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Abstract

This paper studies optimal decision rules for a decision maker who can con-

sult two experts in an environment without monetary payments. This extends the

previous work by Holmström (1984) and Alonso and Matouschek (2008) who con-

sider environments with one expert. In order to derive optimal decision rules, we

prove a “constant-threat” result that states that any out-of-equilibrium pair of rec-

ommendations by the experts are punished with an action that is independent of

their reports. A particular property of an optimal decision rule is that it is simple

and constant for a large set of experts’ preferences and distribution of their private

information. Hence, it is robust in the sense that it is not affected by errors in spec-

ifying these features of the environment. By contrast, the constructions of optimal

outcomes absent commitment or with only one expert are sensitive to model details.
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1 Introduction

The Consolidated Appropriations Act, 2010 of the United States of America grants certain

types of auto dealerships that were terminated by the manufacturer on or before April

29, 2009 the right to seek through binding arbitration reinstatement of the dealership

agreement.1 The law mandates that the arbitrator shall balance the economic interest of

the dealership, the economic interest of the manufacturer, and the economic interest of

the public at large and shall decide whether or not the dealership should be added to the

dealer network of the manufacturer.

This is an example of an environment with two parties (a manufacturer and a deal-

ership) who have decision relevant information and whose preferences are not perfectly

aligned with each other’s and with those of the principal (the government and, more gen-

erally, the public). The arbitration is a binding mechanism to which the parties resort if

they fail to reach an agreement by themselves.

Two features of the arbitration procedure are noteworthy. First, the arbitrator is re-

stricted in the scope of the award – she can either reinstate the original dealership agree-

ment or not, but the law does not allow the arbitrator to modify the agreement. Second,

the arbitration decision is inherently uncertain from the perspective of the dealership and

the manufacturer due to their imperfect knowledge about the arbitrator’s views on how

to balance economic interests at stake. These features are not atypical in arbitration and

have been discussed in the law literature.2

In this paper, we study optimal decision rules in environments with two informed

experts (agents) and an uninformed decision maker (principal). Our results suggest that

randomness of arbitration award and its limited scope can be desirable. Furthermore,

it can be optimal for the arbitrator’s decision, while random, to be independent of the

arguments supplied by the parties.

Our model features two strategic experts who are biased in different directions (other

things being equal, the dealership is more eager than the manufacturer to get the dealer-

ship agreement renewed).3 The set of feasible actions is a unit interval. A socially optimal

1See H.R.3288 - 187, Section 747 of the Act.
2The questions of interest in that literature are whether limitations on the remedies that can be

awarded by the arbitrator should be enforceable (see, e.g., D. S. Schwartz, “Understanding Remedy-
Stripping Arbitration Clauses: Validity, Arbitrability, and Preclusion Principles,” 38 U.S.F. L. Rev.
49 (2003-2004), pp. 49-104) and whether randomness in arbitration decisions justifies allowing for ex-
post judicial review (see, e.g., S. P. Younger, “Agreements to Expand the Scope of Judicial Review of
Arbitration Awards,” 63 Alb. L. Rev. 241 (1999-2000), pp. 241-262 and L. Goldman, “Contractually
Expanded Review of Arbitration Awards,” 8 Harv. Negot. L. Rev. 171 (2003), pp. 171-200).

3We discuss the case of similarly biased experts in Section 6.
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action is represented by an uncertain state. The experts have unverifiable information

about the state. In the first part of the paper, we assume that the experts have identical

information and know the state. Later on, we allow the experts to have asymmetric infor-

mation. There are no monetary payments. A decision rule is a contract that implements

an action contingent on the experts’ reports about their information.4 The purpose of the

paper is to identify optimal decision rules.

Consider an environment in which the experts have identical information. By the rev-

elation principle, an optimal decision rule can be sought for among direct decision rules

in which the experts reports their information truthfully. Thus, the decision rule must

provide incentives for the experts to tell the truth through punishment of disagreements.

The difficulty here is that when a disagreement is observed, the designer cannot detect

which expert deviates from truthful reporting. Furthermore, the experts’ opposing inter-

ests imply that an action that is a stronger punishment for one expert is often a weaker

punishment for the other one. In cheap talk communication models, where the decision

maker cannot commit to a decision rule, this issue causes punishments in fully revealing

equilibria to depend non-trivially on the experts’ reports (Krishna and Morgan, 2001a,b;

Battaglini, 2002; Ambrus and Takahashi, 2008)5 and also makes it difficult to characterize

optimal equilibria if full revelation is not feasible.

Proposition 1 is the key insight of the paper. It offers a surprisingly simple way to

construct an optimal decision rule for a decision maker with commitment power: we show

that one can restrict attention to “constant-threat” rules in which every disagreement

between the experts is punished by the same (stochastic) action with a two point support.

The proof of this constant-threat result relies in a curious way on a minmax inequality

and concavity of the experts’ payoff functions.

For our introductory example, the constant-threat result suggests that the optimal

decision rule should entail a threat of random arbitration with a restricted scope of the

award to provide incentives for the parties to agree on the optimal course of action. Of

course, while fully random arbitration might be difficult to implement in practice, at least

some randomness and restrictions on the scope of the award can be welfare improving.

An optimal decision rule is constant and very simple across a large set of environments.

4This setting is reminiscent of Kalai and Rosenthal (1976) who address the question of implementation
through binding arbitration of an efficient outcome in a finite two-player game, where the arbitrator is
uninformed about the players’ payoff functions. The key difference is that there is no exogenously specified
status-quo in our model.

5Crawford and Sobel (1982) is the seminal reference on cheap talk communication with one expert. For
models of cheap talk communication with two experts see also Krishna and Morgan (2001b); Battaglini
(2004); Ambrus and Lu (2009); Li (2008, 2009).
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It can be implemented by an indirect mechanism in which both experts suggest an action;

if they agree, the suggested recommendation is followed; otherwise, the rule (uniformly)

randomizes between the two most extreme actions. The class of environments in which this

decision rule is optimal includes those in which the first best outcome can be implemented

(Corollary 1) and symmetric environments (Remark 2). This rule is robust to small

mistakes in specifications of the experts’ preferences and information. By contrast, the

constructions of optimal outcomes in cheap talk environments are highly sensitive to

these details of the model (Krishna and Morgan, 2001a; Battaglini, 2002; Ambrus and

Takahashi, 2008).6

The cheap talk literature with two experts has focused on establishing conditions under

which the decision maker can achieve the first best outcome (Krishna and Morgan, 2001b;

Battaglini, 2002; Ambrus and Takahashi, 2008). For comparison, we provide conditions

(Proposition 2 and Remark 1) for the first best to be implementable in our environment;

the conditions bound the size of bias of each expert. Naturally, these conditions are related

to but weaker than those in cheap talk environments. For sufficiently small biases, the

first best can be attained both with and without commitment. In these circumstances,

the role of commitment is to permit a simpler and more robust decision rule. For the

intermediate range of biases, the role of commitment is stronger: the first best could be

implemented only under commitment. In this case, the ability of the decision maker to

commit to a stochastic action out of equilibrium confers an additional benefit.

