
Gürtler, Marc; Stolpe, Julia

Working Paper

Piecewise continuous cumulative prospect theory
and behavioral financial engineering

Working Paper Series, No. IF37V1

Provided in Cooperation with:
Technische Universität Braunschweig, Institute of Finance

Suggested Citation: Gürtler, Marc; Stolpe, Julia (2011) : Piecewise continuous cumulative
prospect theory and behavioral financial engineering, Working Paper Series, No. IF37V1,
Technische Universität Braunschweig, Institut für Finanzwirtschaft, Braunschweig,
https://doi.org/10.2139/ssrn.1965558

This Version is available at:
http://hdl.handle.net/10419/55253

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.2139/ssrn.1965558%0A
http://hdl.handle.net/10419/55253
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Electronic copy available at: http://ssrn.com/abstract=1965558

 
 

 

Piecewise Continuous Cumulative Prospect Theory 

and 

Behavioral Financial Engineering 

 

Marc Gürtler* and Julia Stolpe** 

 

Abstract:  

We extend the continuous Cumulative Prospect Theory (CPT) by considering piecewise con-

tinuous distributions with a finite number of jump discontinuities. Such distributions are rele-

vant in practice, for example, within the framework of financial engineering since cash flow 

distributions of most types of derivatives are only piecewise continuous. In addition, we ex-

pand the model with a (piecewise) continuous version of hedonic framing which is, until now, 

only available in a discrete model setting. We show how to apply the model to a broad class 

of structured products. Finally, we apply Prospect Theory (PT), CPT, and expected utility 

theory to a set of different real-life certificates with piecewise continuous and discrete distri-

butions in order to analyze whether there are any significant differences between the theories, 

and which theory is able to explain the demand behavior of a market participant best. As a 

result, we recommend the use of the piecewise continuous version of CPT to design products 

within the framework of behavioral financial engineering. 

 

Keywords: Continuous Cumulative Prospect Theory, Continuous Hedonic Framing, 

Behavioral Finance, Financial Engineering  

 

JEL classification: G31, G32, G35 

 

 
* 
 
Professor Dr. Marc Gürtler 
Braunschweig Institute of Technology 
Department of Finance 
Abt-Jerusalem-Str. 7 
38106 Braunschweig 
Germany  
phone: +49 531 3912895 
fax: +49 531 3912899 
e-mail: marc.guertler@tu-bs.de 
 

 
**

 
Julia Stolpe 
Braunschweig Institute of Technology 
Department of Finance 
Abt-Jerusalem-Str. 7 
38106 Braunschweig 
Germany  
phone: +49 531 3912897 
fax: +49 531 3912899 
e-mail: j.stolpe@tu-bs.de 

  



Electronic copy available at: http://ssrn.com/abstract=1965558

 
 

 

Piecewise Continuous Cumulative Prospect Theory  

and 

Behavioral Financial Engineering 

 
 

 

Abstract:  

We extend the continuous Cumulative Prospect Theory (CPT) by considering piecewise con-

tinuous distributions with a finite number of jump discontinuities. Such distributions are rele-

vant in practice, for example, within the framework of financial engineering since cash flow 

distributions of most types of derivatives are only piecewise continuous. In addition, we ex-

pand the model with a (piecewise) continuous version of hedonic framing which is, until now, 

only available in a discrete model setting. We show how to apply the model to a broad class 

of structured products. Finally, we apply Prospect Theory (PT), CPT, and expected utility 

theory to a set of different real-life certificates with piecewise continuous and discrete distri-

butions in order to analyze whether there are any significant differences between the theories, 

and which theory is able to explain the demand behavior of a market participant best. As a 

result, we recommend the use of the piecewise continuous version of CPT to design products 

within the framework of behavioral financial engineering. 

 

Keywords: Continuous Cumulative Prospect Theory, Continuous Hedonic Framing, 

Behavioral Finance, Financial Engineering  

 

JEL classification: G31, G32, G35 

 



1 
 

A central task in the context of financial engineering is the customer-oriented development of 

financial products. Typical in this context are so-called structured products that are character-

ized by a combination of individual financial instruments such as stocks, bonds, and deriva-

tives. The most relevant criterion when designing such products is the acceptance of the cus-

tomers. Against this background, it is less useful to evaluate such products on the basis of a 

normative theory of rational decision making like the expected utility theory (EUT) of von 

Neumann and Morgenstern (1944). Rather, it seems preferable to base such an evaluation on 

descriptive decision theories to consider the actual demand behavior of investors. In this con-

text, the Prospect Theory (PT), suggested by Kahneman and Tversky (1979), and the Cumula-

tive Prospect Theory (CPT), proposed by Tversky and Kahneman (1992), are probably the 

most successful descriptive theories capturing the preference of decision makers under risk.  

 

Especially from a theoretical perspective, CPT is often considered as the more suitable theory 

in comparison to PT. Mainly, PT has been criticized for the violation of the first-order sto-

chastic dominance. A further condition satisfied by CPT, in contrast to PT, is continuity, i.e. 

small changes in a lottery only produce small differences in utility (Rieger and Wang 2008). 

Furthermore, Fennema and Wakker (1997) confirm that CPT is not merely a mathematical 

improvement over PT, but also fits better with experimental data. CPT permits the modeling 

of diminishing sensitivity and gives a better explanation of several empirical findings. How-

ever, not all empirical studies confirm the outperformance of CPT in comparison with PT. 

There is a number of empirical investigations supporting PT in predicting preference patterns 

(Camerer and Ho 1994, Wu 1994, Humphrey 1995, Birnbaum and McIntosh 1996, Wu and 

Gonzales 1996, Birnbaum and Navarrete 1998, Luce 1998, Birnbaum und Martin 2003, Birn-

baum 2005). Gonzales and Wu (2003) find that both PT and CPT can account for some stand-

ard empirical patterns. Wu, Zhang, and Abdellaoui (2005) show that it depends on the design 

of the gambles which version of the Prospect Theory fits better. Choices of gambles with a 

certainty effect seem to be consistent with both theories, whereas gambles without involving a 

certainty effect are consistent with PT only. In sum, from an empirical point of view, there are 

no unequivocal conclusions whether PT or CPT should be considered as the more favored 

theory. Against the background of the contentious discussion about the suitability of the sin-

gle theories, one motivation of this paper is to make a comparative analysis of EUT, PT, and 

CPT on the basis of structured products to analyze which theory is most suitable within the 

framework of behavioral financial engineering. 
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Most of the literature dealing with the subjective evaluation of financial instruments on the 

basis of PT or CPT focuses on a discrete modeling of the probability distributions (cf. Breuer 

and Perst 2007 as well as Breuer, Hauten, and Kreuz 2009). However, a more precise descrip-

tion of real decision making requires a generalization of the evaluation approaches to continu-

ous distributions. Therefore, Rieger and Wang (2008) have extended the PT to continuous 

distributions. Also the extension of CPT to continuous distributions does not cause any prob-

lems from a theoretical point of view. However, the cash flow distributions of structured 

products are usually only piecewise continuous with a finite number of jump discontinuities. 

Even if the implementation of such distributions is unproblematic on the basis of the continu-

ous PT of Rieger and Wang (2008), the implementation on the basis of the continuous CPT is 

analytically and numerically hard to handle since necessary derivatives are not available. 

Against this background, we extend the CPT by considering piecewise continuous distribu-

tions. The resulting model is easy to implement and enables us to develop an evaluation for-

mula of the piecewise continuous CPT for a broad class of structured products.  

 

Furthermore, since decision makers are subject to the phenomenon of mental accounting in 

combination with hedonic framing, there exist approaches that incorporate these phenomena 

into the discrete version of the CPT (Breuer and Perst 2007). The concept of mental account-

ing introduced by Thaler (1980) and Tversky and Kahneman (1981) refers to the tendency of 

decision makers to handle different mental accounts to which they assign specific types of 

outcomes. Hedonic framing, according to Thaler (1985, 1999), describes the finding that deci-

sion makers take the frame – either “integration of certain payments over different mental 

accounts” or “separation of certain payments” – that leads to the maximum subjective value. 

Since a corresponding rule in connection with the (piecewise) continuous versions of PT and 

CPT is still missing, we develop a (piecewise) continuous hedonic framing rule applicable to 

both theories. 

 

Consequently, we base the comparative analysis on EUT, PT, and CPT for discrete and 

piecewise continuous distributions with and without the consideration of hedonic framing. 

The analysis is applied to selected structured products. Precisely, we focus on so-called dis-

count, index, capital guarantee, outperformance, and sprint certificates.  

