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Abstract
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1 Introduction

This paper considers a model of Internet-style trade, where a seller cannot

deal directly with buyers, instead, the trade must be mediated. A mediator

sets the rules of a trade procedure (an auction mechanism) and can collect

fees from the traders. Our main question is:

What auction mechanisms maximize the mediator’s revenue?

This question has not only theoretic interest, but also practical relevance,

as we attempt to capture, in a stylized way, an interaction between sellers

and buyers on Internet auctions where the role of mediators is played by such

giant commercial institutions as eBay, the dominant auction site in many

countries with reported revenue steadily growing (despite the recent financial

crisis) and reaching $8.7 billion in 20091 and its former major competitors,

Amazon and Yahoo.2

Consider a setting with a seller who has a single object for sale, a large

population of buyers, and a mediator. The seller and buyers have indepen-

dent private values for the object. In the initial period the mediator an-

nounces auction rules. That is, she chooses an auction mechanism through

which she collects a part of the trade surplus.3 The seller observes the mech-

anism and decides whether to consume the object or to put it for sale. If the

object is consumed, the games ends. If the object is put for sale in period

t ≥ 1, a set of n buyers is drawn at random from the buyers’ population and

the auction takes place (in every period a new sample of buyers is drawn).

1See eBay press releases on http://investor.ebay.com
2Yahoo discontinued its Internet auction service on June 16, 2007 and Amazon on

September 8, 2008.
3 By an auction mechanism we understand a one-period game with incomplete infor-

mation set up by the mediator and played by the traders in which a desirable outcome

obtains in a Bayesian Nash equilibrium.
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We characterize optimal mechanisms for a mediator. Furthermore, we

demonstrate that an optimal mechanism admits a simple and practical im-

plementation as a repeated Vickrey auction where the seller pays to the

mediator a closing fee, that is, a fixed percentage of the final price. This is

in contrast to Myerson and Satterthwaite (1983) who analyze a single-period

bilateral trade mediated by a “broker”. Myerson and Satterthwaite’s (1983)

optimal mechanism is a nontrivial function of the seller’s report about his

private type and hence it lacks a simple implementation.

We search for an optimal mechanism on the class of stationary ones (fixed

over time). This assumption is motivated by practical concerns of equal

treatment or non-discrimination, that is to say, the same auction rules must

apply for all participants, irrespective of their identity or period of partici-

pation. The real life supports this assumption: in all Internet auctions the

rules are fixed. An additional reason for focusing on stationary mechanisms

is that optimality in such mechanisms can be obtained endogenously un-

der a simple assumption of anonymity of sellers. This assumption requires

that a seller can freely leave and re-enter an auction site under a different

identity (as a newcomer). We argue that it allows finding an optimal mecha-

nism among stationary ones. Notice that anonymity immediately entails that

the seller’s expected continuation payoff from future auctions must be non-

decreasing over time. Otherwise the seller could be better off by withdrawing

the object and starting a new auction instead (pretending to be a different

seller, which is possible by the anonymity assumption). On the other hand, a

continuation payoff for a seller which is increasing over time cannot be opti-

mal either. The seller’s continuation payoff is important only for the seller’s

participation decision. So, since a seller has agreed to participate for some

continuation payoff, he would definitely participate for the same payoff in any
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future period, hence it cannot be optimal to pay him more. It follows that in

an optimal mechanism the seller’s continuation payoff is constant over time,

and, consequently, it is sufficient to concentrate on stationary mechanisms

only.

There are two other important assumptions in our model. First, whenever

the seller fails to sell the object, he is allowed to offer it for (re-)auction again,

as many times as he wants. This assumption is realistic for Internet auctions.