Propositions 3 – 5 characterize optimal decision rules in the environments in which

the first best outcome is not implementable. In particular, adding a second expert always

strictly improves the payoff of the decision maker relative to what she would obtain with

one expert (Proposition 3). These results are especially useful because a characterization

of the best equilibria in cheap talk environments beyond those permitting the first best

remains an open question for many environments.

The assumption that the experts have identical information is standard in the related

literature.7 Yet, it is an important assumption in that it allows the decision maker to

check the reports of the experts against each other, and inconsistent reports do not occur

on the equilibrium path. Therefore, we study noisy environments in Section 5. Our first

observation is that the constant-threat result extends to these environments.8 Further-

6Furthermore, as pointed out by Battaglini (2002), these cheap talk equilibria contain implausible out-
of-equilibrium beliefs. By contrast, there is no issue of out-of-equilibrium beliefs in our model because
the decision maker can commit to her actions.

7See references in Section 5.
8Though it may become vacuous if in any state the experts’ signals have full support.
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more, we show that if the state space is finite, then for any sequence of diminishing noise

it is possible to construct decision rules that converge to the optimal decision rule in the

environment without noise (Remarks 3 and 4). A similar result holds for the environments

in which the state space is infinite and the noise is partitional: the experts observe an

element of a partition of the state space that contains the realized state (Proposition 6).

The proofs of these results are constructive and offer a way to design decision rules that

perform close to optimum in environments with small noise. They complement the results

in Ambrus and Lu (2009) who show how to construct fully revealing equilibria robust to

noise in cheap talk environments.

The results presented here focus on partial implementation of the optimal outcomes

and the constructed decision rules permit multiple equilibria. We discuss the issue of full

implementation and offer some partial positive results in Section 6.

This paper is a natural continuation of the work on optimal decision rules in envi-

ronments with one informed expert and no monetary payments that was initiated by

Holmström (1977, 1984).9 We compare our results with the optimal decision rules iden-

tified in this literature in Section 6.

Our paper is related to Battaglini (2004) who considers a multidimensional environ-

ment with multiple experts and noisy signals. Battaglini shows that minimal commitment

power is sufficient to implement an outcome arbitrarily close to the first best as the number

of experts becomes sufficiently high.

The problem of optimal decision rules for two experts has been studied in Martimort

and Semenov (2008). Our models and approaches are quite different. In particular, they

focus on experts who are biased in the same direction and consider dominant strategy im-

plementation. By contrast with our results, Martimort and Semenov (2008) demonstrate

impossibility of the first best outcome and show that a sufficiently high bias renders the

experts not valuable for the decision maker.

Finally, Esö and Fong (2010) show that the first best outcome can be implemented

in a dynamic cheap talk environment in which the decision maker can delay the final

decision by choosing an “inaction”. In their model, delays are costly: both experts prefer

9See Holmström (1977, 1984), Melumad and Shibano (1991), Dessein (2002), Martimort and Semenov
(2006), Alonso and Matouschek (2008), Martimort and Semenov (2008), Goltsman et al. (2009), Ko-
vac and Mylovanov (2009), Amador and Bagwell (2010). Armstrong and Vickers (2008), Koessler and
Martimort (2009), Li and Li (2009), and Lim (2009) who study optimal decision rules in environments
which are related, but not identical to the model of Holmström (1977, 1984). Optimal decision rules for
environments in which a decision maker can commit to monetary payments are characterized in Baron
(2000), Krishna and Morgan (2008), Bester and Krähmer (2008), Raith (2008), and Ambrus and Egorov
(2009).
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the decision maker’s ideal action to inaction. Our model is different in that we do not

assume existence of an outcome with properties of inaction in their model.

The remainder of the paper is organized as follows. Section 2 describes the model.

The constant-threat result is derived in Section 3. Applying this result, we characterize

the optimal decision rules in Section 4 for the environments with identical information

of the experts. Section 5 studies robustness of the optimal decision rules with respect to

noise in the experts’ information. Section 6 discusses the questions of full implementation,

similarly biased experts, and compares the results with those for the environment with

one expert.

2 The Model

There are two experts i = 1, 2 and a decision maker. The decision maker has to select an

action from a set Y = [0, 1] of feasible actions. The most preferred action for the decision

maker (the state), x ∈ X, is a realized value of a random variable x̃ with support on X.

We assume that X is a closed measurable subset of Y that contains the endpoints, 0 and

1. That is, our model includes both the environment in which the set of states is finite

and the environment in which the set of states is a compact interval. The restriction to

the unit interval is not essential.10

The decision maker is uninformed about x and believes that the distribution of x̃ is

represented by a c.d.f. F .

We begin with the assumption that the experts know precisely the value of x (it will

be relaxed in Section 5). The decision maker can ask for recommendations and commit

to take an action that is contingent on their reports.

Let y denote an action. The payoff function of the decision maker is denoted by

u0(x, y) and the payoff functions of expert i = 1, 2 by ui(x, y). We assume that for every

x ∈ X each function ui(x, y), i = 0, 1, 2, is strictly concave in y. The decision maker’s

payoff function is maximized at the action equal to the state,

arg max
y∈Y

u0(x, y) = {x}, x ∈ X.

For every x ∈ X we define {y∗i (x)} = arg maxy∈Y ui(x, y), i = 1, 2. We assume that the

10The assumption that the action space is bounded does not drive our results and can be relaxed. In
fact, a larger action space makes eliciting information easier for the decision maker. Ultimately, if the
action space is unbounded or sufficiently large relative to the state space, the first best outcome can be
implemented by threatening experts with extreme actions out of equilibrium.
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experts have opposing interests :

y∗1(x) < x < y∗2(x), for every x ∈ X. (1)

Some of our results are obtained for the environment with quadratic preferences and fixed

biases, which is standard in the literature on experts: u0(x, y) = −(x − y)2, u1(x, y) =

−((x− b1)− y)2 and u2(x, y) = −((x+ b2)− y)2, where b1, b2 > 0.

Let Y denote the set of distributions on Y (randomized actions). Identifying point

distributions with points we have Y ⊂ Y . We extend the definition of ui to X × Y via

the statistical expectation:

ui(x, λ) =

∫
ui(x, y)λ(dy), x ∈ X, λ ∈ Y .

A decision rule is a measurable function

µ : X2 → Y , (x1, x2) 7→ µ(x1, x2),

where µ(x1, x2) is a randomized action that is contingent on the experts’ reports (x1, x2).

A decision rule induces a game (a direct mechanism), in which after observing x the

experts simultaneously make reports x1, x2 ∈ X and the outcome µ(x1, x2) is implemented.

A decision rule µ is incentive compatible if truthtelling, x1 = x2 = x, is a Nash

equilibrium: for all x, x′ ∈ X

u1(x, µ(x, x)) ≥ u1(x, µ(x′, x)),

u2(x, µ(x, x)) ≥ u2(x, µ(x, x′)).
(2)

By the revelation principle, any equilibrium outcome of the experts’ interaction in a

game whose space of outcomes is Y or Y can be represented by the truth-telling equilib-

rium outcome in some incentive compatible decision rule. In what follows, we will consider

only incentive compatible decision rules.