 

Summarized, the main contributions of the article are as follows: First, we develop an evalua-

tion formula of CPT for a broad class of piecewise continuous cash flow distributions which 
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is easy to implement. Second, we develop a piecewise continuous hedonic framing rule that is 

applicable to PT and CPT. Third, we apply the different versions of PT, CPT, and EUT on 

real-life certificates and analyze on the basis of different risk-return profiles, which theory is 

best in explaining the demand behavior of the investors for this asset class.  

 

The remainder of this paper is structured as follows: Section 1 contains a brief description of 

PT and CPT for discrete and continuous distributions. Within the framework of Section 2 we 

develop the CPT model for piecewise continuous distributions. Section 3 deals with the de-

velopment of a hedonic framing rule in case of PT and CPT for (piecewise) continuous distri-

butions. In Section 4, we present the probability distributions of a broad class of structured 

products and selected real-life certificates which are necessary for the application of the PT 

and CPT. Section 5 describes the results of our comparative analysis and Section 6 concludes. 

 

1 Prospect and Cumulative Prospect Theory  

1.1 Prospect and Cumulative Prospect Theory for Discrete Distributions 

Let S = {s1, …, sn} be the finite set of possible future states of nature and zi describes the po-

tential outcome that the occurrence of state si, i = 1, …, n, entails. A key feature of PT is that 

decision makers evaluate the possible outcomes z = (z1, …, zn) in relation to a reference point 

xref. Whereas the traditional EUT is based on the final wealth level z, PT relates to changes in 

wealth defined as xi :=  zi – xref, i = 1, …, n. For simplification, it is assumed that xi ≤ xj for 

i, j = 1, …, n with i < j, and xi < 0, i = 1, …, k, and xj
 ≥ 0, i = k+1, …, n. A prospect or a lot-

tery is a vector X = (x1, p1; …; xn, pn), whereby pi denotes the subjective probability a deci-

sion maker assigns to the occurrence of future state si, i = 1, …, n. Moreover, PT allows for 

different risk behavior of decision makers in the range of losses (xi < 0) and the range of gains 

(xi > 0). The tendency of a risk-seeking attitude towards losses and a risk-averse attitude to-

wards gains leads to a value function v that is convex over losses and concave over gains with 

a “kink” at x = 0. The probabilities p = (p1, …, pn) are transformed by an S-shaped probability 

weighting function w. This shape incorporates the empirical finding that decision makers of-

ten tend to overweight low and underweight high probabilities. Initially, Kahneman and 

Tversky (1979) define a PT-value for a lottery with at most two non-zero outcomes. Their 

formula is generalized to the lottery X = (x1, p1; …; xn, pn) with n possible outcomes 
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 ( ) ( ) ( )
n

i i
i 1

PT X w p v x
=

= ⋅ .1 (1) 

Tversky and Kahneman (1992) proposed the following functional form of the value function 

 ( )
( )ß

x , x 0,
v x

x , x 0,

α ≥= 
−λ ⋅ − <

 (2) 

with α ≈ β ≈ 0.88 describing the degree of diminishing sensitivity and λ ≈ 2.25 measuring 

the degree of loss aversion. There are several suggestions of the concrete formulation of the 

probability weighting functions w, e.g. the parametric operationalization of Tversky und 

Kahneman (1992) 

 ( )
( )( )

γ

γ 1/γγγ

p
w p ,

p 1 p
=

+ −
 (3) 

with γ+  = 0,61 and γ−  = 0,69 for gains and losses, respectively. In the following, we consider 

the parametric operationalization of the probability weighting function suggested by Lat-

timore, Baker, and Witte (1992) 

 ( )
( )

( )
( )

( )
( )

,

p
w p : , if x 0,

p 1 pp
w p

p 1 p p
w p : , if x 0.

p 1 p

+

++

−

−−

+ γ
+

γ+ γγ

δ γ γγ − γ
−

γ− γ

 δ ⋅= >
δ ⋅ + −δ ⋅ = = 

δ ⋅ + − δ ⋅ = < δ ⋅ + −

 (4) 

The probability weighting function (4) depends on the parameters δ and γ that may be differ-

ent for gains and losses. δ represents the so-called attractiveness that measures the absolute 

value of the probability weighting function. The parameter γ  describes the discriminability 

that characterizes to which degree individuals distinguish among different probabilities (for 

more details see Gonzales and Wu 1999). In the following, we consider a situation under risk 

in which all probabilities are exogenously given. Therefore, the empirical study of Abdellaoui 

(2000) provides the parameter estimations +δ  = 0.65, +γ  = 0.60, −δ  = 0.84 and −γ  = 0.65. 

Since, in most real applications, the probabilities are not given exogenously, decision makers 

have to estimate them. The uncertainty in connection with the estimation of the probabilities 

is called ambiguity. The attitude towards ambiguity can be reflected in the shape of the prob-

ability weighting function. Depending on the investor’s confidence in his or her own probabil-

ity judgements, the parameters δ and γ have different values. Kilka and Weber (2001) point 

                                                 
1 The generalization for n outcomes is suggested by Kahneman and Tversky (1979) and has been frequently used 
by various authors, e.g. Schneider and Lopes (1986), Wakker (1989), Camerer and Ho (1994). 



5 
 

out that the subjectively felt competence with regard to the source of uncertainty being evalu-

ated has a positive influence on discriminability and attractiveness, since an increasing subjec-

tively felt competence leads to a greater confidence in the investor’s probability judgements, 

ceteris paribus. The empirical study of Abdellaoui et al. (2005) provides the typical parameter 

estimations +δ  = 0.975, +γ  = 0.832, −δ  = 1.345 and −γ  = 0.842 for decisions under ambigui-

ty. The higher values for discriminability and attractiveness in comparison to decisions under 

risk lead to the conclusion that ambiguity decision makers systematically overestimate their 

competence. The values of Abdellaoui (2000) can be interpreted as a decision with low sub-

jectively felt competence level, whereas the values according to Abdellaoui et al. (2005) refer 

to a decision with high subjectively felt competence level from the investor’s point of view. 

 

A fundamental critical point of PT is the violation of first-order stochastic dominance. On this 

account, Tversky and Kahneman (1992) propose a modified version of the PT, the Cumula-

tive Prospect Theory, that is not marked with this blemish and is defined for more than two 

outcomes in the first place. For this purpose, the authors introduce decision weights iπ , i = 

1, …, n, that are defined for cumulative probabilities in combination with probability 

weighting functions w −  and w +  for losses and gains by 

 
( ) ( )
( ) ( )

i 1 i 1 i 1

i

i i n i 1 n

: w p ... p w p ... p , if i {1,..., k},
:

: w p ... p w p ... p , if i {k 1,..., n}.

− − −
−

+ + −
+

π = + + − + + ∈π = 
π = + + − + + ∈ +

 (5) 

On this basis, the CPT-utility for a finite lottery X = (x1, p1; …; xn, pn) is given as 

 ( ) ( )
n

i i
i 1

CPT X v x
=

= π ⋅ . (6) 

1.2 Prospect and Cumulative Prospect Theory for Continuous Distributions 

The great weakness of PT is that in case of an infinite number of (continuous distributed) out-

comes the PT-formula (1) is not applicable. Therefore, Rieger and Wang (2008) have extend-

ed the PT-approach to non-discrete lotteries. Let Z  be the continuous outcome random varia-

ble and xref the reference point. The continuous random variable X  denotes the continuous 

relative outcome refX : Z x= −  . Let 
X

f   be the probability density function of X . According to 

Rieger and Wang (2008), the PT-utility for the continuous lottery c
X

X : (X, f )= 
  is expressed 

as 
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 ( ) ( ) ( )
( )

Xc

X

v x f x dx
PT X

f x dx

ξ

ξ

⋅
= 






, (7) 

with ξ ∈ (0,1) and  

 
( )

0

w
lim Cξε→

ε
=

ε
 (8) 

for some finite number C > 0 and a probability weighting function w. 