Indeed, a seller has a re-auction option in real life and this option has essential

impact on players’ strategic behavior, as noted, for example, by Fudenberg

at al. (1985), Milgrom (1987), McAfee and Vincent (1997), Horstmann and

LaCasse (1997), Gupta and Lebrun (1999). Our second assumption is that

in every trade the seller faces a different set of buyers drawn from a large

population. This is reasonable in the context of Internet auctions where a

typical auction runs several days and most of the bids are received in the very

last day. Our model can be considered as an instance in many similar sales

on Internet where a buyer’s objective is to purchase an object of a certain

kind, not to purchase an object from a specific seller. A buyer who fails

to buy an object from a seller can obtain it elsewhere and therefore has no

reason to return to this particular seller. In contrast, the existing literature

on auctions with resale assumes that there is the same set of bidders in all

auctions.4 This implies two differences from our model. In models with

a possibility of one-time after-auction resale, each bidder places a positive

probability on buying in a secondary market if she loses the auction (Gupta

and Lebrun, 1999; Haile 1999, 2000, 2001, 2003; Zheng 2002; Krishna, 2002,

4 The exceptions are Haile (1999, 2001) who allows new bidders (in particular, all new

bidders) to participate in a re-auction; and Bikhchandani and Huang (1989), Bose and

Deltas (1999, 2007) and Calzolari and Pavan (2006) who model resale to a given secondary

market where the original bidders need not participate.
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Section 4.4; Calzolari and Pavan 2006; Garatt and Tröger 2006; Pagnozzi

2007). In models with re-auctioning, the optimal reserve price declines due

to Bayesian updating of the distribution of bidders’ private values after every

auction (Fudenberg at al. 1985; McAfee and Vincent 1997).

In our model a winning bidder is not allowed to re-auction the object.

This is a simplifying assumption which can be relaxed without any effect on

the results: since a new set of bidders arrives in each period, there is no issue

of signaling and information communication for the bidders between periods

(in contrast to Haile 1999, 2000, 2001, 2003; Zheng 2002; and others). If a

winning bidder becomes a seller, she would face ex-ante the same environment

in the next-period auction. The expected revenue from a new auction is not

higher than her current use value, thus she prefers to consume the object.

This contrasts our results, in particular, to Zheng (2002) who assumes that

a fixed, finite set of bidders is involved in trade, where, despite that bidders

are ex-ante symmetric, the initial seller and the winning bidder face different

trade environments, and the winner may benefit from a re-auction.

Our paper is related to Jullien and Mariotti (2006) who study an in-

teraction between a seller and a few buyers in a similar setting, but with

a common value component in traders’ utilities for the object. Jullien and

Mariotti (2006) focus on efficiency issues and find that trade mediated by an

uninformed “broker” may be more efficient than unmediated trade.

Matros and Zapechelnyuk (2008) consider a problem similar to the cur-

rent paper, but they focus on a very restricted set of auction mechanisms,

Vickrey auctions where the mediator chooses two fees, a listing fee, a fixed

amount paid by a seller regardless of the auction outcome, and a closing fee,

a percentage of the closing price if the object is sold. This paper generalizes

Matros and Zapechelnyuk (2008) to a general class of auction mechanisms.
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The paper is organized as follows. The model is described in Section

2. We analyze the seller’s optimal participation decision in Section 3 and

characterize mediator-optimal mechanisms in Section 4. Section 5 describes

a simple implementation of an optimal mechanism. Section 6 concludes. The

Appendix contains omitted proofs.

2 The Model

Let player 0 be a seller and let N be a large (infinite) population of bidders.

The seller has one object for sale. Let v0 be a private use value of the seller

and vi be a private use value of bidder i ∈ N . Assume that all use values

are independent, furthermore, bidders’ use values are identically distributed

on interval [v, v] according to distribution function F , and the seller’s use

value is distributed on the same interval according to distribution function

H. We also assume that functions F and H are differentiable and have

positive density on (v, v), and, in addition, satisfy the monotonic hazard

rate conditions (e.g., Myerson 1981), that is, z − 1−F (z)
f(z)

and z + H(z)
h(z)

are

strictly increasing on (v, v), where f and h denote the corresponding density

functions. Distribution functions F and H are common knowledge, and all

players are risk neutral.

The timing of the game is as follows. In period t = 0, the mediator

announces an auction mechanism that will be used in all further interactions.

