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Abstract. The ongoing debate concerning credit concentration risk is mainly driven by the require-
ments on credit risk management due to Pillar 2 of Basel II since risks (e.g. concentration risk) that are 
not fully captured by Pillar 1 should be adequately considered in the banks’ risk management. This 
instruction is indeed relevant since quantifying credit portfolio risk in Pillar 1 is based on an Asymptotic 
Single Risk Factor (ASRF) framework in which concentration risk is not covered. Against the back-
ground of the ASRF model, we determine the number of credits up to which concentration risk leads to 
a significant estimation error so that the assumption of an infinitely fine grained portfolio is inadequate. 
We conclude that the critical portfolio size varies from 22 up to 35,986 debtors, dependent on assets 
correlation and probability of default. Using a modified valuation function (granularity adjustment) it is 
possible to reduce the critical number of credits by averaged 83.04 %. 
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I. Introduction 

There have been significant advances in analytical approaches to credit risk modeling since 

the first proposal of the new capital adequacy framework (Basel II) has been published in 

1999 and it has been finalized in 2004/2006 by the Basel Committee On Banking Supervision 

(BCBS).1 In the supervisory capital rules for portfolio credit risk a closed form solution for the 

measures of risk like Value at Risk (VaR) and Expected Loss (EL) has been achieved in the 

Internal Ratings Based (IRB) Approach for quantifying credit risk in Pillar 1 of Basel II. Such 

a model avoids time consuming Monte Carlo methods as described in Marrison (2002) and is 

widely used in credit portfolio models.2 Furthermore, such analytical models like the IRB-

approach3 also add benefit to the bank’s credit risk management because the risk contribution 

of each exposure to the portfolio risk can be identified easily and additional approaches for 

risk-capital allocation as proposed by Overbeck/Stahl (2003) are not needed. However, sev-

eral components of credit risk are not covered sufficiently by this analytical model. One of the 

most important “non-disclosures” seems to be (credit) concentration risk that is primarily con-

sidered in Pillar 2 of Basel II, since the BCBS might be aware of such shortcomings when 

using an analytical framework.4 Particularly, it is stated in Basel II that dealing with concen-

tration risk seems to be one of the most important future tasks. Since concentration risk is not 

covered in Pillar 1, its quantifying and managing are two of the important problems in credit 

risk management under Pillar 2.5 

 

The BCBS mainly distinguishes two sorts of concentration risk that emerge from6 

                                                 
1 See Basel Committee On Banking Supervision (1999, 2001, 2003, 2005a, 2006). 
2 Particularly, Monte-Carlo simulation is used in the commercial models of CreditPortfolioViewTM, see Wilson 

(1997a,b), and CreditMetricsTM, see Gupton/Finger/Bathia (1997). 
3 For the general scientific background of the IRB-model as an analytic credit risk model please refer to Gordy 

(2003) or Finger (2001). 
4 One of the main tasks of Pillar 2 is to ascertain, that “risks […] not fully captured by the Pillar 1 process (e.g. 

credit concentration risk)” should be captured adequately by the banks risk management using advanced meth-

ods, see Basel Committee On Banking Supervision (2005), paragraph 724. 
5 For further issues on concentration risk see Basel Committee On Banking Supervision (2005), paragraphs 770-

777 as well as Basel Committee On Banking Supervision (2000), principle 12 (paragraphs 65-68) including the 

Appendix to Concentrations, paragraphs 2-6. 
6 See Basel Committee On Banking Supervision (2005), paragraph 773. For a general explanation of concentra-

tion risk under Basel II one may refer to Deutsche Bundesbank (2006) as well (only German language). 



 
 

 

2

(I) “significant exposures to an individual counterparty or group of related counterparties” 

and 

(II) “credit exposures to counterparties in the same economic sector or geographic region”. 

The concentration risk  (I) evolves from “single-name” concentrations. The BCBS distin-

guishes between two sorts of “single-name” concentrations.7 One type of concentration risk 

pertains an exposure to one firm or to a conglomerate of economic highly dependent firms8 

that is extremely large compared to the rest of the exposures of the portfolio. In such a situa-

tion the default risk of the portfolio is mainly driven by the probability of default of this indi-

vidual debtor. We call this type of risk “individual single-name” concentration risk. 

Tasche/Theiler (2004) and Emmer/Tasche (2005) integrated this type of risk in a IRB type 

model and concluded that consideration of an “individual single-name” concentration risk 

leads to spurious results when using VaR as a risk measure. Against this background we focus 

on the second type of “single-name” concentration that occurs if the bank holds a risk bucket 

(or sub-portfolio) containing a relatively small number of firms, each of them with large ex-

posures. Such a risk bucket is hardly diversified because of the quite small number of debtors. 

Thus, a bank faces high losses if a large number of defaults appears, even if they are acciden-

tally and not driven by default correlation of the firms. This type of concentration risk  (I) can 

be denoted as “portfolio single-name” concentration risk. It is linked with concentration risk 

 (II) that arises from “sector” concentration. “Sector” concentration risk occurs if defaultable 

claims belong to a single sector with high default correlation. Though such a concentrated 

credit portfolio might incorporate many debtors, these debtors might default at the same time 

due to sector concentration and resulting high default correlation. The major problem caused 

by this form of “sector” concentration risk is the possibility of the false conclusion that such a 

large risk bucket (or sub-portfolio) is diversified.  

 

However, such concentration risks are not just a Pillar 2 problem. Indeed, the existence of 

“portfolio single-name” and “sector” concentration risk of Pillar 2 directly lead to misspeci-

fied assumptions of analytic VaR-models like the Merton-type model of Vasicek (1987, 1991, 

2002), that builds the bottom of the Internal Ratings Based (IRB) model of Basel II for quan-

tifying credit risk under Pillar 1 and has become one of the standards in analytical credit port-

                                                 
7 See Basel Committee On Banking Supervision (2005c, 2005d). Some of the literature referred there will be 

discussed later on. 
8 Under Basel II such a conglomerate is called “connected group”, see Basel Committee On Banking Supervision 

(2005a), paragraph 423.  
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folio modeling.9 In the Vasicek model, portfolio credit risk is mainly quantified due to its de-

fault rate using the VaR as the risk measure. To achieve analytical tractability of the model, a 

so-called Asymptotic Single Risk Factor (ASRF) framework as explained in Gordy (2003) or 

Bank/Lawrenz (2003) is assumed. That is, 

(A) the portfolio is infinitely fine grained and thus it consists of a nearly infinite number of 

credits with small exposures, and 

(B) only one systematic risk factor influences the default risk of all loans in the portfolio. 

Because of these two simplifications the measured VaR is portfolio-invariant, i.e. only the 

risk contribution of each defaultable claim to the systematic risk factor is of interest. Each 

individual claim does not cause any (further) diversification effect, since the portfolio already 

reached the highest possible degree of diversification. Unfortunately, both assumptions (A) 

and (B) are mutually exclusive in practice. Precisely, due to the limited factorization (assump-

tion (B)) the model is only designed for small risk buckets, like rating grades as in Gordy 

(2000) or industry sectors as in Rösch (2003), rather than for whole credit portfolios. Hence, if 

one aims to meet assumption (B), the risk bucket under consideration is likely to consist of 

only a small number of loans. Resulting from this limitation, assumption (A) will become 

critical.  

 

However, the violation of (A) or (B) do not have to lead to the fact, that the ASRF-framework 

can not be used at all for credit risk quantification. But one has to consider the consequences 

of the violation, i.e. the existence of concentration risk. Concretely, if assumption (A) is not 

met, we should account for concentration risk  (I) especially in form of “portfolio single-

name” concentration risk. However, if we exaggerate a risk bucket in order to meet assump-

tion (A), assumption (B) is possibly violated and we should keep the existence of (“sector”) 

concentration risk  (II) in mind. This issue is not only a problem that should be accounted for 

in credit risk management when dealing with analytical models, but it is also critical for su-

pervisory capital measurement in banks.10 This raises the following question: Do the assump-

tions (A) and (B) of (the IRB-model under) Pillar 1 generally hold for our portfolio or do we 

                                                 
9 See Merton (1974). It is also known as the one factor two state approach of CreditMetricsTM, see Finger (1999). 

For the adoption in Basel II see Finger (2001) and additionally Basel Committee On Banking Supervision 

(2005b). 
10 Another solution to the problem of the violation of assumption (A) or (B) might be to cancel risk quantifica-

tion under the IRB-approach and use internal models. However, this solution is not designated in Basel II. 
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have to quantify concentration risk for Pillar 2? Resulting from this, we identify two impor-

tant tasks regarding risk concentrations: 

(i) In which cases are the assumptions of the ASRF framework of the Vasicek model critical 

concerning the credit portfolio size? 

(ii) In which cases are currently discussed adjustments for the VaR-measurement able to over-

come the shortcomings of the Vasicek model? 

The answers of both questions are available if we know the minimum number of loans in a 

risk bucket that is necessary in order to fulfill the granularity assumption (A) to achieve a re-

quired accuracy, say 5 %, of the analytical determined VaR in comparison to the true VaR 

using the Vasicek framework.11 Unfortunately, numerical analyzes on that topic are scarce. 

Thus, firstly, we oppose the existing formulas for the VaR using the granularity adjustment 

assuming a coarse grained, an (infinitely) fine grained as well as a medium grained portfolio. 