 

The PT-formulation (7) has some features worth mentioning. First, its derivation is based on 

the discrete PT-formulation of Karmakar (1978) 

 ( )
( ) ( )

( )

n

i i
i 1

n

i
i 1

w p v x
PT X

w p

=

=

⋅
=



, (9) 

which differs from the well-known PT-valuation formula (1) suggested by Kahneman and 

Tversky (1979) in the normalization by the sum of weighted probabilities. Rieger and Wang 

(2008) show that this normalization is necessary to ensure a well-defined expression in the 

limit. Second, the PT-approach (7) is independent of the probability weighting function w and 

third, the probability density 
X

f   function has the exponent ξ. The second point can be consid-

ered as an advantage in the sense that any concrete probability weighting function needs to be 

determined. Conversely, the probability weighting function helps to display preference pat-

terns. Against this background, the question arises how far this disclaimer of the probability 

weighting function constitutes a disadvantage. In certain ways, a transformation of the proba-

bility takes place by the transformation of the density function 
X

(f )ξ
 . To our knowledge, it is 

still not known if thereby the observed preference patterns are reflected. Additionally, from 

the third point arises the problem of choosing an arbitrary value ξ ∈ (0,1) that has to satisfy 

condition (8). Within the framework of our investigation, we use the probability weighting 

function wδ,γ according to (4). We set ξ = γ and get 

 
( )

( )( )
,

0 0

w
lim lim

1

γ
δ γ

γ γγ γε→ ε→

ε δ⋅ε= = δ
ε ε ⋅ δ ⋅ε + − ε

. (10) 

Using the parameter estimation in the case of low subjective felt competence, that means the 

parameter estimation according to Abdellaoui (2000) ( +δ  = 0.65, +γ  = 0.60, −δ  = 0.84 and −γ  

= 0.65), and in the case of high subjective felt competence according to Abdellaoui (2005)  

( +δ  = 0.975, +γ  = 0.832), condition (8) is respectively fulfilled. Since the PT-evaluation ap-
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proach does not incorporate a probability weighting function, it seems to be impossible to 

depict different subjective felt competence levels as with CPT. However, we use the different 

determinations of γ for the interpretation of different competence levels. More precisely, we 

calculate PT-values for continuous lotteries using +γ  = 0.60 and −γ  = 0.65 and associate cal-

culated PT-values with an investor who subjectively feels a low competence. Conversely, we 

refer PT-values calculated on the basis of +γ  = 0.832 to an investor with a high subjectively 

felt competence level.  

 

Whereas the extension of PT to a continuous distribution is not necessarily easy, in the con-

text of CPT, the transition from a discrete to a continuous probability distribution causes no 

problems. As in the case of PT, we consider the continuous random variable of relative out-

comes X . The generalization of CPT (6) for the continuous lottery c
X

X (X, f )= 
  is given as 

 ( ) ( ) ( )( ) ( ) ( )( )
0

c
X X

0

d d
CPT X v x w F x dx v x w 1 F x dx,

dx dx

∞
− +

−∞

= ⋅ − ⋅ −    (11) 

where w −  and w +  are again the probability weighting functions for losses and gains, respec-

tively, and 
X

F  denotes the probability distribution function of X  (e.g. Rieger and Wang 

2006). Consequently, from a theoretical perspective, the generalization of CPT is possible 

without any problems. However, the same does not apply to the computational feasibility. 

CPT for continuous distributions is numerically and analytically quite difficult to implement. 

Rieger and Wang (2008) particularly underline this point when they emphasized that their 

continuous approach of PT outperforms the CPT-formula (11).  

 

Barberis and Huang (2008) suggest a simplification of equation (11) by 

 ( ) ( )( ) ( ) ( )( ) ( )
0

c
X X

0

CPT X w F x dv x w 1 F x dv x
∞

−∞

= − + −   . (12) 

For this approach, the authors use the probability weighting function (3) according to Tversky 

and Kahneman (1992) and assume that the parameter γ (controlling the discriminability) does 

not differ for gains and losses, i.e. +γ  = −γ . On this basis it follows that the probability 

weighting functions for gains and losses also correspond, w +  = w .−  Since, however, parame-

ter estimations for +γ  and −γ  provide slightly different values (e.g. Tversky and Kahneman 

1992, Abdellaoui 2000), the CPT-formulation (12) can only be considered as an approxima-

tion.  
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However, the numerical problems when implementing the CPT are not considerable if the 

distribution 
X

F  is continuous and 
X

F (x) (0,1)∈  for all x. The problem within the framework 

of the numerical implementation of the CPT arises if the distribution 
X

F  is piecewise continu-

ous with a finite number of jump discontinuities and 
X

F (x) 0=  or 
X

F (x) 1=  for at least an x. 

The reason is that in the case of jump discontinuities the first derivatives of the function com-

positions 
X

w F−
  and 

X
w (1 F )+ −   do not exist in the whole domain and the probability 

weighting function according to (4) is not differentiable at p = 0 and p = 1. Since these prob-

lems do not concern the PT we only show how to handle these problems in the context of the 

CPT in the next section. 

 

2 Cumulative Prospect Theory for Piecewise Continuous Distributions 

We consider a general class of probability distribution functions 
X

F  which can be represented 

for x ∈   according to 

 ( ) ( ) ( ) ( )
n 1 m

i i j j jX S
i 0 j 1

F x H x F (x) H x
+

= =

= α ⋅ − ξ + β ⋅ φ ⋅ − ψ    (13) 

where n, m ∈ , i j,α β ∈ , i j, { }ξ ψ ∈ ∪ −∞ , j :φ →   differentiable functions (i = 0, 

…, n+1; j = 1,…, m), 
S

F : (0,1)→   a differentiable probability distribution, and H the Heavi-

side function2. Furthermore, we assume 0 i n 1+ξ < ξ < ξ  for all i = 1, …, n, 0 j n 1+ξ ≤ ψ ≤ ξ  for all 

j = 1, …, m, and ( )X
F x 1=  for x ≥ ξn+1. This immediately implies ( )X

F x 0=  for x < ξ0. If 

α0 = 0 and αn+1 = 0 we set ξ0 = −∞ and ξn+1 = +∞, respectively. Altogether, we consider a 

broad class of distribution functions including piecewise continuous functions with a finite 

number of jump discontinuities.  

 

As mentioned above, we consider the Dirac delta distribution δ because one relevant charac-

teristic of this distribution is 

 ( ) ( )(y) y x dy x
∞

−∞

φ ⋅δ − = φ  (14) 

                                                 
2 The Heaviside function is a non-continuous function whose value is zero for negative arguments and one for 
positive arguments. The value of the function at zero is ambiguous. Usually, the value is defined as H(0) = 0, 
H(0) = 0.5, or H(0) = 1. Within the framework of the present paper we set H(0) = 1. 
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for an integrable function :φ →   and x ∈ .3 This issue leads to an interesting property 

of the Heaviside function if we only consider functions φ with 
x
lim( (x)) 0

→∞
φ = : 

( ) ( ) ( )
x

d
(y) H y x dy '(y) H y x dy '(y)dy (x) (y) y x dy.

dy

∞ ∞ ∞ ∞

−∞ −∞ −∞

φ ⋅ − = − φ ⋅ − = − φ = φ = φ ⋅δ −     (15) 

Consequently, the first derivative of the Heaviside function H can be identified (under the 

integral) by the Dirac delta distribution δ.  

Since ( )X
F x 0=  for all 0x ( , )∈ −∞ ξ , ( )X

F x (0,1)∈  for all 0 n 1x [ , )+∈ ξ ξ , and ( )X
F x 1=  for 

all n 1x [ , )+∈ ξ ∞  (with (−∞,−∞) :=  [∞,∞) :=  ∅ and [−∞,ξn+1) :=  (−∞, ξn+1)), we can transform 

X
F  according to 

 ( ) ( ) ( )n 1 0 n 1X X
ˆF x H x F x (H(x ) H(x ))+ += − ξ + ⋅ − ξ − − ξ  , (16) 

where 

 

( )

0 0X

0 n 1X X

n 1 n 1X0

F ( ) ( 0), x ,

F̂ (x) F (x), x ,

lim F ( | |) ( 1), x .

+

+ +ε→

 ξ > < ξ= ξ ≤ < ξ
 ξ − ε < ≥ ξ



 



 (17) 

Since ( )w 0−  = ( )w 0+  = 0 and ( )w 1−  = ( )w 1+  = 1, we may represent 
X

w F−
  and 

X
w (1 F )+ −   according to 

 ( )( ) ( )( ) ( )n 1 0 n 1X X
ˆw F x H(x ) w F x H(x ) H(x )− −

+ += − ξ + ⋅ − ξ − − ξ   (18) 

and  

 ( )( ) ( ) ( )( ) ( )0 0 n 1X X
ˆw 1 F x 1 H(x ) w 1 F x H(x ) H(x )+ +

+− = − − ξ + − ⋅ − ξ − − ξ  . (19) 

Against this background, the derivatives of the probability weighting functions (that are only 

applicable under the integral) can be determined as follows: 

 
( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( )
n 1 0 n 1X X X

0 n 1X

d ˆˆw F x x w F x f x H(x ) H(x )
dx

ˆw F x x x

− −
+ +

−
+

′= δ − ξ + ⋅ ⋅ − ξ − − ξ

+ ⋅ δ − ξ − δ − ξ

  



 (20) 

and 

 
( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( )
0 0 n 1X X X

0 n 1X

d ˆˆw 1 F x x w 1 F x f x H(x ) H(x )
dx

ˆw 1 F x x x ,

+ +
+

+
+

′− = −δ − ξ − − ⋅ ⋅ − ξ − − ξ

+ − ⋅ δ − ξ − δ − ξ

  



 (21) 

                                                 
3 See, e.g., Spall (2003), p. 416. 



10 
 

with δ(∞) = δ(−∞) = 0. For this reason, we may substitute the derivatives ( )( )X
d w F x / dx−

  

and ( )( )X
d w 1 F x / dx+ −   in CPT-representation (11) by (20) and (21) and get under consider-

ation of the δ-property (14):4 

 

( )

( ) ( )( ) ( ) ( )

( )( ) ( )( )

n 1

0

c

n 1 n 1 0 0X X

0 0 n 1 n 1X X

CPT X

ˆˆv x w F x f x dx v( ) 1 H( ) v( ) H( )

ˆ ˆv( ) w F v( ) w F ,

−
+

+

ξ

+ +
ξ

+ +

′= ⋅ ⋅ + ξ ⋅ − ξ + ξ ⋅ ξ

+ ξ ⋅ ξ − ξ ⋅ ξ

  

 

 (22) 

where 

 ( ) ( )
( )

w p , if x 0,
w p :

w 1 p , if x 0.