A decision rule µ is optimal if it maximizes the expected payoff of the decision maker,

vµ =

∫
X

u0(x, µ(x, x))dF (x),

among all incentive compatible decision rules. Since the set of incentive compatible de-

cision rules is compact in weak topology and vµ is continuous in µ, an optimal decision

rule exists.
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3 The Constant-threat Result

In any decision rule, the main incentive issue is to motivate each expert to agree with the

other expert who is expected to tell the truth. Therefore, the decision rule must punish

disagreements. The difficulty here is that if a disagreement is observed (i) it is unclear

which expert, if any, tells the truth, and (ii) since the experts have opposing interests, a

punishment that is more severe for one of the experts tends to benefit the other expert.

As a result, a punishment after a disagreement may depend non-trivially on the experts’

reports. In particular, this is so in the existing constructions of optimal outcomes in cheap

talk environments (Krishna and Morgan, 2001b; Battaglini, 2002; Ambrus and Takahashi,

2008).

We now prove our key result, the constant-threat result, which allows us to characterize

optimal decision rules. It states that one can restrict attention to decision rules in which

the lottery implemented after a disagreement has support on extreme actions 0 and 1

and is independent of the reports. This result reduces the problem of finding optimal

decision rules to the problem of finding actions that are implemented if the experts report

their information truthfully, µ(x, x), and the probability of implementing y = 1 after a

disagreement. Thus, it drastically decreases complexity of the design problem, because

we avoid the optimization problem in which we search on a continuum of lotteries with

support on Y that are implemented after a disagreement (one threat lottery for each pair

of reports x1, x2 ∈ X, x1 6= x2).

The idea behind the constant-threat result is as follows. First, by concavity of the

experts’ payoff functions, any lottery over actions implemented after a disagreement can

be replaced, using a mean-preserving spread, by a lottery between actions 0 and 1 without

affecting the experts’ incentives to report the truth.

Now, let µ be a decision rule in which a disagreement always results in a lottery with

support {0, 1}. The crucial step in the proof is to observe that, say, expert 1 (who is

left-biased) always prefers action x to the extreme right action 1. Hence, in all states

where a disagreement lottery is better than x, his payoff from action 0 must be strictly

greater than that from x. It follows that in these states his expected payoff from that

lottery must be decreasing in the probability assigned on action 1 (similarly, the payoff

of expert 2 from a disagreement lottery must be increasing in the probability assigned on

action 1). Let r be the lottery that achieves the highest payoff for expert 1 among the

lotteries with support {0, 1} that can be achieved by the best deviations of expert 1 in

various states x ∈ X. Denote by p the probability this lottery assigns to action 1. Define

p for expert 2 analogously. The result now follows from the observation that p ≤ p, which
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relies on the fact that minmax is larger than or equal to maxmin. Hence, there exists a

lottery c that assigns probability pc to action 1, where p ≤ pc ≤ p, such that replacing

every threat lottery with c does not violate the incentive constraints of the experts.

Let Y∗ be the set of probability distributions with support on {0, 1}. We say that a

decision rule µ = (x1, x2) is constant-threat if it is incentive compatible and

(C) there exists c ∈ Y∗ such that µ(x1, x2) = c whenever x1 6= x2.

We say that two incentive compatible decision rules, µ and µ′, are equivalent if they

implement the same action whenever the reports of the experts coincide, i.e., µ(x, x) =

µ′(x, x) for all x ∈ X. Thus, two equivalent decision rules implement identical actions in

equilibrium, but may implement different actions off-equilibrium.

Proposition 1 (Constant-threat result) For every optimal decision rule there exists

an equivalent constant-threat decision rule.

Note that a constant-threat decision rule which is equivalent to some optimal decision

rule must be optimal as well, since it implements the same actions in equilibrium.

Proof. Let µ be an optimal decision rule. Observe that by concavity of ui(x, y) in y,

i = 1, 2, for any measure λ,∫
ui(x, y)λ(dy) ≥

(
1−

∫
yλ(dy)

)
ui(x, 0) +

(∫
yλ(dy)

)
ui(x, 1), x ∈ X.

Hence, replacing µ(x1, x2), x1 6= x2, by a lottery that puts probability
∫
yµ(x1, x2)(dy)

on action 1 and the complementary probability on action 0 will not violate the incentive

constraints of the experts. Therefore, there exists an equivalent decision rule µ′ in which

every threat lottery implemented after a disagreement has support on {0, 1}.
We now show that there exists a constant-threat decision rule µc equivalent to µ′. For

every pair of different reports, x1, x2 ∈ X, x1 6= x2, let P (x1, x2) be the probability that

µ′(x1, x2) assigns to 1 after a disagreement. We extend the definition of P (·, ·) to X2 by

setting P (x, x) =
∫
yµ′(x, x)(dy) for all x ∈ X. Define

P1(x) = {P (x′, x)|x′ ∈ X} and P2(x) = {P (x, x′)|x′ ∈ X}.

For all x ∈ X, p ∈ [0, 1], and i = 1, 2 let

Di(x, p) = max{0, pui(x, 1) + (1− p)ui(x, 0)− ui(x, µ(x, x))}.
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By construction, a deviation by expert i in state x leading to a lottery in Y∗ that assigns

probability p ∈ [0, 1] to action 1 is non-profitable iff Di(x, p) = 0. Furthermore, by

definition of P (x, x),

Di(x, P (x, x)) = 0, x ∈ X, i = 1, 2.

Thus, incentive constraints (2) can be written as

Di(x, p) = 0, x ∈ X, p ∈ Pi(x), i = 1, 2. (IC)

We now show that

D1(x, p) is non-increasing in p for every x ∈ X;

D2(x, p) is non-decreasing in p for every x ∈ X.
(*)

We start by showing that we can restrict attention to decision rules that on the equilibrium

path are deterministic and implement actions that are bounded by the experts’ most

preferred actions,

µ(x, x) ∈ Y, y∗1(x) ≤ µ(x, x) ≤ y∗2(x), x ∈ X. (P3)

To see why this is true, fix some x′ ∈ X and suppose first that µ(x′, x′) is a proper lottery.

Then, concavity of the payoff functions implies that replacing µ(x′, x′) with the expected

value of this lottery improves the payoffs of all players without violating any incentive

constraints. Next, let µ(x′, x′) = y′ ∈ Y , y′ > y∗2(x′) for some x′ ∈ X. Since y∗2(x′) is

closer than y′ to the most preferred alternatives of all players, concavity of the payoff

functions implies that setting µ(x′, x′) = y∗2(x′) improves the payoffs of all parties on the

equilibrium path without violating incentive constraints. A symmetric argument is valid

for µ(x′, x′) = y′ < y∗1(x).

Since u1(x, y) is concave in y and y∗1(x) ≤ µ(x, x) by (P3), it follows that u1(x, y) is

decreasing in y on [µ(x, x), 1] for every x, and hence

u1(x, µ(x, x)) ≥ u1(x, 1).

If, in addition, u1(x, µ(x, x)) ≥ u1(x, 0), then, D1(x, p) = 0 for every p ∈ [0, 1]. On

the other hand, if u1(x, µ(x, x)) < u1(x, 0), then u1(x, 1) < u1(x, 0), and hence D1(x, p) is

decreasing in p. This establishes the first statement in (*). The argument for the second
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statement is analogous.

Next, let

a1(x) = inf P1(x), x ∈ X;

a2(x) = supP2(x), x ∈ X.