Additionally, we extend the existent framework in order to account for small sized portfo-

lios.12 Secondly, we numerically infer the minimum number of loans in a portfolio using two 

definitions of accuracy in order to enhance the theoretical background with concrete facts on 

critical portfolio sizes.13 This could give an advice which sub-portfolios have significant risk 

concentrations and thus should be controlled on credit portfolio and not on individual credit 

level. Like in the Vasicek model, we focus on gross loss rates in homogeneous credit portfo-

lios, i.e. each borrower has an identical probability of default as well as an identical credit 

                                                 
11 This question is also interesting when analysing the Basel II formula, because the designated add-on factor for 

the potential violation of assumption (A) was cancelled from the second consultative document to the third con-

sultative document, see Basel Committee On Banking Supervision (2001, 2003). Thus, we only prove, under 

which conditions the assumption (A) of the Vasicek model is fulfilled. Of course, this model may suffer from 

other assumptions like the distributional assumption of standardised returns. However, since we only would like 

to address the topic of concentration risk, our focus should be reasonable. Additionally, the distributional as-

sumptions seem not to have a deep impact on the measured VaR, see Koyluoglu/Hickman (1998a, b), Gordy 

(2000) or Hamerle/Rösch (2004, 2005a, b). 
12 We motivate this procedure by the fact, that for market risk quantification of nonlinear exposures two factors 

of the Taylor series (fist and second order) are common to achieve a higher accuracy, see e.g. Crouhy/Galai/ 

Mark (2001) or Jorion (2003). This might be appropriate for credit risk as well. Furthermore, the higher order 

derivatives of VaR given by Wilde (2003) make it possible to systematically derive such a formula, which was 

already mentioned by Gordy (2004), but neither derived nor tested so far.  
13 BCBS already stated that in principle the effect of portfolio size on credit risk is well understood, but lacks 

practical analysis, see Basel Committee On Banking Supervision (2005c). 
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exposure and the loss rate is equal to one.14 Furthermore we examine the granularity adjust-

ment of an inhomogeneous portfolio based on a simulation as well. With our analysis we ex-

plain more about differences between simulated and analytically determined solutions to 

credit portfolio risk as well as between Basel II capital requirements for Pillar 2 with respect 

to Pillar 1.15 

 

The rest of the paper is outlined as follows. In section  II we briefly discuss the ongoing re-

search and solutions in the field of measuring especially “single name” concentration risk in 

analytic credit portfolio models. In section  III we describe the Vasicek model and derive the 

adjustment for small and medium sized risk buckets. The numerical analyzes on homogene-

ous as well as on non-homogeneous risk buckets will be taken out in section  IV. Section  V 

summarizes the results and points out some key issues on the use of the IRB-model of Basel 

II for credit risk management. 

 

II. Literature on Portfolio Concentrations in the Vasicek Model 

The principle of incorporating the effect of the portfolio size in the analytical Vasicek model 

discussed in the literature is very simple. As a first step it is assumed, that the portfolio is infi-

nitely fine grained and the VaR can be determined under the ASRF framework. However, an 

add-on factor is constructed, that accounts for the finite size of the portfolio and that con-

verges to zero if the assumption (A) of infinite granularity is (nearly) met. A version of this 

so-called granularity adjustment was part of Basel II until the second consultative document,16 

                                                 
14 Precisely, we assume non-stochastic loss rates. This might be satisfied by the fact that the number of defaults 

in a portfolio is still of main interest and in the Foundation IRB approach the loss rate is fixed for banks anyway. 

However, we finally examine the granularity adjustment of an inhomogeneous portfolio as well. Our setup is 

comparable to the one of Cespedes/Herrero/Kreinin/Rosen (2005), who analyze the sector concentration effect 

assuming infinitely fine grained risk buckets. 
15 Additionally, our article makes contribution to the ongoing research on analyzing differences between Basel II 

capital requirements and banks internal “true” risk capital measurement approaches. Since the approximation of 

the regulatory capital requirements and the perceived risk capital of banks internal estimates for portfolio credit 

risk is often stated as the major benefit of Basel II, see e.g. Hahn (2005), p. 127, but often not observed in prac-

tice (see e.g. exemplary calculations for real world portfolios of SunGard Data Systems Inc.), this task might be 

of relevance in future. 
16 The effectiveness and the eligibility of the (cancellation of the) granularity add-on from the second to the third 

consultative document of Basel II is only discussed vaguely in the literature so far, see e.g. Bank/Lawrenz 

(2003), p. 543. 
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but because of some theoretical shortcomings of this model, a more convenient formula for 

the adjustment was presented by Wilde (2001).17 Precisely, this factor equals the first element 

different from zero that results from a Taylor series expansion of the VaR around the ASRF 

solution.18 However, a concrete number of loans that is required to meet a pre-defined accu-

racy interval for the VaR (including the granularity adjustment) is not discussed widely. 

Gordy (2003) comes to the conclusion that the granularity adjustment works fine for risk 

buckets of more than 200 loans considering low credit quality buckets and for more than 1000 

loans for high credit quality buckets. However, he uses the CreditRisk+ framework from 

Credit Suisse Financial Products (1997) and not the Vasicek model that builds the basis of 

Basel II, and he does not analyze the effect of different correlation factors as they are assumed 

in Basel II. Additionally, solutions for further improvement of the granularity are postulated 

in the literature without examining the results.19 

 

Finally, Pykhtin (2004) recently extended the analytical VaR derivation using a multi-factor 

adjustment in order to relax assumption (B). Due to a multi-factor layout of the model the 

observed risk buckets can be enlarged, so that the granularity-assumption (A) becomes less 

critical. Nonetheless, an additional adjustment would be needed and the analytical solution 

(and the parameter estimation) will become more complicated.20 Cespedes/Herrero/Krei-

nin/Rosen (2005) presented a smart solution to reduce some of those troubles. They suggested 

to divide the portfolio under consideration into small risk buckets, so that each risk bucket 

belongs to one and only one sector.21 Consequently, even if the ASRF framework is used, 

“sector” concentration risk (II) is not a problem. However, each risk bucket has to fulfill as-
                                                 
17 The main criticism of the formula in Basel II was that the granularity adjustment was derived via the 

CreditRisk+ methodology, whereas Wilde (2001) was able to derive a formula consistent with the Vasicek model. 
18 For the derivation of the granularity adjustment in the Vasicek model see also Pykhtin/Dev (2002) as well as 

Pykhtin (2004). The derivation of the granularity adjustment by a Taylor series expansion is mainly motivated by 

Gordy (2004) and Rau-Bredow (2002/2004) and we come to that in section  IV. Additionally, Martin/Wilde 

(2002) show that via the heat equation the same results can be achieved whereas the saddle point method agrees 

only in special cases, e.g. CreditRisk+ with one sector. 
19 See footnote 12. 
20 Especially the data requirements for estimating asset correlations in this multi-factor model are a big chal-

lenge. 
21 At a stretch, the multiple (small) risk buckets are represented by a single systematic factor each. Since these 

systematic factors are not perfectly correlated, they present a solution for “sector” diversification, which is the 

opposite of the “sector” concentration. Thus, their view on the impact of sectors within a portfolio is slightly 

different from the one of the committee (but leads to identical results). 
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sumption (A) of infinite granularity. Therefore, from the practitioners’ perspective it is inter-

esting to know, which minimum size of the portfolio is needed to meet assumption (A) and 

how a granularity adjustment is able to improve the results.  

 

III. Adjusting for Granularity in the Vasicek model 

1. Coarse and Fine Grained Risk Buckets 

With reference to Vasicek (1987, 1991, 2002) and Finger (1999, 2001) we use a one-period 

one-factor model for determining the portfolio default rate of a homogeneous portfolio and its 

VaR.22 Precisely, we observe a risk bucket  of J obligors at t = 0 with respect to t = T. Each 

obligor j ∈ {1, …, J} holds an exposure of the amount Ej = E. The discrete time process of 

“normalized” returns23 j,Ta�  at t = T of the assets of each obligor j is represented by the follow-

ing one-factor model24 

(1) j,T T j,Ta x 1= ρ ⋅ + − ρ ⋅ε� �� , 

in which Tx ~ N(0,1)�  and j,T ~ N(0,1)ε�  are i.i.d. with j ∈ {1, …, J}, 

i.e. they are independent (and identical) normally distributed with mean zero and standard 

deviation one. Therefore, Tx�  serves as the common shared, systematic factor that represents 

the overall economic condition of all obligors. Besides this, the risk factors j,Tε�  are the idio-

syncratic factors, that are independent from the systematic factor and account for the individ-

ual risk of each borrower. The asset correlation ρ between all borrowers is assumed to be con-

stant in the risk bucket and also expresses the fraction of risk to the common shared factor 

measured by the variance. Additionally, we assume that the obligor j defaults at t = T when its 

“normalized” return falls short of a exogenously given default threshold 

(2) 1
j,T jb N (PD )−= , 

in which N−1(⋅) stands for the inverse cumulative standard normal distribution and PDj defines 

the (unconditional) probability of default of obligor j. Due to homogeneity we set PDj = PD 

                                                 
22 The following model outline is very similar Rösch (2003). 
23 The returns are normalized by subtracting the expected return and dividing the resulting term by the standard 

deviation in order to get standard normally distributed variables. 
24 To keep track of the model, stochastic variables are marked with a tilde “~”. 
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and thus bj,T = bT for all j ∈ {1, …, J}. Conditional on a realisation of the systematic factor the 

probability of default of each obligor is25 

(3) ( ) ( )( )
1

T
j,T T T j,T T T T

N (PD) x
P a b | x E I a b | x N : p(x )

1

−⎛ ⎞− ρ ⋅
< = < = =⎜ ⎟⎜ ⎟− ρ⎝ ⎠

�� �� � �  

in which I(⋅) represents the indicator function that is 1 in the event of default and 0 in case of 

survival of the obligor and N(⋅) stands for the cumulative standard normal distribution. Since 

conditional on a realization T Tx x=�  the individual default events are independent, the (condi-

tional, still uncertain) number of defaults T TK | x�  (and the gross loss rate) of the portfolio are 

binomial distributed with the probability Tp(x ) , i.e. 

(4) ( )T T TK | x ~ B J;p(x )� . 

With reference to Vasicek (1987), see also Gordy/Heitfield (2000), we are able to calculate the 

unconditional probability of having kT defaults and we get 

(5) ( ) T
T

J kT k
T T T T

T

JkP D p(x ) 1 p(x ) dN(x )
kJ

+∞
−

−∞

⎛ ⎞⎛ ⎞= = ⋅ ⋅ − ⋅⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫�  

where TD�  marks the (uncertain) portfolio gross loss rate. 

 

For risk quantification we use the VaR on confidence level z of the observed risk bucket, that 

is the z-quantile qz of the loss variable, in which z ∈ (0,1) is the target solvency probability. 

Precisely, like Gordy (2004), we define the VaR as the loss that is only exceeded with the 

probability of at most 1–z, i.e. 

(6) ( ) ( ) ( )( )z T z T T T TVaR D : q D : inf d : P D d z= = ≤ ≥� � � . 

With respect to equation (5) we get 

(7) ( ) ( )
T

T

d J
T(cg)

z T T T T
k 1

kVaR D inf d : P D d P z
J

⋅

=

⎛ ⎞⎛ ⎞= ≤ = ≥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑� �  

for the VaR of the risk bucket. We call this the VaR of a coarse grained (homogeneous) 

bucket, since this formula is valid for any bucket size J. Thus, the granularity assumption (A) 

of section  I is not considered in this situation. The result of expression (7) can only be derived 

numerically. 

 

                                                 
25 In the following “P” denotes the probability of an event and “E” stands for the expectation operator. 
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As a next step we apply the concept of an (infinitely) fine grained portfolio, i.e. we assume an 

infinite number of obligors in the risk bucket and the weight of each exposure shrinks to 

zero,26 i.e. 

