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Abstract

Regret minimizing strategies for repeated games have been receiving increasing

attention in the literature. These are simple adaptive behavior rules that exhibit

nice convergence properties. If all players follow regret minimizing strategies, their

average joint play converges to the set of correlated equilibria or to the Hannan

set (depending on the notion of regret in use), or even to Nash equilibrium on

certain classes of games. In this note we raise the question of validity of the regret

minimization objective. By example we show that regret minimization can lead to

unrealistic behavior, since it fails to take into account the effect of one’s actions on

subsequent behavior of the opponents. An amended notion of regret that corrects

this defect is not very useful either, since achieving a no-regret objective is not

guaranteed in that case.
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1. Introduction. In a repeated interaction, an individual follows a regret-minimizing

strategy if, loosely speaking, she reinforces those actions that she regrets not having played

enough in the past. A particularly simple strategy is regret matching, which is defined by

the following rule:
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Switch next period to a different action with a probability that is propor-

tional to the regret for that action, where regret is defined as the increase in

payoff had such a change always been made in the past (Hart and Mas-Colell,

2000; Hart, 2005).

This strategy, in particular, includes rules of thumb which act according to “Never change

a winning team,” in other words, do not switch to a different action, as long as the current

action keeps being a best reply to the observed (average) actions of the opponents.

Regret-minimizing strategies received a lot of attention in the recent literature.1 The

main value of these strategies is that they are simple adaptive behavior rules that are nei-

ther computationally demanding nor relying on common knowledge assumptions and yet

exhibiting nice convergence properties. If all players follow regret-minimizing strategies,

their average joint play converges to the set of correlated equilibria or to the Hannan set2,

depending on the notion of regret in use (Hart and Mas-Colell 2000; see also Lehrer 2003,

Cesa-Bianchi and Lugosi 2006); or even to Nash equilibria on certain classes of games

(Hart and Mas-Colell 2003; Marden, Arslan, and Shamma 2007).

In this note we raise the question of validity of the regret minimization objective

in the context of games. On the one hand, according to the notions of regret used in

the literature, an individual who contemplates whether she could have done better by

having played a particular action more often in the past does not take into account the

effect of her actions on the subsequent behavior of her opponent. This is perfectly fine

in a decision making environment, but not in a game, where, by definition, players are

responsive to the opponents’ behavior. We show by example that failure to take the

opponent’s responsiveness into account may lead to unrealistic behavior.3

On the other hand, if we extend the notion of regret to take into account the above

mentioned effect, then it becomes impossible to guarantee no regrets, even against a

severely restricted set of the opponent’s strategies. We show that if opponent is even

1A non-exhaustive list includes Littlestone and Warmuth (1994), Fudenberg and Levine (1995), Foster
and Vohra (1998), Foster and Vohra (1999), Freund and Schapire (1999), Hart and Mas-Colell (2000),
Hart and Mas-Colell (2001), Hart and Mas-Colell (2003), Lehrer (2003), Young (2004), Cesa-Bianchi and
Lugosi (2003), Cesa-Bianchi and Lugosi (2006), Lehrer and Solan (2009).

2The Hannan set of a game is the set of all mixed action profiles that satisfy Hannan’s (1957) no-regret
condition. It is also known as the set of coarse correlated equilibria first appeared in Moulin and Vial
(1978), but explicitly defined as a solution concept by Young (2004, Ch.3).

3This problem is recognized in the computer science literature, e.g., Farias and Megiddo (2004) and
Cesa-Bianchi and Lugosi (2006, Ch.7.11). These works show that regret minimizing strategies fail to
lead to the cooperative outcome in a repeated prisoner’s dilemma. Our example is different and, as we
believe, has a value on its own, as it illuminates failure to learn the Pareto dominant equilibrium of a
one-shot game, whereas the above literature shows failure to learn playing strictly dominated actions.
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“slightly” adaptive to the player’s past behavior, the “no-regrets” objective cannot be

achieved.

We conclude that regret-minimizing behavior rules, either with the original notion

of regret or with the one that takes into account the opponent’s reaction, are not very

appealing when describing behavior of real subjects in repeated interactions where one’s

past actions may affect the other’s reaction, in particular, in repeated games.

2. Regrets. Consider a finite two-player game, with players named Alice and Bob.4

Let A and B be sets of actions of Alice and Bob, respectively, and let u : A × B → R
be Alice’s payoff function. The game is played repeatedly in time periods t = 1, 2, . . ., in

which players choose actions (at, bt). The history of realized actions is observable for both

players.

