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Introduction

Market microstructure and high-frequency trading are fields experiencing an in-
crease of interest within financial institutions and academic scholars (see Furse
et al. (2011)). Therefore, models for tick-by-tick financial fluctuations, that might
have been considered just a curiosity more than a decade ago (see the seminal paper
by Engle and Russell (1998)), are becoming more and more important for practical
purposes (see Scalas et al. (2000) and Mainardi et al. (2000) for early studies of the
model presented below). The literature on high-frequency price modelling up to
the middle of the last decade is reviewed in Hautsch (2004) and in Kokot (2004).

Along with interest in high-frequency trading comes the need for high-
frequency hedging. In this work, we address the problem of determining the
price for an intra-day European option written on a share traded in a stock ex-
change. It is assumed that the derivative position is opened at a time t after the start
of continuous trading with maturity at a time TM before the end of continuous trad-
ing on the very same day. The fluctuations of the share price S(t) can be modeled
by a suitable càdlàg (i.e. right-continuous with left limit) pure-jump process. One
might be tempted to use a compound Poisson process for the logarithm of the price
X(t) = log(S(t)/S(0)) and immediately apply the result of Merton (1976) with the
coefficients of drift and diffusion set to zero. For a vanishing risk-free interest rate
(which is a reasonable assumption for intra-day data, see the discussion below),
this would lead to the following formula for the plain-vanilla option price C(t)

C(t) = e−λ (TM−t)
∞

∑
n=0

(λ (TM− t))n

n!
Cn(S(0),K,µ,σ2), (1)

where λ is the activity of the Poisson process for trades, K is the strike price, µ

and σ2 are, respectively, the expected value and the variance of the log-price jumps
which are assumed to be normally distributed. One further has that

Cn(S(0),K,µ,σ2) = N(d1,n)S(0)−N(d2,n)K, (2)

where

N(u) =
1√
2π

∫ u

−∞

dve−v2/2 (3)

is the standard normal cumulative distribution function and, finally

d1,n =
log(S(0)/K)+n(µ +σ2/2)√

nσ
, (4)

d2,n = d1,n−σ
√

n. (5)
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Whereas Merton’s jump diffusion model is still the object of active research
and is discussed in a recent research paper by Cheang and Chiarella (2011), it has
several unrealistic features. One of them is that unconditional inter-trade durations
do not follow the exponential distribution (see Engle and Russel (1997); Engle
and Russell (1998); Mainardi et al. (2000); Raberto et al. (2002); Scalas et al.
(2004); Scalas (2006)). Semi-Markov models (described in Janssen and Manca
(2007)) can take this fact into account as shown by Scalas et al. (2004) and Scalas
(2011). In the following, we shall consider intra-day European options written on
semi-Markov pure jump models which are compound renewal processes (see also
Scalas (2011) and Baleanu et al. (2012)). Related papers are Montero (2008) and
Cartea (2010). In Montero (2008), the focus is on option prices for derivatives
written on compound Poisson processes and in the presence on non-vanishing
risk-free interest rate, whereas Cartea (2010) extends Lévy option prices to the
semi-Markov case by developing suitable approximations. Finally, a recent paper
by Shaw and Schofield (2011) considers Laplace transform methods to deal with
order and trade renewal flows in an agent-based model where the trade counting
process is not necessarily Poisson.

The model proposed here has several distinctive advantages; for instance, each
model entity has an immediate and clear translation into a microstructural quantity
(there are no hidden variables of any kind); moreover, it is very parsimonious
(leading to a many sound mathematical results); finally, the model is very flexible.

In what follows, section 1 will present the model, section 2 will be devoted to
pricing European options, and section 3 will report a discussion of the results. We
would like to stress that the derivations and computations below will involve only
elementary probabilistic methods.