(8) 
J

2
J j

j
1

l wim 0
→∞ =

=∑  with 
j kE E EJ

j j k
k 1

1w E E
J

= =

=

= =∑ . 

For the VaR of the portfolio gross loss rate according to Vasicek (2002) or 

Bluhm/Overbeck/Wagner (2003) we receive 

(9) ( ) ( ) ( ) ( )1
1 z T(cg) (fg) (fg)

z T z T z T TJ

N (PD) q x
lim VaR D : VaR D VaR E(D | x ) N

1

−
−

→∞

⎛ ⎞− ρ ⋅
= = = ⎜ ⎟⎜ ⎟− ρ⎝ ⎠

�� � � � , 

in which ( )1 z Tq x− �  stands for the (1–z)-quantile of the systematic factor. This is the (well es-

tablished) VaR-figure of an (infinitely) fine grained risk bucket and it is equal to the expected 

loss rate as defined in equation (3) conditional on ( )1 z Tq x− � . Obviously, the credit risk only 

relies on the systematic factor, since due to the infinite number of exposures the idiosyncratic 

risks associated with each individual obligor cancel each other out and are diversified com-

pletely. However, in a real-world application assumption (8) surely not holds and a fraction of 

risk, that comes from the idiosyncratic factors, stays in the bucket. 

 

2. Small and Medium Sized Risk Buckets 

In this section we present two adjustments for the VaR formula (9) to take into account that in 

real world portfolios the idiosyncratic risk can not be diversified completely. The first formula 

was derived by Wilde (2001), the second is an extension and will be developed below. These 

adjustments can be derived as a Taylor series expansion of VaR around the ASRF solution.27 

Precisely, we subdivide the portfolio loss rate into a systematic and an idiosyncratic part, i.e. 

(10) T T T T T TD E(D | x ) D E(D | x ) : Y Z⎡ ⎤= + − = + λ⎣ ⎦� � � � � �� � . 

Thus, the first term T TE(D | x ) : Y=� ��  describes the systematic part of the portfolio loss rate that 

can be expressed as the expected loss rate conditional on Tx�  (see also equation (3) and (9)). 

The second term T T TD E(D | x ) : Z− = λ� � ��  of equation (10) stands for the idiosyncratic part of 

                                                 
26 Here we used the assumption due to Vasicek (2002), p. 160, that can be derived from the assumption due to 

Bluhm/Overbeck/Wagner (2003), p. 87, by using Kroneckers Lemma. 
27 The concept of this approach can be compared with the derivation of the Duration/Convexity in the context of 

bond management. 
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the portfolio loss rate. Therefore, Z�  describes the general idiosyncratic component and λ de-

cides on the fraction of the idiosyncratic risk that stays in the portfolio. Obviously, λ tends to 

zero if the number of obligors J converges to infinity, since this fraction (of the idiosyncratic 

risk) vanishes if the granularity assumption (A) from section  I holds. However, for a granular-

ity adjustment we claim that the portfolio is only “nearly” infinitely granular and thus λ is just 

close to but exceeds zero. In order to incorporate the idiosyncratic part of the portfolio loss 

rate into the VaR-formula we perform a Taylor series expansion around the systematic loss at 

λ = 0. We get 

(11) 

( ) ( ) ( ) ( )

( ) ( )

z
z T z z

0

2 32 3
z z

2 3

0 0

VaR Y Z
VaR D VaR Y Z VaR Y

VaR Y Z VaR Y Z
... .

2! 3!

λ=

λ= λ=

⎡ ⎤∂ + λ
⎢ ⎥= + λ = + λ

∂λ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤∂ + λ ∂ + λλ λ⎢ ⎥ ⎢ ⎥+ + +
∂λ ∂λ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

� �
� � � �

� � � �
 

Thus, the first term describes the systematic part of the VaR and all other terms add an addi-

tional fraction to the VaR due to the undiversified idiosyncratic component. For the granular-

ity adjustment it turns out, that only the terms of the order two and higher are non-zero. 

 

To compute the elements of the Taylor series, we require the derivatives of VaR. With refer-

ence to Wilde (2003), the formula for the first five derivatives (m = 1, 2, …, 5) of VaR in this 

context is given as28 

(12) 
( ) ( ) ( )

( )
z

m m 1
mz

m Y 2 Ym m 1
Y Y

m 3

m 2 Ym 3
l VaR (Y)

VaR (Y Z) 1 d d 1 d1 f (m) f
f dl dx f dl

d f ) ,
dl

−

−

−

−−
=

⎡∂ + λ ⎛= − − µ ⋅ + α µ ⋅⎢ ⎜∂λ ⎝⎣

⎤
⋅ µ ⋅ ⎥⎦ �

� �

 

with (1) (2) 0α = α = , (3) 1α = , (4) 3α =  and (5) 10α = . Here fY is the density function of the 

systematic loss rate of the risk bucket and µm stands for the mth (conditional) moment about 

the origin of the loss rate conditional on the systematic factor. 

 

Concurrently, the first derivative of VaR equals zero,29 so that the second derivative is the first 

relevant element underlying the granularity adjustment. With reference to Wilde (2001) and 

                                                 
28 The first two derivatives were already presented by Gourieroux/Laurent/Scaillet (2000). Wilde (2003) presents 

a general formula for all derivatives of VaR. For our derivation the stated formula is sufficient. 
29 This is valid because the added risk of the portfolio is unsystematic; see Martin/Wilde (2002) for further ex-

planations. 
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Rau-Bredow (2002) the Taylor series expansion up to this quadratic term leads to the follow-

ing formula for the VaR including the granularity adjustment, that is30 

(13) (1.Order Adj.) (fg)
z z 1VaR VaR l= ++  with 

( )1 z T

T
1

T
x q x

n(x) V D x x1l ,d2n(x) x E D x x
dx

−=

⎛ ⎞
⎡ ⎤⋅ =⎜ ⎟∂ ⎣ ⎦= − ⎜ ⎟∂ ⎜ ⎟⎡ ⎤=⎣ ⎦⎝ ⎠ �

� �
+

� �
 

in which n(x) describes the standard normal density function at x. Thus, the VaR figure of the 

infinitely fine grained portfolio due to equation (9) is adjusted by an additional term, that is 

the first term different from zero of the Taylor series expansion (11). We call this expression 

the ASRF solution with first order (granularity) adjustment. Under the condition of the Va-

sicek model, particularly the probability of default is assumed to be given by formula (3), we 

receive for the granularity add-on of a homogeneous portfolio31 

(14) ( ) ( )
( ) ( )

( )1
1 z T

1
1 z T

1
N (PD) q x

y
1

q x 1 2 N (PD)1 N(y)l N(y) 1 1 N(y)
2J n y 1 −

−

−
−

− ρ
=

−ρ

⎛ ⎞⎡ ⎤⋅ − ρ − ρ
= − + +⎜ ⎟⎢ ⎥⎜ ⎟ρ − ρ⎢ ⎥⎣ ⎦⎝ ⎠ �

�
+ , 

that is the formula presented by Pykhtin/Dev (2002) in the special case that we only model the 

gross loss rates. Obviously, the additional term is of order O(1/ J) 32, that is in itself an asymp-

totic result, meaning that higher order terms are neglected. 

 

Summing up both analytically derived formulas (9) and (13) for the VaR, the ASRF solution 

might only be exact if the term (14) of order O(1/ J)  is close to zero, whereas the ASRF solu-

tion including the first order granularity adjustment might only be sufficient if the terms of 

order 2O(1/ J )  vanish. For medium sized risk buckets this might be true, but if the number of 

credits in the portfolio is getting considerably small, an additional factor might be appropriate. 

Particularly, the mentioned granularity adjustment is linear in 1/ J  and this might not hold for 

small portfolios. Indeed, Gordy (2003) shows by simulation, that the portfolio loss seems to 

follow a concave function and therefore the adjustment (14) would slightly overshoot the 

theoretically optimal add-on for smaller portfolios.33 

 

                                                 
30 “V” denotes the variance operator. 
31 In Appendix A an analogous formula is stated for inhomogeneous portfolios. 
32 The Landau symbol O( )⋅  is defined as in Billingsley (1995), A18. 
33 Gordy (2003) observes the concavity of the granularity add-on for a high-quality portfolio (A-rated) up to a 

portfolio size of 1,000 debtors. 
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An explanation of the described behaviour is that the first order adjustment only takes the 

conditional variance into account, whereas higher conditional moments are ignored, which 

result from the higher order terms (see the derivatives in equation (12)). With the intention to 

improve the adjustment for small portfolio sizes, now the 2O(1/ J )  term will be derived and 

thus the error will be reduced to 3O(1/ J ) .34 Having a closer look at the derivatives of VaR, 

the fourth and a part of the fifth element of the Taylor series can be identified to be relevant 

for the 2O(1/ J )  terms.35 Using the methodology of formula (11) this yields to the following 

term 

(15) (1. 2.Order Adj.) (fg)
z z 1 2VaR VaR l l+ = + ++ +  

with 

(16) 

1 z

3
2

1 1

2

2

1 1
x VaR (x)

(x) n(x)1 d 1 dl
6 n(x) dx d (x) / dx dx d (x) / dx

(x) n(x)1 d 1 1 d
8n(x) dx n(x) d (x) / dx dx d (x) / dx

−=

⎛ ⎞⎡ ⎤η ⋅= ⎜ ⎟⎢ ⎥⎜ ⎟µ µ⎣ ⎦⎝ ⎠

⎡ ⎤⎛ ⎞⎡ ⎤η ⋅⎢ ⎥+ ⎜ ⎟⎢ ⎥⎜ ⎟µ µ⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦ �

+

 

in which ( )1 Tµ (x) E D | x x= =� �  is the 1st (conditional) moment about the origin and 

( )m m T(x) D | x xη = η =� �  is the mth (conditional) moment about the mean. In the context of the 

Vasicek model and under consideration of homogeneity we receive for this second add-on 

factor36 

(17) 

( )( )

( )( ) ( )
( ) [ ]( )

[ ]( )
(

2 2 2 2 2 3
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2 2
y y y y y y y y y
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2
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2
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6J s n
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1 x 3s y N N x s y s n 1 2N
8J s n

2 N N x s y s n 1 2N

N N 1 s s n 1

⎡= − + + + − +⎣

⎤⎡ ⎤ ⎡ ⎤+ + − + − − − + −⎣ ⎦ ⎣ ⎦ ⎦

⎡ ⎡ ⎤ ⎡ ⎤− − − − − − − −⎣ ⎦⎣ ⎦⎣

⎡ ⎤ ⎡ ⎤+ − + + −⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⋅ − − −⎣ ⎦ ⎣ ⎦

+
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with yN N(y)= , yn n(y)= , 
1N (PD) xy

1

− − ρ ⋅=
− ρ

, s
1

ρ=
− ρ

, and ( )1 z Tx q x−= � . 