In period t = 1, 2, . . ., the seller either consumes the object (and the game

ends) or puts it for sale via the specified auction mechanism. Then a random

sample of n bidders5 is selected from population N , the object is allocated

5The results can be generalized to the case where the number of bidders, n, is random,

drawn from the same distribution in each period. Indeed, all what matters here is that

a seller makes the decision of auctioning his object before n is drawn, thus his decision

6



and the payments are transferred according to the mechanism. If the object

is allocated to one of the bidders, the game ends. Otherwise, if the object is

returned to the seller, the game proceeds to the next period.

Without loss of generality, we consider the class of direct mechanisms

(e.g., Myerson, 1981). In a direct mechanism the seller and each bidder

simultaneously and confidentially report their use values to the mediator, and

the mediator then determines who gets the object and how much each trader

must pay (or receive) as some functions of the vector of reported use values.

Formally, a direct mechanism is a pair (p,x) where6 p : [v, v]n+1 → Δn+1

describes probabilities of various outcomes and x : [v, v]n+1 → R
n+1 describes

payments of the traders as functions of their reported use values. Namely,

given the vector of reports at period t, wt = (wt
0, w

t
1, . . . , w

t
n), pi(w

t) is

the probability that bidder i gets the object, i = 1, . . . , n, p0(w
t) = 1 −∑n

i=1 pi(w
t) is the probability that the seller retains the object; xi(w

t) is a

payment of bidder i = 1, . . . , n to the mediator, and x0(w
t) is a payment of

the mediator to the seller. Note that for every i = 1, . . . , n, xi is allowed to

be non-zero even if bidder i does not receive the object.

In every period, due to our assumption that a new set of n random bidders

is drawn, the seller faces ex ante the same problem: auctioning an object via a

fixed mechanism to a set of n bidders with private use values independently

drawn from interval [v, v] with distribution function F . It follows that a

decision of the seller that is optimal at period t should be also optimal at

every other period, before or after t. Thus we focus only on players’ Markov

strategies that depend on traders’ private use values and do not depend on

the information available from previous transactions. In addition, we assume

depends on the distribution of the number of bidders (which is constant across periods),

but not on its realizations.
6Δn+1 denotes the unit simplex in (n+ 1)-dimensional space.
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that bidders are anonymous, that is, a mechanism cannot depend on bidders’

identities, and we focus on symmetric strategies for the bidders.

Formally, a symmetric Markov strategy of a bidder, ω : [v, v] → [v, v], is

her reported value as a function of her actual use value. A Markov strategy of

the seller is a pair (α, ω0), where α : [v, v] → [0, 1] specifies the probability,

α(v0), that the seller decides to auction the object, and ω0 : [v, v] → [v, v]

specifies his reported value, ω0(v0), as functions of his use value v0. We refer

to component α as the participation strategy of the seller. A Bayesian Nash

equilibrium of this game when every player uses a Markov strategy is called

a Markov perfect equilibrium and described by a triple (α, ω0, ω).

The following lemma is a standard result (e.g., Krishna, 2002) that shows

that without loss of generality we can restrict attention to direct truthful

mechanisms, that is, the mechanisms where reporting true use values is a

Markov perfect equilibrium.

Lemma 1 (Revelation Principle) Given a mechanism (p,x) and a Markov

perfect equilibrium (α, ω0, ω) of the correspondent game, there exists a direct

truthful mechanism (p′,x′) which has a payoff-equivalent Markov perfect equi-

librium (α, ω′
0, ω

′) such that ω′
0(v0) = v0 and ω′(vi) = vi, i = 1, . . . , n.

Proof. For every (v0, v1, . . . , vn) ∈ [v, v]n+1 define p′(v0, v1, . . . , vn) =

p(ω0(v0), ω(v1), . . . , ω(vn)) and x′(v0, v1, . . . , vn) = x(ω0(v0), ω(v1), . . . , ω(vn)).

End of proof.

Note that for non-Markov perfect equilibria the revelation principle need

not hold, since an equilibrium strategy for the seller may stipulate reporting

different values in different periods, which in general cannot be mapped into

a strategy of reporting truth in all periods.

