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1 Introduction

Many interesting dynamic economic problems are non-concave. This is the case, for
example, when choice sets are non-convex either because choices are discrete or because
they entail fixed costs. Discrete choices arise naturally in the literature on retirement (e.g.
Rust 1989), labour supply (Gomes, Greenwood and Rebelo 2001), education (Gallipoli,
Meghir and Violante 2009). Fixed adjustment cost are found in the literature on in-
vestment (Khan and Thomas 2008) and consumer-durables (Bajari, Chan, Krueger and
Miller 2009).

In general, equilibria in these models need to be computed numerically. The non-
concavity of the problem implies that the optimal policy correspondence may not be
continuous, and the value function not differentiable, even with respect to continuous
variables such as saving or the stock of capital. As a consequence, the Bellman maximand
for the dynamic programming problem may not be differentiable even on the interior of
the choice set. In the absence of differentiability, numerical optimization cannot exploit
more efficient methods relying on first order conditions and has to resort to, notoriously
slow, global comparison methods.

Discretized value function iteration is perhaps the most common approach to such
problems. Yet, it severely suffers from the curse of dimensionality.

This paper develops a much more efficient and accurate algorithm to solve a class of
problems that encompasses discrete-choice and fixed-adjustment cost problems. Prob-
lems in this class are differentiable in the endogenous continuous state variables at an
internal maximum, though not necessarily everywhere in the interior of the choice sets.
It follows that first order conditions are still necessary for an internal local maximum for
the continous state variables.

The algorithm exploits this property of the class of problems considered to gener-
alize the endogenous grid method (EGM hereafter) first proposed by Carroll (2006),
and its extension to value function iteration (VFI hereafter) by Barillas and Fernández-
Villaverde (2007), to non-concave, and possibly non-differentiable, problems. The idea
behind Carroll’s EGM is the following. Consider an optimal saving problem. In the
standard approach, one fixes values for the endogenous state variable - wealth - at the
beginning of the period and solves the Euler equation forward for the associated values
of end-of-period wealth. EGM instead fixes values for end-of-period wealth and solves
the Euler equation backward for the associated values of beginning-of-period wealth. The
second approach is much faster as the Euler equation is often linear in beginning of period
assets, but non-linear in end of period ones.

Since the Euler equation holds at an internal maximum, the algorithm uses EGM to
locate an exact solution to the Euler equation - a local extremum. If the solution falls in
the region where the problem is non-concave, it then uses standard VFI to verify whether
the local extremum is a global maximum. The solution is very accurate because the
algorithm determines the value of initial assets for which a given value of future assets
solves the Euler equation exactly. The imprecise VFI global method is used only to
confirm that the candidate global maximum is indeed so or to discard it. The algorithm
is very efficient because thanks to EGM it eschews root finding. The algorithm can
further be refined by exploiting the monotonicity of the saving/investment function.

The algorithm is illustrated for a consumer problem with discrete durable choice and
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fixed durable adjustment cost. The model is the same as in Bajari et al. (2009), but with
a discrete rather than continuous durable choice. The assumption that the durable choice
is discrete has two purposes. It facilitates the illustration of the algorithm and increases
the computational challenge by increasing the range of assets over which the problem is
non-concave.

Hintermaier and Koeniger (2010) also extend EGM to a consumer problem with
durables and borrowing constraints, but their algorithm requires concavity. Clausen and
Strub (2010) identify general restrictions on problem primitives under which the value
function is differentiable at an internal optimum for the endogenous, continuous state
variables and first order conditions hold. These restrictions define the class of problems
to which the algorithm applies.1

The paper is structured as follows. Section 2 introduces the problem and the proper-
ties of the solution - local differentiability and monotonicity - that underpin the solution
algorithm. Section 3 describes the basic algorithm while Section 4.2 discusses how to
modify it to exploit monotonicity and deal with problems with occasionaly-binding bor-
rowing constraints. Section 5 reports the numerical results, while Section 6 concludes.

2 The problem

2.1 The model

Consider a household with an infinite lifetime who, in each period t, chooses current non-
durable consumption ct, durable consumption2 dt+1 and risk-free financial wealth wt+1.
At date 0, the household values alternative durable and non-durable consumption paths
according to

E0

∞∑
t=0

βsu(ct, dt+1), (1)

where β ∈ (0, 1) is a discount factor and the function u is strictly increasing and concave,
twice differentiable and satisfies the Inada conditions. Initial financial wealth and durable
holdings are (w0, d0).

In each period, the household earns a stochastic labour income yt which follows an
m−state Markov chain with transition matrix P, and state space Y = {y1, . . . , ym}, with
yi > yi−1, i = 2, . . . ,m. The household also earns capital income rwt, where r is the
risk-free rate of return.

There are two sources of non-convexity. First, the choice set for durables is discrete.
More formally, the durable choice satisfies the constraint

dt+1 ∈ D (2)

with D a discrete, compact subset of R+, with smallest element d = 0 and cardinality
larger than one. Secondly, the durable stock is subject to non-convex adjustment costs.

1An earlier draft of this paper pre-dating Clausen and Strub (2010) defined the class of problems to
which the algorithm applies in terms of properties of the first derivative of the value function itself rather
than in terms of primitives.

2I adopt the notational convention of indexing durable consumption at time t by t+ 1 to simplify the
notation in the recursive problem.
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Each unit of durable purchased involves a cost (1 + φ) but the cost is zero if the stock of
durables is not adjusted.

It follows that the household dynamic budget identity can be written as

ct + wt+1 + (1 + Idφ)dt+1 = yt + (1 + r)wt + dt (3)

where Id is an indicator function equal to zero if dt+1 = dt and one otherwise.
The non-durable consumption choice is bounded below by a non-negativity constraint3

ct ≥ 0 (4)

and above by a borrowing constraint

wt+1 ≥ −γy1 − ξdt+1, (5)

where γ ∈ [0, r−1] and ξ ∈ [0, (1 + r)−1] are respectively the fraction of minimum labour
income and durable stock that can be collateralized and satisfy the following assumption.

The restrictions on the two parameters γ and ξ requires that the lowest feasible wealth
level is never lower than the natural borrowing limit which obtains when both parameters
are at their upper bounds.4 The restriction implies that the household choice set is always
non-empty.

