
Department of Economics
Forecasting with Dynamic Models using Shrinkage-based Estimation

Andrea Carriero, George Kapetanios and Massimiliano Marcellino

Working Paper No. 635          October 2008           ISSN 1473-0278



Forecasting with Dynamic Models using
Shrinkage-based Estimation

A. Carriero
Queen Mary, University of London

G. Kapetanios
Queen Mary, University of London

M. Marcellino
Bocconi University and EUI

October 25, 2008

Abstract

The paper provides a proof of consistency of the ridge estimator for regressions
where the number of regressors tends to infinity. Such result is obtained without as-
suming a factor structure. A Monte Carlo study suggests that shrinkage autoregressive
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1 Introduction

In recent years there has been increasing interest in forecasting methods that utilize large

data sets. There is an awareness that there is a huge quantity of information available in the

economic arena which might be useful for forecasting, but standard econometric techniques

are not well suited to extract this in a useful form.

As a result, a large number of methods which are either new or new to econometrics has

been proposed to deal with forecasting using large data sets. The most popular group of

methods consists of estimation strategies that allow estimation of a single equation model
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that utilizes the whole of the available dataset. This group ranges from factor-based meth-

ods (see e.g. the overview in Stock and Watson (2006)) to Bayesian regression (see e.g. the

overview in Geweke and Whiteman (2006)). Bayesian regression (Shrinkage), in particular,

has proven very popular recently for forecasting with large datasets as work by Banburra,

Giannone, and Reichlin (2007) and De Mol, Giannone, and Reichlin (2007) suggests.

This paper considers shrinkage estimation within a single equation framework, suggests

a new application of the technique with a clear focus on forecasting, and provides some

relevant theoretical, Monte Carlo and empirical results. Our work starts from the standard

benchmark for forecasting using dynamic models: the autoregressive model. This model is

well known to provide surprisingly good forecasts. A resounding confirmation of its enduring

popularity as a forecasting model comes from the fact that most evaluations of new fore-

casting models are considered to be successful if the new model can beat this benchmark. A

problem with autoregressive models is that as the lag order increases these models become

less parsimonious and their forecasting performance suffers. This leads to the standard prac-

tise of using few lags. This contradicts the well known theoretical result which states that

autoregressive models envelop a large class of model including most nonlinear models as long

as the lag order is allowed to grow possibly to infinity. Then, autoregressive models become,

under certain regularity conditions, equivalent to infinite order moving average model and

via the Wold decomposition can approximate alternative models such as nonlinear models.

In this paper we suggest that estimating autoregressive models using shrinkage promotes

parsimony while allowing the use of large lag orders. Using recent results from the statis-

tical literature (Huang, Horowitz, and Ma (2008)), we prove consistency for the parameter

estimates of such an autoregressive model. In fact, we prove a more general result which

shows consistency in the context of ridge regression for regressions where the number of

regressors tends to infinity without assuming a factor structure for those regressors as in De

Mol, Giannone, and Reichlin (2007). Our extensive Monte Carlo study suggests that our

suggested estimation strategy can have very substantial advantages compared to standard

autoregressive models in the presence or long and possibly highly persistent lag structures.
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We apply the new methods to forecasting a set of macroeconomic series. We focus on a

panel of countries and forecast inflation and GDP growth series. Our findings suggest that

using shrinkage autoregressive models can provide very substantial advantages compared to

the already competitive forecasts produced by standard autoregressive models.

The paper is structured as follows: Section 2 presents the theoretical results of the paper.

Section 3 presents an extensive Monte Carlo study. Section 4 presents our empirical results

while Section 5 concludes. The appendix contains the proofs of the theoretical results.

2 Theory

The first model we will focus on is a standard regression model of the form

yt = x′
tβ + εt, t = 1, ..., T (1)

where xt = (x1t, ..., xpt)
′ is a p × 1 vector of regressors, β = (β1, ..., βp)

′ is a p × 1 vector

of coefficients and εt is a zero mean error term. The first aim of this section is to consider

shrinkage estimation of this model when the number of regressors p ≡ pT increases with T .

We focus on ridge regression whereby the estimator for β takes the form

β̂ =
(
X ′

pXp + ΛT

)−1
X ′

py (2)

where Xp = (x̃1, ..., x̃p) , x̃j = (xj1, ..., xjT )′, j = 1, ..., p and y = (y1, ..., yT )′. We specify ΛT

to be a diagonal matrix where the main diagonal is made up of p penalty terms denoted by

λjT , j = 1, ..., p. A closely related estimation problem has been recently analysed by Huang,

Horowitz, and Ma (2008), who provided consistency and distributional results for a general

bridge estimator. That bridge estimator corresponds to our specific shrinkage estimator

when the parameter γ of the general bridge estimator takes the value 2. In the first instance,

we extend in a straightforward way this work. Our extensions are as follows: Firstly, we

allow the regressors to be stochastic. Secondly we relax the independence assumption for εt.

Thirdly, we allow for different penalty terms, λjT to be associated with different regressors.

This is crucial for the extension of this methodology to the dynamic case as we will see below.

A trivial extension is to note that whereas Huang, Horowitz, and Ma (2008) assume that the

parameter of the bridge estimator is less than one, this is not needed for their consistency
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and rate result and so their theory is applicable to our framework.