Let us introduce some more notations. Let V = [v, v]n+1 be the set of
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type profiles of the seller and bidders 1, . . . , n, and let V−i = [v, v]n be the set

of type profiles of all players except i, i = 0, 1, . . . , n. Denote by v and v−i

generic elements of V and V−i, and denote by f and f−i the joint densities

of types in V and V−i, respectively. Next, for every i = 0, 1, . . . , n denote by

p̄i(vi) the probability of i to obtain (retain for i = 0) the object, conditional

on i’s use value vi,

p̄i(vi) =

∫
V−i

pi(vi,v−i)f−i(v−i)dv−i.

Also, denote by x̄i(vi) the expected payment of bidder i to the mediator

(from the mediator to the seller for i = 0) conditional on vi,

x̄i(vi) =

∫
V−i

xi(vi,v−i)f−i(v−i)dv−i.

Then, the expected utility of bidder i = 1, . . . , n is defined by

Ui(vi) = vip̄i(vi)− x̄i(vi). (1)

The expected seller’s utility is defined by

U0(v0) = (1− α(v0))v0 + α(v0)(x̄0(v0) + p̄0(v0)δU0(v0)), (2)

where δ is a discount factor, 0 < δ < 1. Thus, with probability 1−α(v0) the

seller consumes the object and obtains its use value v0, and with probability

α(v0) he auctions the object and obtains the expected transfer x̄0(v0) from the

mediator and, if the object is not sold, the discounted next-period expected

utility.

A direct truthful mechanism (p,x) is feasible if it satisfies the following

constraints:

(a) Individual rationality. For every trader i = 0, 1, . . . , n and every

vi ∈ [v, v]

Ui(vi) ≥ 0. (3)
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(b) Incentive compatibility: Reporting true use values is a Nash equilib-

rium. For every trader i = 0, 1, . . . , n and all vi, wi ∈ [v, v]

Ui(vi) ≥ Ui(wi|vi), (4)

where Ui(wi|vi) is the expected utility of trader i = 0, 1, . . . , n if she reports

wi when her true use value is vi. More specifically, for each i = 1, . . . , n

Ui(wi|vi) = vip̄i(wi)− x̄i(wi) (5)

and

U0(w0|v0) = (1− α(v0))v0 + α(v0)(x̄0(w0) + p̄0(w0)δU0(v0)).

Note that the seller’s next-period expected revenue U0(v0) does not depend

on the current report w0.

3 Seller’s Participation Strategy

Let us now describe the optimal participation strategy for the seller, α. The

seller decides to participate, i.e., to auction the object, if and only if his

expected payoff from auctioning the object exceeds his use value v0. Note

that, since a new set of bidders arrives in each period, the seller faces ex ante

the same problem in every period. Stationarity of the environment implies

that if the seller decides to auction the object in the first period, he should

re-auction it forever, until it is sold.

Denote by U
(p,x)
0 the maximum expected revenue of the seller if he auc-

tions the object in all periods (i.e., for α(v0) = 1),

U
(p,x)
0 = max

w0∈[v,v]

[
x̄0(w0) + p̄0(w0)δU

(p,x)
0

]
. (6)
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Observe that U
(p,x)
0 does not depend on v0, since the object is never con-

sumed.7 In equilibrium, the seller will auction the object whenever his max-

imum gain from participation is greater than his use value. Therefore, the

equilibrium strategy α must satisfy for every v0 ∈ [v, v]

α(v0) =

⎧⎪⎨
⎪⎩
1, if U

(p,x)
0 ≥ v0,

0, if U
(p,x)
0 < v0.

The case U
(p,x)
0 = v0 is a zero probability event, thus without any effect on

the results we can assume α(v0) = 1 for that case.

Note that by the incentive compatibility constraint (4), the seller’s payoff

is maximized when he reports his true use value, w0 = v0. Thus we can

rewrite (6) as follows,

U
(p,x)
0 = x̄0(v0) + p̄0(v0)δU

(p,x)
0 . (7)

As observed, U
(p,x)
0 does not depend on v0, and hence the right-hand side

of (7) does not depend on v0 either (though v0 in x̄0(v0) and p̄0(v0) will be

retained for consistency of notations).

4 Mediator-Optimal Mechanisms

We now find an auction mechanism that is optimal for the mediator on the

set of all feasible direct truthful mechanisms, denoted by M.