By (IC) and continuity of D(x, p) w.r.t. p, we have Di(x, ai(x)) = 0 for x ∈ X. By (*),

D1(x, p) = 0, p ≥ a1(x), x ∈ X;

D2(x, p) = 0, p ≤ a2(x), x ∈ X.
(3)

Define

p = sup
x∈X

a1(x) = sup
x∈X

inf P1(x) = sup
x∈X

inf
x′∈X

P (x′, x);

p = inf
x∈X

a2(x) = inf
x∈X

supP2(x) = inf
x′∈X

sup
x∈X

P (x′, x).

Then, there exists pc such that p ≤ pc ≤ p. By (3),

Di(x, p
c) = 0, x ∈ X, i = 1, 2.

The result now follows from (IC).

The result in Proposition 1 can be generalized. We say that an incentive compatible

decision rule is undominated if there does not exist another incentive compatible decision

rule that yields to all players a greater (equilibrium) payoff in every state and a strictly

greater payoff in some state. The arguments behind Proposition 1 are not affected if we

consider undominated decision rules instead of optimal decision rules.

In the remainder of the paper, we will study optimal decision rules in the set of

constant-threat decision rules. Typically, however, there exist decision rules that induce

the same equilibrium outcome and are not constant-threat.

Finally, we would like to remark on the multiplicity of equilibria in the constant-threat

decision rules. In this paper, we focus on the truthtelling equilibria; this is justified by

the revelation principle. At the same time, there are many other equilibria in a given

constant-threat decision rule. For instance, there is always a “babbling” equilibrium in

which, irrespective of the true state, both experts report some x′ ∈ X such that µ(x′, x′)

10



is equal to the expected value of the threat lottery.11

4 Optimal Decision Rules

The constant-threat result in Proposition 1 makes characterization of optimal constant-

threat decision rules a simple exercise. In this section, we use it to characterize these rules

and obtain more specific results under some additional assumptions about the environ-

ment.

4.1 First Best Decision Rules

We start our analysis of optimal constant-threat decision rules by identifying conditions

under which they implement the most preferred alternative of the decision maker. Let C
be the set of incentive compatible constant-threat decision rules. A decision rule in C that

in each state implements the most preferred action for the decision maker, if it exists, is

called first best.

We assume that each expert’s utility depend only on the distance between her most

preferred action and the implemented action: for each i = 1, 2

ui(x, y) = −di(y − (x+ bi(x))), (4)

where di : R→ R+ is a convex differentiable function which achieves its minimum at zero

and which is symmetric around zero, i.e., di(z) = di(−z) for all z ∈ R, and bi : X → R,

i = 1, 2, b1(x) < 0 < b2(x). The point x + bi(x) is the most preferred action of i in state

x. The values of b1 and b2 reflect the conflict of preferences between the experts and the

decision maker and are called the experts’ biases.

The next result provides a sufficient condition for existence of the first best decision

rule under these assumptions.

Proposition 2 Assume that (4) holds. Then there exists the first best decision rule if

sup
x∈X,i=1,2

|bi(x)| ≤ 1/2.

11We discuss this issue in more detail in Section 6, where we show that the decision rules identified in this
paper can be modified to ensure uniqueness of the equilibrium outcome if the experts have lexicographic
preferences for truthful reporting.
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Proof. There exists the first best decision rule if and only if there is p ∈ [0, 1] such that

for each expert i = 1, 2 and for every x ∈ X,

ui(x, x) ≥ (1− p)ui(x, 0) + pui(x, 1). (5)

By convexity of di, we have for i = 1, 2 and for every x ∈ X,

di(x+ bi(x))

2
+
di(1− x− bi(x))

2
≥ di

(
x+ bi(x)

2
+

1− x− bi(x)

2

)
= di(1/2) ≥ di(bi(x)), (6)

where the second inequality follows from the assumption that sup
x∈X,i=1,2

|bi(x)| ≤ 1/2. Ob-

serve that (6) is equivalent to (5) with p = 1/2, which implies existence of the first best

decision rule with the threat lottery that assigns equal probabilities to 0 and 1.

The first best decision rule constructed in the proof of Proposition 2 uses as a threat

the lottery that mixes with equal probability between 0 and 1. The logic behind the

construction is straightforward: if the experts’ biases are not too large, they are better off

under the decision maker’s most preferred alternative rather than the threat lottery. It is

interesting to note that a symmetric threat lottery is optimal even if the experts’ biases

are not equal.

Under some additional structure of the payoff functions, the sufficient condition in

Proposition 2 becomes necessary.

Remark 1 Let12 X = [0, 1] and assume that the biases are constant, bi(x) = b̃i, i = 1, 2,

and have the opposite signs, b̃1 < 0 < b̃2. Then there does not exist the first best decision

rule whenever max |b̃i| > 1/2.

Proof. Assume that b̃2 > 1/2. First, let p > 0. Then,

(1− p)d2(b̃2) + pd2(1− b̃2) < (1− p)d2(b̃2) + pd2(b̃2) = d2(b̃2),

which contradicts (5) for x = 0 and i = 2. Next, let p = 0. Since b̃1 < 0, we obtain for x

that satisfies 0 < x < |b̃1|

u1(x, 0) ≡ −d1(−x− b̃1) > −d1(b̃1) ≡ u1(x, x),

12In fact, it suffices to assume that X contains arbitrarily small neighborhoods in [0, 1] of the endpoints
0 and 1.
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which contradicts (5) for i = 1. The argument for b̃1 < −1/2 is symmetric.

The above results are related to Krishna and Morgan (2001a), Battaglini (2002), and

Ambrus and Takahashi (2008) who study cheap talk communication with two experts. For

the environment considered in Remark 1, Proposition 1 in Battaglini (2002) establishes

that a necessary and sufficient condition for a fully revealing cheap talk equilibrium is

that the sum of the absolute values of the experts’ biases is less than half of the measure

of the action space.13 Proposition 2 and Remark 1 complement this result by providing

necessary and sufficient conditions for the first best outcome under commitment. Our

condition is weaker and it bounds the size of each expert’s bias rather than their sum;

interestingly, the value of the bound is the same in both environments.

The construction of fully revealing equilibria in cheap talk and our construction of a

first best decision rule are analogous but not identical. In a cheap talk environment, for

any pair of disagreeing reports there is a threat action such that an expert who can induce

this pair of reports prefers the first best outcome to the threat action. This threat action

is supported by (out-of-equilibrium) beliefs that make it optimal. The proof then verifies

that for each pair of states (reports) there exists a threat action that satisfies a number of

inequalities that depend on biases of the experts; in equilibrium, the threat action might

have to depend non-trivially and discontinuously on the reports of the experts.

By contrast, in our model a decision rule can use lotteries as threat actions that cannot

be supported in a cheap talk model, even out of equilibrium.14 The proof of the possibility

of the first best in our environment employs a constant-threat lottery that mixes equally

between the extreme actions and makes use of concavity property of payoff functions.

Furthermore, the proof of the necessary condition relies on the fact that it is sufficient to

consider report-independent threat lotteries.

4.2 Robustness of the First Best Decision Rule

An interesting implication of the above results is that the lottery that mixes between 0

and 1 with equal probability is a sufficient threat for implementing the first best if the

biases are not too large. This is so even if the biases are not symmetric.