We make the following assumptions

Assumption 1 xt is a stationary process with finite second moments and a covariance ma-

trix ΣT whose smallest eigenvalue is bounded away from zero for all T .

Assumption 2 εt is a martingale difference sequence with zero mean and finite second mo-

ment, σ2.

Theorem 1 Under assumptions 1 and 2, we have that

∥∥∥β̂T−β0

∥∥∥ = Op

((
pT + κT

T

)1/2
)

(3)

where κT is defined in (8).

The proof of Theorem 1 is given in the appendix. This result is novel in the sense that

there is no work on the consistency and rate of convergence for the coefficients of a ridge

regression model with stochastic regressors. The only other directly relevant work is De

Mol, Giannone, and Reichlin (2007), where a consistency and rate result is obtained but

only under the assumption that xt follows a factor model. Having established this result for

the general regression we wish to provide an explicit analysis for an autoregressive model

where the number of lags tends to infinity. Therefore, we focus on the following dynamic

model

yt =
∞∑
i=1

ψiyt−i + εt t = 1, . . . , T (4)

This model cannot be estimated since the lag order is infinite but can be approximated by

yt =

pT∑
i=1

ψiyt−i + εt t = 1, . . . , T (5)

when pT → ∞. We make the following assumption.

Assumption 3 (a) εt are i.i.d. random variables such that E(εt) = 0 and E(ε2
t ) = σ2,

(b) φ(z) �= 0 for all |z| ≤ 1, and
∑∞

k=0 |k|s|φk| < ∞ for some s ≥ 1, (c) The smallest

eigenvalue of the covariance matrix of (yt, ..., yt−pt) is bounded away from zero, (d) pT → ∞,

pT = o
(
T 1/2

)
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The above assumption implies that yt is stationary with finite second moment.

Theorem 2 Under assumption 3, the results of Theorem 1 hold for (5).

The proof of Theorem 2 is given in the appendix.

3 Monte Carlo Study

In this Section, we present a Monte Carlo study of the properties of the shrinkage autore-

gressive estimator. We consider the following model

yt =
100∑
i=1

ψiyt−i + εt t = 1, . . . , T (6)

where ψi = φφi∑100
i=1 φi

and φi = φi. The parameter φ controls the persistence of the autore-

gressive process and is set to 0.5, 0.9, 0.95 and 0.99. εt ∼ N(0, 1). The sample size is set

to T = 60, 80, 100, 200, 400 and 1000 observations. For every sample, T + 200 observations

are generated. The first 100 observations are disregarded to remove the effect of initial con-

ditions which are set to zero. The last 100 observations are retained for our out-of-sample

analysis.

Next, we discuss the implementation of the shrinkage estimation. As discussed in Sec-

tion 2, the estimator is given by ψ̂ = (Y ′
pYp + Λp)

−1Y ′
pyp, where y = (ypT +1, ..., yT )′, Yp =

(ỹ1, . . . , ỹpT
), ỹj = (ypT +1−j, ..., yT−j)

′, j = 1, ..., pT . The shrinkage component, Λp, is a

pT × pT diagonal matrix whose i-th diagonal element is given by v1pT (0.1 + v2 ∗ i). Higher

values of v1 imply higher overall shrinkage. Higher values of v2 imply increasingly higher

shrinkage for higher lags. We set v1 to 0.01, 0.1, 0.5, 2 and 5 and v2 to 0.1, 0.5, 1, 2 and 5.

We set pT to max([0.25T ], [ln(T )2]). We also estimate a standard autoregressive model for

comparative reasons. For this, we set pT to [ln(T )2].

We are interested in the out-of-sample forecasting performance of the shrinkage autore-

gressive model when compared with the standard autoregressive model. We produce one-

step-ahead forecasts from both models and calculated the relative root-mean square forecast

error (RMSFE) given by (RMSFEARS − 1)/(RMSFEAR − 1), where ARS denotes the
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autoregressive shrinkage estimator and AR denotes the standard autoregressive estimator.

We subtract 1 from both the numerator and the denominator since we know that the lower

bound for the RMSFE for all methods is the standard deviation of the error term, εt, which

in our case is set to 1. Results for the cases φ = 0.5 and φ = 0.95 are reported in Table 11.

The results make interesting reading. The degree of persistence seems to have little effect

on the relative performance of the shrinkage autoregressive model. Overall, the shrinkage

autoregressive estimator seems to perform much better than the standard autoregressive

estimator. There are instances where the shrinkage estimator gives a reduction of 80% in

the RMSFE compared to the standard estimator. The performance is sensitive to the choice

of shrinkage parameters as expected. Relatively large values for v1 and v2 give the best

performance although the largest values for v1 and v2 perform invariably badly.

Overall, it is clear that the shrinkage autoregressive estimator is a really competitive

alternative and is worth of further investigation in empirical settings. We undertake this

task in the next Section.

4 Empirical Application

In this Section we shall examine the performance of the ARS model in predicting actual

economic time series. We focus on predicting inflation and (real) GDP growth. The data

on inflation are monthly and range from April 1960 to July 2008, while the data on GDP

growth are quarterly and range from to 1970Q2 to 2008Q2. We consider ten large OECD

countries: Canada (CN), France (FR), Germany (GE), Italy (IT), Japan (JP), Netherlands

(NL), Spain (SP), Switzerland (SW), United Kingdom (UK), and United States (US). All

data are taken from OECD through the SourceOECD web-based database. In the analysis

on the GDP growth we have excluded Germany and Switzerland as the available time series

were too short.