The household maximizes (1) subject to the constraints (2)-(5).
It is useful to write the household problem in such a way that the borrowing constraint

(18) does not depend on the choice variable dt+1. To this effect let define the variable

at = wt + ξdt. (6)

with at ∈ A, where A is a Borel set in R. The dynamic budget constraint (3) becomes

ct + at+1 + λdt+1 = zt(at, dt, yt) (7)

where
zt(at, dt, yt) = yt + (1 + r)at + [1− (1 + r)ξ]λdt (8)

denotes total resources and λ = (1− ξ + Idφ).
The transformed household problem can be written in the canonical form

max
{at+1,dt+1}∞t=0

E0

∞∑
t=0

βsu(z(at, yt, dt)− at+1 − λdt+1, dt+1), (9)

s.t. (at+1, dt+1) ∈ Γ(at, dt, yt), t = 0, 1, . . . , (10)

(a0, d0, y0) ∈ A×D × Y given, (11)

with the feasibility correspondence Γ : A×D × Y → A×D given by

Γ(at, dt, yt) = {at+1, dt+1 : dt+1 ∈ D, at+1 ∈ [−γy1, z(at, dt, yt)− λdt+1]}.
3The Inada condition ensures that ct is always strictly above its lower bound.
4To see this, note that when γ = r−1 and ξ = (1 + r)−1 the borrowing limit for a household with

current durable stock dt+1 equals the present value of human plus durable wealth. The household can
repay all her debt along the worst possible income history by downsizing its durable stock to zero and
consuming zero forever after.
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2.2 The recursive problem

2.2.1 The recursive representation

Before introducing the recursive representation of household problem, it is useful to in-
troduce the following, rather trivial, lemma whose main purpose is to characterise the
class of problems to which the proposed solution algorithm applies.5

Lemma 1. The Principle of Optimality holds for the household problem (9)-(11). Fur-
thermore, u(z(at, dt, yt)−at+1−λdt+1, dt+1) is differentiable in at and at+1 on the interior
of A.

The relevant point of the Lemma is the differentiability of the felicity functional with
respect to present and future assets. Clausen and Strub (2010) show that the property is
sufficient for the value function to be differentiable in the continuous state variable at at
an optimum. The algorithm proposed in this paper applies to all problems that satisfy
this property.

Since the problem is stationary, the time index can be dropped in what follows. Let
V (a, d, y) be the value function for the household sequence problem starting in state
(a, d, y). This function is the unique solution to the Bellman equation

V (a, d, y) = max
(a′,d′)∈Γ(a,d,y)

u(z(a, d, y)− a′ − λd′, d′) + βEV (a′, d′, y′).

It is convenient to denote the expectation of the continuation value by

Ṽ (a′, d′, y) = βEV (a′, d, y′) (12)

in what follows and rewrite the Bellman equation as

V (a, d, y) = max
(a′,d′)∈Γ(a,d,y)

u(z(a, d, y)− a′ − λd′, d′) + Ṽ (a′, d′, y). (13)

2.2.2 Solution

Before discussing the solution method, it is useful to introduce some non-standard nota-
tion and terminology.

Let
Γ(a, d, y|d′) = {a′ : a′ ∈ [−γy1, z(a, d, y)− λd′]} (14)

denote the set of feasible choices for a′ for given d′.

Definition. Given a triplet (d, y, d′) ∈ D×Y ×D, the saving correspondence conditional
on (d, y, d′), or conditional saving correspondence, is the mapping a′(a, y, d|d′) : A → A
solving

a′(a, d, y|d′) = arg max
a′∈Γ(a,d,y|d′)

u(z(a, d, y)− a′ − λd′, d′) + Ṽ (a′, d′, y) (15)

s.t. d′ given.

5All proofs are in the Appendix.
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If the function Ṽ (a, d, y) were known, the solution to the recursive problem could be
found using the following three steps for each (d, y) ∈ D × Y.

Step 1 For each d′ ∈ D, solve equation (15) for the conditional saving correspondence
a′(a, ·|d′).

Step 2 For each d′ ∈ D, use a′(a, ·|d′) to replace in the Bellman equation (13) and obtain
the correspondence V (a, ·|d′) : A→ R satisfying

V (a, ·|d′) = u(z(a, ·)− a′(a, ·|d′)− d′, d′) + Ṽ (a′(a, ·|d′), d′, y). (16)

Step 3 Solve for the (unconditional) policy correspondences for saving a′(a, d, y) and
durables d′(a, d, y) and the value function V (a, d, y) satisfying

V (a, d, y) = max
d′∈D

V (a, d, y|d′), (17)

d′(a, d, y) = arg max
d′∈D

V (a, d, y|d′), (18)

a′(a, d, y) = a′(a, d, y|d′(a, d, y)). (19)

Equation (12) closes the system.
The system underpins the VFI solution method. Given an initial guess Ṽ 0(a, y) for

the function Ṽ (a, y) one can iterate on the above system, together with equation (12),
until convergence.

In standard, concave, problems one does not necessarily need to solve for the value
function. One could use the first order conditions to iterate on the policy functions.6 In
non-concave problems, though, solving for the value function is essential as first order
conditions are not sufficient for a global maximum.

2.2.3 Some analytic properties of the solution

This section derives some analytic properties of the solution on which the algorithm is
based.

For the class of problems satisfying Lemma 1, an internal local maximum always
satisfies the first order condition for assets, as stated in the following corollary.

Lemma 2. The first order condition

− uc(z(a, y)− a′ − d′, d′) + ∂Ṽ (a′, d′, y)/∂a′ = 0 (20)

is necessary for an internal local maximum.

The lemma is an application of Theorem 2 in Clausen and Strub (2010) for the problem
at hand. They show that the upper envelope of differentiable functions is differentiable
at an internal optimum for a continuous variable even though it may not be differentiable
everywhere.