13Krishna and Morgan (2001a) prove that a sufficient condition for a fully revealing cheap talk equi-
librium in an environment with constant and equal opposing biases is that each expert’s bias is less than
1/4.

14The concavity of payoff functions implies that a lottery cannot be a best response for the decision
maker.
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Corollary 1 Let the conditions in Proposition 2 be satisfied. Then, the first best decision

rule is constant in the preferences of the experts.

The constancy of the optimal decision rule is a useful feature if the decision maker

is concerned about robustness of the decision rule with respect to her knowledge of the

environment. In particular, if the optimal decision rule is constant, then the decision

maker need not possess correct knowledge about the magnitude and the direction of the

experts’ biases.

4.3 Second Best Decision Rules

What are the properties of an optimal decision rule if the first best outcome cannot be

implemented? In what follows, we characterize optimal decision rules that, given the

threat lottery, maximize the payoff of the decision maker in each state.15

Observe that any decision rule in C can be identified by a pair

(p, g) : p ∈ [0, 1], g : X → Y,

where p is the probability of action 1 after a disagreement and g(x) is the action imple-

mented on the equilibrium path (recall that decision rules in C have lotteries with support

on {0, 1}).16

Assume that X = [0, 1]. Let us pick a constant-threat decision rule (p, g) in C. By

concavity of payoff functions, both experts prefer y = x in state x = p to the threat

lottery,

ui(p, p) ≥ pui(p, 1) + (1− p)ui(p, 0).

This implies that an optimal decision rule implements the most preferred alternative for

the decision maker, g(x) = x, at least in state x = p. In addition, since the experts’

payoff functions are strictly concave, we obtain g(x) = x for a proper interval containing

p ∈ (0, 1).

Proposition 3 Let X = [0, 1]. Then, an optimal decision rule implements the most

preferred alternative of the decision maker on an interval of states.

This observation highlights the value of two experts for the decision maker. Clearly,

the decision maker is weakly better off with two experts than with either of them alone

15Trivially, there also exists a continuum of other decision rules that deliver the same expected payoff
for the decision maker but do not have this property for a set of states of measure zero.

16We ignore decision rules in C that are stochastic on the equilibrium path as they cannot be optimal.
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as she can always implement a decision rule that would be optimal in the environment

with one expert ignoring the existence of the other. However, that the decision maker is

strictly better off with two experts is particularly clear if their biases are high: Whereas

there is no value in employing one expert if she is sufficiently biased,17 with two experts

there exists a decision rule which implements the most preferred action of the decision

maker at least in some states.

We now describe the structure of an optimal decision rule in states where the first best

outcome is not incentive compatible. For a given probability p of action 1 in an optimal

constant-threat decision rule, let X̃p
i be the set of states in which expert i strictly prefers

the threat lottery to the decision maker’s most preferred action,

X̃p
i = {x ∈ [0, 1] : ui(x, x) < ūi(x, p)},

where ūi(x, p) is expert i’s expected payoff from the threat lottery p,

ūi(x, p) = (1− p)ui(x, 0) + pui(x, 1).

Hence, X̃p
1 ∪ X̃

p
2 is the set of states where implementing the most preferred action is not

incentive compatible.

Lemma 1 For any state x in X̃p
1 ∪ X̃

p
2 , the incentive constraint of only one of the experts

is violated, i.e., X̃p
1 ∩ X̃

p
2 = ∅.

Proof. By assumption, the experts have opposing interests, i.e., y∗1(x) < x < y∗2(x). If

p > x, then expert 1 prefers action x to action y = p and hence to the threat lottery.

Otherwise, expert 2 prefers x to the threat lottery. Hence, at least one expert prefers x

to the threat lottery.

An optimal decision rule stipulates to choose action g(x) that is the “closest” point

to x (from the perspective of the decision maker) subject to the incentive constraints for

the experts. Since at every state x ∈ X̃p
i only expert i’s incentive constraint is relevant,

we obtain

g(x) ∈ arg max
y :ui(x,y)≥ūi(x,p)

u0(x, y).

17To see why this is true, imagine that the experts are sufficiently biased such that one expert prefers
action 0 and the other one prefers action 1 regardless of the state. In this environment, any decision rule
with one expert will implement the same action in all states. Hence, with just one expert her information
cannot affect the action of the decision maker.

15



4.4 Quadratic Preferences and Constant Biases

We can obtain stronger results if we impose additional structure on the preferences of the

experts. Specifically, we make the assumption, which is standard in the literature, that

the experts’ preferences can be represented by a quadratic payoff function with a constant

bias,

ui(x, y) = −(y − (x+ bi))
2, i = 1, 2, (7)

where b1 < 0 < b2. Assume also u0(x, y) = −(y − x)2 and X = [0, 1].

In order to determine the set X̃p
i of states where expert i prefers threat lottery p to the

most preferred action x for the decision maker, we solve the inequality ui(x, x) < ūi(x, p).

Using (7) we obtain

(1− p)(x+ bi)
2 + p(1− (x+ bi))

2 < b2
i . (8)

In order to state the result, the following definitions are in order. For any p ∈ X, let

Di = b2
i − p(1− p) and let

xpi = p− bi −
√
Di, xpi = p− bi +

√
Di. (9)

In addition, for |b1| and |b2| below 1/2 define

p∗ =
1−

√
1− 4b2

2

2
, p∗ =

1 +
√

1− 4b2
1

2
.

It is easy to verify that the solution of (8) is the interval (xpi , x
p
i ), and hence X̃p

i =

(xpi , x
p
i ) ∩ [0, 1].

The next result describes the structure of an optimal decision rule.

Proposition 4 Let (p, g) be an optimal constant-threat decision rule. Then,

g(x) =


x− |b1|+

√
−ū1(x, p), if x ∈ X̃p

1 ;

x+ |b2| −
√
−ū2(x, p), if x ∈ X̃p

2 ,

x, otherwise.

Proof. If x 6∈ X̃p
1 ∪ X̃

p
2 , then the first best action is incentive compatible, g(x) = x.

Let x ∈ X̃p
1 (the argument for x ∈ X̃p

2 will be analogous). In an optimal decision rule

the decision maker implements an action g(x) that minimizes the distance to x, subject
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Figure 1: An optimal decision rule with quadratic preferences, |b1| = |b2| = 1, p = 1/2.

to the incentive constraint for expert 1, that is,

g(x) ∈ arg min
y∈[0,1]

(y − x)2

subject to

(y − (x+ b1))2 ≤ (1− p)(x+ b1)2 + p(1− (x+ b1))2.

Solving the above inequality for y we obtain

y ∈ [0, 1]\
(
x+ b1 −

√
−ū1(x, p), x+ b1 +

√
−ū1(x, p)

)
.

Since x ∈ X̃p
1 , the above constraint must be binding. As b1 < 0 by assumption, the closest

action to x is g(x) = x+ b1 +
√
−ū1(x, p). It is straightforward to verify that in this case

g(x) ∈ X̃p
1 . As X̃p

1 ∩ X̃
p
2 = ∅, the incentive constraint for expert 2 is satisfied as well.