1To save space we do not provide the results for the cases φ = 0.9 and φ = 0.99. Such results are similar
to those obtaied with φ = 0.95 and are available upon request.
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Beyond considering the performance of the ARS model against the standard autore-

gressive estimator AR we also consider the performance against a simple AR(1), as the

latter model is often used as a benchmark. The lag orders of the ARS and the AR are

set in exactly the same way as in the Monte Carlo study, so the ARS has lags equal to

max([0.25T ], [ln(T )2]) while the AR has [ln(T )2] lags. The forecasts are produced in pseudo

real time, using a rolling estimation window of 120 months for inflation and of 60 quarters

for GDP growth.

Tables 2-3 display the root-mean squared forecast error (RMSFE) of the ARS model

against the AR (in Panels A) and the AR(1) (in Panel B), for each of the values of v1 and

v2 in the grid. In particular, Table 2 display results for GDP growth, while Table 3 dis-

plays results for inflation. Note that the RMSFE reported in Tables 2-3 are computed as

RMSFEARS/RMSFEAR and RMSFEARS/RMSFEAR(1), i.e. we do not subtract 1 from

the numerator and denominator as in Table 1. Several conclusions can be drawn from the

tables.

First, the ARS model outperforms both the AR and the AR(1) in forecasting both in-

flation and GDP growth. In particular, the ARS outperforms its competitors in most of the

cases, and in several instances there are combinations of the shrinkage parameters such that

the ARS is the best forecasting model for all the countries at hand.

Second, the ARS model seems to work better when a relatively loose overall shrinkage

and relatively high shrinkage for higher lags is used (i.e. low v1 and high v2). This is in line

with the a-priori belief that lags closer in time are more useful in forecasting. Still, the fact

that the ARS outperforms the AR(1) shows that the higher order lags do contain useful

information. Such information needs to be extracted in an efficient way in order to avoid to

pay the costs of overparameterization. The fact that the ARS outperforms the AR shows

that shrinkage is able to efficiently extract such information, whereas simply including all

the lags in the model would likely result in a loss in prediction performance.

Third, as for the magnitude of the forecasting gains, for the GDP growth (Tables 2) the
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gains against the AR(1) model can go up to 28% for the US, 40% for the UK, 18% for Japan.

Similarly, the gains against the AR can go up to 25% for the US, 18% for the UK, and 36%

for Japan. For inflation (Tables 3), the gains against the AR(1) can go up to 22% for the

US, 36% for the UK, and 30% for Japan, while the gains against the AR can go up to 21%

for the US, 12% for the UK, 17% for Japan.

Finally, in Tables 4 and 5 we report results for forecasting GDP and inflation 12-step

ahead. It turns out that the results are in line with those obtained for the 1 step-ahead case,

and the forecasting gains can be sizeable also at the longer horizon.

5 Conclusion

Autoregressive models have been used extensively for forecasting macroeconomic time series.

In this paper we propose a new autoregressive model, based on shrinkage estimation, that

is especially designed to promote parsimony and thereby provide superior forecasts. In the

course of proposing the new model we provide some interesting theoretical extensions of

independent interest for ridge estimation both within standard regression models and au-

toregressive models in particular.

We have carried out an extensive Monte Carlo study, which shows the considerable po-

tential of the new method, as well as an empirical application to inflation and GDP growth

rates. Our results are encouraging and suggest that the new method has wide applicability

to macroeconomic forecasting.

Appendix

Proof of Theorem 1

We will show that ∥∥∥β̂T−β0

∥∥∥ = Op

((
pT + κT

T

)1/2
)

(7)
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where κT is defined in (8). By the definition of β̂T , we have that

T∑
i=1

(
yt − x′

tβ̂T

)2

+

pT∑
j=1

λjT

∣∣∣β̂jT

∣∣∣2 ≤ T∑
i=1

(yt − x′
tβ0)

2
+

pT∑
j=1

λjT

∣∣βj0

∣∣2
or

T∑
i=1

(
yt − x′

tβ̂T

)2

≤
T∑

i=1

(yt − x′
tβ0)

2
+

pT∑
j=1

λjT

∣∣βj0

∣∣2
Define

κT =

pT∑
j=1

λjT

∣∣βj0

∣∣2 , (8)

then

κT ≥
T∑

i=1

(
yt − x′

tβ̂T

)2

−
T∑

i=1

(yt − x′
tβ0)

2
=

T∑
i=1

[
x′

t

(
β̂T − β0

)]2

+ 2
T∑

i=1

εtx
′
t

(
β̂T − β0

)

Define δT = T 1/2Σ
1/2
T

(
β̂T − β0

)
, DT = T 1/2Σ

−1/2
T X ′, ΣT = 1

T
X ′X and εT = (ε1, ..., εT )′.

Then,
T∑

i=1

[
x′

t

(
β̂T − β0

)]2

+ 2
T∑

i=1

εtx
′
t

(
β̂T − β0

)
= δ′

T δT − 2 (DT εT )′ δT .