−

+

 ≤= 
− − >

 (23) 

It remains to determine the integral within the frame of (22). Using the characteristic (15) of 

the delta distribution leads to the following representation of the density function X
f̂   which in 

turn can be applied under the integral for all 0 n 1x ( , )+∈ ξ ξ :5 

( ) ( ) ( ) ( ) ( ) ( )
n m m

i i j j j j j j jX S S
i 1 j 1 j 1

f̂ x x f (x) '(x) H x F (x) x .
= = =

= α ⋅δ − ξ + β ⋅ φ ⋅φ ⋅ − ψ + β ⋅ φ ⋅δ − ψ     (24) 

On this basis and under consideration of property (14), 

 

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

n 1

0

n 1

j

X X

n m

i i i j j j j jX XS
i 1 j 1

m

j j jX S
j 1

ˆˆv x w F x f x dx

ˆ ˆv( ) w' F ( ) v( ) F ( ) w' F ( )

ˆv x w' F x f (x) '(x) dx.

−
+

+

−
+

+

ξ

ξ

= =

ξ

= ψ

′⋅ ⋅

= α ⋅ ξ ⋅ ξ + β ⋅ ψ ⋅ φ ψ ⋅ ψ

+ β ⋅ ⋅ ⋅ φ ⋅φ



 

 

 

  

 

 (25) 

Altogether, we get the following CPT-formula for piecewise continuous distributions: 

                                                 
4 We define 

−

+

− ε

ε→ + ε
= 

b b | |

0a a | |
: lim .  

5 Sf   denotes the density function corresponding to SF . 
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( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( )( )

n 1

j

c

n m

i i i j j j j jX XS
i 1 j 1

m

j j j n 1 n 1 0 0X S
j 1

0 0 n 1 n 1X X

CPT X

ˆ ˆv( ) w' F ( ) v( ) F ( ) w' F ( )

ˆv x w' F x f (x) '(x) dx v( ) 1 H( ) v( ) H( )

ˆ ˆv( ) w F v( ) w F .

−
+

+

= =

ξ

+ +
= ψ

+ +

= α ⋅ ξ ⋅ ξ + β ⋅ ψ ⋅ φ ψ ⋅ ψ

+ β ⋅ ⋅ ⋅ φ ⋅φ + ξ ⋅ − ξ + ξ ⋅ ξ

+ ξ ⋅ ξ − ξ ⋅ ξ

 

 

  

 

 

 (26) 

The remaining integral is determinable on the basis of the CPT formula for continuous distri-

butions without further ado. As a result, we have succeeded in developing a CPT formula for 

piecewise continuous distributions. The application of this formula to a broad class of struc-

tured products is shown in Section 4. Previously, we show how to consider mental accounting 

within the framework of PT and CPT. 

 

3 Mental accounting associated with Prospect Theory and Cumulative Prospect 

Theory 

Within the subjective assessment of outcomes, mental accounting and hedonic framing play 

an important rule. The concept of mental accounting introduced by Thaler (1980, 1985) refers 

to the tendency of decision makers to administer different types of mental accounts to which 

they assign specific outcomes. The outcomes may be mentally aggregated in a single account 

or may be mentally separated over the different ones. Hedonic framing according to Thaler 

(1985, 1999) describes the finding that decision makers take the frame that is accompanied by 

the maximization of subjective assessment. Hence, they combine or separate outcomes in 

such a way that the kind of mental representation – integration or segregation – provides the 

subjectively highest possible value. A formal description of the evaluation of two riskless 

outcomes x  and y  according to the principle of hedonic framing is given by Thaler (1999) as 

 ( ) ( ) ( ) ( ){ }v̂ x, y : max v x y , v x v y= + + .6 (27) 

The expression v(x y)+  describes the integration of the outcomes x  and y  and the term 

v(x) + v(y)  stands for their segregation. This raises the question of how to implement mental 

accounting and hedonic framing if at least one outcome is uncertain. In this context, Breuer 

                                                 
6 Thaler (1999) uses the operator “&” to express the hedonic framing rule, v(∆x&∆y) :=  
max{v(∆x+∆y),v(∆x)+v(∆y)}. Since we think that the description by a two-dimensional function is better suited, 
we introduce the notation v̂( x, y)Δ Δ . 
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and Perst (2007) suggest the following hedonic framing rule, that refers to the assessment of 

an uncertain discrete lottery X = (x1, p1; …; xn, pn) in combination with a certain outcome y : 

 ( ) ( ) ( )
n n

i i i
i 1 i 1

ˆ ˆCPT X, y : v x , y 1 v 0, y
= =

 = π ⋅ + − π ⋅ 
 

  . (28) 

The last summand on the right hand side of (28) is necessary to ensure the result CPT(X, y) = 

v(y) , if xi → 0 for all i = 1, …, n. Additionally, it offsets the weighting of the riskless out-

come y  with the decision weight π.  

 

In contrast, we develop a combination rule that reflects mental accounting and hedonic fram-

ing in a continuous model environment. For this purpose, we consider a continuous lottery 

( )c
X

X X,f= 
  and a certain outcome y . The case of integration is captured by the random 

variable X y+  and the corresponding probability density function is denoted by 
X y

f + . We 

suggest the following CPT-evaluation approach against the background of hedonic framing: 

 

( )

( ) ( ) ( ) ( ) ( ) ( )

c

X y X

int egration field segregation field

CPT X , y

ˆ ˆ: CPT X y, f v X, y v X y CPT X,f v X, y v X v y CPT y .+

   
   = + = + + = + +   
   
   

 
     

 
 

 

 (29)

 
In areas where realizations x of the random variable X  are such that integration v(x y)+  

takes place, we represent integration by the random variable X y+  and calculate the CPT-

value for this aggregation. In areas where the realizations x provide segregation v(x)+ v(y) , 

we fulfill the separate mental accounting in conducting a separate CPT-assessment of the re-

spective accounts. This means, we separately evaluate the certain outcome y  and the contin-

uous lottery ( )c
X

X X,f= 
  according to CPT as intuitively expected. In this manner, the prob-

lem of weighting the certain outcome y  with a decision weight as presented in Breuer and 

Perst (2007) does not arise. If x → 0 for all realizations we immediately get 

( ) ( )cCPT X , y CPT y= .  

 

As already mentioned, within PT as well as CPT gains and losses are evaluated. Thereby, gain 

and loss are determined by the absolute values of the realizations of the continuous random 

variable X . In the case of hedonic framing, in which two accounts are combined with the 
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intention of an optimal subjective assessment, it is necessary to define what is meant by gain 

and loss. Within this context, gain and loss do not relate to the absolute values x and y , but to 

the subjectively felt values. Hence, the probability weighting function w −  refers to the sub-

jectively felt loss v(x y)+  < 0 or v(x) + v(y)  < 0, respectively, and w +  refers to the subjec-

tively felt gains v(x y)+  ≥ 0 or v(x) + v(y)  ≥ 0, respectively. For illustration, we consider 

the lottery ( )c
X

X X,f= 
  and the certain gain y . Let this certain gain be described by a ran-

dom variable Y  with probability distribution 
Y

F  and density 
Y

f  . The application of equation 

(11) in combination with equation (29) leads to the general CPT-presentation 

( )
( ) ( )( )

( )
( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

( ) ( )

( ) ( )( )
( )

( ) ( )

( ) ( )( )
0

c

X y X y
ˆ ˆ{x|v x y {x|v x y

v x y 0} v x y 0}

X X
ˆ ˆ{x|v x y {x|v x y

v x v y 0} v x v y 0}

Y

CPT X , y

d d
v x y w F x y dx v x y w 1 F x y dx

dx dx

d d
v x w F x dx v x w 1 F x dx

dx dx

d
v y w 1 F y dy.

dy+

− +
+ +

+ +
= + < = + >

− +

+ +
= + < = + >

+

= + ⋅ + − + ⋅ − +

+ ⋅ − ⋅ −

− ⋅ −

 

 



 

 




 (30) 

The CPT-value of the certain outcome y  is7 

 ( ) ( ) ( )( ) ( )
0

Y

d
CPT y v y w 1 F y dy v y

dy+

+= − ⋅ − = 


. (31) 

This kind of mental accounting against the background of hedonic framing can also be as-

signed to PT for continuous distributions. The corresponding combination rule is analog 

 

( )

( ) ( ) ( ) ( ) ( ) ( )

c

int egration field segregation field

PT X , y

ˆ ˆPT X y v X, y v X y PT X v X, y v X v y PT y .     
 