Given a direct truthful mechanism (p,x) and a seller’s participation strat-

egy α, the expected utility of the mediator is defined as follows,

UM =

∫
V

α(v0)

(
n∑

i=1

xi(v)− x0(v) + p0(v)δUM

)
f(v)dv. (8)

7U
(p,x)
0 may depend on v0 if there is a small probability that the seller is not able to

re-auction the object and thus required to consume it. See Section 5 for a discussion.
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For a given realization of traders’ use values, v, the mediator’s revenue from

the auction is given by the expression in parentheses and equal to the sum of

payments from the bidders net of the payment to the seller, plus the expected

next-period gain if the object is not sold. Note that this revenue is collected

on only under the condition that the seller is willing to participate, α(v0) = 1,

i.e., his own expected revenue is greater than v0. Consequently, the key to the

optimization problem for the mediator lies in balancing two opposite forces:

the net revenue of the mediator conditional on the seller’s participation and

the likelihood that the seller decides to participate.

Before we turn to balancing these two forces, it will be convenient first to

solve an auxiliary problem. Fix the seller’s expected revenue U∗
0 from auc-

tioning the object and find a mediator optimal mechanism among those that

yield expected revenue U∗
0 to any seller. This is equivalent to a mechanism

where the mediator acquires the object from the seller for price U∗
0 and then

auctions it off.

Formally, for every U∗
0 let M(U∗

0 ) be the set of mechanisms where every

seller’s expected revenue is exactly U∗
0 ,

M(U∗
0 ) =

{
(p,x) ∈ M : U

(p,x)
0 = U∗

0

}
.

We now find the mediator-optimal mechanism on M(U∗
0 ) whenever this set

is nonempty.

Let (p,x) ∈ M(U∗
0 ). Fix the seller’s use value v0, and suppose that

v0 ≤ U∗
0 , that is, the seller always auctions the object. Conditional on this

event, the expected revenue of the mediator is given by

UM(v0) =

∫
V−0

n∑
i=1

xi(v)f−0(v−0)dv−0 − x̄0(v0) + p̄0(v0)δUM(v0), (9)
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and the total revenue of the seller and the mediator is given by

Z(v0) =

∫
V−0

n∑
i=1

xi(v)f−0(v−0)dv−0 + p̄0(v0)δZ(v0) (10)

≡ UM(v0) + U∗
0 .

Denote by C(vi) the virtual value of bidder i, i = 1, . . . , n,

C(vi) = vi − 1− F (vi)

f(vi)
. (11)

The difference vi −C(vi) is referred in the literature as the information rent

of bidder i (see the discussion in Krishna 2002, Section 5.2.3).

The next lemma states that an optimal mechanism is achieved by allo-

cating the object to the bidder with the highest virtual value whenever it is

greater than the total expected continuation revenue of the mediator and the

seller, and otherwise returning the object to the seller.

Lemma 2 A mechanism (p,x) is mediator-optimal on M(U∗
0 ) if the follow-

ing holds.

(i) The total revenue of the seller and the mediator, Z(v0), conditional on

v0 ≤ U∗
0 is independent of v0 and equal to Z∗, where Z∗ is a unique solution

of the equation

Z∗ =
∫
V−0

max

{
δZ∗, max

i=1,...,n
C(vi)

}
f−0(v−0)dv−0. (12)

on [v, v];

(ii) the allocation rule p satisfies

p(v) ∈ argmax
p′∈Δn+1

{
p′0δZ

∗ +
n∑

i=1

p′iC(vi)

}
, v ∈ V;
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(iii) the transfer rule x satisfies

x̄0(v0) = U∗
0 (1− δp̄0(v0)), and

x̄i(vi) = vip̄i(vi)−
∫ vi

v

p̄i(z)f(z)dz, i = 1, . . . , n.