It follows that

δ′
T δT − 2 (DT εT )′ δT − κT ≤ 0

which implies that

‖δT − DT εT‖2 − ‖DT εT‖2 − κT ≤ 0

or

‖δT − DT εT‖ ≤ ‖DT εT‖ + κ
1/2
T

But then,

‖δT‖ ≤ ‖δT − DT εT‖ + ‖DT εT‖ ≤ 2 ‖DT εT‖ + κ
1/2
T

which implies

‖δT‖2 ≤ 6 ‖DT εT‖2 + 3κT
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Rewrite DT εT =
∑T

t=1 dtT εt where dtT is the t-th column of DT . By the martingale differ-

ence assumption on εt, we have E (εtεs) = 0 for s �= t. Then, by the independence between

εt and xt, it follows that

E ‖DT εT‖2 =
T∑

t=1

E ‖dtT‖2 Eε2
t = σ2

T∑
t=1

E ‖dtT‖2 = σ2E

(
T∑

t=1

‖dtT‖2

)
= (9)

σ2E (tr (DT D′
T )) = σ2pT

Thus,

E ‖δT‖2 ≤ 6σ2pT + 3κT

or

TE

[(
β̂T − β0

)′
ΣT

(
β̂T − β0

)]
≤ 6σ2pT + 3κT

Finally, noting that by assumption the smallest eigenvalue of ΣT is bounded away from zero

for all T gives (7).

5.1 Proof of Theorem 2

In order to prove this theorem we only need to modify parts of the proof of Theorem 1. We

reexamine (9) and in particular the step that uses the independence between εt and xt. In

the case of the sieve autoregression

εt = εTt = εt +
∞∑

j=1

(
φpT

j − φj

)
yt−j = εt + vTt

Then, we have

T∑
t=1

E (‖dtT‖ εTt)
2 ≤

T∑
t=1

E (‖dtT‖ εt)
2 +

T∑
t=1

E (‖dtT‖ vTt)
2

As in the proof of Theorem 1

T∑
t=1

E (‖dtT‖ εt)
2 = Op (pT + κT )

Then,
T∑

t=1

E (‖dtT‖ vTt)
2 ≤

T∑
t=1

E
(‖dtT‖2) E(v2

Tt)
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But by Theorem 7.6.6. of Anderson (1971) v2
Tt converges to zero in the L2 norm and so

T∑
t=1

E
(‖dtT‖2) E(v2

Tt) = op (pT + κT )

thereby proving the result.
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Table 1: Relative RMSFE (ARS/AR)

Panel A: Results for φ = 0.5
T = 60 T = 80

v1/v2 0.1 0.5 1 2 5 0.1 0.5 1 2 5
0.01 0.979 0.915 0.853 0.757 0.601 1.061 1.001 0.944 0.842 0.671
0.1 0.843 0.580 0.444 0.310 0.186 0.934 0.649 0.510 0.370 0.232
0.5 0.567 0.270 0.194 0.139 0.099 0.631 0.307 0.212 0.148 0.110
2 0.284 0.120 0.092 0.085 0.088 0.328 0.138 0.100 0.115 0.084
5 0.162 0.090 0.076 0.081 0.093 0.186 0.104 0.086 0.109 0.116

T = 100 T = 200
0.01 1.229 1.142 1.057 0.937 0.719 1.898 1.729 1.562 1.245 0.834
0.1 1.049 0.710 0.526 0.361 0.218 1.520 0.824 0.559 0.371 0.215
0.5 0.702 0.300 0.202 0.108 0.109 0.828 0.301 0.188 0.128 0.103
2 0.333 0.129 0.098 0.109 0.124 0.359 0.137 0.117 0.095 0.138
5 0.187 0.108 0.089 0.097 0.126 0.164 0.128 0.126 0.118 0.123

T = 400 T = 1000
0.01 3.130 2.514 2.027 1.529 0.946 6.155 3.768 2.830 1.873 0.986
0.1 2.112 0.928 0.558 0.317 0.184 2.721 0.941 0.566 0.305 0.141
0.5 0.903 0.282 0.185 0.113 0.136 0.976 0.270 0.167 0.200 0.215
2 0.318 0.101 0.078 0.109 0.177 0.318 0.019 0.204 0.186 0.343
5 0.221 0.037 0.167 0.170 0.224 0.207 0.119 0.174 0.272 0.410

Panel B: Results for φ = 0.95
T = 60 T = 80

v1/v2 0.1 0.5 1 2 5 0.1 0.5 1 2 5
0.01 0.978 0.925 0.862 0.765 0.608 1.050 0.991 0.944 0.843 0.684
0.1 0.835 0.604 0.462 0.344 0.257 0.938 0.686 0.526 0.398 0.277
0.5 0.580 0.306 0.235 0.198 0.209 0.656 0.356 0.271 0.223 0.238
2 0.313 0.212 0.212 0.223 0.291 0.359 0.234 0.239 0.278 0.365
5 0.206 0.204 0.236 0.283 0.324 0.244 0.252 0.241 0.351 0.432

T = 100 T = 200
0.01 1.195 1.139 1.043 0.931 0.717 1.960 1.717 1.481 1.222 0.853
0.1 1.047 0.723 0.529 0.382 0.256 1.439 0.832 0.580 0.377 0.261
0.5 0.691 0.359 0.284 0.219 0.298 0.794 0.334 0.253 0.289 0.362
2 0.369 0.229 0.241 0.305 0.386 0.371 0.291 0.351 0.412 0.571
5 0.240 0.276 0.303 0.386 0.504 0.254 0.344 0.448 0.599 0.798

