages 40-49 2.083∗∗∗ 2.127∗∗∗ 1.780∗∗∗ 2.752∗∗∗ 2.446∗∗∗ 2.593∗∗∗ 2.260∗∗∗ 2.924∗∗∗
(0.276) (0.272) (0.276) (0.271) (0.417) (0.374) (0.408) (0.280)

Ages 50-65 2.013∗∗∗ 1.851∗∗∗ 1.486∗∗∗ 3.239∗∗∗ 2.076∗∗∗ 1.933∗∗∗ 1.692∗∗∗ 3.235∗∗∗
(0.284) (0.266) (0.281) (0.229) (0.447) (0.374) (0.432) (0.304)

Not Born US -2.062∗∗ -2.179∗∗∗ -2.256∗∗∗ -1.301∗∗∗ -1.982∗∗∗ -2.041∗∗∗ -2.185∗∗∗ -1.117∗∗∗
(0.347) (0.327) (0.347) (0.259) (0.488) (0.469) (0.456) (0.321)

Light Activity -0.180 -0.250 0.109 -0.011
(0.240) (0.206) (0.402) (0.294)

Moderate Activity -0.221 -0.565∗∗ -0.401 -0.546∗
(0.312) (0.261) (0.492) (0.301)

Vigorous Activity -0.803∗∗∗ -3.754∗∗∗ -0.548 -3.385∗∗∗
(0.269) (0.255) (0.366) (0.263)

Current Smoker -1.657∗∗∗ -0.655∗∗ -1.660∗∗∗ -0.640∗∗∗
(0.250) (0.256) (0.266) (0.229)

Former Smoker 0.076 0.087 -0.420 -0.020
(0.248) (0.212) (0.2660) (0.217)

Stands -0.842∗∗∗ -1.746∗∗∗ -0.407 -1.553∗∗∗
(0.286) (0.247) (0.390) (0.353)

Light Lifting -1.310∗∗∗ -3.122∗∗∗ -0.768∗∗ -2.753∗∗∗
(0.327) (0.321) (0.360) (0.397)

Heavy Lifting -0.817∗∗∗ -4.882∗∗∗ -0.326 -5.143∗∗∗
(0.302) (0.356) (0.498) (0.536)

Total Kcal -0.0001 0.0070∗∗∗ -0.0004∗∗ 0.0075∗∗∗
(0.0001) (0.0003) (0.0002) (0.0004)

EI-check -0.027∗∗∗ -0.211∗∗∗ -0.047∗∗∗ -0.237∗∗∗
(0.003) (0.009) (0.005) (0.009)

Constant 26.846 29.403∗∗∗ 28.920∗∗∗ 30.571∗∗∗ 26.711∗∗∗ 31.063∗∗∗ 29.292∗∗∗ 31.585∗∗∗
(0.228) (0.327) (0.462) (0.386) (0.344) (0.475) (0.690) (0.580)

R2 (adj.) 0.032 0.067 0.058 0.323 0.041 0.117 0.066 0.372
N 6,208 6,208 6,208 6,208 2,805 2,805 2,805 2,805

Source: Authors’ calculations.
Notes: Standard errors are reported in parentheses. All regressions also control for Mexican, other Hispanic, and other Race/Ethnicity.
∗Statistically significant at the .10 level; ∗∗at the .05 level; ∗∗∗at the .01 level.
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Table 9: Determinants of BMI, Linear Regressions, Males Ages 20–65 Years, Restricted Sample

(1) (2) (3) (4) (5) (6) (7) (8)

Black 0.304 0.210 0.345 -0.053 0.583 0.376 0.625 0.327
(0.336) (0.334) (0.326) (0.270) (0.413) (0.414) (0.383) (0.286)

Ages 30-39 1.184∗∗∗ 1.291∗∗∗ 0.953∗∗∗ 1.683∗∗∗ 1.969∗∗∗ 2.033∗∗∗ 1.812∗∗∗ 2.223∗∗∗
(0.260) (0.259) (0.263) (0.263) (0.347) (0.330) (0.347) (0.240)

Ages 40-49 2.221∗∗∗ 2.249∗∗∗ 2.053∗∗∗ 3.089∗∗∗ 2.876∗∗∗ 2.874∗∗∗ 2.787∗∗∗ 3.368∗∗∗
(0.287) (0.283) (0.280) (0.272) (0.438) (0.412) (0.433) (0.287)