1 An Elementary but Comprehensive Model for Tick-by-tick
Price Fluctuations

Let S(t) denote the price of an asset at time t and let X(t) = log(S(t)/S(0)) be
the corresponding logarithmic price (or log-price), where S(0) = S(t = 0) will be
assumed to be S(0) = 1 without loss of generality. We can take as S(0) the opening
price of the asset after the opening auction and before the beginning of continuous
trading in a stock market. After continuous trading begins, trades will take place
at specific epochs {Ti}M

i=1 where M denotes the total number of trades within the
day. We shall further assume that T0 = 0. The trading epochs can be seen as a
point process (see Daley and Vere-Jones (1998)). Our first assumption is that
these epochs are a renewal process (see Cox (1970)), meaning that the inter-trade
durations Ji = Ti−Ti−1 are independent and identically distributed (i.i.d.) positive
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random variables. Notice that, for the n-th epoch, one has

Tn =
n

∑
i=1

Ji, (6)

even if the i.i.d. hypothesis is not satisfied. If the durations {Ji}∞
i=1 are i.i.d. random

variables, there is a simple and convenient relationship between the distribution of
durations and the distribution of epochs. Indeed, given two independent random
variables U and V with respective cumulative distribution functions FU(u) =
P(U ≤ u) and FV (v) = P(V ≤ v), one can compute the cumulative distribution
function FW (w) of their sum W = U +V , which turns out to be the the measure
convolution (a.k.a. Lebesgue-Stieltjes convolution) of the two distributions for
U and V (see Bingham et al. (1987)). Throughout this paper, we shall use the
so-callled indicator-function method, a procedure allowing to write probabilities as
expectations. Therefore, it is instructive to show in detail how the distribution of
the sum of two independent random variables can be derived, even if this is a well-
know result. The first step is to notice that the joint cumulative distribution function
FU,V (u,v) is given by FU,V (u,v) = FU(u)FV (v) as a consequence of independence.
The second step is to recall that the probability of an event A is given by the
expected value of the indicator function IA, namely P(A) = E(IA) and that the
indicator function of the intersection of two events A and B is the product of the
parent indicator functions, i.e. we have IA∩B = IAIB. The last step is to notice that
the event {W ≤ w} is equivalent to {U ∈ R}∩{V ≤ w−U}. Therefore, one has
the following chain of equalities

FW (w) = P(W ≤ w) = E
(
I{W≤w}

)
= E

(
I{U∈R}I{V≤w−U}

)
=

∫
u∈R

∫
v≤w−u

dFU,V (u,v) =
∫

u∈R

∫
v≤w−u

dFU(u)dFV (v)

=
∫

u∈R
dFU(u)

∫
v≤w−u

dFV (v) =
∫

u∈R
FV (w−u)dFU(u). (7)

To denote the convolution, which is an operation symmetric in U and V , we can
introduce the symbol ?:

FW (w) =
∫

u∈R
FV (w−u)dFU(u) =

∫
v∈R

FU(w− v)dFV (v)

= FU ?FV (w) = FV ?FU(w). (8)

This formula holds true also if U and V are positive random variables. In such
a case one has that FU(u) = 0 for u < 0 and that FV (v) = 0 for v < 0 (notice that
FU(0) and FV (0) may be positive). Then equation (8) becomes

FW (w) =
∫ w

0
FV (w−u)dFU(u) =

∫ w

0
FU(w− v)dFV (v). (9)
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Now, let FJ(x) denote the cumulative distribution function of the duration, i.e.
FJ(t) = P(J ≤ t); moreover, let FTn(t) denote the cumulative distribution function
of the n-th epoch, i.e. FTn(t) = P(Tn ≤ t). Then, FTn(t) is given by the n-fold
convolution of FJ(t), that is by

FTn(t) = F?n
J (t). (10)

Equation (10) can be proved by means of the iterated application of equation (9).
A price S(Ti) corresponds to each trading epoch Ti. Let Yi = log(S(Ti)/S(Ti−1))

represent the tick-by-tick logarithmic return, then the log-price X(t) is given by

X(t) =
N(t)

∑
i=1

Yi, (11)

where the counting process N(t) is defined as

N(t) = max{n : Tn ≤ t}, (12)

and counts the number of trades since the beginning of continuous trading. The
relationship between the log-price and the price is

S(t) = eX(t) = e∑
N(t)
i=1 Yi =

N(t)

∏
i=1

eYi. (13)

We shall further assume that {Yi}N(t)
i=1 is a sequence of i.i.d. random variables such

that Ȳ = E(Yi) < ∞. Let Ft denote the natural filtration of the process S(t) up to
time t, this being the σ -field generated by the random variables T1, . . . ,TN(t) and
Y1, . . . ,YN(t).