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷= + = + + = + +ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

 (32) 

However, in contrast to CPT (31), the last summand of (32) cannot be simplified to v(y) .  

4 PT and CPT evaluation of the considered certificates 

4.1 Cash flow distribution of a broad class of structured products 

As already mentioned, we apply the PT- and CPT-formulas to structured products. Precisely, 

we consider European-style certificates whose underlying is a stock index. The final reference 

                                                 
7 The proof is given in Appendix 1.  
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level of the index is described by the random variable TS , where T stands for the time of ma-

turity. The random variable cer
TZ  denotes the payment structure of the certificate (cer) and 

cer cer ref
T TX Z x= −   the corresponding relative outcome. In the following, we consider certifi-

cates whose relative outcome corresponds to8 

 
i i

n
cer cer ref
T T i i i T [x ,y ) T

i 1

X Z x (a b g (S )) (S )
=

= − = + ⋅ ⋅χ    , (33) 

in which ai ∈ ℝ, bi ∈ ℝ, gi a strictly increasing function, i 0x +∈ , and i iy (x , ) { }∈ ∞ ∪ ∞  
(i = 1,…, n). Furthermore, x1 < … < xn and i i 0

i 1,...,n

[x , y ) +

=

=  . On the basis of a given distri-

bution of TS , we are able to determine the probability distribution cer
TX

F :9  

( )

( ) ( ) ( )

( ) ( )

cer
T

T T

T T

X

n n

i i i i i i i i i iS S
i 1 i 1

n n
j j1 1

j j j j j j j j j jS S
j 1 j 1j j

F x

F y H x (a b g (y )) F (x ) H x (a b g (x ))

x a x a
F g H x (a b g (x ) F g H x (a b g (y )) .

b b

= =

− −

= =

= ⋅ − + ⋅ − ⋅ − + ⋅

      − −
+ ⋅ − + ⋅ − ⋅ − + ⋅                  

 

 



 

 

 (34) 

It is to be noted that ( )( )
T

1
i j jS

F g (x a ) / b : 1− − =  if bj = 0 which implies the respective terms in the 

last two lines to cancel out. Obviously, distribution (34) is of type (13) if we identify iξ  of 

(13) with i i i ia b g (x )+ ⋅  and i i i ia b g (y )+ ⋅  of (34), respectively. Precisely, 

0 1 1 1 1a b g (x )ξ = + ⋅ . jψ  can be identified by j j j ja b g (x )+ ⋅  and j j j ja b g (y )+ ⋅ , respectively. 

Furthermore, αi corresponds to ( )
T

iS
F x−   and ( )

T
iS

F y , respectively. In addition, βj = 1 or βj = 

−1, and the differentiable function j (x)φ  can be assigned to ( )1
i j jg (x a ) / b− − . Altogether, the 

CPT formula (26) for piecewise continuous distributions is applicable to structured products 

with relative outcomes according to (33). 

 

In the next section we show that relative outcomes of type (33) are common when considering 

real-life certificates. 

4.2 Cash flow distributions of real-life certificates 

Due to the plethora of different designs (e.g. certificates with capital protection, barrier prop-

erties) available on the market, our investigation focuses on the specific types of certificates 
                                                 
8 Aχ  stands for the indicator function of set A. 
9 The proof is given in the Appendix 2. 
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described below: index (ind), discount (dis), capital guarantee (gua), outperformance (out) 

and sprint certificate (spr) which are all European-style derivatives with cash flows of type 

(33). For the sake of simplicity, we make the assumption, that the investor intend to put his 

whole wealth A0 into a single product and can purchase any number m = A0/CER0 of a certifi-

cate, where CER0 is the price of the certificate at valuation date t = 0.10 Furthermore, M de-

notes the respective subscription ratio. On this basis, the cash flows at maturity are as follows. 

Index certificate 

The investor participates in the development of the underlying. 

 ind 0
T T

0

A
Z M S

IND
= ⋅ ⋅  . (35) 

Discount certificate  

The investor receives the minimum of a cap (CAP) and the current stock index TS . 

 ( )dis 0
T T

0

A
Z M min S ,CAP

DIS
= ⋅ ⋅  . (36) 

Capital guarantee certificate 

The capital guarantee certificate ensures a capital protection in the amount of CP⋅NV, inde-

pendent of the development of the underlying. Here, CP denotes the percentage of the capital 

protection and NV the nominal value. If the current stock index TS  is not smaller than the 

initial reference level (B), the investor additionally participates with a participation rate PR on 

the positive development of the underlying.  

 
( )

[ ) ( )Tgua 0 0
T TB,

0 0

S BA A
Z NV CP NV PR S

GUA GUA B ∞

−
= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅χ


 . (37) 

Outperformance certificate  

If the price of the underlying is not greater than the outperformance level (OL), the investor 

receives a payout according to the price of the underlying. If the price of the underlying is 

higher than the outperformance level, the certificate provides a higher participation (PR > 1) 

in the underlying performance. 

 [ ) ( ) ( )( ) [ ) ( )out 0 0
T T T T T0,OL OL,

0 0

A A
Z M S S M OL PR S OL S

OUT OUT ∞= ⋅ ⋅ ⋅χ + ⋅ ⋅ + ⋅ − ⋅χ    . (38) 

Sprint certificate 

The sprint certificate functions similarly to the outperformance certificate. If the price of the 

underlying is below the sprint level (SL), the investor receives a refund corresponding to the 

                                                 
10 In the following CER will be replaced by the abbreviation of the respective certificate name. 



16 
 

price of the underlying. Within the price range of sprint level and cap, the investor profits 

disproportionately with a leverage of 2 from the performance of the underlying. However, the 

investor does not participate in price increases above the cap. 

 
[ ) ( ) ( ) [ ) ( )

( ) [ ) ( )

spr 0 0
T T T T T0,SL SL,CAP

0 0

0
TCAP,

0

A A
Z M S S M 2 S SL S

SPR SPR

A
M 2 CAP SL S .

SPR ∞

= ⋅ ⋅ ⋅χ + ⋅ ⋅ ⋅ − ⋅χ

+ ⋅ ⋅ ⋅ − ⋅χ

   


 (39) 

 

In order to apply PT and CPT to each product, we take investor’s initial wealth A0 as the ref-

erence point xref. Consequently, cer cer
T T 0X Z A= −   denotes the relative outcome which can easi-

ly be determined for each product. For illustration, we consider the discount certificate’s rela-

tive outcome variable  

 
( )

( ) [ ) ( ) ( ) [ ) ( )
dis
T T 0

T 0 T 0 T0,CAP CAP,

X m M min S ,CAP A

m M S A χ S m M CAP A χ S .∞

= ⋅ ⋅ −

= ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅



  
 (40) 

Thus, the discount certificate leads to an outcome in accordance with (33) on the basis of the 

parameters 

 
( )

( )
1 0 1 1 1 1

2 0 2 2 2 2

a A , b m M, x 0, y CAP, g x x,

a m M K A , b 0, x CAP, y , g x x.

= − = ⋅ = = =

= ⋅ ⋅ − = = = ∞ =
 

The parameter constellations of all certificates under consideration are presented in Table 1. 