The intuition behind the result is the following. If Lemma 1 holds, the only source
of non-differentiability in a′ of the continuation value Ṽ (a′, d′, y) is changes in the future

6See, for example, Hintermaier and Koeniger (2010).
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discrete choices as a′ changes. Clausen and Strub (2010) show that the derivative of
the value function at kinks can only jump up as a′ increases. Since at an internal local
maximum for a′, the expression on the left hand side of equation (20) changes sign from
positive to negative as a′ increases, the maximum cannot be located at a kink. Therefore
if a turning point is located at a non-differentiability it can only be a local minimum.
It follows that the Euler equation (20) always holds at a internal local maximum and,
therefore, at a candidate internal global maximum.

The above discussion implies that Lemma 2 still applies as long as the value function
has only upward kinks. That is, it also applies if the differentiability condition in Lemma 1
is replaced by the weaker condition that u(z(at, dt, yt)−at+1−λdt+1, dt+1) is differentiable
almost-everywhere in at and at+1 on the interior of A and has only upward kinks at the
points were it is non-differentiable.

Finally, the following Proposition establishes that the saving correspondence is strictly
increasing, and therefore invertible, in a on the interior of the choice set.

Proposition 1. The conditional saving correspondence a′(a, d, y|d′) is increasing in a. It
is strictly increasing if a′(a, d, y|d′) > −γy1.

Proposition 1 holds in both the class of problems considered here and in standard
concave problems. The difference is that in non-concave problems the policy correspon-
dence may not be a function. Usefully, though, the correspondence is strictly increasing
in a off corners7 which implies that its inverse with respect to a is a function.

3 The solution algorithm

This section generalizes Carroll’s (2006) EGM algorithm, and its extension to VFI by
Barillas and Fernández-Villaverde (2007), to the class on non-concave problems satisfying
Lemma 1 in the above section.

The contribution of my extension, and of the original EGM in general, lies in solving
for the conditional saving correspondence from the present- to the next-period’s value
of the continuous state variable a for given (d, y, d′) in equation (15), namely Step 1 in
Section 2.2.2. All other steps are the same as in the standard VFI.

As the conditional policy correspondence a′(a, d, y|d′) does not have a closed-form
solution, an approximation to it has to be constructed by solving equation (15) on a
finite grid for the continuous state variable a, for a given triplet (d, y, d′). Let (d, y, d′) be
fix in what follows and let a′(a, ·|·) denote the conditional saving correspondence.

For standard concave problems, Carroll’s (2006) EGM dramatically speeds up the
maximization step by exploiting the following three features of the problem.

1. The Euler equation (20) is necessary and sufficient for an internal global maximum.

2. The conditional saving correspondence a′(a, ·|·) is invertible for a on the interior of
the domain.

3. The Euler equation (20) is much easier to solve for a given a predetermined a′ than
vice versa.

7That is the set of maximizers is increasing in a even though the set is not necessarily a singleton.
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The first point trivially implies that the solution to equation (15) can be computed
by solving for the unique zero of the Euler equation (20).

The second point implies that in solving for the conditional saving correspondence at
a finite set of points one can, interchangeably, proceed in one of two ways.

The usual way is to construct an ordered grid Ga = {a1, a2, . . . , am} for initial assets
a and solve the Euler equation (20) for its zero a′i for every ai ∈ Ga. The set of pairs
{ai, a′i}mi=1 is the conditional saving correspondence on the set of collocation points Ga.

Alternatively, one could construct an ordered grid Ga′ = {a′1, a′2, . . . , a′m} for end-
of-period assets and solve for the value of total resources zendi that satisfies the Euler
equation (20) for each a′i ∈ Ga′ . The set of pairs {zendi , a′i}mi=1 is the conditional saving
correspondence on the endogenous set of collocation points for total resources Gend

z =
{zendi , zend2 , . . . , zendm }. Given (d, y), one can use equation (8) to recover the corresponding
collocation points for initial wealth aendi satisfying z(aendi , d, y) = zendi thus obtaining the
conditional saving correspondence {aendi , a′i}mi=1 on the set of collocation points Gend

a =
{aend1 , aend2 , . . . , aendm } for initial wealth a.

The difference between the two procedures is that in the first one the set of collocation
points is pre-determined and the value of the conditional saving correspondence at those
points is endogenous. Vice versa, in the second procedure the value of the conditional
saving correspondence at the collocation points is predetermined, while the collocation
points themselves are endogenously generated. Hence, the name.

The disadvantage of the first procedure is that the Euler equation is non-linear in a′.
Solving for a′ involves evaluating the Euler equation multiple times for each collocation
point ai. Vice versa, the computational cost of solving the Euler equation for a given a′

is very low, as stated in Point 3. above. This can be easily seen in the case in which
the felicity function is separable in c and d′; e.g. it satisfies u(c, d′) = θ log(c) + (1 −
θ) log(g(d′)). In such a case, the Euler equation can be written as z−a′−λd′ = θṼ (a′, y)−1,
which is linear in z.8

Going from an endogenous collocation point zendi for total resources to one for initial
wealth aendi involves solving the linear equation (8) in the present problem. In general,
though, the relationship between initial wealth and total resources is non-linear9 Yet,
one can recover the saving correspondence at any arbitrary grid point for initial wealth
– e.g. ai – by using the set of pairs {zendi , a′end} to construct an interpolating function.
Evaluating such function at the point z(ai, y, d) returns the value of the conditional saving
correspondence at the chosen point ai.

So, EGM trades off the cost of constructing an interpolating function against the cost
of solving a non-linear equation, a very advantageous trade-off.

For general non-concave problems, point 1. does not apply, though, and the Euler
equation (20) is neither necessary nor sufficient for a global maximum. One is forced to
resort to, notoriously slow, global methods.

For the class of problems satisfying Lemma 1, though, it follows from Corollary 2 and
Proposition 1 that EGM is still useful to locate an internal local maximum. Since, given

8Even if the uc(c, d
′) did not have a closed-form inverse with respect to c, given a′ some variant of

Newton method converges to the unique solution for z at a quadratic rate. A similar method cannot be
applied to solve for a′ if, as in the present model, ∂Ṽ (a′, d, y)/∂a′ is not differentiable in a′.