                                                 
34 See Gordy (2004), p. 112, footnote 5, for a similar suggestion. 
35 See Appendix B for details. 
36 See Appendix C for the derivation of the more general inhomogeneous case. 
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Thus, the additional term is of order 2O(1/ J )  and equation (15) for the VaR only neglects 

terms of order 3O(1/ J ) . We will refer to this expression as the VaR under the ASRF solution 

with (first and) second order granularity adjustment. In terms of numbers of credits the error 

is reduced in the postulated way. Even if the formulas appear quite complex, both adjustments 

are easy to implement, fast to compute and we do not have to run Monte Carlo simulations 

and thereby avoid simulation noise. 

 

IV. Numerical Analysis of Granularity 

1. The Impact of the Approximations on the Portfolio Quantile 

For a detailed analysis of the granularity assumption (A) as mentioned in section  I, we firstly 

would like to discuss the general behaviour of the four procedures for risk quantification of 

homogeneous portfolios presented in section  III.1 and section  III.2, that are 

(a) the numerically “exact” coarse grained solution (see equation (5)) 

(b) the fine grained ASRF solution (see equation (9)) 

(c) the ASRF solution with first order adjustment (see equations (13) and (14)) 

(d) the ASRF solution with first and second order adjustments (see equations (14) to (17)) 

 

Therefore, we evaluate the portfolio loss distribution of a simple portfolio, that consists of 40 

credits, each with a probability of default of PD = 1%. We set the correlation parameter to 

20%ρ = .37 Using these parameters, we calculate the loss distribution using the “exact” solu-

tion (a) as well as the approximations (b) to (d). The results are shown in Figure 1 for portfo-

lio losses up to 30 % (12 credits) and the corresponding quantiles (of the loss distribution) 

starting at 0.7. See Figure 2 for the region of high quantiles from 0.994 on, that are of special 

interest in a VaR-framework for credit risk with high confidence levels. 

 

- Figure 1 about here - 

- Figure 2 about here - 

 

                                                 
37 The chosen portfolio exhibits high unsystematic risk and therefore serves as a good example in order to ex-

plain the differences of the four solutions. However, we evaluated several portfolios and the results do not differ 

widely. Additionally, we claim that the general statements can also be applied to heterogeneous portfolios as 

well. 
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It is obvious to see that the coarse grained solution (a) is not continuous, since the distribution 

of defaults is a discrete binomial mixture, whereas all other solutions (b) to (d) are “smooth” 

functions. This is caused by the fact, that these approximations for the loss distribution as-

sume an infinitely granular portfolio, i.e. the loss distribution is monotonous increasing and 

differentiable (solution (b)), or at least are derived from such an idealized portfolio ((c) and 

(d)). 

 

Firstly, we may examine the result for the VaR-figures at confidence levels 0.995 and 0.999. 

Using the exact, discrete solution (a) the VaR is 12.5% (or 5 credits) for the 0.995 quantile 

and 17.5% (or 7 credits) for the 0.999 quantile. Compared to this, the ASRF solution (b) ex-

hibits significant lower loss rates at these confidence levels, that are 9.46% for the 0.995 

quantile and 14.55% for the 0.999 quantile. Obviously, the ASRF solution underestimates the 

loss rate, since it does not take (additional) concentration risks into account. 

 

If we add the first order adjustment (c), the VaR figures increase compared to the ASRF solu-

tion (b) with values 12.55% for the 0.995 quantile and 18.59% for the 0.999 quantile. Both 

values are good proxies for the “true” solution (a). Especially the VaR at 0.995 confidence 

level is nearly exact (12.55% compared to 12.5%). However, (c) seems to be a conservative 

measure, since the VaR is positively biased. Using the additional second order adjustment (d), 

the VaR lowers to 12.12% for the 0.995 quantile and 17.48% for the 0.999 quantile. In this 

case the VaR at 0.999 confidence level is nearly exact (17.48% compared to 17.5%). None-

theless, (d) is likely to be a progressive approximation for the ASRF solution (a), since the 

VaR is negatively biased. 

 

Summing up the results from our experience (see also Figure 1 and Figure 2), using the ASRF 

solution (b) the portfolio distributions shift to lower loss rates for the VaR compared to the 

“exact” solution (a), since an infinitely high number of credits is presumed. Precisely, the 

idiosyncratic risk is diversified completely, resulting in a lower portfolio loss rate at high con-

fidence levels. If one incorporates the first order granularity adjustment (c), this effect will be 

weakened and especially for the relevant high confidence levels the portfolio loss rate will 
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increase compared to the ASRF solution (b). This means, that the first order granularity ad-

justment is usually positive.38 

 

However, if the second order granularity adjustment (d) is added, the portfolio loss distribu-

tion will shift backwards again (for high confidence levels). This can be addressed to the al-

ternating sign of the Taylor series as can be seen in formula (12). Since the first order granu-

larity adjustment is positive, the second order adjustment tends to be negative. Summing up, 

with the incorporation of the second order adjustment (d) the approximation of the discrete 

distribution of the coarse grained portfolio (a) is (in general) less conservative compared to 

the (only) use of the first order adjustment. However, a clear conclusion, that the application 

of second order adjustment (d) in order to approximate the discrete numerical derived distri-

bution (a) for high confidence levels outperforms the only use of the first order adjustment 

(c), can not be stated.39 

 

To conclude, if we appraise the approximations for the coarse grained portfolio, we find both 

adjustments (c) and (d) to be a much better fit of the numerical solution in the (VaR relevant) 

tail region of the loss distribution than the ASRF solution, whereas the first order adjustment 

is more conservative and seems to give the better overall approximation in general. 

2. Size of Fine Grained Risk Buckets 

Reconsidering the assumptions of the ASRF framework (see section  I), we found assumption 

(A) − the infinite granularity assumption − to be critical in a one factor model. Thus, we in-

vestigate in detail the critical numbers of credits in homogeneous portfolios that fulfill this 

condition. 

 

Therefore, we firstly have to define a critical value for the derivation of the “true” VaR figure 

from solution (a) from the “idealized” VaR of the ASRF solution (b) to discriminate a infinite 

granular portfolio from a finite granular portfolio. We do that in two ways. 

 

                                                 
38 See Rau-Bredow (2005) for a counter-example for very unusual parameter values. This problem can be ad-

dressed to the use of VaR as a measure of risk which does not guarantee sub-additivity; see Artzner/Del-

baen/Eber/Heath (1999). 
39 By contrast, we expected a significant enhancement by using the second order adjustment like mentioned in 

Gordy (2004), p. 112, footnote 5. 
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Firstly, one may argue, that the fine grained approximation (9) in order to calculate the VaR is 

only adequate, if its value does not exceed the “true” VaR from equation (7) of the coarse 

grained bucket minus a target tolerance βT both using a confidence level of 0.999. Precisely, 

we define a critical number (fg)
c,perI  of credits in the bucket, so that each portfolio with a higher 

number of credits than (fg)
c,perI  will meet this specification. We use the expression40 

(18) 
( )

( )
(fg)
0.999 T(fg) J

c,per T(cg)
0.999 T T

VaR D
I inf J : 1 for all n

VaR D K n
≥

⎛ ⎞
⎜ ⎟= − < β ∈
⎜ ⎟=⎝ ⎠

�
`� �  with T 0.05β = . 

Here, we set the target tolerance βT to 5 %, meaning, that the “true” VaR specified by coarse 

grained risk buckets does not differ from the analytic VaR using the fine grained solution (9) 

by more than 5%, if the number of credits in the bucket reaches at least (fg)
c,perI . 

 

Secondly, the fine grained approximation (b) of the VaR (“idealized” VaR ) may be sufficient 

as long as its result using a confidence level of 0.999 does not exceed the “true” VaR as de-

fined by solution (a) of the coarse grained bucket using a confidence level of 0.995, i.e.  

(19) ( ) T(fg) (fg) (cg)
c,abs 0.999 T 0.995 T

KI sup J : VaR D VaR D
J

⎛ ⎞⎛ ⎞
= < =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

�� � . 

This definition of a critical number can be justified due to the development of the IRB-capital 

formula in Basel II: when the granularity adjustment (of Basel II) was cancelled, simultane-

ously the confidence level was increased from 0.995 to 0.999.41 Thus, the reduction of the 

capital requirement by neglecting granularity was roughly compensated by an increase of the 

target confidence level. The risk of portfolios with a high number of credits will therefore be 

overestimated, if we assume that the actual target confidence level is 0.995, whereas the risk 

for a low number of credits will be underestimated. Thus, a critical number (fg)
c,absI  of credits in 

the bucket exists, so that in each portfolio with a higher number of credits than (fg)
c,absI  the VaR 

can be stated to be overestimated. 

 

                                                 
40 To address to the minimum number after which the target tolerance will permanently hold, we have to add the 

notation “for all n > J” because the function of the coarse grained VaR exhibit jumps dependent on the number 

of credits. 
41 These were the major changes of the IRB-formula from the second to the third consultative document, see 

Basel Committee On Banking Supervision (2001, 2003). 
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The critical numbers (fg)
c,perI  and (fg)

c,absI  for homogeneous portfolios with different parameteriza-

tions of ρ and PD are reported in Table 1 and Table 2. We do not only report the critical num-

bers under Basel II conditions, but also a wide range of parameter settings that might be rele-

vant, if banks internal data are used for estimating ρ. Due to the supervisory formula, this pa-

rameter is a function of PD for Corporates, Sovereigns, and Banks as well as for Small and 

Medium Enterprises (SMEs) and (other) retail exposures and remains fixed for residential 

mortgage exposures and revolving retail exposures.42 

 

With definition type (19) the critical numbers (fg)
c,perI  vary from 23 to 35,986 credits (see Table 

1), dependent on the probability of default PD and the correlation factor ρ. In buckets with 

small probabilities of default as well as low correlation factors the idiosyncratic risk is rela-

tively high, so that the portfolio must be substantially bigger to meet the goal. This means that 

in the worst case a portfolio must consist of at least 35,986 creditors to meet the assumptions 

of the ASRF framework at an accuracy of 5%. The same tendency can also be found for the 

target tolerance specification (20). We get critical numbers (fg)
c,absI  ranging from 11 to 5,499 

creditors (see Table 2), that are substantially lower compared to the critical numbers of the 

target tolerance. Thus, the critical number (fg)
c,absI  is less conservative. This is caused by the ef-

fect, that an increase of the confidence level for VaR calculations has a high impact especially 

on risk buckets with low default rates. 