T = 400 T = 1000
0.01 3.123 2.354 2.096 1.550 0.919 5.735 3.618 2.415 1.993 0.943
0.1 1.992 0.906 0.597 0.364 0.315 2.874 0.955 0.530 0.420 0.347
0.5 0.906 0.329 0.271 0.334 0.475 0.904 0.323 0.377 0.369 0.778
2 0.382 0.323 0.391 0.531 0.961 0.420 0.349 0.677 0.961 2.004
5 0.297 0.477 0.683 1.012 1.455 0.297 0.743 1.290 1.792 2.631



Table 2: Relative RMSFE in predicting GDP

Panel A: ARS/AR
v1 v2 CN FR IT JP NL SP UK US

0.01 0.1 0.979 0.971 0.99 0.989 0.996 0.962 0.987 0.981
0.5 0.879 0.847 0.93 0.917 0.97 0.808 0.929 0.894
1 0.751 0.745 0.844 0.787 0.919 0.658 0.859 0.801
2 0.648 0.701 0.785 0.683 0.87 0.567 0.826 0.75
5 0.614 0.707 0.77 0.644 0.867 0.543 0.854 0.744

0.1 0.1 0.927 0.903 0.96 0.956 0.984 0.878 0.957 0.935
0.5 0.763 0.752 0.851 0.797 0.924 0.669 0.864 0.812
1 0.646 0.697 0.784 0.681 0.871 0.565 0.82 0.761
2 0.603 0.696 0.763 0.64 0.895 0.547 0.864 0.77
5 0.61 0.748 0.78 0.642 0.976 0.588 0.992 0.808

0.5 0.1 0.887 0.856 0.935 0.924 0.973 0.819 0.933 0.902
0.5 0.709 0.724 0.818 0.742 0.899 0.618 0.839 0.784
1 0.619 0.692 0.77 0.655 0.871 0.547 0.826 0.765
2 0.602 0.715 0.77 0.643 0.952 0.574 0.928 0.805
5 0.624 0.787 0.801 0.663 1.062 0.646 1.107 0.866

2 0.1 0.838 0.808 0.901 0.877 0.956 0.755 0.905 0.864
0.5 0.663 0.704 0.793 0.696 0.877 0.577 0.823 0.768
1 0.606 0.699 0.767 0.643 0.897 0.548 0.855 0.784
2 0.611 0.743 0.786 0.661 1.033 0.627 1.024 0.857
5 0.641 0.823 0.823 0.693 1.149 0.714 1.232 0.929

5 0.1 0.766 0.754 0.853 0.8 0.925 0.672 0.866 0.814
0.5 0.622 0.695 0.772 0.657 0.872 0.548 0.826 0.769
1 0.606 0.725 0.778 0.651 0.978 0.591 0.941 0.836
2 0.627 0.776 0.811 0.701 1.146 0.716 1.172 0.931
5 0.66 0.856 0.846 0.731 1.237 0.791 1.364 0.994

Panel B: ARS/AR(1)
v1 v2 CN FR IT JP NL SP UK US

0.01 0.1 1.52 1.228 1.177 1.256 0.759 1.095 0.717 0.947
0.5 1.366 1.072 1.106 1.165 0.739 0.92 0.674 0.863
1 1.168 0.942 1.004 0.999 0.7 0.748 0.624 0.773
2 1.006 0.887 0.933 0.867 0.663 0.645 0.599 0.724
5 0.954 0.895 0.916 0.817 0.66 0.618 0.62 0.718

0.1 0.1 1.44 1.142 1.142 1.214 0.75 0.999 0.695 0.903
0.5 1.185 0.951 1.012 1.012 0.704 0.762 0.628 0.784
1 1.004 0.882 0.932 0.865 0.664 0.643 0.596 0.735
2 0.936 0.88 0.908 0.812 0.682 0.622 0.627 0.744
5 0.948 0.946 0.928 0.815 0.743 0.669 0.72 0.78

0.5 0.1 1.378 1.083 1.112 1.173 0.741 0.932 0.678 0.871
0.5 1.102 0.915 0.973 0.941 0.685 0.703 0.609 0.757
1 0.962 0.875 0.916 0.832 0.663 0.622 0.6 0.738
2 0.936 0.904 0.916 0.816 0.725 0.653 0.674 0.778
5 0.969 0.995 0.952 0.842 0.809 0.735 0.804 0.836

2 0.1 1.303 1.021 1.072 1.113 0.728 0.859 0.657 0.834
0.5 1.03 0.891 0.942 0.883 0.668 0.657 0.598 0.741
1 0.942 0.883 0.912 0.816 0.683 0.624 0.621 0.757
2 0.949 0.94 0.935 0.839 0.787 0.713 0.744 0.828
5 0.996 1.041 0.979 0.88 0.875 0.812 0.894 0.897

5 0.1 1.19 0.954 1.014 1.016 0.705 0.765 0.629 0.786
0.5 0.966 0.879 0.919 0.834 0.664 0.623 0.599 0.743
1 0.942 0.917 0.925 0.826 0.745 0.673 0.684 0.808
2 0.974 0.982 0.964 0.89 0.873 0.815 0.851 0.898
5 1.026 1.082 1.006 0.928 0.942 0.9 0.991 0.96