9This is the case, for example, in the neoclassical growth model studied in Carroll (2006) and Barillas
and Fernández-Villaverde (2007).
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the non-concavity of the problem, a local maximum is not necessary a global one, the
algorithm modifies the standard EGM in the following way. First, it partitions the set of
grid points for future assets Ga′ into a non-concave region Gnc

a′ in which the Euler equation
is not sufficient for a global maximum for a′ and its set complement. Secondly, for all a′i
in the non-concave region, the algorithm supplements EGM with a global maximization
step. Since the non-concave region is a subset of the choice set Ga′ , the first step restricts
the, costly, application of the global maximization step to the non-concave region rather
than the whole of Ga′ .

The two steps are illustrated in the next three subsections. To simplify the exposition,
we assume the following.

Assumption 1. The parametric restrictions γ = r−1 and ξ = (1 + r)−1 hold.

The assumption implies that the borrowing constraint a′ ≥ −γy1 is the natural bor-
rowing constraint and therefore never holds. We relax this in Section 4.2.

It also follows from Proposition 1 that one can exploit the monotonicity of the condi-
tional saving function a′(a, d, y|d′) to accelerate the computation of the solution. It turns
out that monotonicity is even more powerful when the policy function is discontinuous.
A refined version of the algorithm exploiting monotonicity is described in Section 4.1.

3.1 Identifying the non-concave region

The advantage of identifying the non-concave region in advance is that, outside it, one can
use the unmodified EGM algorithm as the Euler equation is both necessary and sufficient
for an internal global maximum. Since in many problems the non-concave region is a,
possibly small, subset of the asset grid, this reduces the set of points at which one has to
use a, substantially slower, global method.

Understanding how the algorithm delimits the non-concave region is easier with the
help of Figure 1 which draws the marginal utility of present consumption and of future
assets as functions of a′. The thick non-monotonic and discontinuous curve plots the
marginal utility of future assets ∂Ṽ (a′, d′, y)/∂a′ for given (d′, y). The thinner upward
sloping curve is the marginal utility of present consumption for a given value of total
resources z and durable choice d′. A point where the two curves intersect is a zero of the
Euler equation.

In terms of Figure 1, for each abscissa a′i ∈ Ga′ the EGM finds the value of total
resources zi for which an upward sloping curve intersects the thick ∂Ṽ (a′, d′, y)/∂a′ at
a′ = a′i; namely a′i is a zero of the Euler equation. The Euler equation is sufficient for a′i
to be a global maximum if a′i is the unique intersection between the upward sloping curve
uc(zi−a′−λd′, d′) through it and the curve ∂Ṽ (a′, d′, y)/∂a′. A sufficient condition for the
intersection to be unique is that for all a′j ∈ Ga′ it is ∂Ṽ (a′j, d

′, y)/∂a′ > ∂Ṽ (a′i, d
′, y)/∂a′

for all j < i and ∂Ṽ (a′j, d
′, y)/∂a′ < ∂Ṽ (a′i, d

′, y)/∂a′ for all j > i. In Figure 1, this is the

case in the regions where ∂Ṽ (a′, d, y)/∂a′ is above vmax and below vmin, or equivalently
for any value of assets outside the set Gnc

a′ = {a′2, . . . , a′9}.10

10The fact that ∂Ṽ (a′, d′, y)/∂a′ > vmax for a′ low enough follows from Assumption 1, maintained in
this section, that implies that the borrowing constraint is always slack. This not true in general. Section
4.2 discusses how the algorithm needs to be modified when it is not.
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uc(c, d
′), ∂Ṽ /∂a′

O

vmax

vmin

a′1 a′2 a′3 a′4 a
′
5 a′6 a

′
7 a
′
8 a′9 . . .

uc(z
end
4 − a′ − d′, d′)

uc(z
end
6 − a′ − d′, d′)

Figure 1: Illustrating the algorithm

Assuming the function Ṽ (a′, d′, y) is known, the bounds vmin and vmax can be com-
puted, for each given (d′, y), as respectively the lowest value of Ṽ (a′i, d

′, y) and the highest
value of Ṽ (a′i+1, d

′, y) for all i such that Ṽ (a′i+1, d
′, y) > Ṽ (a′i, d

′, y). Given vmin and vmax,

one can compute i – the largest i such that Ṽ (a′i, d
′, y) > vmax – and ī – the smallest i

such that Ṽ (a′i, d
′, y) < vmin.

By construction, the Euler equation is necessary and sufficient for a maximum for
a′ ≤ a′i and a′ ≥ a′ī. The Euler equation is only necessary though for a′i ∈ Gnc

a′ =
{ai+1, . . . , aī−1}.

3.2 The basic algorithm

Given (d′, y) and the associated non-concave region Gnc
a′ identified in the previous section,

the algorithm proceeds in the following way. First for each a′i ∈ Ga′ it applies the standard
EGM algorithm and uses equation (20) to solve for zendi . If a′i lies outside the non-concave
region - e.g. a′i = a′1 in Figure 1 - the algorithm stores the pair (zendi , a′i) and moves to
the next point in Ga′ . If instead, as is the case for a′4 in Figure 1, a′i belongs to the non-
concave region, the algorithm has to locate the global maximum associated with zendi . To
do so, for given zendi the algorithm constructs the discretized Bellman maximand for all
a′i in the non-concave region Gnc

a′ and finds the maximum of the discretized problem

a′g = arg max
a′∈Gnc

a′
u(zendi − a′ − λd′, d′) + Ṽn(a′, d′, y). (21)

If a′g = a′i, a
′
i is both a local and global maximum given zendi and, again, the pair (zendi , a′i)

is stored. If instead a′g is different from a′i the algorithm does not store any point and
just moves onto the next grid point a′i+1.

It should be clear from the above description that the application of the global maxi-
mization step to the discretized problem is used only to verify whether a local extremum
is a global maximum. It is not used to actually solve for a point on the conditional saving
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function. If the solution a′g differs from the original point a′i, the algorithm does not
replace a′i with the global maximum a′g for the discretized problem; it just discards a′i. If
a′g > a′i the same procedure will be repeated when a′g is reached and a′g will be stored only
if it is a fixed-point of the procedure. The solution is very accurate because the algorithm
determines the value of total resources for which a given grid point a′i for future assets
solves the Euler equation exactly. The imprecise global method is used only to confirm
that the candidate local extremum is indeed a global maximum or to discard it.