Ages 50-65 1.880∗∗∗ 1.782∗∗∗ 1.780∗∗∗ 3.647∗∗∗ 2.407∗∗∗ 2.372∗∗∗ 2.364∗∗∗ 3.933∗∗∗
(0.281) (0.269) (0.263) (0.229) (0.394) (0.347) (0.407) (0.283)

Not Born US -2.055∗∗∗ -2.171∗∗∗ -1.976∗∗∗ -1.077∗∗∗ -1.627∗∗∗ -1.625∗∗∗ -1.631∗∗∗ -0.647∗∗
(0.337) (0.329) (0.338) (0.270) (0.447) (0.427) (0.426) (0.310)

Light Activity 0.023 -0.148 0.010 -0.087
(0.276) (0.236) (0.395) (0.309)

Moderate Activity -0.111 -0.507∗ -0.327 -0.426
(0.333) (0.290) (0.407) (0.271)

Vigorous Activity -1.015∗∗∗ -3.905∗∗∗ -0.877∗∗ -3.639∗∗∗
(0.270) (0.244) (0.340) (0.304)

Current Smoker -1.666∗∗∗ -0.726∗∗∗ -1.433∗∗∗ -0.578∗
(0.253) (0.258) (0.325) (0.286)

Former Smoker 0.082 0.074 -0.090 0.140
(0.287) (0.218) (0.305) (0.240)

Stands -0.933∗∗∗ -1.792∗∗∗ -0.648 -1.588∗∗∗
(0.318) (0.244) (0.425) (0.355)

Light Lifting -1.624∗∗∗ -3.305∗∗∗ -1.124∗∗ -2.892∗∗∗
(0.359) (0.325) (0.441) (0.412)

Heavy Lifting -1.424∗∗∗ -5.283∗∗∗ -0.925∗ -5.477∗∗∗
(0.362) (0.329) (0.490) (0.511)

Total Kcal 0.0009∗∗∗ 0.0073∗∗∗ 0.0008∗∗∗ 0.0078∗∗∗
(0.0001) (0.0003) (0.0002) (0.0004)

EI-check -0.030∗∗∗ -0.216∗∗∗ -0.044∗∗∗ -0.239∗∗∗
(0.003) (0.008) (0.005) (0.011)

Constant 26.633∗∗∗ 29.585∗∗∗ 26.047∗∗∗ 30.167∗∗∗ 26.064∗∗∗ 30.407∗∗∗ 25.332∗∗∗ 30.236∗∗∗
(0.218) (0.372) (0.529) (0.428) (0.311) (0.579) (0.818) (0.601)

R2 (adj.) 0.034 0.056 0.083 0.355 0.052 0.091 0.086 0.40
N 4,879 4,879 4,879 4,879 2,165 2,165 2,165 2,165

Source:Author’s calculations.
Notes: Standard errors are reported in parentheses. All regressions also control for Mexican, other Hispanic, and other Race/Ethnicity.
∗Statistically significant at the .10 level; ∗∗at the .05 level; ∗∗∗at the .01 level.
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Table 10: Determinants of Obesity, Poisson Regressions, Males Ages 20–65 Years, Full Sample

NHANES 1999–2006 NHANES 2003–2006

(1) (2) (3) (4) (5) (6) (7) (8)

Black 1.132∗∗ 1.081 1.121∗∗ 0.976 1.255∗∗ 1.114 1.215∗∗ 1.004
(0.064) (0.061) (0.064) (0.049) (0.105) (0.085) (0.103) (0.070)

Ages 30-39 1.245∗∗∗ 1.282∗∗∗ 1.176∗∗ 1.364∗∗∗ 1.308∗∗ 1.400∗∗∗ 1.249∗ 1.435∗∗∗
(0.096) (0.099) (0.091) (0.110) (0.151) (0.157) (0.144) (0.169)

Ages 40-49 1.436∗∗∗ 1.461∗∗∗ 1.344∗∗∗ 1.733∗∗∗ 1.498∗∗∗ 1.570∗∗∗ 1.403∗∗∗ 1.681∗∗∗
(0.117) (0.119) (0.108) (0.139) (0.179) (0.180) (0.160) (0.178)

Ages 50-65 1.479∗∗∗ 1.435∗∗∗ 1.324∗∗∗ 1.947∗∗∗ 1.441∗∗∗ 1.417∗∗∗ 1.290∗∗ 1.809∗∗∗
(0.129) (0.121) (0.112) (0.154) (0.166) (0.146) (0.143) (0.168)