Table 3: Relative RMSFE in predicting Inflation

Panel A: ARS/AR
v1 v2 CN FR GE IT JP NL SP SW UK US

0.01 0.1 1.036 0.987 1.032 1.079 1.006 1.046 1.063 0.997 1.07 0.922
0.5 0.837 0.875 0.871 0.846 0.925 0.922 0.975 0.836 0.931 0.801
1 0.764 0.906 0.86 0.739 0.84 0.906 0.889 0.788 0.874 0.792
2 0.775 0.994 0.935 0.716 0.832 1.078 0.889 0.829 0.932 0.838
5 0.811 1.088 1.025 0.739 0.878 1.328 0.936 0.892 1.005 0.921

0.1 0.1 0.904 0.898 0.917 0.921 0.963 0.965 1.015 0.888 0.983 0.831
0.5 0.768 0.9 0.865 0.745 0.845 0.907 0.893 0.792 0.876 0.79
1 0.782 0.991 0.95 0.713 0.841 1.115 0.899 0.839 0.948 0.821
2 0.851 1.108 1.055 0.734 0.926 1.504 0.989 0.932 1.059 0.905
5 0.936 1.292 1.166 0.807 0.999 1.786 1.079 1.013 1.134 1.06

0.5 0.1 0.844 0.877 0.877 0.853 0.929 0.928 0.98 0.842 0.936 0.805
0.5 0.766 0.935 0.896 0.726 0.829 0.96 0.881 0.802 0.892 0.799
1 0.81 1.042 1.001 0.718 0.877 1.294 0.939 0.883 1.004 0.848
2 0.911 1.186 1.106 0.762 0.981 1.7 1.056 0.984 1.116 0.954
5 1.009 1.411 1.217 0.861 1.052 1.942 1.164 1.061 1.196 1.134

2 0.1 0.799 0.875 0.858 0.797 0.891 0.902 0.939 0.809 0.896 0.792
0.5 0.777 0.98 0.94 0.719 0.835 1.068 0.892 0.829 0.932 0.816
1 0.856 1.105 1.052 0.733 0.926 1.5 0.994 0.933 1.063 0.886
2 0.978 1.267 1.147 0.799 1.036 1.863 1.138 1.03 1.177 1.003
5 1.073 1.514 1.253 0.917 1.099 2.055 1.256 1.098 1.259 1.194

5 0.1 0.769 0.9 0.867 0.748 0.846 0.908 0.894 0.793 0.876 0.791
0.5 0.813 1.053 1.009 0.725 0.877 1.296 0.941 0.885 1.006 0.854
1 0.94 1.195 1.109 0.766 1.000 1.753 1.088 1.000 1.142 0.94
2 1.054 1.348 1.182 0.851 1.099 2.01 1.254 1.074 1.255 1.051
5 1.13 1.602 1.28 0.975 1.144 2.144 1.361 1.126 1.326 1.243

Panel B: ARS/AR(1)
v1 v2 CN FR GE IT JP NL SP SW UK US

0.01 0.1 0.92 0.748 0.874 1.229 0.849 0.491 0.733 0.905 0.78 0.907
0.5 0.743 0.664 0.738 0.963 0.781 0.433 0.672 0.759 0.679 0.789
1 0.678 0.687 0.729 0.842 0.709 0.425 0.613 0.716 0.637 0.779
2 0.688 0.754 0.792 0.815 0.702 0.506 0.612 0.753 0.68 0.825
5 0.72 0.826 0.869 0.842 0.741 0.623 0.645 0.809 0.733 0.907

0.1 0.1 0.803 0.681 0.777 1.049 0.812 0.453 0.7 0.806 0.716 0.818
0.5 0.682 0.683 0.733 0.849 0.713 0.426 0.615 0.719 0.638 0.778
1 0.694 0.752 0.805 0.812 0.71 0.523 0.62 0.762 0.691 0.809
2 0.755 0.841 0.894 0.836 0.781 0.706 0.682 0.846 0.772 0.891
5 0.831 0.98 0.988 0.92 0.843 0.838 0.743 0.919 0.827 1.043

0.5 0.1 0.749 0.666 0.743 0.972 0.784 0.435 0.675 0.765 0.682 0.793
0.5 0.68 0.71 0.759 0.827 0.7 0.451 0.607 0.728 0.65 0.787
1 0.72 0.79 0.848 0.818 0.74 0.607 0.647 0.801 0.732 0.835
2 0.809 0.9 0.937 0.867 0.828 0.798 0.728 0.893 0.814 0.939
5 0.896 1.071 1.031 0.981 0.888 0.912 0.802 0.964 0.872 1.116

2 0.1 0.709 0.664 0.727 0.908 0.752 0.423 0.647 0.734 0.653 0.78
0.5 0.69 0.744 0.797 0.819 0.705 0.501 0.615 0.753 0.68 0.803
1 0.761 0.839 0.891 0.834 0.782 0.704 0.685 0.847 0.775 0.872
2 0.869 0.961 0.972 0.91 0.874 0.874 0.784 0.935 0.858 0.988
5 0.953 1.148 1.062 1.045 0.928 0.965 0.866 0.997 0.917 1.175