Consider Alice before period T + 1 and let a∗ = aT be her most recent action. Denote

by ŪT the average payoff of Alice up to period T ,

ŪT =
1

T

T∑
t=1

u(at, bt),

and denote by UT (a′) the average payoff that Alice would have obtained had she played

a′ instead of the reference action a∗ every time in the past when she actually played a∗,

UT (a′) =
1

T

T∑
t=1

wt(a
′),

where

wt(a
′) =

u(a′, bt), if at = a∗,

u(at, bt), if at 6= a∗.

Alice’s regret rT (a′) for action a′ after T periods is defined as the excess of UT (a′) over

ŪT ,

rT (a′) = UT (a′)− ŪT .

According to the above definition, Alice evaluates her regret for some action a′ relative

to the reference action a∗ (the most recently played one) by contemplating how much

higher payoff, on average, she could have received had she played a′ in every past period

when she actually played a∗, assuming that the play of the opponents would have remained

4Bob can be considered as a set of players, so the arguments presented below trivially extend to
n-player games.
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unchanged. This definition is plausible in the context of decision making, when an in-

dividual’s actions have no effect on the opponent, who can be perceived as an abstract

environment. It is much less appealing if the individual is engaged in a game, where the

opponent’s future play can be responsive to the individual’s present actions.

Bob
Alice L R
L 1, 1 0, 0
R 0, 0 100, 100

Figure 1

3. An example. For illustration, consider the following coordination game (Fig.

1). Suppose that the observed play up to period T is ((a1, b1), (a2, b2), . . . , (aT , bT )) =

((L,L), (L,L), . . . , (L,L)). Given this history, from the perspective of Alice, playing L is

a best reply to the average realized play of Bob.

Does Alice have regret for action R? Not according to the above definition, since in

every period she would have miscoordinated with Bob, so rT (R) = −1.

Could Alice have done better by having switched to R?

(I) No, if Bob’s strategy is independent of Alice’s actions.

(II) Possibly, if Bob’s strategy is adaptive, so that Bob could have followed Alice after

observing her trying to coordinate on a Pareto superior outcome.

Since Alice and Bob are engaged in a game, it would be unrealistic to assume that Bob

ignores all information obtained during past play. In games, scenario (II) is much more

plausible. Thus, the described notion of regret is not very appealing, and behavior rules

based on this notion could lead to outcomes that are unlikely to occur in interactions of

real subjects.

4. Regrets against history dependent behavior. Let us now introduce a dif-

ferent notion of regret that accounts for the opponent’s reaction. Denote by hT =

((a1, b1), . . . , (aT , bT )) the history of play up to T , and let H be the set of all finite histo-

ries. Let α : H → ∆(A) and β : H → ∆(B) be strategies of Alice and Bob, respectively,

that prescribe mixed actions for every history ht ∈ H. Denote by UT (α, β) the expected
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average payoff of Alice up to period T when she plays α against Bob playing β,

UT (α, β) = E(α,β)

[
1

T

T∑
t=1

u(at, bt)

]
,

where the expectation is taken with respect to the probability measure over H induced

by (α, β).

Fix Alice’s strategy α. Denote by α(a∗|a′) the strategy obtained from α by replacement

of a∗ by a′ in all periods where the realized action of α is a∗. Formally, for every history

h ∈ H let

α(a∗|a′)(h)[a∗] = 0, and

α(a∗|a′)(h)[a′] = α(h)[a∗] + α(h)[a′],

where α(h)[k] denotes the probability that α(h) assigns to action k ∈ A.

Consider Alice before period T + 1 and let a∗ = aT be her most recent action. For

a given strategy β of Bob, UT (α(a∗|a′), β) is the expected average payoff that Alice would

have obtained had she played a′ every time in the past when her strategy α stipulated to

play a∗, and when at every stage t ≤ T Bob would have responded according to β to the

new history.

Let B be a set Bob’s feasible strategies. Then Alice’s regret for a′ is given by

ρT (a′) = max
β∈B

UT (α(a∗|a′), β)− ŪT .

Thus, if ρT (a′) ≤ 0, then Alice can conclude that she could not have done better by

switching a∗ to a′ in the past, no matter what is the actual strategy of Bob.

A strategy of Alice is called a no-regret strategy against B if it guarantees that Alice’s

regrets become non-positive in the limit for every Bob’s strategy in B,

lim sup
T→∞

{
max
a′∈A

ρT (a′)

}
≤ 0 with probability one.

It is known that there exist no-regret strategies against an irresponsive opponent,

i.e., when B contains only deterministic sequences (e.g., Hannan, 1957; Hart and Mas-

Colell, 2000, 2001; Cesa-Bianchi and Lugosi, 2003). Yet, as we show below, a minimum

of adaptiveness of Bob’s strategies to Alice’s past actions leads to an impossibility result.

Bob’s strategy is called q-fictitious play if in every period t = 2, 3, . . ., with probability
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1− q Bob repeats his last-period action, and with probability q he best-replies to Alice’s

average past play. The initial play of Bob is arbitrary.