Not Born US 0.585∗∗∗ 0.574∗∗∗ 0.559∗∗∗ 0.712∗∗∗ 0.599∗∗∗ 0.594∗∗∗ 0.571∗∗∗ 0.737∗∗
(0.065) (0.063) (0.064) (0.074) (0.088) (0.084) (0.084) (0.097)

Light Activity 0.925 0.944 0.952 0.935
(0.064) (0.060) (0.109) (0.092)

Moderate Activity 0.878 0.830∗∗ 0.831 0.775∗∗
(0.080) (0.072) (0.114) (0.088)

Vigorous Activity 0.811∗∗∗ 0.407∗∗∗ 0.808∗∗ 0.390∗∗∗
(0.059) (0.032) (0.084) (0.050)

Current Smoker 0.723∗∗∗ 0.871∗∗ 0.720∗∗∗ 0.853∗
(0.053) (0.057) (0.073) (0.076)

Former Smoker 1.019 1.003 0.979 1.027
(0.061) (0.058) (0.068) (0.076)

Stands 0.893 0.791∗∗∗ 0.925 0.780∗∗
(0.069) (0.054) (0.090) (0.074)

Light Lifting 0.783∗∗∗ 0.605∗∗∗ 0.9043 0.646∗∗∗
(0.069) (0.049) (0.101) (0.079)

Heavy Lifting 0.846∗∗ 0.428∗∗∗ 0.863 0.358∗∗∗
(0.058) (0.035) (0.077) (0.039)

Total Kcal 1.0000 1.0014∗∗∗ 0.9999 1.0015∗∗∗
(0.0000) (0.0001) (0.0001) (0.0001)

EI-check 0.994∗∗∗ 0.956∗∗∗ 0.989∗∗∗ 0.948∗∗∗
(0.001) (0.002) (0.002) (0.004)

N 6,208 6,208 6,208 6,208 2,805 2,805 2,805 2,805

Source: Authors’ calculations.
Notes: Coefficients represent relative risks. Standard errors are reported in parentheses. All regressions also control for Mexican, other
Hispanic, and other Race/Ethnicity.
∗Statistically significant at the .10 level; ∗∗at the .05 level; ∗∗∗at the .01 level.
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Table 11: Determinants of Obesity, Poisson Regressions, Males Ages 20–65 Years, Restricted
Sample

NHANES 1999–2006 NHANES 2003–2006

(1) (2) (3) (4) (5) (6) (7) (8)

Black 1.137∗ 1.113 1.141∗ 0.985 1.226∗∗ 1.165∗ 1.245∗∗ 1.081
(0.081) (0.078) (0.079) (0.064) (0.109) (0.103) (0.104) (0.089)

Ages 30-39 1.303∗∗∗ 1.344∗∗∗ 1.238∗∗ 1.484∗∗∗ 1.461∗∗ 1.488∗∗∗ 1.400∗∗ 1.602∗∗∗
(0.126) (0.132) (0.117) (0.152) (0.208) (0.211) (0.194) (0.212)

Ages 40-49 1.534∗∗∗ 1.552∗∗∗ 1.479∗∗∗ 1.963∗∗∗ 1.704∗∗∗ 1.721∗∗∗ 1.634∗∗∗ 1.948∗∗∗
(0.157) (0.157) (0.145) (0.196) (0.257) (0.251) (0.233) (0.229)

Ages 50-65 1.508∗∗∗ 1.471∗∗∗ 1.480∗∗∗ 2.271∗∗∗ 1.656∗∗∗ 1.643∗∗∗ 1.592∗∗∗ 2.284∗∗∗
(0.150) (0.145) (0.134) (0.213) (0.237) (0.216) (0.228) (0.279)

Not Born US 0.594∗∗∗ 0.579∗∗∗ 0.598∗∗∗ 0.752∗∗∗ 0.654∗∗∗ 0.656∗∗∗ 0.644∗∗∗ 0.839
(0.070) (0.067) (0.071) (0.079) (0.099) (0.094) (0.099) (0.120)

Light Activity 0.985 0.968 0.947 0.924
(0.078) (0.066) (0.122) (0.108)

Moderate Activity 0.888 0.808∗∗ 0.841 0.757∗
(0.094) (0.083) (0.129) (0.106)

Vigorous Activity 0.773∗∗∗ 0.369∗∗∗ 0.737∗∗ 0.330∗∗∗
(0.064) (0.036) (0.092) (0.055)