If the absolute value of each of the biases is greater than 1/2, an optimal decision

rule looks as follows (Fig. 1). Note that in this case X̃p
2 = [0, xp2) and X̃p

1 = (xp1, 1]. For

the “moderate states” in [xp2, x
p
1], both experts prefer the decision maker’s most preferred

action to the threat lottery, and the first best outcome is achieved (the points along the 45◦

line on Fig. 1). For the “extreme left” states in [0, xp2), expert 2 strictly prefers the threat
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lottery to x, and hence the decision maker implements an action that is closer to expert

2’s most preferred action. The distortion for the “extreme right” states is analogous.

The result in Proposition 4 allows us to transfer the problem of finding an optimal

decision rule into a one dimensional optimization problem over value of the threat point:

min
p∈[0,1]

∫ 1

0

(gp(x)− x)2dF (x), (10)

where gp, with some abuse of notation, is given by Proposition 4.

In contrast to the first best decision rule, in second-best decision rules the optimal value

of the threat point depends on the distribution of the state x. In general, there is no closed

form solution for optimal threat points. Nevertheless, under additional assumptions, we

obtain the following result.

Proposition 5 Let the experts’ biases be opposing and equal, −b1 = b2 = b, and distribu-

tion of x be symmetric, i.e., F (1−x) = 1−F (x), x ∈ [0, 1]. Then there exists an optimal

decision rule with p = 1/2.

Proof. Note that under conditions of Proposition 5, p = 1/2 must be an extreme point of

the expression in (10) due to full symmetry of the problem w.r.t. 1/2. What remains to

prove is that p = 1/2 is the minimum of (10). The full proof is deferred to the Appendix.

Remark 2 Let the conditions of Proposition 5 hold. Then, the actions implemented on

the equilibrium path in the optimal decision rule depend on the value of b. Nevertheless,

the outcome of this decision rule can be implemented by the following indirect decision

rule that is constant in b: The experts recommend an action. If their recommendations

coincide, the action is taken. Otherwise, a threat lottery with p = 1/2 is implemented.

5 Continuity and Noise

5.1 Positive Results

The assumption that both experts are perfectly informed is common in the literature

that studies cheap talk communication with two experts in payoff environments similar

to the one in this paper. It has been made, for example, in Gilligan and Krehbiel (1989),

Krishna and Morgan (2001a,b), Battaglini (2002), Levy and Razin (2007), Ambrus and
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Takahashi (2008), and Li (2008, 2009).18

Nevertheless, this assumption is important because it ensures that any disagreement in

experts’ reports is evidence of out-of-equilibrium behavior. The optimal constant-threat

decision rule might perform poorly if the experts’ information about the state is noisy,

since any non-identical albeit truthful reports are punished by a threat lottery.

This difficulty created by noise is not specific to the environment with commitment

and, moreover, can have significant implications: e.g., cheap talk equilibria attaining the

first best outcome are not robust to arbitrarily small amount of noise (Levy and Razin,

2007). The question of robustness to noise of these equilibria has been studied in Battaglini

(2004) and Ambrus and Lu (2009). In a model with multiple experts, a multidimensional

environment, and noisy signals, Battaglini (2004) shows that minimal commitment power

is sufficient for the first best outcome to become feasible in the limit as the number of

experts increases. Ambrus and Lu (2009) construct fully revealing equilibria that are

robust to a small amount of noise in environments in which the state space is sufficiently

large relative to the size of the experts’ biases.

In this section, we establish two results. First, if the state space is finite, then either

the optimal constant-threat decision rule is robust to small amount of noise or there exists

a constant-threat decision rule that implements an outcome arbitrarily close to that in

the optimal decision rule as noise vanishes. Second, for environments with continuous

state spaces and noisy signals that can be modeled as in Aumann (1976) by elements

of a partition of the state space, we can construct a sequence of what we call definite

punishment decision rules that are incentive compatible and converge to the optimal

decision rule for vanishing noise. These results are valuable as they underscore that

commitment can restore continuity of optimal decision rules with respect to noise and

suggest how one can construct decision rules that are robust to small noise.

Unfortunately, we do not have a continuity result for arbitrary noise structures if the

state space is continuous or infinite. Therefore, the question whether the continuity result

is specific to finite state space remains open. Nevertheless, since a general continuity

result is not the main focus of this paper and it would be valuable to explore it in the

environments more general than the one studied here, we leave the question for future

research.

Model. We consider a model in which the experts’ information is incomplete and not

18The experts are imperfectly informed in the models of Austen-Smith (1993), Wolinsky (2002), and
Battaglini (2004). See also Li and Suen (2009) for a survey of work on decision making in committees;
this literature often assumes that different members of the committee hold distinct pieces of information.
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identical. We assume that, instead of observing the state, each expert observes an infor-

mative signal si ∈ X, i = 1, 2, about the state. The definition of the decision rule remains

unchanged. A decision rule is incentive compatible if truthful reporting of signals is an

equilibrium. The rest of the model is same as before.

The amount of noise is measured by Ky Fan metric

δi = inf
ε
{ε > 0 : Pr(|si − x| > ε|x) ≤ ε for all x ∈ X}.

We say that the amount of noise vanishes if δi → 0, i = 1, 2.

Finite X. In a finite state space, an optimal constant-threat decision rule in the envi-

ronment without noise in which the experts’ incentive constraints are satisfied with strict

inequality remains incentive compatible for small amount of noise. Furthermore, in each

state it implements the same action as in the environment without noise with probabil-

ity uniformly converging to one as max{δ1, δ2} → 0. Finally, note that if the optimal

constant-threat decision rule satisfies incentive constraints with strict inequality in each

state, then this rule must be first best. We collect these observations in the following

remark.

Remark 3 Let X be finite and assume that there exists the first best decision rule. If

the incentive compatibility constraints are satisfied with strict inequality for each x ∈ X,

then the first best decision rule is incentive compatible for a sufficiently small noise and

its outcome is state-wise uniformly continuous in the amount of noise.

Consider now an environment in which the incentive constraints in the optimal decision

rule hold with equality for some states. This rule may cease to be incentive compatible

for an arbitrarily small amount of noise. Nevertheless, it can be shown using Lemma

1 that in the optimal constant-threat decision rule in each state there is a slack in the

incentive constraint for at least one expert. Therefore, we can always distort the action

in each state in favor of the expert whose incentive constraint is binding in order to make

incentives strict for both experts. Clearly, this distortion can be made arbitrarily small.

The distorted decision rule is incentive compatible for sufficiently small noise.

Remark 4 Let X be finite. Then, for any ε > 0, there exists a constant-threat decision

rule, which

(i) is incentive compatible for a sufficiently small amount of noise,

(ii) its outcome is state-wise uniformly continuous in the amount of noise, and
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(iii) in the limit without noise, in each state it implements an action that is at most ε

away from the action that is implemented in the optimal constant-threat decision

rule.

Continuous X and partitional noise. Let X = [0, 1]. Following Aumann (1976), assume

that an expert’s information can be represented as an element of a partition of X.

For i = 1, 2, let ni = {t1i , . . . , tK−1
i }, where t1i > 0, tji < tj+1

i , tK−1
i < 1, be an ordered se-

quence of real numbers that partitionX intoK intervals Πi = {[0, t1i ), [t1i , t2i ), . . . , [tK−1
i , 1]}.