Before presenting the pseudo-code for the algorithm it is useful to tie a few loose
ends. First, one has to select an ordered grids Ga′ for next-period’s assets a′. Second,
it is useful to store in memory the value of total resource implied by the grid for next
period’s assets Ga′ as Gz′(d, y) = z(a, d, y) for all (a, d, y) ∈ Ga′ × D × Y. Third, since
the function Ṽ (a′, d′, y) is unknown it has to be found by repeated iteration of the sys-
tem (15)–(17) starting from some initial guess Ṽ 0(a′, d′, y). The initial choice of guess
Ṽ 0(a′, d′, y) has to be continuous and increasing and satisfy Lemma 1. It is advisable to
choose a differentiable function, to obtain its wealth derivative ∂Ṽ 0(a′, d′, y)/∂a′ by finite
differences.

At all subsequent iterations n > 0, one solves for Ṽn(a′, d′, y) by the usual iterative
procedure discussed in Section 2.2.2. The wealth derivative ∂Ṽn(a′, d′, y)/∂a′ at the points
of the grid Ga′ , can be approximated either by taking finite differences of Ṽn(a′, d′, y) or
using the envelope condition11

∂Ṽn+1(a′, d′, y)

∂a′
= (1 + r)Euc(cn(a′, d′, y′), d′n(a′, d′, y′)) (22)

where cn is given by equation (7) with a′ = a′n(a, d, y).
The corresponding pseudo code is the following.

1. Set n = 0. Guess a function Ṽ 0(a′, d′, y) and compute its wealth derivative
∂Ṽ 0(a′, d′, y)/∂a′.

2. For all (d′, y) solve for the bounds i, ī of the non-concave region Gnc
a′ as derived in

Section 3.1. Set i = 1, l = 1 and do the following.

2.1. Compute the level of total resources zendi that solves equation (20) evaluated
at point a′i.

2.2. If i < i < ī, find the solution a′g to the discretized global problem using (21)
with z = zendi . If a′g 6= a′i, i = i+ 1 and go to step 2.1.

2.3. Set il = i and store the pair (zendil
, a′il) = (zendi , a′i).

2.4. Replace in equation (16) to obtain the value of the conditional value corre-
spondence

vendil
= u(zendil − a′il − d′, d′) + Ṽn(a′il, d

′, y) (23)

associated with the level of total resources zendil . If i < m, i = i + 1, l = l + 1
and go to Step 2.1.

11In our numerical experiments using the envelope condition results in a slight improvement in accuracy
relative to finite differences.
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2.5. Since the new guess for the value function has to be defined on the grid Ga′

interpolate the pairs {zendil
, a′il} and {zendil

, vendil
} on the grid Gz′(d, y) for all

d ∈ D to obtain a′n(a, d, y|d′) and Vn+1(a, d, y|d′) for all a ∈ Ga′ and d ∈ D.

3. For all (a, d, y), compute the unconditional policy and values functions d′n(a, d, y),
a′n(a, d, y) and Vn+1(a, d, y) using (18)–(17).

4. Solve equation (12) to obtain Ṽn+1(a, d, y).

5. If ||Ṽn+1(a, d, y)−Ṽn(a, d, y)||∞ > 10−5, with ||·||∞ the sup norm overGa′×D×Y, use
the envelope condition (22) to obtain ∂Ṽn+1(ai, d, y)/∂a′ and start a new iteration.

4 Generalizations and refinements

4.1 Monotonicity

For points in the non-concave region, the algorithm supplements the standard EGM step
with the same global maximization step as in discretized VFI. Proposition 1 implies that
for given (d, y, d′) the conditional saving correspondence a′(a, d, y|d′) is monotonically
increasing in initial wealth a. Since z(a, d, y), is strictly increasing in a, as implied by
equation (20), the optimal conditional saving choice is increasing in z for given (y, d′). It
is easier to frame the discussion that follows in terms of monotonicity between a′ and the
intermediate variable z.

As in concave problems, monotonicity can be usefully exploited to economize on the
number of comparisons at the global maximization step. To understand the implication
of monotonicity in the present context, consider again Figure 1. The thick broken line
plots the expected marginal utility ∂Ṽ (a′, d′, y)/∂a′ as a function of a′ for given (d′, y).
The upward sloping line plots the marginal utility of current consumption as a function
of a′ for given d′ and total resources z. Keeping d′ constant, higher values of z shift the
latter curve down. Since, as discussed in Section 3.2 the global maximization step applies
only in the non-concave region - namely Gnc

a′ = {a′2, . . . , a′9} in the figure - it is only in
such region that one needs to exploit monotonicity.

Suppose that one has already evaluated all grid points a′i up to a′3 and all of them
are (global) maxima given the associated zendi . The next step is to verify whether a′4,
is a global maximum zend4 that solves equation (20) for a′ = a′4; namely for the value
of z for which the upward-sloping curve intersects the thick one at a′ = a′4. Given that
Ṽ (a′4, d, y) < Ṽ (a′3, d, y), it is zend4 > zend3 . It follows from monotonicity that the maximum
associated with zend4 cannot lie to the left of a′3. Therefore, in solving the discretized
problem in equation (21), one needs to compare values of the maximand on the right
hand side of the equation only at grid points in the set {a′3, · · · , a′9} rather that at all the
points in Gnc

a′ . This is the standard way monotonicity is used to speed up the solution of
concave problems.

The combination of the monotonicity of the policy correspondence and the lack of
concavity of the value function (the non-monotonicity of its wealth derivative) can be
further exploited, though.