For some ε > 0 denote by Bε the set of q-fictitious play strategies with q ∈ [0, ε].

In particular, Bε contains non-adaptive strategies where Bob plays a constant action (0-

fictitious play).

Proposition. For every ε > 0, there does not exist a no-regret strategy against Bε.

Proof. The proof is by example. Consider the coordination game described earlier (Fig.

1). Fix ε > 0 and suppose that Bob plays q-fictitious play, βq ∈ Bε, q ∈ [0, ε], and let his

initial action be L.

Observe that the only possible source of regret for Alice is her inability to distinguish

the case of q = 0 from q > 0. Indeed, if Alice knew that q = 0, then her best reply would

be to always play L, since Bob is non-adaptive and repeats L forever, so ŪT = UT (L)→ 1.

On the other hand, if she knew that q > 0, then her best reply would be to always play

R, since eventually, with probability 1, Bob would switch to R after observing Alice’s

past average play being R, and the further play would be locked in (R,R) forever, so

ŪT = UT (R)→ 100.

Denote by zt the frequency of R in Alice’s past actions, zt = 1
t
|{k ≤ t : ak = R}|. Then

in every period t ≥ 2, with probability q Bob plays R if zt > 1/100 and plays L otherwise

(the tie can be resolved arbitrarily); with probability 1 − q Bob repeats his last-period

action. Consider the subsequence of periods, {ts}Ss=1, where the event {zts > 1/100}
occurs. For every s, the probability that Bob has never played R up to ts is equal to

(1 − q)s. First, suppose that S is finite. Then for q > 0 Alice’s regret for action R is at

least

lim
T→∞

UT (R)− ŪT ≥ 100− [(1− (1− q)S) · 100 + (1− q)S · 1] = 99(1− q)S,

which, for any given S, is bounded away from zero for every small enough q.

Next, let S =∞. Then lims→∞(1− q)s → 0 if and only if q > 0. So, for every q > 0,

limT→∞ UT (R) − ŪT → 0, and Alice has no regrets. However, for q = 0, this strategy of

Alice requires zts > 1/100 for every s = 1, 2, . . ., and hence

Ūts = zts · 0 + (1− zts) · 1 < 99/100,

while Uts(L) = 1. Thus, on the subsequence {ts} of periods, the regret for L is at least

1/100.
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It follows that no matter what Alice plays, there exists a strategy in B∗ of Bob such

that lim sup of Alice’s regret for one of the actions is bounded away from zero.

The reason for this negative result is that the probability that Bob’s type (q = 0 or

q > 0) is revealed does not converge to one uniformly across Bε, as T →∞. That is, after

every T , if Bob has never played R so far, there is no upper bound on Alice’s posterior

belief that q = 0. In other words, Alice cannot distinguish the cases q = 0 and q > 0, no

matter how long she observes Bob’s behavior.

Bob
Alice L M R
L 2, 2 1, 1 0, 0
R 0, 0 1, 1 2, 2

Figure 2

Another example is less subtle and shows that no regret cannot be achieved if an

opponent uses trigger strategies. Consider the game on Fig. 2 and suppose that the set

of strategies of Bob includes the following:

(non-adaptive) Bob constantly plays M .

(adaptive-L) Bob starts with M . Then, if Alice played L in the initial period, then Bob

will play L from period 2 forever, otherwise he will play M forever.

(adaptive-R) the same as adaptive-L except L is replaced by R.

In this game, Alice’s long-run average payoff is determined entirely by Bob’s type and

Alice’s initial action, since Bob’s actions are constant from period 2 on. Now observe

that no matter what Alice plays in period 1, there is a type of Bob, either adaptive-L or

adaptive-R, that would make her regret for action L or R, respectively, in all subsequent

periods. Indeed, if Alice chooses, for instance, L in the first period and Bob’s type is

adaptive-R, then the following play of Bob will be constantly M , and Alice’s average

payoff will be 1. However, Alice could have obtained the average payoff of 2, had she

started her play with R.

5. Conclusion. To sum up, the notion of regret used in the literature is not satisfactory

in the context of repeated games as it fails to take into account possible reaction of

opponents to changes in one’s actions. We define an extended notion of regret, with
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respect to opponents’ strategies (rather than realized actions) and show that in this case

no-regret strategies need not exist when the opponents are adaptive. Two examples

provide the intuition for this result: the regrets persist because the opponent’s strategy

cannot be statistically identified (as in the former example) or because the opponent uses

trigger strategies, where an early decision of the player (which is payoff-relevant for the

the entire infinitely repeated interaction) has to be made when the player has not been

yet informed about the opponent’s strategy.

We conclude that the notion of regret, whether the original or the extended one, should

be used with caution in the context of repeated games where players may respond to one

another’s behavior.
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