 

However, since for all those obligors still the ASRF assumptions (see section  I) have to be 

valid, such big risk buckets may only be relevant for retail exposures in practice. Furthermore, 

it should be mentioned that these portfolio sizes are valid only for homogeneous portfolios. 

For heterogeneous portfolios these numbers can be considerably higher especially because the 

exposure weights differ between the obligors and thus concentration risk will occur.43 Thus, 

an improvement of measuring the portfolio-VaR is indeed advisable. However, it has to be 

                                                 
42 See Basel Committee On Banking Supervision (2004) paragraphs 272, 273, and 328 to 330. In both tables 

(rounded) parameters ρ due to Basel II are marked. If one aims to measure ρ from default series, one may refer 

to Gordy/Heitfield (2002), Gordy (2000) or Düllmann/Trapp (2004/2005). Lopez (2004) uses a KMV methodol-

ogy. The results for estimating ρ from portfolio data may differ from the correlations given in Basel II, see e.g. 

Duellmann/Scheule (2003) or Dietsch/Petey (2003), but overall the parameters given in Basel II are reasonable, 

see especially Lopez (2004). 
43 We will come to that in section  IV.5. 
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mentioned, that for portfolios with debtors incorporating low creditworthiness the ASRF solu-

tion is already sufficient for some hundred credits (or even less). 

 

- Table 1 about here - 

- Table 2 about here - 

3. Probing First Order Granularity Adjustment 

After auditing the adequacy of the ASRF solution (b) compared to the discrete, “true” solu-

tion (a) in context of a homogeneous risk bucket, we now investigate the accuracy of the first 

order granularity adjustment (solution (c)). Similar to section  IV. 2 we compare its accuracy 

with the discrete solution (a) but we additionally relate its result to the ASRF solution (b). 

 

For the first (conservative) number (1.Order Adj.)
c,perI  we compare the analytically derived VaR in-

cluding first order approximation (solution (c)) with the “true” VaR of the discrete, binomial 

solution (a) both on a 0.999 confidence level. Again, we aim to meet a target tolerance of βT 

and we get 

(20)  
( )

( )
(1.Order Adj.)
0.999 T(1.Order Adj.) J

c,per T(cg)
0.999 T T

VaR D
I inf J : 1 for all n

VaR D K n
≥

⎛ ⎞
⎜ ⎟= − < β ∈
⎜ ⎟=⎝ ⎠

�
`� �  with T 0.05β = . 

Thus, any analytically derived VaR of a risk bucket including more credits than (1.Order Adj.)
c,perI  

does not differ from the “true” numerical derived VaR by more than 5%. 

 

The results for (1.Order Adj.)
c,perI  for homogeneous risk buckets with a specific (PD, ρ)-combination 

are reported in Table 3. Obviously, the critical number varies from 7 to 6,100 credits. Com-

pared to the ASRF solution (see Table 1 in section  IV. 2), the critical values drop by 83.04 % 

at a stretch. Precisely, we find that the number of credits that is necessary to ensure a good 

approximation of the “true” VaR is significantly lower with the adjustment (c) than without 

the adjustment (b). For example, a high quality retail portfolio (AAA) must consist of 5,027 

compared to 26,051 credits if we neglect the first order adjustment. A medium quality corpo-

rate portfolio (BBB) must contain 106 compared to 442 credits. Thus, the minimum portfolio 

size should be small enough to hold for real world portfolios and we may come to the conclu-

sion, that the first order adjustment works fine even with our conservative definition of a criti-

cal value. 
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- Table 3 about here - 

 

Thus, we are able to use the ASRF formula with the first order granularity adjustment (c) as a 

(still progressive biased) proxy for the discrete numerical solution (a) and we are able to relate 

it to the ASRF formula (b). We do that by defining a critical value (1.Order Adj.)
c,absI  of credits simi-

lar to the definition (20), but this time we proclaim, that VaR of the ASRF solution without 

first order granularity adjustment (b) at confidence level of 0.999 should not exceed the VaR 

with first order granularity adjustment (c) at confidence level of 0.995. We write 

(21) ( )(1.Order Adj.) (1.Order Adj.) T(fg)
c,abs 0.999 T 0.995 T

KI sup J : VaR D VaR D
J

⎛ ⎞⎛ ⎞
= < =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

�� � . 

Consequently, the confidence level is increased by a buffer of 4 basis points, which should 

incorporate the idiosyncratic risk approximated by the first order granularity adjustment. 

 

The critical numbers of credits (1.Order Adj.)
c,absI  are shown in Table 4. They contain a range from 14 

to 5,170. It is interesting to note, that these critical values do not differ widely from the num-

bers (fg)
c,absI , where we compared the VaR of the ASRF solution (b) with the “true” VaR” using 

the numerical, time-consuming discrete formula. Precisely, the average percentage difference 

between the critical numbers of Table 2 and Table 4 is less than 10%. That means that the 

diversification behaviour of the coarse grained solution and the first order approximation is 

very similar, i.e. the first order adjustment is a good approximation of the idiosyncratic risk of 

coarse grained portfolios.  

 

- Table 4 about here - 

4. Probing Second Order Granularity Adjustment 

Finally, we would like to test the approximation if the (first and) second order adjustment is 

added to the ASRF formula and we get the solution (d). Similar to section  IV. 2 and  IV. 3, we 

firstly examine the VaR according to this new formula (d) in comparison to the “exact” VaR 

from the coarse grained solution (a). Additionally, we analyze its performance with respect to 

the ASRF solution. 
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Again, we calculate a critical number (1. 2.Order Adj.)
c,perI +  of credits to test the approximation accu-

racy with reference to the coarse grained formula (a) according to the “percentage” accuracy 

with a target tolerance of 0.05 by 

(22) 
( )

( )
(1. 2.Order Adj.)
0.999 T(1. 2.Order Adj.) J

c,per T(cg)
0.999 T T

VaR D
I inf J : 1 for all n

VaR D K n

+

+ ≥
⎛ ⎞
⎜ ⎟= − < β ∈
⎜ ⎟=⎝ ⎠

�
`� �  with T 0.05β = , 

using the (first and) second order adjustment as an approximation of the coarse grained port-

folio. 

 

The results are presented in Table 5. Now, the critical number of credits ranges from 17 to 

10,993. Compared to the ASRF solution (a), see Table 1 in section  IV. 2, the necessary num-

ber of credits to meet the requirements can be reduced to 33.5 percent on average. Thus, the 

second order adjustment is capable to detect idiosyncratic risk caused by an infinite number of 

debtors to certain extend. However, if we compare the result with the ones of the only use of 

the first order adjustment (see Table 3 in section  IV. 3), second order adjustment performs 

less. This might be due to the fact that the confidence level of 0.999 is very conservative and 

thus the more conservative first order adjustment (c) works better than the second order ad-

justment (d). 

 

- Table 5 about here - 

 

We are able to verify this result by analyzing the second order adjustment (d) in comparison 

with the exact ASRF solution (a). Therefore we introduce a critical number (1. 2.Order Adj.)
c,absI +  of 

credits, similar to the definition (22) in section  IV. 3. We get 

(23) ( )(1. 2.Order Adj.) (1. 2.Order Adj.) T(fg)
c,abs 0.999 T 0.995 T

KI sup J : VaR D VaR D
J

+ +⎛ ⎞⎛ ⎞
= < =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

�� � . 

So for each risk bucket with at least (1. 2.Order Adj.)
c,absI +  number of credits the idiosyncratic risk, 

measured by the second order adjustment on a confidence level 0.995, is included in the con-

fidence level premium of 4 basis points of the ASRF solution (on a confidence level 0.999). 

 

These critical numbers presented in Table 6 range from 7 to 4,285. Obviously, these results 

are considerably higher than those of Table 4 and therefore the predefined target value of ac-

curacy is reached with lower numbers of credits. Thus, the idiosyncratic risk is underesti-

mated with the second order adjustment compared to the numerical “true” solution (a) (see the 
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results in section  IV. 2) and is not measured with such a high accuracy as the first order ad-

justment does (see section  IV. 3). Concretely, this value is reduced by averaged 32.7 percent 

credits. 

 

- Table 6 about here - 

 

To conclude, the second order adjustment (d) converges faster to the asymptotic value of the 

ASRF solution (b), which confirms the findings of section  IV. 1. A possible reason is that the 

VaR measure using the first order approximation may be “corrected” into the direction of the 

ASRF solution by incorporating the second order adjustment. The possibility of this behav-

iour is given due to the alternating sign in the derivatives of VaR, see formula (12).44 Thus, 

taking more derivatives into account could solve the problem, but would lead to even more 

uncomfortable equations.45 Despite these theoretical questions, it can be stated that in homo-

geneous portfolios an excellent approximation of the true VaR can be achieved with the 

granularity adjustment. 

 

5. Probing Granularity for Inhomogeneous Portfolios 

The previous analyzes showed that the granularity adjustment works fine for homogeneous 

portfolios. In this section we test if the approximation accuracy of the presented general for-

mulas will hold for portfolios consisting of loans with different exposures and credit qualities. 

This means, that the credits in the portfolio vary in the exposure weight and in the probability 

of default, and we analyze if the gross loss rate for coarse grained portfolios could still be 

quantified satisfactory by the granularity adjustment. 

 

Concretely, we examine high quality portfolios with probabilities of default ranging from 

0.02% to 0.79% and lower quality portfolios with probabilities of default ranging from 0.2% 

to 7.9%. Additionally, we define a basic risk bucket consisting of 20 loans with exposures 

                                                 
44 This is true not only for the first five derivatives but also for all following derivatives; see the general formula 

for all derivatives of VaR in Wilde (2003). 
45 However, we also have to take into consideration that the Taylor series is potentially not convergent at all or 

does not converge to the correct value. For a further discussion see Martin/Wilde (2002) and Wilde (2003).  



 
 

 

22

between 35 and 200 million €.46 In order to measure the portfolio size with respect to concen-

tration risk we use the effective number of loans  

(24) 
J

* 2
j

j 1

J : 1 w
=

= ∑  

rather than the number of loans J.47 Consequently, this effective number is more than 25% 

below the true number of credits. 

 

A variation of portfolio size is reached by reproducing the basic risk bucket so that portfolios 

with 40, 60, …, 400, 800, 1600 and 4000 loans result. Using an asset correlation ρ = 20% and 

confidence level of 0.999, we compute the granularity add-on with the presented first order 

and second order adjustment.48 Because the exact value can not be determined analytically for 

heterogeneous portfolios, we compute the “true” VaR with Monte Carlo simulations using 3 

million trials.49 Finally, we compare this “true” VaR with the ASRF solution, so that we re-

ceive the granularity add-on. 