The proof is deferred to the Appendix. Conditions (ii) and (iii) say that

a mechanism (p,x) that satisfies the conditions of Lemma 2 is the Myer-

son’s (1981) optimal mechanism, with the seller’s “outside option” equal to

δZ∗ and with an additional element, the transfer between the seller and the

mediator, x0. Condition (i) says that the joint revenue of the seller and

the mediator, Z∗, is determined as the unique solution of a dynamic maxi-

mization problem. Note that, though we find optimal mechanisms on a set

M(U∗
0 ) that depends on the expected revenue U∗

0 of the seller, the only part

of the mechanism that is a function of U∗
0 is x0. The total expected revenue

Z∗ of the mediator and the seller, as well as the allocation rule p and the

transfers from the bidders x−0 are independent of U∗
0 .

It remains to determine the optimal value of U∗
0 and then to choose x0 that

satisfies (iii) in Lemma 2. Observe that for every U∗
0 the expected revenue of

the mediator in an optimal mechanism on M(U∗
0 ) is given by

UM = (Z∗ − U∗
0 )H(U∗

0 ).

Here, Z∗ − U∗
0 is the mediator’s revenue conditional on the seller’s partici-

pation (otherwise it is equal to zero) and H(U∗
0 ) is the probability that the

seller participates, H(U∗
0 ) = Pr[v0 ≤ U∗

0 ].

Consider a mechanism (p,x) that achieves the total expected revenue of

Z∗ for the seller and the mediator. While keeping p and x−0 the same, the

seller’s expected revenue U∗
0 can take any value in [0, Z∗]. To see this, let
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x0(v) = λ
∑n

i=1 xi(v), v ∈ V and λ ∈ [0, 1]. Then the expected revenue of

the seller is equal to λZ∗ ∈ [0, Z∗].

Hence, the mediator-optimal mechanism on the set of all feasible mech-

anisms must satisfy conditions of Lemma 2 and select the seller’s expected

revenue that solves the following maximization problem,

max
U∗
0∈[0,Z∗]

(Z∗ − U∗
0 )H(U∗

0 ). (13)

That is, the optimal choice of the seller’s expected revenue U∗
0 conditional on

the event that the auction occurs will balance two opposite forces: a higher

seller’s (conditional) revenue leads on the one hand to a lower revenue for the

mediator if the auction occurs, Z∗ − U∗
0 , but on the other hand to a greater

probability, H(U∗
0 ), that the seller will auction the object.

5 Implementation

Now we demonstrate that a mediator-optimal mechanism is implementable

by a closing-fee auction. In every period, the mediator runs a Vickrey auction

with a reserve price. The seller submits a reserve price, r, and every bidder

submits a bid. The winning bidder (if any) pays the closing price equal to

greater of the second highest bid and the reserve price. If the object is sold,

the mediator collects a closing fee, a fixed percentage μ ∈ [0, 1] from the

closing price. Namely, if there is a winning bidder and the closing price is

equal to ρ, then the mediator leaves μρ for herself and passes (1−μ)ρ to the

seller.

Let μ∗ = 1−U∗
0/Z

∗, where Z∗ is given by Lemma 2 and U∗
0 is the solution

of the optimization problem (13).

Theorem 1 The closing-fee auction with closing fee μ∗ is mediator-optimal.
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Proof. See the Appendix.

The intuition behind this result is as follows.8 In our model, the seller’s

optimal strategy stipulates to always re-auction the object if it is not sold.

Therefore, the relevant valuation of the object is the expected value derived

from future resales, and not the use value derived from its consumption.

Thus, in contrast to Myerson and Satterthwaite (1983), our mediator-optimal

mechanism need not make use of the seller’s private information.

Note that a Vickrey auction with reserve price is not a direct mechanism

per se. A seller chooses the reserve price that maximizes his own expected

revenue, which need not be equal to the one that is optimal for the mediator.

The problem that we tackle here is a design of a fee scheme that provides the

seller an incentive to choose the reserve price which is optimal for the media-

tor. It turns out that the closing fee auction does the job for an appropriate

choice of a closing fee. In this auction the seller and the mediator receive fixed

percentages of expected revenues that do not vary with time, so the seller’s

incentives are perfectly aligned with the mediator’s, and, consequently, the

seller chooses the mediator-optimal reserve price.