Current Smoker 0.716∗∗∗ 0.873∗ 0.769∗ 0.904
(0.062) (0.069) (0.105) (0.112)

Former Smoker 0.987 0.952 1.055 1.072
(0.072) (0.065) (0.098) (0.102)

Stands 0.851∗ 0.746∗∗∗ 0.858 0.749∗∗∗
(0.080) (0.060) (0.097) (0.076)

Light Lifting 0.734∗∗∗ 0.561∗∗∗ 0.810∗ 0.574∗∗∗
(0.075) (0.053) (0.098) (0.072)

Heavy Lifting 0.762∗∗∗ 0.377∗∗∗ 0.791∗∗ 0.321∗∗∗
(0.075) (0.039) (0.091) (0.045)

Total Kcal 1.0002∗∗∗ 1.0014∗∗∗ 1.0002∗ 1.0017∗∗∗
(0.0000) (0.0001) (0.0001) (0.0001)

EI-check 0.992∗∗∗ 0.953∗∗∗ 0.988∗∗∗ 0.944∗∗∗
(0.001) (0.002) (0.003) (0.005)

N 4,879 4,879 4,879 4,879 2,165 2,165 2,165 2,165

Source: Authors’ calculations.
Notes: Coefficients represent relative risks. Standard errors are reported in parentheses. All regressions also control for Mexican, other
Hispanic, and other Race/Ethnicity.
∗Statistically significant at the .10 level; ∗∗at the .05 level; ∗∗∗at the .01 level.
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A Data Appendix

This appendix describes the construction of variables used in the empirical analysis. All variables
are constructed using data from the NHANES, survey years 1999–2006. Methods used conform
to those in the NHANES analytical guidelines, available at
http://www.cdc.gov/nchs/data/nhanes/nhanes 03 04/nhanes analytic guidelines dec 2005.pdf.

A.1 Body Mass Index (BMI)

We calculate BMI as examined weight in kilograms divided by the square of examined height in
meters. We determine obesity status using the standard criterion of BMI greater than or equal to
30.

A.2 Physical activity

We construct two discrete variables to capture physical activity levels: a variable that describes
typical daily activities including (but not limited to) work-related tasks, and a variable that
measures leisure-time physical activity (LTPA). The former variable consists of responses to a
survey question asking subjects to characterize their “usual daily activities” in the course of
paid work, housework, attending classes if a student, or the typical activities of retired persons.37

Available responses include “mostly sitting,” “mostly standing or walking with little heavy lifting,”
“lifting light loads and/or stair-climbing,” and “lifting heavy loads or other heavy work.” (Subjects
must choose a single best response.) The leisure-time activity variable draws on a series of questions
pertaining to “moderate” and “vigorous” leisure-time physical activities. “Moderate” activities
are described as those that cause light sweating or a slight-to-moderate increase in breathing or
heart rate, and “vigorous” activities are those that cause heavy sweating or large increases in
breathing or heart rate. For each of these categories, respondents are first asked whether they
engaged in any such activity for at least 10 minutes during the past 30 days; if so, they report the
frequency and typical duration of each qualifying activity. For example, a subject could report
running (a vigorous activity) three times per week for 30 minutes each in a typical week as well as
swimming vigorously once a week for 45 minutes, and analogously for moderate physical activities.

We take the set of LTPA-related responses for a given individual and aggregate these into
a measure of total intensity-weighted LTPA per month using the concept of MET-minutes. A
MET, or metabolic equivalent, is defined as the ratio of energy expended in an activity to energy
expended at rest (but not asleep).38 MET-minutes are calculated as the product of minutes
spent in an activity and the MET value of the activity, where 30 minutes of a 2-MET activity,
such as washing dishes, represents the same total MET-minutes (60) and the same total caloric

37Beginning in 2007, this question was replaced with a series of questions eliciting time spent in “vigorous work”
and “moderate work” activities, including housework, yard work, and work done away from home.