Expert i observes the element of Πi which contains the realized state.19

Let Π be the meet of Π1 and Π2, that is, the set of all non-empty intersections of

the elements of these sets. Given a partitional information structure, a decision rule is

a mapping µ : Π1 × Π2 → Y . The definition of incentive compatibility is standard and

the revelation principle applies. A constant-threat decision rule in this environment is

a triple (Π̂, g, p), where Π̂ ⊆ Π, g : Π̂ → Y , and p ∈ [0, 1]. For every pair of reports

(π1, π2) ∈ Π1×Π2, we say that experts “agree on π1∩π2” if π1∩π2 ∈ Π̂, in which case the

decision rule implements g(π1 ∩ π2) ∈ Y ; otherwise we say that experts “disagree” and

the decision rule implements the (constant-threat) lottery in Y∗ that assigns probability

p on extreme action 1.

Remark 5 For every optimal decision rule, there exists an equivalent constant-threat

decision rule.

Proof. The constant-threat result is verified following the proof of Proposition 1.

If Π1 = Π2 = Π, then the experts have identical information. The model is equivalent

to that with discrete states and perfectly informed experts.

Remark 6 If the experts have the same information, Π1 = Π2, then the decision maker’s

payoff in the optimal decision rule converges to her maximal payoff in the environment

with perfectly informed experts as the experts’ information becomes more refined and

maxi,j |tj+1
i − tji | → 0.

Proof. The proof is direct and therefore omitted.

For the remainder of the section, we focus on experts with different information,

Π1 6= Π2. In a truthtelling equilibrium in this environment, a lie cannot always be

19For convenience, we assume that the cardinality of partitions is the same across experts. The argu-
ments in this section can be extended to accommodate different size partitions, but it will significantly
increase notational burden.
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detected with certainty. As a result, there are additional incentive constraints affecting

the structure of optimal decision rules. To keep the presentation focused, we refrain

from a full characterization of optimal decision rules for different information structures.

Instead, we offer a construction of an incentive compatible decision rule that converges to

the optimal decision rule as the difference in the experts’ information vanishes.

0 t11 t21 t31 t41 1

0 t12 t22 t32 t42 1

α0 = β0 = 0 α1β1 α2 β2 α3 β3 α4 β4 = 1

Figure 2: Construction of αl, βl sequence.

In order to describe the definite punishment decision rule, we first define a sequence

αl, βl. Set α0 = β0 = 0. For l ≥ 1, we define αl and βl by induction. Let t̂i = mink{tki ∈
ni∪{1}|tki > βl−1}. Without loss of generality assume that t̂1 ≤ t̂2. Then, set βl = t̂2 and

αl = maxk{tk1 ∈ n1 ∪ {1}|tk1 ≤ βl}. The induction stops when βl = 1 and αl is defined as

above. Figure 2 depicts an example of a sequence αl, βl.

Fix a threat lottery p. A definite punishment decision rule with a threat lottery p is

defined as follows. If experts reports (π1, π2) ∈ Π1 × Π2 are inconsistent, π1 ∩ π2 = ∅,

or consistent but π1 ∩ π2 ⊂ [αl, βl) for some l, then the decision rule implements the

threat lottery. Otherwise, if the experts’ reports are consistent and π1 ∩ π2 ⊂ [βl, αl+1)

for some l, the decision rule implements the action that maximizes the expected payoff

of the decision maker conditional on the state being in [βl, αl+1) subject to the constraint

that both experts prefer this action to the threat lottery given their information. By

construction, if both experts report their elements of partitions truthfully, any deviation

of an expert either does not affect the action or results in the threat lottery. Therefore,

the decision rule is incentive compatible.
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Proposition 6 Let maxj |tj1 − tj2| → 0. Then, there exists a sequence of definite pun-

ishment decision rules that converges to the optimal constant-threat decision rule in the

environment in which the experts have identical information.

Proof. To construct the sequence it is sufficient to pick the threat lottery in the optimal

constant-threat decision rule in the limit environment where the experts have identical

information. By definition of the definite punishment decision rule, maxj |tj1 − tj2| → 0

entails |βl − αl| → 0 for all l, and hence the distribution of actions implemented on the

equilibrium path converges to the distribution of actions in the limit environment.

Given the partitional information structure, the out-of-equilibrium lies cannot be de-

tected with certainty. The idea behind our construction in Proposition 6 is to ensure

that any deviation from truthful reporting, even if it cannot be detected with certainty,

results in a punishment lottery. Clearly, this requires that the decision rule must punish

the experts on the equilibrium path in some states. This is costly but as the experts’ in-

formation becomes more aligned, the probability of punishment on the equilibrium path

converges to zero.

Continuous X and replacement noise. A special feature of partitional information struc-

ture is that there exist pairs of reports that are incompatible with truthful reporting. If,

by contrast, the signals of the experts’ have full support in each state, all combinations

of experts’ reports are consistent with truthful reporting. The main result of this paper

– the constant-threat result – will hold but become vacuous in such environments.

Nevertheless, constant-threat rules in which incentives are strict for both experts may

be robust to some types of noise with full support: Ambrus and Lu (2009, Section 5.3)

consider our constant-threat decision rules in an environment with the replacement noise,

in which each expert observes a signal that is equal to the state with some probability and

is uninformative with the complementary probability. They show that if the first best is

implementable, then the corresponding constant-threat rule is incentive compatible in an

environment with small replacement noise and continuous in the amount of noise.

5.2 Continuity of Optimal Decision Rule for X = [0, 1].

Constant-threat decision rules are discontinuous in the experts’ reports because an ar-

bitrarily small disagreement between experts results in a punishment lottery. This dis-

continuity property per se may be a source of concern even in environments in which
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the experts have identical information if experts could make minor mistakes or there is

exogenous noise added to their reports as in Blume et al. (2007). However, in these en-

vironments constant-threat decision rules could be modified and made continuous at the

cost for the decision maker that becomes arbitrarily small as the noise vanishes.

Let X = [0, 1]. Fix a constant-threat decision rule µ and assume that incentive

constraints of both experts hold with strict inequality at all states. For any ε > 0 define

η(x1, x2) =
1

ε
min {|x1 − x2|, ε} ,

Construct a new decision rule µ′ as follows. If both reports coincide, there is no change.

Otherwise, the decision rule is a compounded lottery that implements the threat lottery

with probability η(x1, x2) and the action corresponding to the average of the two reports

with the complementary probability. That is,

µ′(x1, x2) = η(x1, x2)µ(x1, x2) + (1− η(x1, x2))µ

(
x1 + x2

2
,
x1 + x2

2

)
.

It is straightforward to verify that this decision rule is continuous in (x1, x2) and incentive

compatible for a small enough ε, where ε could be interpreted as a measure of mistakes

or distortions in the experts’ reports during information transmission.

6 Discussion

6.1 Full Implementation

The paper characterizes optimal decision rules that are partially implementable: the

constructed decision rules permit equilibria other than truthtelling. Full implementation

of the optimal decision rule outcome as a unique equilibrium outcome is impossible in our

environment because a necessary condition of Maskin monotonicity (see Dutta and Sen,

1991) is not satisfied.