The assumption of anonymity of traders is a cornerstone of our results,

since it allows us to search for an optimal mechanism among stationary ones

(i.e., those which do not depend on time or identity of the traders). If this

assumption is relaxed, more general mechanisms must be considered. We do

not know whether the closing fee auction remains optimal in this setting. In

fact, we suspect that the mediator might find a better mechanism among

non-stationary ones. The reason is that in a non-stationary mechanism, the

seller’s strategy of always re-auctioning the object until it is sold need not

be optimal any more, and his use value is relevant for the mechanism design

8We are grateful to an anonymous referee for helpful insights on this issue.
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problem. Therefore, the mediator has a potential to discriminate sellers on

the basis of their actions that are functions of their use values and, possibly, to

raise a higher revenue than from a stationary, non-discriminatory mechanism.

Another interesting question is whether our closing-fee auction remains

optimal (or close to optimal) if there is a small probability, ε, that after the

auction has failed, the seller consumes the object without re-auctioning it.

In this case the seller’s expected continuation payoff, U∗
0 (v0, ε), depends on

the seller’s use value v0: after an appropriate adjustment of (7), U∗
0 (v0, ε) is

defined as follows,

U∗
0 (v0, ε) = x̄0(v0) + p̄0(v0)δ((1− ε)U∗

0 (v0, ε) + εv0).

An optimal mechanism may thus be a function of v0 which discriminates

sellers whose use values are in the neighborhood of the seller’s continuation

payoff of the original problem, U∗
0 . However, observe that U

∗
0 (v0, ε) is contin-

uous in ε and approaches U∗
0 as ε → 0, so the closing fee auction approaches

an optimal one.

6 Conclusion

Our paper describes Internet-style auctions and characterizes optimal mecha-

nisms for a mediator. In stark contrast to Myerson and Satterthwaite (1983),

our mediator-optimal mechanism does not make use of the seller’s private in-

formation and for this reason admits a simple implementation via the closing-

fee auction.

Obviously, there is a number of restrictions that make our results appro-

priate (such as existence of a large population of potential bidders) and some

possibly relevant features of internet auctions are ignored in our model, for
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example, bidders’ costs of search through ads on an auction site, and possi-

ble fees charged for increasing visibility of ads (printing in bold font, moving

up the list, etc.) connected to that problem. Nevertheless, we believe that

our results are relevant in many situations, and this paper presents a good

starting point for further research.

Appendix

Proof of Lemma 2

The following lemma is due to Myerson (1981).

Lemma 3 Let (p,x) be a feasible mechanism. Then for every i = 1, . . . , n

x̄i(vi) = vip̄i(vi)−
∫ vi

v

p̄i(z)f(z)dz − Ui(0), (14)

and ∫
V−0

xi(v)f−0(v−0)dv−0 =

∫
V−0

C(vi)pi(v)f(v)dv − Ui(0). (15)

We now prove Lemma 2. Suppose that v0 ≤ U∗
0 . Since UM(v0) =

Z(v0) − U∗
0 and U∗

0 is fixed, the mediator who wishes to maximize UM(v0)

also maximizes Z(v0). By (10) and Lemma 3 we have

Z(v0) =

∫
V−0

(
p0(v)δZ(v0) +

n∑
i=1

pi(v)C(vi)

)
f−0(v−0)dv−0 −

n∑
i=1

Ui(0).

The individual rationality constraint requires Ui(0) ≥ 0, and in the optimal

mechanism it is binding, hence Ui(0) = 0, i = 1, . . . , n. We now find p that

yields the maximum value of Z(v0). Clearly, for every v, the optimal p(v)
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must assign probability one to bidder i with the highest virtual value C(vi)

if it exceeds δZ(v0), and otherwise probability one to the seller,

p(v) ∈ argmax
p′∈Δn+1

{
p′0δZ(v0) +

n∑
i=1

p′iC(vi)

}
, v ∈ V. (16)

Thus we obtain

Z(v0) =

∫
V−0

max

{
δZ(v0), max

i=1,...,n
C(vi)

}
f−0(v−0)dv−0. (17)

Consequently, Z0(v0) is a solution of the above equation on [v, v] and, more-

over, it is independent of v0. We now show that there exists a unique solution.