 

- Figure 3 about here - 

 

The simulated results for granularity add-on for the high quality portfolios and low quality 

portfolios are presented in Figure 3 (see the circles and dots). Therefore, the add-on for the 

minimum size of 40 loans with 1/ J 0.035≈  is 5.0% (6.2%) for the high (low) quality portfo-

lio. This is equal to a relative correction of +112.5% (+30.5%) compared to a hypothetical 

infinitely fine grained portfolio. This shows again the relative high impact of idiosyncratic 

risks in small high quality portfolios. With shifting to bigger sized portfolios the effective 

number of credits shifts to zero and the granularity add-on decreases almost exactly linear in 

terms of *1/ J  - even for high quality portfolios. This result is contrary to Gordy (2003), who 

exhibits a concave characteristic of the granularity add-on. This might be due to the fact, that 
                                                 
46 The used portfolio is based on Overbeck (2000), see also Overbeck/Stahl (2003), but reduced to 20 loans to 

achieve more test portfolios. 
47 The effective number J* of credits is based on the Herfindahl-Hirshman index H:=1/J*, that is preferably used 

as a measure of concentration in credit portfolios, see Gordy (2003) and Basel Committee On Banking Supervi-

sion (2001b), paragraphs 432 and 434. 
48 For the concrete formulas see Appendices A and C. 
49 As in Gordy (2003) we firstly used 300,000 Monte Carlo trials for calculation of the 0.99 confidence level 

(leading to 3,000 hits in the tail). However, on a 0.999 confidence level the VaRs were not stable and thus we 

recommend 3 million trials (also with 3,000 hits in the tail) that seemed to be appropriate in our case. 
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Gordy (2003) uses a CreditRisk+ framework, whereas we analyzed the effect of the granular-

ity with the CreditMetrics one-factor model that is consistent with the Basel II assumptions. 

 

Thus, the granularity add-on in Figure 3 can be approximated with a linear function. Indeed, 

the (linear) first order adjustment is a very good approximation for heterogeneous portfolios 

of high as well as low quality. Just like in the previous sections, the second order adjustment 

leads to a reduction of the granularity add-on, thus it can be characterized as less conservative, 

but comparing the results we strongly recommend the first order adjustment. 

 

V. Conclusion 

Presently discussed analytical solutions for risk quantification of credit portfolio models espe-

cially rely on the assumptions of an infinite number of credits and of only one systematic fac-

tor. Thus, those analytical frameworks do not account for “single name” and “sector” concen-

tration risks. This problem is discussed intensively by the financial authorities and it is espe-

cially considered in Pillar 2 of Basel II. Since one could get “sector” concentration risk under 

control by building small risk buckets, the “single name” concentration risk and the infinite 

granularity assumption, respectively, might be the most critical assumption. To cope with this 

problem, recently an add-on factor was developed, that adjusts the analytical solution for port-

folios of finite size and therefore might serve as a simple solution for quantifying “single 

name” concentration risk under Pillar 2. In this article we briefly reviewed the general frame-

work of this (first order) granularity adjustment for medium sized risk buckets. Furthermore, 

we derived an additional (second order) adjustment for small risk buckets, since an improve-

ment due to the higher order term is expected in the literature. We implemented this adjust-

ment on the Vasicek model that also builds the basis of the Basel II credit risk formula. We 

carried out a detailed numerical study. In this study we reviewed the accuracy of the infinite 

granularity assumption for credit portfolios with a finite number of credits, as well as the im-

provement of accuracy with so-called first and second order granularity adjustments. We re-

ceived some critical values for the minimum numbers of credits for the analytical solutions 

compared to the numerical “exact” solutions under the risk measure Value at Risk (VaR). As 

far as we know, such a study was carried out for the first time. We came to the conclusion, 

that the critical number of credits for approving the assumption of infinite granularity is influ-

enced by the probability of default, the asset correlation and of course the acquired accuracy 

of the analytical formula to great extent. The number of credits varies enormously, e.g. from 

1,371 to 23,989 for a high-quality portfolio (A-rated) and from 23 to 205 for an extremely 
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low-quality portfolio (CCC-rated). With the use of the first order granularity adjustment we 

could reduce these ranges drastically. The critical number of credits is in the bandwidth 456 to 

4,227 (A-rated) and 9 to 42 (CCC-rated) and thus, the postulated accuracy should be obtained 

in many real-world portfolios. Additionally, the second order adjustment does not seem to 

work for a conservative risk measure like the VaR, since it reduces the add-on factor. To con-

clude, we think that in general the assumption of an infinitely fine grained portfolio seems to 

hold even for relatively small portfolios, especially if the first order granularity adjustment is 

incorporated.  
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Appendix A 

With reference to Emmer/Tasche (2005),50 and to Pykhtin/Dev (2002) for the homogenous 

case, the first order granularity adjustment for inhomogeneous portfolios is 

(A1) 
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Appendix B 

For any m ∈`  the (m+1)th element of the Taylor series can be written as 

(A2) ( ) pr

z

mm m m e

rm
p m r 10 l VaR (Y)

VaR (Y Z) g Z Y l ,
m! m!

α

=λ= =

⎛ ⎞⎡ ⎤∂ + λλ λ ⎡ ⎤= µ =⎜ ⎟⎢ ⎥ ⎣ ⎦∂λ⎣ ⎦ ⎝ ⎠
∑∏
≺ �
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with the notation p m≺  to indicate that p is a partition of m, ie  represents the frequency how 

often a number i appears in a partition p, and g is a function that is independent of the number 

of credits J. With rµ  as the rth (conditional) moment about the origin and rη  as the rth (condi-

tional) moment about the mean it is possible to write 
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for each partition of m.51 Due to the limitation { }iI [ 1,1] i 1,..., I∈ − ∀ ∈�  there exists a finite  
                                                 
50 In addition to the formula for the granularity adjustment, the authors consider the contribution of single bor-

rowers to entire portfolio risk via the partial derivative with respect to the exposure weight wi, but this aspect is 

not the purpose of this article. 
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constant *
rη , so that under assumption of conditional independent defaults we have 

(A4) 
J J J
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Revisiting equations (A2) to (A4) it is straightforward to see that only for m 3=  and m 4=  

there exist terms which are maximum of Order ( )2O 1 J  

(A5) 
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with ia E b≤ ≤  for some 0 a b< ≤  and all i. All terms of higher derivatives of VaR are at 

least of Order ( )3O 1 J . 

 

Appendix C 

In order to shorten the equation (16) we set 1 1: (x)µ = µ , 2,3 2,3: (x)η = η , xn : n(x)= , and we get 

the following general form of the second order adjustment 
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First, the term 2,1l+  will be examined 

                                                                                                                                                         
51 To illustrate that this will indeed hold for each partition, we demonstrate an example, namely m 5=  

( ) ( )pr

5
e 2 3 2 5

r 5 4 1 3 1 3 2 2 1 2 1 1
p 5 r 1

( ) ( ) ( ) ( )
=
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(A7) 
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During the derivation, there will be use of following expressions 

(A8) 
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Then, (I) can be transformed into 
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The derivative of (II) can be calculated as follows 

(A10) 
( )

( )

2 2
3 3 x x

3 x x 32 2
1 1

2 2
3 x 1

x 3 2
1

d d 1 d d dn d n 1n n 2
dx dx d / dx dx dx dx dx d / dx

d dn d / dxn .
dx dx d / dx

⎛ ⎞ ⎛ ⎞η ηη ⋅ = + + η⎜ ⎟ ⎜ ⎟µ µ⎝ ⎠⎝ ⎠
η µ⎛ ⎞− + η⎜ ⎟

⎝ ⎠ µ

 

Taking the derivative of (III) results in 
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Reconsidering the derivatives of the density function, equation (A7) is equivalent to 
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Similarly, the second part of (A6) will be calculated 
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For (*) we can use the derivation of the first order adjustment in Wilde (2001), so we get 
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For term (I) we obtain 
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Calculating (II) leads to 
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Therewith, we get for equation (A13) 
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Thus, our primary equation (A6) can be expressed by the equations (A12) and (A17). Until 

this point, we only assumed the systematic factor to be normal distributed. For the contained 

conditional moments we get 
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Now, we perform the second order adjustment with respect to the probability of default 
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of the Vasicek model. Having a closer look at (A17) and the conditional moments, we find 

that the following derivatives are needed 
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Finally, we just have to use equations (A12), (A17)-(A22) in order to transform (A6). To sim-

plify the illustration, we will reproduce the complete formula only for a homogeneous portfo-

lio 

(A23) 

( )( )

( )( ) ( )
( ) [ ]( )

[ ]( )
(

2 2 2 2 2 3
2 y y y2 2 2

y

2 2
y y y y y y y y y

2
2

y y y y2 3 3
y

2
y y y y

2 2
y y y

1l x 1 s 3x s y 2s y N 3N 2N
6J s n

s n 2x 3s y 1 6N 6N s n y 6 N y n 6N N y 2n

1 x 3s y N N x s y s n 1 2N
8J s n

2 N N x s y s n 1 2N

N N 1 s s n 1

⎡= − + + + − +⎣

⎤⎡ ⎤ ⎡ ⎤+ + − + − − − + −⎣ ⎦ ⎣ ⎦ ⎦

⎡ ⎡ ⎤ ⎡ ⎤− − − − − − − −⎣ ⎦⎣ ⎦⎣

⎡ ⎤ ⎡ ⎤+ − + + −⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⋅ − − −⎣ ⎦ ⎣ ⎦

+

[ ] ( ) )2
y y y y2N x s y s n y 2 n N y ,⎤⎡ ⎤⎡ ⎤− + + + −⎣ ⎦ ⎣ ⎦ ⎦

 

with yN N(y)= , yn n(y)= , 
1N (PD) xy

1

− − ρ ⋅=
− ρ

, s
1

ρ=
− ρ

, ( )1 z Tx q x−= � . 
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FIGURE 1: Distribution of losses for a wide range of probabilities 
 
 

 
 

FIGURE 2: Distribution of losses for high confidence levels 
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TABLE 1: Critical number of credits from that ASRF solution can be stated to be sufficient for 
measuring the true VaR (see formula (19)) 