Cer Coefficients 

Ind ( )1 0 1 1 1 1a A , b m M, x 0, y , g x x= − = ⋅ = = ∞ =  

Dis 
( )

( )
1 0 1 1 1 1

2 0 2 2 2 2

a A , b m M, x 0, y CAP, g x x,

a m M CAP A , b 0, x CAP, y , g x x

= − = ⋅ = = =

= ⋅ ⋅ − = = = ∞ =
 

Gua 
( )

( )
1 1 1 1 1

2 0 2 2 2 2

a m NV (CP PR), b m NV PR / B, x B, y , g x x,

a m NV CP A , b 0, x 0, y B, g x x

= ⋅ ⋅ − = ⋅ ⋅ = = ∞ =

= ⋅ ⋅ − = = = =
 

Out 
( )

( )
1 0 1 1 1 1

2 0 2 2 2 2

a A , b m M, x 0, y OL, g x x,

a m M OL (1 PR) A , b m M PR, x OL, y , g x x

= − = ⋅ = = =

= ⋅ ⋅ ⋅ − − = ⋅ ⋅ = = ∞ =
 

Spr 

( )
( )

( )

1 0 1 1 1 1

2 0 2 2 2 2

3 0 3 3 3 3

a A , b m M, x 0, y SL, g x x,

a m M SL A , b 2 m M, x SL, y CAP, g x x,

a m M (2 CAP SL) A , b 0, x CAP, y , g x x

= − = ⋅ = = =

= − ⋅ ⋅ − = ⋅ ⋅ = = =

= ⋅ ⋅ ⋅ − − = = = ∞ =
 

Table 1: Parameter constellations of the certificates according to (33) 

Furthermore, it is quite easy to determine the cumulative probability and consequently the 

probability density function for any kind of presented certificates on the basis of (33). For 

example, the application of formula (34) to the discount certificate generates the probability 

distribution  
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 ( ) ( )dis
0T TT

0 0
[m M CAP A , )S SX

x A x A
F x 1 F x F

m M m M⋅ ⋅ − ∞
 +  +   = − ⋅χ +    ⋅ ⋅    

   (41) 

which immediately leads to the corresponding probability density function 

 

( ) ( )( )

( )( )

dis
TT

0T

0
0SX

0
[m M CAP A , )S

x A
f x 1 F x m M CAP A

m M

x A1
f 1 x .

m M m M ⋅ ⋅ − ∞

 +  = − ⋅δ − ⋅ ⋅ −  ⋅  
+ + ⋅ ⋅ − χ ⋅ ⋅ 





 (42) 

On the basis of formula (34) under consideration of Table 1, the respective distributions for 

all considered certificates are easily established (see Table 2).11 

 

Cer Probability distribution function 

Ind ( )ind
TT

0
SX

x A
F x F

m M

+ =  ⋅ 
  

Dis ( ) ( )dis
0T TT

0 0
[m M CAP A , )S SX

x A x A
F x 1 F x F

m M m M⋅ ⋅ − ∞
 +  +   = − ⋅χ +    ⋅ ⋅    

   

Gua ( ) ( )
[ ) ( )gua

0TT

0
m NV CP A ,SX

B x A m NV CP
F x F B x

m NV PR ⋅ ⋅ − ∞
 ⋅ + − ⋅ ⋅

= + ⋅χ  ⋅ ⋅ 
  

Out 
( ) ( )( ) ( ) ( )out

0 0T TT

00
[m M OL A , ) [m M OL A , )S SX

x m M OL 1 PR Ax A
F x F 1 x F x

m M m M PR⋅ ⋅ − ∞ ⋅ ⋅ − ∞
− ⋅ ⋅ ⋅ − + + = ⋅ − χ + ⋅χ  ⋅ ⋅ ⋅   

 

 

Spr 

( ) [ )( ) [ )

( ) ) ( ) )

spr
0 0T TT

0 0T

0 0
m M SL A , m M SL A ,S SX

0
m M 2 CAP SL A , m M 2 CAP SL A ,S

x A x m M SL A
F x 1 (x) F (x) F

m M 2 m M

x m M SL A
(x) F (x)

2 m M

⋅ ⋅ − ∞ ⋅ ⋅ − ∞

⋅ ⋅ ⋅ − − ∞ ⋅ ⋅ ⋅ − − ∞  

+ + ⋅ ⋅ +   = − χ ⋅ + χ ⋅   ⋅ ⋅ ⋅   
+ ⋅ ⋅ + −χ ⋅ + χ ⋅ ⋅ 

 



 

Table 2: Probability distribution functions of the different types of certificates  

Finally, we need the distribution of the underlying price TS  at maturity. Precisely, we assume 

TS  to follow a lognormal distribution which is based on the assumption that t t(S )  follows a 

geometric Brownian motion (Black and Scholes 1973) and Tln(S )  is therefore normally dis-

tributed, 

 ( )2 2
T 0 exp exp expln(S ) ln(S ) (μ σ / 2) T,σ T+ − ⋅ ⋅   , (43) 

where µexp describes the subjectively estimated expected continuous return of the underlying 

and σexp denotes the subjectively estimated volatility from a private investor’s point of view. 

Since we compare the continuous and the discrete variant of PT and CPT we additionally con-

sider the binomial distribution. In this case, we apply a discrete-space approximation accord-

ing to Cox, Ross, Rubinstein (1979). Following Breuer and Perst (2007), we take the parame-

                                                 
11 The corresponding densities can be easily determined analogous to the derivation of (24). 
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ter specification exp expu exp(µ t σ t )= Δ + Δ , exp expd exp(μ t σ t )= Δ − Δ  and p = 0.5. This leads 

to the discrete lottery Xcer = (x1, p1; …; xn, pn) with 

 ( )k i k cer k i k
i 0 i T i i

i
S S u d , x X S , p p (1 p) , i 1,..., n; k 1,..., i.

k
− − 

= = = − = = 
 

  

In the next subsection we explain how to consider mental accounting within the framework of 

real-life certificates. 

4.3 Certificates and mental accounting  

Within the framework of the considered certificates mental accounting is only applicable to 

the capital guarantee certificate since this is the only certificate offering the investor a capital 

protection in the amount of CP⋅NV, regardless of the development of the underlying. Addi-

tionally, the investor participates in the positive development of the underlying if the final 

reference level TS  is greater than the initial reference level B. This implies that the payment 

structure gua
TZ  of the capital guarantee certificate can be divided into a certain and an uncer-

tain part, which leads to the possibility of mental accounting. In this case, the investor can 

assess on the one hand the certain payment structure 

 gua ,bond
TZ m CP NV= ⋅ ⋅ , (44) 

which he books for example on a kind of “bond account” and on the other hand the uncertain 

refund given as 

 [ ) ( )gua,stock T
T TB,

S B
Z m NV PR S

B ∞

 −= ⋅ ⋅ ⋅ ⋅χ 
 

  , (45) 

which he assigns for instance to a “stock account”. Consequently, gua gua,bond gua,stock
T T TZ Z Z= +  . 

However, the question arises which reference points are suitable for the payment structures 

(44) and (45). Since we took investor’s initial wealth as the basis for the reference point of the 

overall position, it seems to be reasonable to divide the overall reference point into two parts, 

the share of wealth invested in the “bond position” and the share of wealth invested in the 

“stock position”. Consequently, the reference point of the “bond account” amounts to 

 
( )

ref ,bond
T(b)

m CP NV
x

1 r

⋅ ⋅=
+

, (46) 

where r(b) denotes the term-appropriate cost of debt capital of the certificate issuer. Then, the 

relative certain outcome is given as 



19 
 

 
( )

gua,bond ref ,bond
T T(b)

1
X m CP NV x m CP NV 1 .

1 r

 
 = ⋅ ⋅ − = ⋅ ⋅ −
 + 

 (47) 

In addition, we get xref,stock = A0−xref,bond for the reference point of the uncertain payment. 

Therefore, the continuous relative outcome variable has the form 

 

[ ) ( )

[ ) ( ) ( )

gua,stock ref ,stockT
T TB,

T
T 0B, T(b)

S B
X m NV PR S x

B

S B m CP NV
m NV PR S A .

B 1 r

∞

∞

 −= ⋅ ⋅ ⋅ ⋅χ − 
 

  − ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅χ − −   +   

 

 
 (48) 

In order to apply PT and CPT under consideration of mental accounting to the outcomes 

gua,bond
TX  and gua,stock

TX , we again need their probability distributions, which are easily derived 

by the use of (33) and (34). The resulting parameter constellations and probability distribu-

tions are presented in Table 3. 