First, note that the right-hand side of (17) is a continuous function of Z(v0)

and it is always between v and v for any Z(v0) ∈ [v, v]. Hence, by the

Brouwer fixed point theorem, a solution exists. Next, subtracting δZ(v0)

from both sides of (17) and replacing Z(v0) by z yields

(1− δ)z =

∫
V−0

max

{
0, max

i=1,...,n
C(vi)− δz

}
f−0(v−0)dv−0.

The left-hand side of the above equation is strictly increasing in z and the

right-hand side is weakly decreasing, thus there exists only one solution.

We denote the solution of equation (17) by Z∗. Substituting Z(v0) by Z∗

in (16) and (17) yields, respectively, parts (ii) and (i) of Lemma 2.

It remains to prove part (iii). By Lemma 3 for every i = 1, 2, . . . , n, xi

must satisfy

x̄i(vi) = vip̄i(vi)−
∫ vi

v

p̄i(z)f(z)dz − Ui(0)

and the constraint Ui(0) ≥ 0 is binding in the optimal mechanism, hence

Ui(0) = 0. Finally, by (7) the seller’s expected revenue from auctioning the

object is equal to U∗
0 if and only if x̄0(v0) = U∗

0 (1− δp̄0(v0)).
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Proof of Theorem 1

We know from Section 4 that a feasible mechanism (p,x) is optimal if it is

the Myerson’s (1981) optimal auction with the seller’s continuation revenue

equal to δZ∗ and with x0 satisfying x̄0(v0) = U∗
0 (1 − δp̄0(v0)), v0 ∈ [v, v].

Here, Z∗ is given by Lemma 2, part (i), and it is the highest joint revenue of

the seller and the mediator that can be attained among feasible mechanisms,

conditional on the object being auctioned; U∗
0 is the solution of the max-

imization problem (13) and it is the value of the seller’s expected revenue

(conditional on the object being auctioned) which maximizes the mediator’s

(unconditional) expected revenue.

Let (p,x) be the closing-fee auction with the fee μ∗ = 1−U∗
0/Z

∗. This is

a Vickrey auction with n bidders where the seller obtains a fraction 1−μ∗ of

the total revenue and chooses a reserve price that maximizes his own revenue.

Hence it is the Myerson’s (1981) optimal auction whenever the seller’s reserve

price r∗ satisfies (e.g., Krishna 2002)

r∗ − 1− F (r∗)
f(r∗)

= δZ∗. (18)

We will show that, with the given choice of a closing fee, the seller’s expected

revenue from auction is precisely U∗
0 and the reserve price that maximizes

the seller’s revenue coincides with the reserve price r∗ that is optimal for the

mediator.

First, since the total revenue from the auction is Z∗ and the seller obtains

fraction 1 − μ∗ of the revenue, it follows that the seller’s expected revenue

from the (repeated) auction, is equal to (1− μ∗)Z∗ = U∗
0 .

Second, in the closing-fee auction for every reserve price r denote by π(r)

the probability that the object is sold and by ρ(r) the expected closing price. In

other words, ρ(r) is the expected payment of the winning bidder conditional
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on the event that the object is sold. Then the optimal expected revenue of

the seller is given by

U∗
0 = max

r≥v
{(1− μ∗)π(r)ρ(r) + (1− π(r))δU∗

0} .

Dividing both sides of the above equation by (1− μ∗), we obtain

U∗
0

1− μ∗ = max
r≥v

{
π(r)ρ(r) + (1− π(r))

δU∗
0

1− μ∗

}
.

The reserve price r = r(U∗
0 ) that maximizes the above expression for any

given U∗
0 (e.g., Krishna, 2002) satisfies

r − 1− F (r)

f(r)
=

δU∗
0

1− μ∗ . (19)

As by assumption r− 1−F (r)
f(r)

≡ C(r) is strictly increasing, the optimal reserve

price is unique. Since μ∗ = 1−U∗
0/Z

∗, the right-hand side of (19) is equal to
δU∗

0

U∗
0 /Z

∗ = δZ∗. Hence, equations (18) and (19) are identical, and so are their

solutions, r(U∗
0 ) = r∗.
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