In general, with the above hypotheses, S(t) given by equation (13) is not a
martingale. In fact one has for s < t

E(S(t)|Fs) = E

(
N(t)

∏
i=1

eY
i |Fs

)
=

N(s)

∏
i=1

eYiE

(
N(t)

∏
i=N(s)+1

eY
i |Fs

)

= S(s)
N(t)

∏
i=N(s)+1

E
(
eYi
)
, (14)

and the martingale condition is statisfied only if for every s, t such that s < t, one
has

N(t)

∏
i=N(s)+1

E
(
eYi
)

= 1; (15)
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this is the case if E(eYi) = 1. However, one can always find an equivalent martingale
measure (e.m.m.). One can replace Yi in equation (11) with Yi− a defining the
following processes, a modified log-price process

X̃(t) =
N(t)

∑
i=1

(Yi−a), (16)

as well as the corresponding modified price process

S̃(t) = eX̃(t). (17)

Now, if a = log(E(eYi)), one has that S̃(t) is a martingale. In fact, one can write

E(S̃(t)|Fs) = S̃(s)
N(t)

∏
i=N(s)+1

E
(
eYi−a)= S̃(s). (18)

Armed with this e.m.m., it is possible to move on and price options written on the
process defined above using the martingale method.

2 Martingale Option Pricing

For an intra-day time horizon, we can safely assume that the risk-free interest rate
is zero; even if such a return rate were rY = 10% on a yearly time horizon, meaning
that the institution or government issuing this instrument is close to default (so
that, it would not be so riskless, after all) or that the inflation rate is quite high, the
interest rate for one day would be rd ≈ 1/(10 ·200) = 5 ·10−4 (200 is the typical
number of working days in a year) and this number has still to be divided by 8
(number of trading hours) and then by 3600, if the goal is approximating the rate at
the time scale of one second. This gives rs ≈ 1.7 ·10−8. On the other hand, typical
tick-by-tick returns in a stock exchange are larger than the tick divided by the price
of the share. Even if we assume that the share is worth 100 monetary units, with
a 1/100 tick size (the minimum price difference allowed), we shall have a return
r larger than 1 · 10−4 and much larger than rs; therefore, it is safe to assume a
vanishing risk-free interest rate.

We shall focus on the price of an intra-day European call option assuming that
the position is taken at a time t coinciding with or close to the beginning of the day
and that it is closed at a later fixed time (the maturity) within the same day, which
we shall denote by TM (not to be confused with the epochs Ti, in general TM is not
an epoch). Notice that the condition t < TM must always be fulfilled.

Let C̃(S(TM)) represent the pay-off of a European call option at maturity. For
instance, given the strike price K, the pay-off of a plain-vanilla European option
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is C̃(S(TM)) = max(0,S(TM)−K). Then, the option price C(t) at a time t < TM is
given by the discounted conditional expected value of the pay-off at maturity with
respect to the e.m.m., that is

C(t) = er(t−Tm)ES̃(C̃(S(TM))|Ft), (19)

where r is the risk-free interest rate. In our case r = 0, so that equation (19)
simplifies to

C(t) = ES̃(C̃(S(TM))|Ft). (20)

In order to evaluate equation (20), we consider two cases:

1. t coincides with a renewal epoch;

2. t does not coincide with a renewal epoch,

with the second case being the only realistic one, but the first one is discussed in
the recent literature as a starting point for developing approximations as in Cartea
(2010).

If the option price is evaluated from a renewal epoch, we can assume that t = 0
without loss of generality and the option price is given by the following integral

C(0) = ES̃(C̃(S(TM))|F0) =
∫

∞

0
C̃(u)dFS̃(TM)(u), (21)

where FS̃(TM)(u) is the cumulative distribution function of the random variable

S̃(TM). In order to obtain this quantity, we can first define

S̃n =
n

∏
i=1

eYi−log(E(eYi)); (22)

S̃n is the product of i.i.d. random variables and its cumulative distribution function
is the n-fold Mellin convolution of FỸ (u), the common cumulative distribution
function of Ỹi = Yi− log(E(eYi)); the Mellin transform is discussed in Springer and
Thompson (1966) and in Lomnicki (1967). We shall write