AAA up 
to AA-

A- up 
to A+ BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC up 

to C
0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 35986 23985 5389 5184 4105 3176 2057 1390 988 478 370 205
3.5% 30501 20122 4627 4457 3544 2755 1801 1214 861 421 322 175
4.0% 26051 17272 4054 3851 3076 2402 1563 1077 760 375 295 161
4.5% 22372 14906 3569 3392 2719 2132 1398 958 690 350 271 145
5.0% 19669 13160 3153 3047 2412 1928 1273 866 628 320 255 128
5.5% 17723 11667 2840 2701 2180 1722 1145 784 564 289 229 125
6.0% 15715 10590 2611 2442 1977 1566 1032 711 515 264 205 116
6.5% 14276 9452 2366 2252 1828 1428 946 655 477 251 201 106
7.0% 12730 8637 2148 2045 1665 1327 869 615 457 226 185 101
7.5% 11633 7915 1990 1896 1547 1214 827 578 412 209 167 90
8.0% 10657 7272 1813 1761 1414 1133 762 527 389 206 160 87
8.5% 9785 6695 1720 1607 1318 1040 703 505 357 200 156 87
9.0% 9222 6176 1571 1498 1231 992 660 460 338 183 143 80
9.5% 8504 5707 1466 1427 1152 930 610 443 326 164 135 76

10.0% 7853 5281 1399 1334 1079 873 597 419 304 157 132 68
10.5% 7262 5015 1309 1249 1011 804 552 382 289 153 118 70
11.0% 6900 4655 1226 1170 949 756 532 376 285 144 120 65
11.5% 6398 4324 1149 1097 911 726 493 357 257 138 109 64
12.0% 6099 4127 1103 1053 838 684 466 332 254 135 107 58
12.5% 5669 3843 1036 989 806 645 450 315 242 127 103 60
13.0% 5419 3677 974 952 759 622 435 299 226 117 94 53
13.5% 5046 3430 915 896 732 587 395 284 211 117 98 55
14.0% 4701 3290 882 843 706 555 391 288 201 110 87 52
14.5% 4510 3073 851 794 666 536 362 263 200 101 91 50
15.0% 4331 2954 822 767 629 519 344 250 195 108 84 51
15.5% 4044 2763 775 741 594 491 349 254 178 95 81 52
16.0% 3892 2661 731 717 589 476 324 226 186 100 78 44
16.5% 3748 2564 690 677 557 451 315 220 174 96 75 51
17.0% 3507 2403 668 639 540 427 299 225 159 86 67 42
17.5% 3383 2320 647 619 511 404 291 205 159 95 66 38
18.0% 3167 2241 611 585 496 403 277 200 152 80 70 33
18.5% 3060 2103 593 583 469 382 263 195 145 90 61 34
19.0% 2959 2034 576 551 456 362 250 186 142 85 65 35
19.5% 2863 1969 544 521 432 352 250 186 129 80 61 30
20.0% 2685 1850 529 507 420 343 244 173 133 77 57 31
20.5% 2601 1793 500 493 409 317 232 165 127 74 58 32
21.0% 2522 1739 487 466 377 326 227 170 131 73 51 26
21.5% 2446 1635 474 454 367 301 216 158 119 63 52 27
22.0% 2297 1587 448 442 368 302 211 163 123 64 53 28
22.5% 2230 1541 437 418 349 279 206 152 118 63 55 29
23.0% 2167 1498 413 408 350 280 191 145 113 57 53 30
23.5% 2036 1457 415 398 332 266 192 142 111 58 51 22
24.0% 1980 1371 393 388 324 252 193 132 98 54 49 23  

Corporates,
Sovereigns,
and Banks

SMEs
(5Mio.<Sales<50 Mio.)

SMEs
(Sales<5 Mio.) Mortgage Revolving

Retail
Other
Retail

 
 



 FIGURES AND TABLES 
 

 

III

 

TABLE 2: Critical number of credits from that the exact solution on confidence level 0.995 
exceeds the infinite fine granularity on confidence level 0.999 (see formula (20)) 

AAA up
to AA-

A- up 
to A+ BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC up 

to C
0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 5499 3885 997 1019 786 678 464 329 255 165 143 123
3.5% 4354 3126 836 793 665 542 380 274 217 138 122 110
4.0% 3428 2508 701 666 564 428 308 227 184 118 103 94
4.5% 3111 1998 588 558 434 364 266 200 155 100 93 79
5.0% 2436 1830 490 466 404 308 230 175 138 92 83 70
5.5% 2239 1445 406 386 339 288 198 154 123 77 71 65
6.0% 1724 1338 380 361 283 244 170 135 109 74 69 57
6.5% 1599 1037 312 297 266 204 161 117 97 68 58 56
7.0% 1489 968 294 280 220 193 138 112 85 62 57 50
7.5% 1114 906 238 264 208 183 131 97 82 57 50 46
8.0% 1044 681 225 214 197 152 111 93 72 52 46 42
8.5% 982 641 214 204 161 145 106 80 63 47 45 43
9.0% 925 605 203 194 153 119 102 77 61 46 39 41
9.5% 874 573 161 185 146 113 85 66 59 42 38 39

10.0% 621 543 154 147 140 109 82 64 51 38 37 38
10.5% 589 516 147 140 111 104 79 61 49 37 34 35
11.0% 559 368 141 134 107 100 76 52 48 36 31 30
11.5% 532 351 135 129 103 80 63 50 41 32 28 31
12.0% 507 335 130 124 99 77 61 49 40 32 30 28
12.5% 484 320 100 95 95 74 59 47 39 31 27 29
13.0% 463 306 96 92 91 72 57 46 38 28 29 26
13.5% 443 293 92 88 71 69 55 38 37 30 24 27
14.0% 425 281 89 85 68 67 44 37 31 27 26 24
14.5% 407 270 86 82 66 65 43 36 31 24 22 28
15.0% 261 260 83 79 64 50 42 35 30 21 23 21
15.5% 251 250 80 77 62 49 40 34 29 23 25 25
16.0% 242 241 77 74 60 47 39 33 24 23 21 22
16.5% 233 155 75 72 58 46 38 27 28 20 18 23
17.0% 224 149 55 70 56 44 37 26 23 22 22 19
17.5% 216 144 53 51 54 43 36 31 27 17 20 24
18.0% 209 139 51 49 53 42 28 25 22 19 18 20
18.5% 202 135 50 48 39 41 28 24 22 19 16 20
19.0% 195 130 48 46 37 40 27 24 18 16 16 21
19.5% 189 126 47 45 36 39 26 23 21 16 19 21
20.0% 183 122 46 44 35 38 26 23 21 18 17 17
20.5% 177 118 44 43 35 37 25 22 17 18 17 17
21.0% 172 115 43 41 34 27 24 22 20 14 15 18
21.5% 167 112 42 40 33 26 24 17 16 13 15 18
22.0% 162 108 41 39 32 26 23 21 16 15 13 19
22.5% 157 105 40 38 31 25 23 21 16 15 13 19
23.0% 153 102 39 37 30 24 22 16 15 15 13 14
23.5% 148 99 38 36 30 24 22 16 15 15 16 14
24.0% 144 97 37 36 29 23 16 16 15 13 11 15  

Corporates,
Sovereigns,
and Banks

SMEs
(5Mio.<Sales<50 Mio.)

SMEs
(Sales<5 Mio.) Mortgage Revolving

Retail
Other
Retail
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TABLE 3: Critical number of credits from that the first order adjustment can be stated to be 
sufficient for measuring the true VaR (see formula (21)) 

AAA up 
to AA-

A- up 
to A+ BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC up 

to C
0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 6100 4227 879 833 693 519 337 228 152 89 63 42
3.5% 5517 3491 810 768 590 443 291 199 133 67 54 32
4.0% 5027 3192 688 653 503 413 251 174 127 60 49 28
4.5% 4169 2936 641 609 470 355 237 165 112 54 38 24
5.0% 3846 2456 546 519 401 334 205 132 107 45 37 22
5.5% 3564 2283 513 488 378 287 195 138 94 51 35 20
6.0% 3317 2129 484 460 358 272 169 121 83 46 33 20
6.5% 3098 1993 413 435 339 258 177 105 80 34 28 18
7.0% 2902 1872 392 373 322 246 154 111 77 40 29 18
7.5% 2450 1762 373 354 277 235 133 97 61 29 27 13
8.0% 2309 1494 355 338 264 203 128 84 59 35 25 16
8.5% 2181 1414 338 322 253 215 136 81 57 31 21 16
9.0% 2065 1341 323 308 242 186 118 79 55 23 23 16
9.5% 1958 1274 309 295 232 179 114 76 54 30 19 14

10.0% 1861 1212 266 253 199 172 110 74 58 22 20 14
10.5% 1771 1156 255 271 214 148 106 64 51 19 15 11
11.0% 1689 1103 245 234 206 143 92 62 44 23 15 11
11.5% 1612 1055 263 225 178 154 89 60 43 21 17 11
12.0% 1541 1010 227 217 171 133 86 52 51 18 19 11
12.5% 1476 968 219 209 166 129 74 57 46 19 23 11
13.0% 1414 928 211 202 160 125 81 49 40 15 12 12
13.5% 1357 892 204 195 155 121 88 54 30 16 10 8
14.0% 1303 858 197 188 167 117 68 41 34 17 8 8
14.5% 1253 825 191 182 145 101 66 45 33 12 8 8
15.0% 1206 795 185 176 141 110 64 56 28 14 15 8
15.5% 1162 767 179 171 121 107 62 49 36 14 13 12
16.0% 1120 740 154 166 118 104 69 37 31 16 13 9
16.5% 1081 714 168 161 114 101 67 51 23 16 11 9
17.0% 1044 690 145 156 125 87 58 35 30 9 11 9
17.5% 1009 668 159 152 108 96 49 30 22 7 11 9
18.0% 976 646 154 131 105 83 55 39 18 7 9 9
18.5% 944 626 150 128 115 91 61 43 25 7 9 9
19.0% 914 606 146 124 112 79 53 28 21 13 9 9
19.5% 886 588 142 136 97 77 45 32 17 18 9 9
20.0% 859 570 123 118 95 75 44 36 20 14 9 9
20.5% 834 554 120 129 104 73 43 35 13 12 7 9
21.0% 809 538 117 112 90 63 42 30 16 10 7 9
21.5% 786 523 128 109 99 70 41 25 19 10 7 9
22.0% 764 508 111 106 86 77 51 29 22 8 7 9
22.5% 743 494 108 104 84 67 40 20 14 8 7 9
23.0% 722 481 119 114 92 57 39 36 11 8 7 9
23.5% 703 468 116 99 90 72 38 24 27 8 7 9
24.0% 684 456 101 97 88 55 32 16 18 8 7 9  

Corporates,
Sovereigns,
and Banks

SMEs
(5Mio.<Sales<50 Mio.)