Capital 
guarantee 
certificate 

Coefficients and probability distribution functions 

Certain 
payment 
structure 

( )( ) ( )T(b)
1 1 1 1 1a m CP NV 1 1 r , b 0, x 0, y , g x x,

−
= ⋅ ⋅ − + = = = ∞ =

 ( )
( )

( )gua ,bond T( b)TX m CP NV 1 1 r ,
F x χ x -é öæ ö ÷÷çê ÷÷⋅ ⋅ - + ¥ç ÷÷ç ÷ê ÷ç ÷è ø øë

=   

Uncertain 
payment 
structure 

( ) ( )( ) ( )

( ) ( )( )
( )

T(b)
1 0 1 1 1 1

T(b)
2 0 2 2

2 2

a A m CP NV 1 r , b 0, x 0, y B, g x x,

m NV PR
a m NV PR A m CP NV 1 r , b , x B,

B
y , g x x,

-

-

=- - ⋅ ⋅ ⋅ + = = = =

⋅ ⋅
=- ⋅ ⋅ - - ⋅ ⋅ ⋅ + = =

=¥ =

 

( ) ( )( )
( ) ( )

gua ,stock T( b )TT
0

T(b)
0

SX A m CP NV 1 r ,

B x A m NV CP 1 r
F (x) F B χ (x)

m NV PR
 -

-

é ö÷ê ÷- + ⋅ ⋅ ⋅ + ¥÷÷ê øë

æ ö÷ç ⋅ + - ⋅ ⋅ ⋅ + ÷ç ÷ç ÷ç= + ⋅÷ç ÷ç ÷⋅ ⋅ ÷ç ÷ç ÷çè ø

Table 3:  Coefficients and probability distribution functions of the capital guarantee  
certificates under consideration of mental accounting 

Hence, all parameters and distributions that are necessary to apply PT and CPT under consid-

eration of the mental accounting are determined.12  

 

5 Empirical findings 

Within our empirical study, we investigate how a fully rational and a boundedly rational in-

vestor would assess the above introduced certificates. We determine preference values on the 

                                                 
12 The concrete assessment of all presented distributions on the basis of the PT- and CPT-formulas is available 
from the authors upon request. 
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basis of PT- and CPT-formulas and contrast the results with the preference order according to 

EUT. For the investigation, we use exemplary 5 real-life certificates that are presented in Ta-

ble 4.  

Certificate 
ISIN 

(DE000…) 
Issuer 

Issue day/ 
Exercise 

day 

Time to 
maturity T 

as of 
08/13/2010 
(in years) 

Certificate 
price  

at 
08/13/2010 

Further 
features 

Discount 
certificate 

CM8FZW4 
Commerz- 

bank 
05/28/2009 
06/14/2012 

1.8371 € 25.00 
M = 0.01 
CAP = 5,700.00 

Capital  
guarantee  
certificate 

DB0SMR4 
Deutsche 

Bank 
07/05/2007 
06/08/2012 

1.8207 € 97.35 
NV = 100.00 € 
CP = PR = 100 % 
B = 4,513.18 

Index  
certificate 

7093411 
Deutsche 

Bank 
09/02/2001 
open end 

1.8754 € 27.10 M = 0.01 

Sprint  
certificate 

DB2F794 
Deutsche 

Bank 
08/12/2010 
06/28/2012 

1.8754 € 26.51 
M = 0.01 
SL = 2,000.00 
CAP = 2,700.00 

Outperfor-
mance  

certificate 
CG8HPC1 Citygroup 

03/29/2010 
06/15/2012 

1.8398 € 26.08 
M = 0.01 
OL = 3,250.00 
PR = 150.00 % 

Table 4: Key features of the considered real-life certificates 

 

Due to the different properties of the respective certificates, it is not possible to find real-life 

products that have exactly the same issue and exercise day. For the sake of simplicity, we 

consider a decision situation in which an investor faces the choice to purchase one of the 

products in the secondary market at 08/13/2010. The underlying of each certificate is the Dow 

Jones EURO STOXX 50 Index. As of 08/13/2010, the real-life certificates have a nearly iden-

tical time to maturity T. Since the focus of our analysis is the comparison of the various pref-

erence approaches, the slightly different terms of maturity do not matter in the sense that they 

affect each evaluation approach equally. Additionally, the investor is assumed to have the 

possibility of a risk-free investment with maturity T = 1.8754 years. We choose the latter ma-

turity because it is the longest term of the considered certificates and we would like to avoid 

any disadvantage with regard to the evaluation caused by a lower term. In this connection, the 

riskless interest rate is interpolated from the German spot rate curve presented by “Deutsche 

Bundesbank” at 08/13/2010 and results in 0.62 % p.a. Furthermore, the investor’s wealth is 

assumed to amount to A0 = € 10.000, which he or she completely invests in either one single 

certificate or the riskless investment.  

 

The subjective evaluation of the capital guarantee certificate in consideration of mental ac-

counting requires the establishment of an adequate cost of capital r(b), which is necessary to 

calculate the present value of the certain outcome gua,bond
TX  according to (46). Since “Deutsche 
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Bank” is the issuer of the capital guarantee certificate, we calculate the cost of capital on the 

basis of a zero coupon bond issued by “Deutsche Bank” with ISIN DE000DB7URL7. Issue 

date is 12/19/2008 and exercise date is 07/20/2012, which nearly corresponds to the exercise 

date of the capital guarantee certificate. At valuation date 08/13/2012, the zero coupon bond 

price was 97.00 €. Therefore, a cost of capital r(b) = 1.58 % p.a. results. 

 

As mentioned above, we calculate the preference values based on the subjectively estimated 

expected return µexp and subjective volatility estimate σexp from a boundedly rational inves-

tor’s point of view. According to Breuer and Perst (2007), we allow for the range −0.05 ≤ 

µexp ≤ 0.15 and 0.1 ≤ σexp ≤ 0.25. Within the binomial model, we use a step width n = 30, 

which is easy to implement numerically. 

 

PT for discrete lotteries 

Figure 1 shows the numerical results of the discrete evaluation approach according to 

Karmakar (1978) for different subjectively felt competence levels. On the left-hand side, the 

3D pictures display the PT preference values of the considered certificates for different pa-

rameter combinations (µexp, σexp). On the right-hand side, the shading of the respective area 

indicates which certificate generates the maximum preference value for a given (µexp, σexp)-

combination. In both cases, low and high competence, the sprint, the discount, the outperfor-

mance, and the capital guarantee certificate are the preferred certificates depending on the 

underlying parameter combinations (µexp, σexp). In comparison to these certificates, the risk-

less investment and the index certificate fail to dominate for any kind of parameter combina-

tion. Principally, the sprint certificate is preferred for low- to medium-level expected stock 

returns. With increasing expected stock return and increasing volatility, the discount certifi-

cate gains attractiveness. The cap of the discount certificate is considerably higher than the 

cap of the sprint certificate. Against this background, a discount certificate seems to be more 

desirable than the sprint certificate if higher expected returns are under consideration. Since at 

evaluation date the Dow Jones EURO STOXX 50 value is 2,708.73 and the cap of the sprint 

certificate is CAP = 2,700.00, it is rather surprising that the sprint certificate is preferred for 

some positive expected stock returns at all. The preference of the capital guarantee certificate 

at low and medium expected stock returns comes as no surprise because of the capital protec-

tion, guaranteed independently of the development of the underlying. Since, however, the 

capital guarantee certificate’s participation rate is lower than the corresponding rate of the 

outperformance certificate, the guarantee certificate becomes less attractive at high-level ex-
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pected stock returns in comparison to the outperformance certificate. Up to the outperfor-

mance level, the outperformance certificate exactly reflects the performance of the underly-

ing. Moreover, it supplies a disproportionate participation from the outperformance level. 

This could explain the subjective desirability of the outperformance certificate for high ex-

pected stock returns.  

 

Comparing the results with regard to their different competence levels, it is noticeable that in 

the case of higher subjectively felt competence the preference area of the sprint and discount 

certificate grows considerably for increasing expected stock return and volatility. The area of 

the capital guarantee certificate nearly remains unchanged, however, the area of the outper-

formance certificate is pushed back. Obviously, a higher subjectively felt competence implies 

a higher preference towards cap-products. The 3D pictures show that in case of high compe-

tence the PT-values are lower than in case of low competence. This is, at the first sight, sur-

prising since a higher subjectively felt competence implies higher probability weights wδ,γ and 

therefore higher preference values. The reduction is caused by the normalization by the sum 

of probability weights according to (9). Furthermore, the jagged edge between the areas of the 

discount and outperformance certificate, which is a result of discrete modeling, is hard to 

comprehend and seems to contradict the typical behavior of market participants. 

 

Figure 1: Prospect theory for discrete lotteries, low and high subjectively felt competence 
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PT for continuous lotteries 

In a next step, we investigate the preference values of PT for continuous lotteries. In contrast 

to the discrete version of PT, according to which sprint, discount, outperformance and guaran-

tee certificate are subjectively more attractive than the riskless investment and the index cer-

tificate, the implementation of the continuous approach of PT shows a different preference. In 

this context, the sprint certificate does not dominate the remaining financial products for some 

(µexp, σexp). This shows, at least for the present products, that the discrete version of PT can 

explain the demand for more products than the continuous version. The preference values for 

γ ∈ {0.6; 0.65; 0.832} are shown in Figure 2.  