FS̃n
(u) = F?M n

Ỹ
(u). (23)

Since the number of trades from 0 to TM can be an arbitrary integer, by purely
probabilistic arguments, one can show that FS̃(TM)(u) is given by

FS̃(TM)(u) =
∞

∑
n=0

P(N(TM) = n)F?M n
Ỹ

(u), (24)

www.economics-ejournal.org 7
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as a consequence of the mutual independence of tick-by-tick log-returns and inter-
trade durations. Notice that the zero-fold Mellin convolution is a cumulative
distribution function which is 0 for u = 0 and 1 for u > 0. To see that this is the
case, consider equation (21) when it is known that n = 0. Then S(TM) = S(0) = 1
and the payoff is C̃(S(0)) = C̃(1). However, the probability P(N(TM) = 0) of
the event N(TM) = 0 decreases with increasing TM and the contribution to the
conditional expectation (21) is P(N(TM) = 0)C̃(1). In order to use equation (24),
we still need to compute the probabilities of the events {N(TM) = n}. This can be
again done by means of the indicator-function method. In fact, one has that

{N(TM) = n}= {Tn ≤ TM}∩{Tn+1 > TM}. (25)

Therefore, the following chain of equalities holds true

P(N(TM) = n) = P({Tn ≤ TM}∩{Tn+1 > TM}) = E
(
I{Tn≤TM}I{Tn+1>TM}

)
= E

(
I{Tn≤TM}I{Jn+1>TM−Tn}

)
=
∫ TM

0

∫
∞

TM−u
dF?n

J (u)dFJ(w)

=
∫ TM

0
(1−FJ(TM−u))dF?n

J (u). (26)

In the general case in which t is a generic observation time not coinciding with
a renewal epoch, things become trickier, even if we are using a simplified and
stylized model. At time t, both the price S(t) and the number of trades N(t) = nt
are known. We can consider the random variable ∆X(t,TM) = X(TM)−X(t) =
log(S(TM)/S(t)). If S(t) is used as numeraire (that is if we set S(t) = 1), Equation
(21) modifies to

C(t) = ES̃(C̃(S(TM))|Ft) =
∫

∞

0
C̃(u)dFnt

S̃(TM)
(u), (27)

where the cumulative distribution function Fnt

S̃(TM)
(u) is given by

Fnt

S̃(TM)
(u) =

∞

∑
n=0

P(N(TM)−N(t) = n|N(t) = nt)F
?M n

Ỹ
(u). (28)

Again, as in the case of equation (21), this equation can be justified by purely
probabilistic arguments. However, one has to compute the conditional probability
P(N(TM)−N(t) = n|N(t) = nt). As derived in Kaizoji et al. (2011), this is given
by

www.economics-ejournal.org 8
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P(N(TM)−N(t) = n|N(t) = nt) =
∫ TM−t

0
P(N(TM)−N(t +u) = n−1)dFJt,nt

(u),

(29)

where P(N(TM)−N(t +u) = n−1) is given by equation (26) with TM replaced by
TM− (t +u) and FJt,nt

(u) = P(Jt,nt ≤ u) is the cumulative distribution function
of the residual life-time at time t conditioned on the fact that there were nt trades
up to time t which we denote by Jt,nt . The residual life time is the time interval
from t to the next renewal epoch TN(t)+1. As discussed in Kaizoji et al. (2011), its
distribution crucially depends on what is known of the previous history. In our
specific case, as anticipated above, it is meaningful to assume that we do know the
total number of trades up to time t, as this is usually public information. Before
deriving FJt,nt

(u), it is important to discuss the meaning of equation (29). The
right-hand side contains the probability of having n−1 trades between the renewal
epoch t + u and maturity TM. Since the value u of the residual life time Jt,nt is
not known, this probability must be convolved with the probability of the event
{Jt,nt = u}. It turns out that even the cumulative distribution function FJt,nt

(u) can
be found by direct elementary probabilistic tools without using Laplace-tranform
methods. We can see that the event {Jt,nt ≤ u} can be described in term of a
conditional event (see de Finetti (1995))