38MET values are based on a formula for resting energy expenditure per kilogram of body weight per unit of
time. Because individual energy expenditure at rest may deviate from the formula, METs must be understood as
approximations of true energy intensity.
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expenditure (for a given person) as 15 minutes of a 4-MET activity, such as walking briskly.39

Using the recommended MET values for activities provided in the NHANES data, together with
the frequency and duration data, we compute total MET-minutes (per month) across all moderate
and vigorous leisure-time physical activities. We then assign each individual into one of four levels
of leisure-time physical activity: “sedentary” individuals are those with zero MET-minutes of
LTPA, meaning they responded “no” to the initial yes/no questions about minimal participation
in physical activity; the “low activity” category includes those with up to 1999 MET-minutes per
month of LTPA; the “moderate activity” category includes those with at least 2,000 MET-minutes
per month but less than 4,000; and the “vigorous activity” category includes those with 4,000 or
greater MET-minutes per month of LTPA. These categories correspond roughly to the four levels
of physical activity described in the U.S. Department of Health and Human Services’ physical
activity guidelines for adults.40

A.3 Smoking

The NHANES surveys contain self-reported information on both past and present smoking activity.
Based on this information, we construct a smoking variable with three categories: “nonsmoker,”
for those individuals who report having smoked fewer than 100 cigarettes in their lifetime; “current
smoker,” for those who smoked at least 100 cigarettes in their lifetime and also reported smoking
regularly at the time of the interview; and“former smoker,” for those who smoked at least 100
cigarettes in their lifetime but were not still smoking regularly at the time of the interview.

A.4 Dietary intake

In the NHANES data from 1999–2006, a subset of survey participants reported extensive infor-
mation on food consumption using the 24-hour recall method, in which individuals are asked to
describe every food and beverage item that they consumed in the previous 24-hour period. Based
on these reports, the survey uses standardized nutrition information to compute total kilocalories
consumed per day.41 For the years 1999–2002, in interviews conducted at the mobile examination
center, respondents supplied information on food intake for at most a single day. Beginning in
2003, the survey attempts to collect food intake data for a second (non-consecutive) day in a
follow-up phone interview. “Day 1” intake refers to food intake data collected in the examination
center, regardless of whether the individual also provided “Day 2” intake data over the phone.
In our baseline regression models, encompassing data from 1999–2006, the variable “total kcal”
represents Day 1 caloric intake only. In additional models estimated for robustness using the

39However, the same MET-minutes may entail different levels of caloric expenditure for different individuals
based on BMI, gender, and other factors.

40The threshold of 2,000 MET-minutes per month (the low end of our “moderate” category) corresponds roughly
to the minimal physical activity requirement for adults set forth in these guidelines. The threshold of 4,000
corresponds to twice that amount, a level which the agency’s guidelines indicate would provide “additional and
more extensive health benefits.” See http://www.health.gov/paguidelines/pdf/paguide.pdf for details.

41In colloquial speech, the term “calorie” refers to a kilocalorie (kcal for short). We will use the terms inter-
changeably. Quantities consumed of specific food components, such as carbohydrates and fats, are also provided
in the data. Models involving specific nutrients are suppressed in the interest of brevity, as the results do not add
substantively to the questions of interest.
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2003–2006 subsample, “total kcal” represents the individual’s average caloric intake across Day 1
and Day 2.42

A.5 Race

NHANES 1999–2006 contains five racial/ethnic categories: non-Hispanic white, non-Hispanic
black, Mexican, other Hispanic, and “other,” which embeds Asian-Americans and all other iden-
tities.43 In the regression analysis, we include dummy variables for each racial/ethnic category,
letting whites be the omitted group, such that our reported contrasts pertain explicitly to blacks
versus whites. Effects for other racial/ethnic groups are suppressed in the results tables.

A.6 Foreign-born status

The NHANES data indicate whether or not each participant was born in the United States. One’s
country of origin (United States or other) is an exogenous factor that may have a significant impact
on an individual’s BMI. Since we want to assess racial differences in BMI that are not driven by an
individual’s country of origin, a dummy variable for “not born in the United States” is included
as a control in all empirical models.

A.7 Age

NHANES 1999–2006 reports age in years for all interviewees. Within the sample of adults aged
20-65 years, we construct four age groups: 20–29 years, 30–39 years, 40–49 years, and 50-65 years.
We include the age category as a control in all regression models to control for racial differences
(by sex) in age composition. While the results are not shown, for robustness we test alternative
models that are linear and quadratic in age.

42NHANES provides two alternate sets of weights that apply, respectively, when using (1) the sample of indi-
viduals supplying at least Day 1 data or (2) the sample of individuals supplying both Day 1 and Day 2 data. The
weights account for sample selection into data provision as well as the representativeness of the day/s of the week
for which food intake was provided. We use appropriate weights accordingly.

43We use the race/ethnicity variable named “ridreth1” in NHANES terminology.
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