5 0.1 0.683 0.683 0.735 0.851 0.714 0.426 0.616 0.72 0.639 0.779
0.5 0.722 0.799 0.855 0.825 0.741 0.608 0.649 0.803 0.733 0.841
1 0.835 0.907 0.94 0.873 0.844 0.823 0.75 0.907 0.833 0.925
2 0.936 1.022 1.002 0.969 0.928 0.943 0.864 0.975 0.914 1.035
5 1.003 1.215 1.085 1.111 0.966 1.006 0.938 1.022 0.966 1.224



Table 4 Relative RMSFE in predicting GDP 12-step ahead

Panel A: ARS/AR
v1 v2 CN FR IT JP NL SP UK US

0.01 0.1 0.993 0.983 0.998 0.99 0.998 0.951 0.997 0.994
0.5 0.958 0.909 0.984 0.924 0.985 0.72 0.979 0.97
1 0.914 0.831 0.964 0.792 0.954 0.447 0.95 0.953
2 0.904 0.782 0.961 0.683 0.917 0.308 0.922 0.959
5 0.916 0.798 0.984 0.643 0.923 0.279 0.918 0.991

0.1 0.1 0.975 0.944 0.99 0.96 0.992 0.832 0.988 0.981
0.5 0.915 0.841 0.964 0.801 0.957 0.465 0.951 0.954
1 0.898 0.788 0.961 0.679 0.917 0.301 0.912 0.965
2 0.915 0.838 1.012 0.63 0.964 0.277 0.921 1.046
5 0.975 0.961 1.1 0.626 1.081 0.31 1.042 1.234

0.5 0.1 0.96 0.916 0.984 0.929 0.986 0.739 0.98 0.971
0.5 0.902 0.814 0.958 0.741 0.938 0.375 0.936 0.955
1 0.899 0.794 0.975 0.651 0.922 0.278 0.897 0.988
2 0.943 0.915 1.069 0.624 1.046 0.297 0.981 1.161
5 1.034 1.046 1.17 0.643 1.174 0.345 1.143 1.425

2 0.1 0.941 0.885 0.976 0.883 0.977 0.624 0.969 0.962
0.5 0.897 0.795 0.958 0.693 0.921 0.316 0.918 0.961
1 0.907 0.831 1.007 0.632 0.963 0.276 0.904 1.041
2 0.993 1.002 1.14 0.635 1.143 0.33 1.073 1.332
5 1.092 1.106 1.226 0.67 1.242 0.374 1.226 1.601

5 0.1 0.915 0.844 0.964 0.803 0.957 0.469 0.951 0.954
0.5 0.897 0.795 0.974 0.652 0.922 0.278 0.894 0.988
1 0.943 0.927 1.086 0.626 1.076 0.305 0.974 1.196
2 1.064 1.089 1.219 0.668 1.24 0.37 1.183 1.561
5 1.142 1.147 1.268 0.698 1.288 0.396 1.29 1.75

Panel B: ARS/AR(1)
v1 v2 CN FR IT JP NL SP UK US

0.01 0.1 0.903 0.87 0.77 1.378 0.759 2.386 0.841 0.563
0.5 0.871 0.805 0.759 1.286 0.749 1.806 0.826 0.55
1 0.831 0.735 0.744 1.102 0.726 1.122 0.802 0.54
2 0.822 0.692 0.742 0.95 0.698 0.772 0.778 0.543
5 0.833 0.706 0.759 0.895 0.702 0.699 0.775 0.562

0.1 0.1 0.886 0.836 0.765 1.336 0.755 2.087 0.834 0.556
0.5 0.832 0.745 0.744 1.115 0.728 1.167 0.803 0.541
1 0.816 0.697 0.742 0.945 0.698 0.756 0.77 0.547
2 0.832 0.741 0.781 0.877 0.733 0.695 0.778 0.593
5 0.887 0.851 0.849 0.871 0.822 0.778 0.879 0.699

0.5 0.1 0.872 0.811 0.76 1.293 0.75 1.853 0.827 0.55
0.5 0.82 0.721 0.74 1.031 0.714 0.94 0.79 0.541
1 0.817 0.703 0.752 0.906 0.701 0.697 0.757 0.56
2 0.858 0.81 0.825 0.868 0.796 0.744 0.828 0.658
5 0.941 0.926 0.903 0.895 0.893 0.865 0.965 0.807

2 0.1 0.855 0.783 0.753 1.229 0.743 1.567 0.818 0.545
0.5 0.815 0.703 0.74 0.965 0.701 0.792 0.775 0.545
1 0.824 0.736 0.778 0.879 0.732 0.691 0.763 0.59
2 0.903 0.887 0.88 0.884 0.869 0.828 0.905 0.755
5 0.992 0.979 0.946 0.932 0.945 0.939 1.035 0.907

5 0.1 0.832 0.747 0.744 1.118 0.728 1.178 0.803 0.541
0.5 0.815 0.704 0.752 0.907 0.701 0.698 0.755 0.56
1 0.857 0.821 0.838 0.87 0.818 0.764 0.822 0.678
2 0.968 0.964 0.941 0.929 0.943 0.928 0.999 0.884
5 1.038 1.015 0.979 0.971 0.98 0.994 1.089 0.992



Table 5: Relative RMSFE in predicting Inflation 12-step ahead

Panel A: ARS/AR
v1 v2 CN FR GE IT JP NL SP SW UK US

0.01 0.1 1.085 1.001 1.023 1.089 1.173 1.087 1.073 1.124 1.142 0.898
0.5 0.918 0.826 0.915 0.92 1.037 1.014 0.986 0.901 1.029 0.819
1 0.856 0.795 0.953 0.82 0.828 1.05 0.92 0.835 0.964 0.807
2 0.893 0.84 1.117 0.772 0.723 1.354 0.938 0.891 0.992 0.845
5 0.98 0.943 1.306 0.755 0.719 1.744 0.995 0.974 1.043 0.942