{Jt,nt ≤ u}= {Tnt+1− t ≤ u|N(t) = nt}. (30)

Equation (30) can be written in terms of epochs using (25)

{Jt,nt ≤ u}= {Tnt+1− t ≤ u|{Tnt ≤ t}∩{Tnt+1 > t}}. (31)

One can now use the definition of conditional probability and the indicator-function
method to compute FJt,nt

(u) directly. First of all, one can write

FJt,nt
(u) = P(Jt,nt ≤ u) = P(Tnt+1− t ≤ u|{Tnt ≤ t}∩{Tnt+1 > t})

=
P({Tnt+1− t ≤ u}∩{Tnt ≤ t}∩{Tnt+1 > t})

P({Tnt ≤ t}∩{Tnt+1 > t})
, (32)

and the denominator is already given by equation (26), meaning that one has

P({Tnt ≤ t}∩{Tnt+1 > t}) =
∫ t

0
(1−FJ(t−w))dF?nt

J (w). (33)

In order to compute the numerator, one can use the following equality between
events

{Tnt+1−t ≤ u}∩{Tnt ≤ t}∩{Tnt+1 > t}= {Tnt ≤ t}∩{t−Tnt < Jnt+1≤ t +u−Tnt},

www.economics-ejournal.org 9
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(34)

and obtain that

P({Tnt+1− t ≤ u}∩{Tnt ≤ t}∩{Tnt+1 > t}) =
P({Tnt ≤ t}∩{t−Tnt < Jnt+1 ≤ t +u−Tnt}) =

E
(

I{Tnt≤t}I{t−Tnt <Jnt+1≤t+u−Tnt }

)
=

∫ t

0

∫ u+t−w

t−w
dFTnt

(w)dFJ(v) =∫ t

0

∫ u+t−w

t−w
dF?nt

J (w)dFJ(v) =∫ t

0
(FJ(u+ t−w)−FJ(t−w))dF?nt

J (w). (35)

Combining equations (33) and (35), one finally gets from equation (32)

FJt,nt
(u) =

∫ t
0(FJ(u+ t−w)−FJ(t−w))dF?nt

J (w)∫ t
0(1−FJ(t−w))dF?nt

J (w)
. (36)

Equation (36) is the last ingredient needed to determine the option price in the
general case (27). Finally, note that equation (27) yields equation (1) when J ∼
exp(λ ) and Y ∼ N(µ,σ2) (see Baleanu et al. (2012), chapter 7).

3 Discussion and Outlook

Equation (27) is our main results and gives a martigale price for intraday European
options when assuming the parsimonious model of section 1; we have been able
to explicitly derive all the terms in that equation by repeated application of the
indicator-function method. Even if such an equation may seem cumbersome, we
already showed that it can be used in practice in Kaizoji et al. (2011). A more
detailed numerical analysis will be the subject of future research.

However, some assumptions in section 1 are unrealistic even if they ensure
analytical tractability. For example, it is assumed that the durations {Ji}∞

i=1 and
the tick-by-tick log-returns {Yi}∞

i=1 are i.i.d. random variables and that they are
mutually independent. In Engle and Russel (1997). Engle and Russell (1998),
Raberto et al. (2002) and Meerschaert and Scalas (2006), as well as in many other
empirical papers on financial econometrics (see Campbell et al. (1996)), it is shown
that this is not the case. There is heteroscedasticity and there is dependence between
the activity and the volatility. Suitable mixture models based on the compound
Poisson processes can take all that into account as discussed in Scalas (2007), but
models using heteroscedastic procesess subordinated to Hawkes processes could

www.economics-ejournal.org 10
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be a viable alternative as well (see Muni Toke and Pomponio (2011) and references
therein).

This paper is the crowning achievement of an activity on modelling ultra-high
frequency financial data by means of continuous time random walks1 that started
back in 1998. As briefly discussed above, these processes allow the derivation of
many non-trivial analytical results, but they are not general enough to take into
account all the features of high-frequency financial data. In 1998, the idea was to
use these processes for intra-day option pricing, but only in 2011, with the results
published in Kaizoji et al. (2011), it became possible to present martingale option
pricing in the simple way based on renewal theory outlined in this paper.
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