Nevertheless, if the experts have a lexicographic preference for telling the truth, as

in Dutta and Sen (2010),20 full implementation is feasible. For instance, consider an

environment in which the experts know the state and assume that the first best outcome

is partially implementable by a constant-threat decision rule with a threat lottery p. Then,

20That is, if an expert is asked to report her information, then among all reports that implement the
same outcome as the truthful report does she strictly prefers the latter.
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it can be fully implemented by the following mechanism:21 Each expert reports a triple

(xi, yi, zi), interpreted as: “The true state is xi, but I would like yi to be implemented,”

and zi is a positive integer. There are three contigencies to consider.

(i) If y1 = y2 = y′, then y′ is implemented.

(ii) If y1 6= y2 and xi = yi for at least one of the experts, then the threat lottery p is

implemented.

(iii) If y1 6= y2 and xi 6= yi for both experts, then the “integer game” is played: whoever

has a greater integer zi gets the requested action yi.

Let true state be x. Then every Nash equilibrium leads to implementation of x and

is characterized by xi = yi = x and zi is arbitrary, i = 1, 2. To see why this is a Nash

equilibrium, observe that any unilateral deviation either does not affect the outcome, or

results in the threat lottery p which is inferior to x for each expert. To see why there

are no other Nash equilibria, first, observe that miscoordination, y1 6= y2, cannot occur

in equilibrium. If xi 6= yi for at least one of the experts, a deviation that results in the

“integer game” is possible, where the deviant chooses a large enough integer and gets

the most preferred action. If xi = yi for both experts, then one can deviate to xi = x,

which does not affect the outcome (the threat lottery is still implemented) but makes

the deviant better off since she reports the truth. Finally, a coordination on an action

y′ different from true state x is not an equilibrium either, since one of the experts can

deviate to xi = x, which does not affect the outcome (action y′ is still implemented) but

makes the deviant better off since she reports the truth.

6.2 Similarly Biased Experts

In our paper, the experts are biased in different directions (c.f., (1)) and the decision

maker does not have a choice over the experts available to him. This assumption could

be applicable in, e.g., legislative politics where experts represent lobbyists or politicians

with different ideologies, political economy of tariffs where experts represent different

governments, or organizational economics where experts could be employees of different

departments. If the experts are biased in the same direction, e.g., they always prefer

an action higher than the decision maker’s optimal action, then the decision maker can

always implement the first best outcome: The decision rule that threatens the experts

21This mechanism is simpler than the one in Dutta and Sen (2010).
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to implement y = 0 whenever they disagree will achieve the desired outcome. Although

we do not provide formal analysis, one disadvantage of the environment with similarly

biased experts might be that it is naturally prone to collusion: In the above decision

rule, the experts can coordinate to bias their reports upward; this would benefit both

experts. In the environment with experts biased in different directions, any agreement to

bias reports would benefit one expert at the expense of the other one, and hence collusion

is less compelling. These considerations can be important in practice making consulting

similarly biased experts less attractive.

6.3 Optimal Decision Rules with One Expert

In this subsection, we comment on the difference between optimal decision rules in our

model and in a model with one expert only. Without a second expert, the recommenda-

tions to the decision maker by the first expert remain unchecked. Therefore, the relevant

incentive constraints are with respect to other actions that can be induced by the ex-

pert’s reports rather than with respect to the outcome resulting from a disagreement

with another expert. Consequently, optimal decision rules have a number of differences:

There is bunching of implemented actions across states with one expert (Proposition 3 in

Alonso and Matouschek (2008), and Proposition 1 in Kovac and Mylovanov (2009)) and

no bunching with two experts (Proposition 4). With one expert, optimal decision rules do

not implement first best actions because this cannot be made incentive compatible (see,

e.g., Proposition 1 in Kovac and Mylovanov (2009)). This is not so with two experts:

there is always a nonempty subset of states where the first best outcome is implemented

(Propositions 2–3 in this paper). Furthermore, in the model with one expert the opti-

mal decision rule implements the expert’s most preferred action for a positive measure of

states (Proposition 3 in Alonso and Matouschek (2008) and Proposition 1 in Kovac and

Mylovanov (2009)). Again, this is not so with two experts (Propositions 2 and 4).

Appendix

Proof of Proposition 5. For b ≤ 1/2 the statement holds trivially, since the first best

decision rule can be constructed (see Proposition 2 and its proof).

Assume b > 1/2. Let (p, gp) be a constant-threat decision rule, where gp is described

in Proposition 4. By an argument presented in Section 4.4, if both biases are greater than

1/2, then X̃p
2 = [0, xp2) and X̃p

1 = (xp1, 1]. We can now write the expected payoff of the
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decision maker as

v(p,gp) ≡
∫ 1

0

[
−(gp(x)− x)2

]
dF (x)

= −
∫ xp

2

0

(b−
√
−u2(x, p))2dF (x)−

∫ 1

xp
1

(b−
√
−u1(x, p))2dF (x).

Recall that ui(x, p) = −(1 − p)(x + bi)
2 − p(1 − (x + bi))

2 and, by (9), xp2 = p −
b2 +

√
b2

2 − p(1− p) and xp1 = p− b1 −
√
b2

1 − p(1− p). Using the symmetry assumption

b1 = −b2 = b, we obtain that xp1 = 1− x1−p
2 and u1(x, p) = u2(1− x, 1− p), and hence

v(p,gp) = −
∫ xp

2

0

(b−
√
−u2(x, p))2dF (x)−

∫ 1

1−x(1−p)
2

(b−
√
−u2(1− x, 1− p))2dF (x).

Next, using the assumption F (x) = 1 − F (1 − x) that entails dF (x) = dF (1 − x), after

the substitution x′ = 1− x we obtain

v(p,gp) = −
∫ xp

2

0

(b−
√
−u2(x, p))2dF (x)−

∫ x
(1−p)
2

0

(b−
√
−u2(x′, 1− p))2dF (x′).

Let us now differentiate v(p,gp) with respect to p. Observe that ū2(x̄p2, p) = −b2, and

∂v(p,gp)

∂x̄p2
= −(b−

√
−u2(x, p))2

∣∣∣
x=xp

2

= −(b− b)2 = 0.

Note that dx̄p2/dp exists for all p ∈ [0, 1]. Hence, the value of the expression ∂v(p,gp)

∂x̄p
2
· dx̄

p
2

dp
is

well defined and equal to zero. An analogous statement holds for x̄1−p
2 . Thus, derivatives

w.r.t. bounds of integration are ignored, and after defining h(x) = ∂u2(x,p)
∂p

= 2(x+ b)− 1

we obtain

∂

∂p
v(p,gp) = −

xp
2∫

0

[
b√

−u2(x, p)
− 1

]
h(x)dF (x) (11)

+

x1−p
2∫

0

[
b√

−u2(x, 1− p)
− 1

]
h(x)dF (x). (12)

It is straightforward to check that ∂
∂p
v(p,g)|p= 1

2
= 0. We now verify that v(p,gp) is concave

in p, thus p = 1/2 is a maximum. By b > 1/2, we have h(x) = ∂u2(x,p)
∂p

= 2(x+ b)− 1 > 0.
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Hence, the expression [
b√

−u2(x, p)
− 1

]
· h(x)

is nondecreasing in p. Furthermore, since b√
−u2(xp

2,p)
= 1, the above expression is non-

negative for all x ≤ xp2. Thus, the right-hand side term in (11) is nonincreasing in p. A

similar argument shows that the term in (12) is nonincreasing in p as well. It follows that

v(p,gp) is concave in p.
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