 

Figure 2: Prospect theory for continuous lotteries for different γ-values 

 

Overall, the 3D pictures of Figure 2 show a different preference pattern in comparison with 

Figure 1. Obviously, with increasing γ the preference for the discount certificate grows, 

whereas the preference for the outperformance certificate decreases. Interpreting γ as a sub-

jectively felt competence level, it seems that with increasing competence the desirability of 

the cap product grows, especially at the expense of the outperformance certificate. Figure 3 

shows that the preference for the capital guarantee certificate grows for increasing parameters 
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µexp and σexp, while at the same time the preference diminishes for lower parameters µexp and 

σexp if competence (measured by γ) increases.  

Figure 3: Prospect theory for continuous lotteries for different γ-values 

 

We also apply our suggested approach of modeling mental accounting in combination with 

hedonic framing to PT. Because of slight variations, we restrict ourselves to the presentation 

of the results corresponding to the parameters γ = 0.6 and γ = 0.832 in Figure 4. For both pa-

rameters, the desirability of the capital guarantee certificate grows noticeably, whereas the 

preference for the discount and outperformance certificate is reduced. However, the consider-

ation of hedonic framing is not able to explain the demand for sprint certificates either.  
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Figure 4: Prospect theory for continuous lotteries, including hedonic framing 

 

CPT for discrete lotteries 

Next, we discuss the results of the CPT-evaluation for discrete lotteries in the cases of low 

and high subjectively felt competence and with the application of the hedonic framing rule 

according to Breuer and Perst (2007). According to Figure 5, the plots of CPT for different 

competence levels are similar to those given for PT in Figure 1. Comparing the results of PT 

and CPT in the case of low competence, Figure 5 shows that for CPT the preference area of 

the sprint and discount certificate appears slightly compressed, whereas the area of the outper-

formance certificate increases. The same holds for the presentation of CPT in the case of a 

high competence level. Furthermore, the application of the hedonic framing rule, or rather the 

segregation for gains, leads to higher preference values, but the preference order remains un-

affected. In addition, similar and weakened in comparison to the discrete PT, there is a jagged 

edge between the areas of the discount and outperformance certificate, which again stems 

from discrete modeling and seems to contradict market behavior. 
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Figure 5:  Cumulative Prospect Theory for discrete lotteries, low and high subjective felt 
competence, including hedonic framing 

 

CPT for continuous lotteries 

At first glance, Figure 6 shows that the implementation of the discrete CPT with n = 30 is a 

good approximation of the continuous CPT. For both cases, low and high subjectively felt 

competence, the numerical results are quite close together. Thus, preferences in case of dis-

crete lotteries (with n = 30) seem to correspond to the preferences with regard to continuous 

lotteries. However, Figure 6 and Figure 7 show that in the continuous case and in contrast to 

the PT application, the cutting planes are totally smooth and therefore more plausible. Addi-

tionally, if we take mental accounting in combination with hedonic framing into consideration 

(see Figure 7), the preference area of the capital guarantee certificate is slightly larger for low 

as well as high subjectively felt competence. Furthermore, in comparison to PT for continuous 

distributions, our hedonic framing combination rule has a lower effect on CPT. 
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Figure 6:  Cumulative Prospect Theory for discrete and continuous lotteries, low and high 

subjectively felt competence level 

 

Figure 7: Cumulative Prospect Theory for continuous lotteries, low and high subjectively 

felt competence, including hedonic framing 
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EUT for discrete and continuous lotteries 

Finally, we want to contrast the subjective evaluations from the point of view of a boundedly 

rational investor with the evaluation of a fully rational investor. For this purpose, we consider 

a fully rational individual with a constant risk aversion of one. Since the results of the discrete 

and the continuous version of the EUT are nearly the same, we restrict ourselves to present 

the continuous results. 

 

 

Figure 8: Expected utility theory 

 

Similar to the findings of PT for discrete and CPT for discrete and continuous lotteries, sprint, 

discount, outperformance, and capital guarantee certificate are the preferred products depend-

ing on the corresponding estimated stock return and volatility. For negative expected stock 

returns and volatilities larger than 12.4%, the capital guarantee certificate has the highest de-

sirability because of the capital protection for any development of the underlying. The outper-

formance certificate is only of interest in comparison to other products for very high expected 

returns. The discount certificate’s preference is given for any kind of volatility. Noticeable is 

the relative large preference area of the sprint certificate, plausible for any negative expected 

stock return, surprising for positive estimated returns. The latter fact appears to be contradic-

tory behavior. 

 

Comparison of the theories 

Altogether, except for the continuous version of PT, all theories are able to explain the de-

mand for sprint, discount, outperformance, and capital guarantee certificate. However, appli-

cation of the discrete versions leads to quite implausible jagged edges between dominance 
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areas, which corresponds to implausible behavior of the market participants. A similar argu-

ment relates to EUT because a preference for sprint certificates in the case of positive estimat-

ed returns seems to contradict the typical behavior of market participants. Consequently, the 

application of the continuous version of CPT leads to the most plausible results.  

 

6 Conclusion 

We have extended the continuous version of CPT by considering piecewise continuous prob-

ability distributions with a finite number of jump discontinuities. We have explained how to 

apply this theory to a broad class of structured products that comprises inter alia index, dis-

count, capital guarantee, outperformance, and sprint certificates. Additionally, we have devel-

oped a hedonic framing rule for mental accounting in the case of piecewise distributions with 

regard to the combination of an uncertain lottery and a certain gain which we have applied to 

the capital guarantee certificate. On this basis, we have been able to compare this extended 

version of CPT with the discrete version of CPT and the respective versions of PT and EUT. 

In order to analyze the explanatory power of the theories, we have undertaken a study on the 

basis of real-life certificates of the already mentioned types. We have shown that all theories 

except for the continuous version of PT justify the demand for four products. However, the 

discrete versions of PT and CPT as well as EUT lead to partially implausible behavioral pat-

terns. Consequently, if an issuer of certificates intends to design products in the framework of 

financial engineering, he can base the design on the piecewise continuous version of CPT. In 

addition, the application of the hedonic framing rule seems not to be necessary, since this rule 

only has a slight effect on the preference in case of Cumulative Prospect Theory.  

Formelabschnitt (nächster) 
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Appendix 
Appendix 1: (CPT-value of a certain outcome y ) 

Let y 0>  denote a certain gain and let Y  describe the corresponding random variable. For all 

y the value 
Y

F (y)  of the probability distribution function obviously corresponds to 

 
( ) ( )Y

F y P Y y H(y y)= ≤ = −
 . (A1) 

Consequently, this function is contained in the class of distributions according to (13) if we 

set n = 0, α0 = α1 = 1, β1 = 0, and 0 1 yξ = ξ = . As a result of (25) we immediately get 

 
( )( ) ( )( ) ( )0 0 1 1 1 1 0 0Y X X

ˆ ˆCPT(Y,f ) v( ) w F v( ) w F v( ) 1 H( ) v( ) H( )

v(y).

= ξ ⋅ ξ − ξ ⋅ ξ + ξ ⋅ − ξ + ξ ⋅ ξ

=

  


 (A2) 

 

Appendix 2: (Probability distribution and density function of the general outcome (33)) 

Using law of total probability, the probability distribution function cer
TX

F  is given as 

 

( ) ( )
( )( ) ( )

( )

cer
T

T

cer
TX

n

i i i T T i T i
i 1

n
1 i

T i T i T i
i 1 i
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1 i

i T i i
i 1 i

1 i
i iS

i

F x P X x

P a b g S x S M P S M

x a
P S g S M P S M

b

x a
P x S min y ,g

b

x a
F min y ,g

b

=

−

=

−

=

−

= ≤

= + ⋅ ≤ ∈ ⋅ ∈

  −= ≤ ∈ ⋅ ∈     
   − = ≤ ≤        

   − =         













  

  



( )
T

n

i i i i iS
i 1

F (x ) H x (a b g (x )) .
=

 
 − ⋅ − + ⋅
 
 

 

 (A3) 

In the case bi = 0, we define ( ) ( )
i

1 1
i i i i i i

b 0
g (x a ) / b : lim g (x a ) / b− −

→
− = − = ∞  and consequently, 

1 i
i i i

i

x a
min y ,g y

b
−  −  =  

   
. Moreover, we have 

 

( ) ( )

T

T T T

1 i
i iS

i

1 1i i
i i i i i i iS S S

i i

x a
F min y ,g

b

x a x a
F g F y F g H x (a b g (y )) .

b b

−

− −

   − 
        

       − −= + − ⋅ − + ⋅                  



  

 (A4) 

This leads to 
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