To see this suppose that a′4 is indeed a global maximum for zend4 satisfying equation
(20). The next step is to verify whether point a′5 is a global maximum. At point a′5 it

12



uc(c, d
′), ∂Ṽ /∂a′

vmax

vmin

a′1 a′2 a′3 a′4 a
′
5 a′6 a

′
7 a
′
8 a′9 . . .

uc(z
end
1 − a′ − d′, d′)

Figure 2: Borrowing constraint

is ∂Ṽ (a′5, d
′, y)/∂a′ ≥ uc(z

end
4 − a′5 − d′, d′), which implies zend5 ≤ zend4 . It follows from

monotonicity that the global maximum associated with zend5 cannot lie to the right of a′4.
This is true for any point a′i, such as a′5 or a′8 for which ∂Ṽ (a′i, d

′, y)/∂a′ ≥ uc(z
end
4 − a′i−

d′, d′). Evaluating this inequality is all one needs to rule out any such point.
Consider now point a′6. Suppose that applying the global maximization step (21) for

z = zend6 returns a′j, with j > 6, as the associated optimum; e.g j = 9.12 It follows from
monotonicity that the optimal saving choice associated with any z > zend6 cannot be lower
than the level of a′ for which the curve ∂Ṽ (a′, d′, y)/∂a′ and uc(z

end
6 −a′−d′, d′) intersect.

This rules out points along the thick curve to the south-west of ditto intersection; namely
points a′i, like a′7, such that ∂Ṽ (a′i, d

′, y)/∂a′ < uc(z
end
6 − a′i − d′, d′) and i < j.13

4.2 Borrowing constraints

Up to now I have maintained, only for expositional reasons, the assumption that the
borrowing constraint is never binding. Carroll (2006) though shows that EGM can ac-
commodate occasionally binding borrowing extremely effectively. In what follows I relax
the assumption that the borrowing constraint is never binding. Without loss of generality
the following assumption normalizes the lower bound on next period’s wealth to zero.

Assumption 2. It is γ = 0.

The first grid point in the grid Ga′ is now a′1 = 0. Figure 2, effectively the counterpart
of Figure 1, illustrates how EGM deals with the borrowing constraint.

For given (y, d′) EGM calculates the value of total resources zend1 for which the Euler
equation is satisfied as an equality. The are two possible cases two distinguish.

In the first case, a′1 = 0 is both a local and global maximum given z = zend1 , namely
(zendi1 , a′i1) = (zend1 , 0) in point 2.3 in the pseudo-code in Section 3.2. Therefore zend1 is the

12Since a′4 has been assumed to be a global maximum for z = zend4 , this means that for some z > zend4

the optimal saving choice jumps up discontinuously from some point in the interval [a′4, a
′
5] to some point

to the right of the rightmost intersection between ∂Ṽ (a′, d′, y)/∂a′ and uc(z
end
4 − a′ − d′, d′).

13One does need to consider, though, points like a′9 for which ∂Ṽ (a′i, d
′, y) < uc(z

end
6 − a′i − d′, d′) but

i ≥ j.
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first interpolating node for the conditional saving and value functions. Let vendi1 denote
the associated value of the conditional value correspondences from equation (16). Since
the Euler equation holds as an equality at (zendi1 , a′i1), the borrowing constraint is on the
verge of being binding at zendi1 and, from monotonicity, the constraint is strictly binding
for any z < zend1 .

The value of the conditional saving correspondence for all points (a, d, y) for which
the borrowing constraint is binding - namely those for which z(a, d, y) < zend1 is just
a′(a, d, y|d′) = 0.

Replacing in (14), the associated value of the conditional value correspondence can
be recovered as

V (a, d, y|d′) = u(z(a, d, y)− d′, d′) + Ṽ (0, d′, y).14 (24)

This case is the only one which applies for concave problems. As first pointed out by
Carroll (2006), EGM is extremely efficient in dealing with borrowing constraints in this
case.

Consider instead the case in which given zend1 satisfying the Euler equation for a′ =
a′1 = 0 is not a global maximum given (y, d′). Instead, the solution to equation (21) for
z = zend1 is some a′g > 0. Therefore, the borrowing constraint is not necessarily just binding
for z = zend1 . In fact, the EGM steps 2.1-2.4 in Section 3.2 would return an interpolating
function {zendil , a′il} whose first value a′i1 > 0. Therefore, one cannot conclude that the
household chooses to be borrowing constraint for z in a left neighborhood of zendi1 . The
EGM algorithm no longer necessarily determines the lower bound on total resources below
which the household is borrowing constraint.

Yet, because the saving function is monotonic such a lower bound exists. An ap-
proximation to it can be recovered by finding the value of zendi0 that solves the following
equation

u(zendi0 − d′, d′) + Ṽ (0, d′, y) = u(zendi0 − a′i1 − d′, d′) + Ṽ (a′i1, d
′, y). (25)

The solution zendi0 is the value of total resources for which the global optimum switches
from a′1 = 0 to a′i1. Adding the point (zendi0 , 0) as the first point to the vector of inter-
polating nodes for the unconditional saving correspondence, and the associated value
vendi0 = u(zendi0 − d′, d′) + Ṽ (0, d′, y) for the conditional value correspondence, allows to use
the same interpolation procedure as in the first case considered.

5 Results

5.1 Parameterization

The parameterization follows Bajari et al. (2009) along a number of dimensions. The
chosen felicity function is

u(c, d′) =
1

τ
log(θcτ + (1− θ)κ(0.01 + d′)τ ), (26)

14Alternatively V (a, d, y|d′) = u(z(a, d, y)− d′, d′)− u(z(aend1 , y)− d′, d′) + vend1 .
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Parameter β r κ φ ξ σy ρ ση
Value 0.93 0.06 0.075 0.06 0.20 0.063 0.977 0.024

Table 1: Chosen parameters

with the only modification that the marginal utility of durables is bounded. As in Bajari
et al. (2009), the durable flow equivalent is κ = 0.075, the non-durable share θ = 0.77 and
the fractions of human and durables wealth that can be collateralized are respectively
γ = 0 and ξ = 0.2. The intermediation fee is set to φ = 0.06.

The income process is a discrete approximation to a lognormal process with a persis-
tent and transitory components as in Storesletten, Telmer and Yaron’s (2000)15. Namely,

log yt = zt + εt

zt = ρzt−1 + ηt,

with εt, ηt distributed independently according to N(0, σε), N(0, ση).
The Markov chain approximation to the process follows Tauchen (1986). The number

of grid points for both the transitory and persistent components is 7 which implies that
y can take 49 discrete states.

I choose seven uniformly-spaced points for the durable choice stock and a double
exponential grid for assets a. The upper bounds on a and d equal approximately 25 and
10 times unconditional average income. These values are large enough to ensure: (1) that
the upper bound of the stationary distribution for a is below the highest grid point, and
(2) that the upper bound on d does not constraint the durable choice.