SMEs
(Sales<5 Mio.) Mortgage Revolving

Retail
Other
Retail
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TABLE 4: Critical number of credits from that the first order adjustment on confidence level 
0.995 exceeds the infinite fine granularity on confidence level 0.999 (see formula (22)) 

AAA up 
to AA-

A- up 
to A+ BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC up 

to C
0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 5170 3544 973 935 769 626 441 327 255 164 146 128
3.5% 4029 2773 774 744 615 501 356 265 209 136 122 109
4.0% 3231 2232 633 609 504 413 295 221 175 116 105 95
4.5% 2650 1836 528 508 422 347 249 188 150 101 91 85
5.0% 2213 1538 448 431 359 296 214 162 130 89 81 76
5.5% 1875 1307 385 371 310 256 186 142 114 79 72 69
6.0% 1609 1124 335 323 270 224 163 125 101 71 65 63
6.5% 1395 977 295 284 238 198 145 112 91 64 60 59
7.0% 1220 856 261 252 211 176 130 100 82 59 55 55
7.5% 1075 757 233 225 189 158 117 91 74 54 50 51
8.0% 955 673 209 202 170 142 106 83 68 50 47 48
8.5% 853 602 189 182 154 129 96 75 62 46 44 45
9.0% 766 542 171 165 140 117 88 69 58 43 41 43
9.5% 691 490 156 151 128 108 81 64 53 40 38 41

10.0% 626 445 143 138 117 99 75 59 50 38 36 39
10.5% 570 405 131 127 108 91 69 55 46 36 34 37
11.0% 521 371 121 117 100 84 64 51 43 34 32 36
11.5% 477 340 112 108 92 78 60 48 40 32 31 34
12.0% 439 313 104 100 86 73 56 45 38 30 29 33
12.5% 404 289 96 93 80 68 52 42 36 29 28 32
13.0% 374 268 90 87 74 63 49 40 34 27 27 31
13.5% 346 248 84 81 70 59 46 37 32 26 26 30
14.0% 322 231 78 76 65 56 43 35 30 25 24 29
14.5% 299 215 74 71 61 52 41 33 29 24 24 28
15.0% 279 201 69 67 58 49 39 32 27 23 23 28
15.5% 261 188 65 63 54 47 36 30 26 22 22 27
16.0% 244 176 61 59 51 44 35 29 25 21 21 26
16.5% 229 165 58 56 48 42 33 27 24 20 20 26
17.0% 215 155 55 53 46 40 31 26 23 20 20 25
17.5% 202 146 52 50 43 38 30 25 22 19 19 25
18.0% 190 138 49 48 41 36 28 24 21 18 18 24
18.5% 180 130 46 45 39 34 27 23 20 18 18 24
19.0% 170 123 44 43 37 32 26 22 19 17 17 23
19.5% 160 116 42 41 36 31 25 21 19 17 17 23
20.0% 152 110 40 39 34 29 24 20 18 16 16 22
20.5% 144 105 38 37 32 28 23 19 17 16 16 22
21.0% 136 99 36 35 31 27 22 18 17 15 16 22
21.5% 129 94 35 34 29 26 21 18 16 15 15 22
22.0% 123 90 33 32 28 25 20 17 15 14 15 21
22.5% 117 85 32 31 27 24 19 17 15 14 15 21
23.0% 111 81 30 29 26 23 18 16 14 14 14 21
23.5% 106 78 29 28 25 22 18 15 14 13 14 21
24.0% 101 74 28 27 24 21 17 15 14 13 14 20  

Corporates,
Sovereigns,
and Banks

SMEs
(5Mio.<Sales<50 Mio.)

SMEs
(Sales<5 Mio.) Mortgage Revolving

Retail
Other
Retail
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TABLE 5: Critical number of credits from that the first plus second order adjustment can be 
stated to be sufficient for measuring the true VaR (see formula (23)) 

AAA up 
to AA-

A- up 
to A+ BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC up 

to C
0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 10993 7338 1796 1770 1417 1107 746 522 392 222 185 130
3.5% 9309 6251 1503 1427 1150 941 620 440 327 193 163 115
4.0% 7494 5077 1260 1252 1014 802 534 384 280 167 140 103
4.5% 6405 4367 1109 1054 858 683 460 323 255 148 120 90
5.0% 5864 3768 979 930 761 609 414 293 225 127 115 83
5.5% 5056 3256 866 824 677 544 373 266 199 118 103 78
6.0% 4362 3021 767 730 603 486 321 242 182 107 94 70
6.5% 4055 2622 680 647 537 435 304 210 167 100 86 64
7.0% 3509 2452 641 610 478 390 260 191 147 90 76 63
7.5% 3286 2132 570 542 453 349 248 183 141 84 74 60
8.0% 2844 2006 505 481 404 332 237 158 123 79 67 55
8.5% 2679 1892 480 457 385 297 214 160 119 71 63 51
9.0% 2529 1649 457 406 343 284 193 146 109 69 57 49
9.5% 2394 1563 406 387 328 254 174 133 105 67 58 51

10.0% 2077 1484 388 370 292 243 168 128 91 60 50 42
10.5% 1974 1412 344 354 280 234 161 116 88 56 49 43
11.0% 1879 1231 330 314 269 209 145 106 81 52 48 41
11.5% 1791 1175 316 302 239 201 140 109 88 51 45 38
12.0% 1710 1123 304 290 230 194 126 99 76 52 41 39
12.5% 1484 1075 269 257 222 173 131 96 74 51 42 37
13.0% 1421 1030 259 248 214 167 127 87 63 43 43 34
13.5% 1362 897 250 239 190 149 106 79 70 42 37 34
14.0% 1307 861 241 230 184 144 111 76 64 39 38 31
14.5% 1256 828 233 203 177 139 92 80 54 38 34 32
15.0% 1208 797 206 197 172 135 97 67 61 33 35 28
15.5% 1163 768 199 190 152 131 94 65 52 39 31 29
16.0% 1120 741 193 184 147 127 84 74 51 34 34 30
16.5% 1081 715 187 178 143 113 89 67 46 38 30 26
17.0% 938 690 181 173 152 120 73 56 45 33 28 26
17.5% 906 600 176 168 135 106 71 64 51 31 26 27
18.0% 876 646 155 163 131 103 69 58 43 32 24 28
18.5% 847 562 150 144 115 101 74 52 42 30 27 23
19.0% 820 544 146 140 124 98 72 51 41 26 25 23
19.5% 795 527 142 150 109 86 64 45 37 29 23 24
20.0% 770 511 138 132 106 93 57 44 33 27 26 25
20.5% 747 496 134 115 93 91 67 43 42 23 21 26
21.0% 725 482 131 125 101 80 60 39 38 21 24 26
21.5% 704 468 114 122 88 78 53 42 31 24 22 20
22.0% 684 455 124 119 96 68 57 41 34 22 22 20
22.5% 665 442 121 116 94 67 56 44 39 22 20 21
23.0% 647 430 106 101 82 73 44 32 30 20 17 22
23.5% 629 419 103 99 80 64 43 35 24 18 21 22
24.0% 613 408 101 108 78 62 43 38 29 21 18 23  
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TABLE 6: Critical number of credits from that the first plus second order adjustment on con-
fidence level 0.995 exceeds the infinite fine granularity on confidence level 0.999 (see for-

mula (24)) 
AAA up 
to AA-

A- up 
to A+ BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC up 

to C
0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 4285 2942 810 778 640 521 367 272 214 140 125 114
3.5% 3266 2254 633 609 503 411 292 218 173 115 104 97
4.0% 2560 1776 508 489 406 333 238 180 143 97 89 84
4.5% 2050 1429 417 401 334 275 198 151 121 83 77 75
5.0% 1671 1170 347 335 279 231 168 128 103 73 68 67
5.5% 1380 971 294 283 237 196 144 111 90 64 60 61
6.0% 1153 815 251 242 203 169 124 96 79 57 54 56
6.5% 973 691 216 209 176 147 109 85 70 52 49 51
7.0% 827 590 188 182 153 128 96 75 62 47 44 48
7.5% 708 507 164 159 135 113 85 67 56 43 41 44
8.0% 610 439 145 140 119 100 76 60 50 39 38 42
8.5% 527 382 128 124 106 89 68 54 46 36 35 39
9.0% 458 333 114 110 94 80 61 49 42 33 32 37
9.5% 399 292 102 98 84 72 55 45 38 31 30 35

10.0% 349 257 91 88 76 65 50 41 35 29 28 33
10.5% 306 226 82 79 68 59 46 37 32 27 27 32
11.0% 268 200 74 72 62 53 42 34 30 25 25 31
11.5% 264 177 67 65 56 48 38 32 28 24 24 29
12.0% 271 156 60 59 51 44 35 29 26 22 22 28
12.5% 266 173 55 53 46 40 32 27 24 21 21 27
13.0% 257 172 50 48 42 37 30 25 22 20 20 26
13.5% 248 167 45 44 39 34 27 23 21 19 19 25
14.0% 238 162 41 40 36 31 25 22 20 18 18 24
14.5% 229 156 38 37 33 29 24 20 18 17 18 24
15.0% 219 150 34 34 30 26 22 19 17 16 17 23
15.5% 210 144 38 36 27 24 20 18 16 15 16 22
16.0% 201 139 38 36 28 23 19 17 15 15 15 22
16.5% 193 133 37 36 29 21 18 16 14 14 15 21
17.0% 185 128 37 35 29 22 16 15 14 13 14 21
17.5% 177 123 36 34 28 23 15 14 13 13 14 20
18.0% 170 118 35 33 28 23 14 13 12 12 13 20
18.5% 163 113 34 33 27 22 13 12 12 12 13 19
19.0% 156 109 33 32 26 22 15 11 11 11 12 19
19.5% 150 105 32 31 26 21 15 11 10 11 12 19
20.0% 145 101 31 30 25 21 15 10 10 11 12 18
20.5% 139 97 30 29 24 20 15 10 9 10 11 18
21.0% 134 94 29 28 24 20 14 9 9 10 11 18
21.5% 129 90 28 27 23 19 14 10 8 10 11 17
22.0% 124 87 27 26 22 19 14 10 8 9 10 17
22.5% 120 84 26 26 22 18 14 10 8 9 10 17
23.0% 115 81 26 25 21 18 13 10 7 9 10 16
23.5% 111 78 25 24 20 17 13 10 7 8 9 16
24.0% 108 75 24 23 20 17 13 10 7 8 9 16  
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FIGURE 3: Granularity Add-on for heterogeneous portfolios calculated analytically with first 
order (solid lines) and second order (dotted lines) adjustments as well as with Monte Carlo 

simulations (x and o) using 3 million trials 

 

 