0.1 0.1 0.975 0.876 0.942 0.983 1.106 1.034 1.022 0.975 1.073 0.837
0.5 0.857 0.792 0.945 0.829 0.837 1.041 0.919 0.833 0.964 0.806
1 0.9 0.839 1.13 0.785 0.723 1.401 0.943 0.896 0.998 0.845
2 1.074 1.062 1.437 0.788 0.738 2.037 1.06 1.041 1.089 1.029
5 1.304 1.485 1.646 0.926 0.795 2.518 1.25 1.156 1.222 1.255

0.5 0.1 0.922 0.83 0.916 0.926 1.044 1.014 0.988 0.906 1.032 0.822
0.5 0.861 0.802 1.001 0.811 0.768 1.134 0.915 0.846 0.966 0.81
1 0.96 0.899 1.261 0.781 0.72 1.687 0.985 0.954 1.034 0.905
2 1.229 1.303 1.587 0.863 0.776 2.384 1.185 1.125 1.173 1.174
5 1.492 1.877 1.746 1.114 0.85 2.822 1.474 1.217 1.365 1.416

2 0.1 0.881 0.801 0.91 0.876 0.96 1.005 0.952 0.855 0.994 0.813
0.5 0.886 0.824 1.088 0.8 0.73 1.314 0.932 0.879 0.988 0.829
1 1.064 1.018 1.415 0.799 0.738 2.018 1.056 1.033 1.084 1.004
2 1.414 1.62 1.705 1.001 0.829 2.708 1.381 1.194 1.3 1.331
5 1.652 2.262 1.807 1.352 0.901 3.044 1.753 1.254 1.531 1.545

5 0.1 0.857 0.792 0.943 0.831 0.839 1.039 0.919 0.832 0.964 0.806
0.5 0.958 0.889 1.252 0.795 0.721 1.68 0.983 0.951 1.033 0.896
1 1.273 1.281 1.608 0.886 0.791 2.473 1.233 1.143 1.201 1.183
2 1.631 2.039 1.799 1.254 0.899 3.024 1.733 1.251 1.508 1.501
5 1.787 2.638 1.847 1.657 0.947 3.21 2.108 1.279 1.723 1.65

Panel B: ARS/AR(1)
v1 v2 CN FR GE IT JP NL SP SW UK US

0.01 0.1 0.586 0.58 0.554 0.729 1.192 0.329 0.427 0.868 0.609 0.596
0.5 0.496 0.478 0.495 0.616 1.054 0.306 0.392 0.696 0.548 0.543
1 0.463 0.46 0.515 0.549 0.841 0.317 0.366 0.645 0.514 0.535
2 0.483 0.486 0.604 0.517 0.735 0.409 0.373 0.688 0.529 0.561
5 0.53 0.546 0.707 0.506 0.73 0.527 0.396 0.753 0.556 0.625

0.1 0.1 0.527 0.508 0.51 0.658 1.124 0.313 0.407 0.753 0.572 0.555
0.5 0.463 0.459 0.511 0.555 0.85 0.315 0.366 0.643 0.514 0.535
1 0.486 0.486 0.612 0.526 0.734 0.423 0.375 0.692 0.532 0.561
2 0.58 0.615 0.777 0.527 0.75 0.616 0.422 0.804 0.58 0.683
5 0.705 0.86 0.891 0.62 0.807 0.761 0.497 0.893 0.651 0.832

0.5 0.1 0.498 0.481 0.496 0.62 1.061 0.306 0.393 0.7 0.55 0.545
0.5 0.466 0.465 0.542 0.543 0.78 0.343 0.364 0.654 0.515 0.537
1 0.519 0.52 0.682 0.523 0.732 0.51 0.392 0.737 0.551 0.6
2 0.664 0.754 0.859 0.578 0.789 0.721 0.471 0.869 0.625 0.779
5 0.806 1.087 0.945 0.746 0.864 0.853 0.587 0.94 0.728 0.939

2 0.1 0.476 0.464 0.493 0.586 0.975 0.304 0.379 0.661 0.53 0.539
0.5 0.479 0.477 0.589 0.536 0.741 0.397 0.371 0.679 0.526 0.55
1 0.575 0.59 0.765 0.535 0.75 0.61 0.42 0.798 0.578 0.666
2 0.764 0.938 0.923 0.67 0.843 0.819 0.55 0.923 0.693 0.883
5 0.893 1.31 0.978 0.905 0.916 0.92 0.698 0.969 0.816 1.025

5 0.1 0.463 0.458 0.51 0.557 0.853 0.314 0.366 0.643 0.514 0.535
0.5 0.518 0.515 0.677 0.532 0.732 0.508 0.391 0.735 0.55 0.595
1 0.688 0.742 0.87 0.593 0.803 0.748 0.491 0.883 0.64 0.785
2 0.882 1.181 0.973 0.84 0.913 0.914 0.69 0.967 0.804 0.996
5 0.966 1.528 0.999 1.11 0.962 0.97 0.839 0.988 0.918 1.095
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