Finally, the interest rate is set to r = 0.06, roughly in line with average real mortgage
rates, and the discount rate is set to β = 0.93 to ensure boundedness of the wealth
distribution. The chosen values for parameters are collected in Table 1.

The parameter τ governing the elasticity of substitution takes different values in our
simulations. In most of our simulations it equals zero, which implies the Cobb-Douglas
specification

u(c, d′) = θ log(c) + (1− θ) log(κ(0.01 + d′),

used in Fernández-Villaverde and Krueger (201). Under this specification the Euler equa-
tion is linear in total resources as discussed in Section 3.

In the last part of Section 5.2 I set τ = 0.2435 as estimated in Bajari et al. (2009)
to assess how the speed of the algorithm is affected by the non-linearity of the Euler
equation in total resources.

5.2 Numerical results

Discretized VFI is the standard method of choice for non-concave and/or non-
differentiable problems. It is, therefore, natural to compare the accuracy and speed
of my algorithm to those of VFI. Since my algorithm exploits the monotonicity of the

15The estimates are from row D. in their Table 1. The permanent, individual-specific random effect is
not included as it would play no role in the present set up.
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policy function I do the same when solving the model using VFI, so as not to bias the
comparison between the two methods.

To compare the accuracy of the two algorithms I compute Euler equation errors
following Judd (1992). If s = (a, d, y) denotes the state vector, the Euler equation

uc[c(s), d
′(s)] = β(1 + r)Euc[c(a′(s), d′(s), y′), d′′(a′(s), d′(s), y′)] (27)

should hold exactly for the true policy functions off corners. Given that the computed
policy functions are only approximations, equation (27) does not hold exactly when eval-
uated with the computed policy functions.

Let c∗(s) denote the solution to

uc[c
∗(s), d̂′(s)] = β(1 + r)Euc[ĉ(â′(s), d̂′(s), y′), d̂′(â′(s), d̂′(s), y′)], (28)

where careted variables denote the approximate policy functions. The (absolute) Euler
equation error measured in units of current consumption can then be written as

E(s) =

∣∣∣∣1− c∗(s)

ĉ(s)

∣∣∣∣ (29)

for any point of the state space s.
An Euler error E(s) equal to one per cent means that the agent is making a mistake

of one cent for each dollar spent. Following Judd, I report the base 10 logarithm of the
Euler error. Therefore, a one per cent error in (29) corresponds to an Euler error of -2.

As standard in the literature, I report both the largest Euler error for any point in
the grid ||E(si)||∞, and the largest and average Euler error along a simulated path which
I denote respectively by ||E(st)||∞ and Ē(st). To construct the latter two measures, I
draw a 50,000-period income history. This together with the policy functions generates
a history {st}50,000

t=1 for the whole state vector. ||E(st)||∞ and Ē(st) are the largest and
average Euler error along such history. Since the Euler equation does not have to be
satisfied at the borrowing constraint, I report the Euler errors only at those points in the
state space where the borrowing constraint is slack.

The chosen initial conditions are a0 = d0 = 0 and the unconditional average of
the income process. All the computations were carried out on a single core of a Xeon
X5570 processor. The programs were written in Fortran 95. The code is available at
http://webspace.qmul.ac.uk/gfella/research/research.html for download.

To compare my results with comparable papers, such as Barillas and Fernández-
Villaverde (2007) and Hintermaier and Koeniger (2010), on concave problems, I first
simulate a concave version of the model without a durable choice. For this, I keep d at
its lowest value of 0. I solve the model using both EGM and VFI and grids of 400 and
1000 points for the state variable a. Table 2 reports the results.

A remark is in point before discussing the results. The fact that the supremum of
the Euler errors on the grid ||E(si)|| is not zero for EGM might appear puzzling. By
construction, the Euler equation should be satisfied on the endogenous grid points. As
the pseudo-code in Section 3 makes clear the algorithm uses the endogenous grid points
and the associated values of the policy and value functions only as interpolating nodes
to solve for the those function on the exogenous grid for assets Ga′ . While it would
straightforward to let the grid for future assets change endogenously at each iteration,
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Model # Grid points Time(s) ||E(si)||∞ ||E(st)||∞ Ē(st)
VFI 400 9 -0.97 -2.27 -2.91
EGM 400 2 -6.05 -3.88 -6.27
VFI 1000 35 -1.47 -2.67 -3.37
EGM 1000 5 -6.85 -4.39 -7.16

Table 2: Results for the case with no durable choice and τ = 0

there are two reasons why I am not doing it here. First, the endogenous grid for a would
depend on the values of the other state variables d and y. This would require storing 7×49
grids here for assets. Second, exactly because ||E(si)|| would be zero by construction it
would no longer be an informative statistics to evaluate the relative performance of the
two algorithms.

Table 2 makes clear that, in the absence of non-concavities, the accuracy of EGM is
dramatically better than that of value function iteration. Furthermore, the computation
time is substantially faster. With a wealth grid of 1000 points, EGM solves the problem
in one seventh of the time compared to VFI. In terms of accuracy, even with less than
half the number of grid points, EGM dramatically outperforms VFI.

I now conduct the same exercise, but allowing the household to choose among seven
possible levels for the durable stock. This introduces two sources of non-concavity: the
discreteness of the durable choice and the non-convexity of the adjustment cost function.
I use grids of 200, 400 and 1000 points for the state variable a. Table 3 reports the results.

Consider first the case in which τ = 0, which directly compares to that reported
in Table 2. In terms of computational time, the relative speed of the EGM is similar
to the non-concave case. This is very encouraging and not completely expected. The
endogenous-grid algorithm has to use a global comparison method over the subset of the
state space where the problem is non-concave. Over such a subset the method has no
computational advantage compared to VFI. It turns out that, when the policy corre-
spondence is discontinuous, applying monotonicity to the Euler equation, as discussed in
Section 4.1, allows to discard a larger number of candidate points than in the standard
application of monotonicity in VFI which just restricts the grid over which to search for
a solution to equation (21).

Turning to accuracy the results may seem more mixed than in the concave case.
Comparing the largest Euler errors either on the set of grid points or along the simulation
path does not show a clear superiority of either method. Yet, comparing the average
Euler error on the simulated path yields the same picture as in the non-concave case.
EGM is roughly twice as accurate as VFI. Furthermore, according to the same criterion
EGM significantly outperforms VFI even when the latter methods employs five times the
number of grid points – 1000 versus 200 – with a computational time roughly 70 times
that of EGM - 1192 versus 17 seconds.

The reason for why EGM is not more accurate according to the first two metrics is
apparent once one realizes that the true consumption and saving correspondences are
discontinuous and that they are approximated by interpolating using the endogenous
grid points as interpolating nodes. As long as the true policy correspondences jump
between two interpolating nodes, the Euler equation evaluated at their approximations
may be significantly violated at any point in between. This is true independently from
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Model # Grid points Time(s) ||E(si)||∞ ||E(st)||∞ Ē(st)
τ = 0
VFI 200 79 -0.60 -1.99 -2.62
EGM 200 17 -1.07 -1.66 -5.43
VFI 400 208 -0.91 -2.15 -2.87
EGM 400 39 -1.22 -1.98 -6.09
VFI 1000 1192 -1.34 -2.40 -3.26
EGM 1000 157 -1.09 -2.35 -6.94

τ = 0.2435
VFI 1000 2870 -1.33 -2.56 -3.28
EGM 1000 294 -1.38 -4.29 -6.98

Table 3: Result for the case with durable choice

the algorithm used. Therefore, the first two statistics are not particularly meaningful in
the presence of discontinuities in the policy functions.

Finally, the last two lines in Table 3 conduct the same analysis for the case in which
τ = 0.2435. In such a case, the Euler equation (20) is non-linear in total resources z,
as the marginal utility of consumption function is non-invertible in consumption. While
non-linear, the Euler equation is twice differentiable with respect to total resources z -
but not with respect to a′ - and can be solved for z using Newton method.

The results reported in Table 3 make clear that, while the change of utility function
nearly doubles computational time for both methods, it leaves their relative performance,
both in terms of accuracy and computational time, virtually unaffected. If anything, the
advantage of EGM in terms of computational time increases.

6 Conclusion

This paper has presented an extension of Carroll’s (2006) EGM, and its combination
with VFI by Barillas and Fernández-Villaverde (2007), to non-concave, and possibly non-
differentiable problems. The proposed algorithm yields dramatic gains in accuracy and
computational time.

I have illustrated the algorithm in the context of a problem with a continuous non-
durable and a discrete durable choice and fixed adjustment costs, but one can adapt the
techniques in Barillas and Fernández-Villaverde (2007) and Hintermaier and Koeniger
(2010) to deal with a continuous Ss durable choice.

The algorithm applies without any modification to policy functions for continuous
state variables as long as the objective function is differentiable, and dynamic constraints
are differentiable in the continuous variables to which the algorithm is to be applied. An
example of a case outside such class is a consumer problem in which the interest rate is
a non-differentiable, with a downward-kink, function of wealth as in Bajari et al. (2009).
Yet, as long as the location of downward kinks is known, and their number limited, one
can still apply the algorithm in this paper piecewise.
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A Proofs

Proof of Lemma 1. That the Principle of Optimality holds follows from the assumptions
that: (1) the endogenous state vector (a, d) lies in the Borel set A × D ⊆ R2, (2) Y is
countable, (3) Γ is a non-empty, compact valued and continuous correspondence, (4) u(·)
is bounded and continuous and β ∈ (0, 1). The assumptions coincide with assumptions
9.4 to 9.7 in Stokey, Lucas and Prescott (1989).

The differentiability of u(z(at, dt, yt)− at+1− λt+1, dt+1) follows trivially from (8) and
the assumptions on u(·).

Proof of Lemma 2. The proof follows closely that of Theorem 2 in Clausen and Strub
(2010). Let yt = (y0, . . . , yt) denote a partial history of income shocks from period 0 to
t and let pt(y

t) denote the unconditional probability of history yt. Given the transition
probabilities p(y′|y) associated with the Markov chain, it is pt(y

t) = p(yt|yt−1)pt−1(yt−1)
with p0(y0) = 1.

Let s0 = (a0, d0, y0) denote the state at t = 0 and

W (s0; a1, d1) = u(z(s0)− a1 − λd1, d1) + Ṽ (a1, d1, y0) (30)

the maximum of lifetime, given the current state s0 and choices (a1, d1).
Finally, let Π(s1) denote the set of feasible plans from t = 1 onwards for given s1, that

is

Π(s1) =

{
{at+2, dt+2}∞t=0 : (at+2, dt+2) ∈ Γ(st+1), for all t ≥ 0; s1 given

}
, (31)

and f(s0; a1, d1, π) denote the value

f(s0; a1, d1, π) =
∞∑
t=0

βt
∑
yt

pt(y
t)u
(
z(at, yt, dt)− at+1 − λdt+1, dt+1

)
(32)

of the maximand in (9) for given s0; a1, d1), and an arbitrary π ∈ Π(s1).
Lemma 1 implies that f(s0; a1, d1, π) is differentiable in a1 and that the function

W (s0; a1, d1) is the upper envelope of f(s0; a1, d1, π) with respect to π. It follows from
Theorem 1 in Clausen and Strub (2010) that W (s0; a1, d1) and, by (30), Ṽ (a1, d1, y0) is
differentiable at an internal maximum for a1. Since (30) coincides with the right hand
side of (16), it follows that the first order condition (20) holds at an internal maximum
for a′.

Proof of Proposition 1. Theorem 1 in Edlin and Shannon (1998) implies that an
interior maximiser x∗(t) ∈ arg maxx g(x, t) of a function g(x, t) is strictly increasing in t
if ∂g/∂x is increasing in t at x∗(t). It follows from Lemma 2 that, for given (d, y, d′) the
objective function on the right hand side of (13) is differentiable, and its partial derivative
with respect to a′ satisfies (20), at an internal optimum for a′. Since the right hand side
of (20) is strictly increasing in a, Theorem 1 in Edlin and Shannon (1998).
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