# School of Economics and Finance Developing Country Business Cycles: Revisiting the Stylised Facts

# Rachel Male

Working Paper No. 664

May 2010

ISSN 1473-0278



# Developing Country Business Cycles: Revisiting the Stylised Facts

Rachel Male\* Queen Mary, University of London May 2010

# Abstract

Identifying business cycle stylised facts is essential as these often form the basis for the construction and validation of theoretical business cycle models. Furthermore, understanding the cyclical patterns in economic activity, and their causes, is important to the decisions of both policymakers and market participants. Previous analyses of developing country stylised facts have tended to feature only small samples, for example the seminal paper by Agénor et al. (2000) considers just twelve middle-income economies. Consequently, unlike for the industrialised countries, there is not a consistent set of developing country business cycle stylised facts. Motivated by importance of these business cycle statistics, this paper makes an important contribution to the literature by extending and generalising the developing country stylised facts for a sample of thirty-two developing countries. In particular, it is found that real interest rates are, on average, weakly procyclical in developing countries, not countercyclical as previously reported; this holds only for the Latin American economies. There is evidence that money leads the cycle in numerous developing economies, and thus that monetary shocks are an important source of business cycle fluctuations. However domestic credit, which is thought to fulfil an important role in determining investment, and hence economic activity, in developing economies, is found to lag, rather than lead, the cycle, thus implying that fluctuations in output influence credit rather than credit influencing the business cycle. A final key empirical finding is that developing country business cycles are characterised by significantly persistent output fluctuations; however, the magnitude of this persistence is somewhat lower than for the developed countries. Furthermore, prices and nominal wages are found to be significantly persistent in almost all of the developing countries. This finding is particularly important, because it justifies the use of theoretical models with staggered prices and wages for the modelling of developing country business cycles.

*JEL Classification*: E31, E32, E52, F41, O50 *Keywords*: Business cycle; Developing economies; Stylised facts; Volatility; Persistence; Cross-correlations.

<sup>\*</sup>Email: r.male@qmul.ac.uk

# **1** INTRODUCTION

In 1990, Kydland and Prescott established the first set of "stylised facts" for business cycles in the developed world, based on their research into the US business cycle. This led to a burgeoning of literature freshly interested in the statistical properties of business cycles. However, this literature predominantly concentrated on the business cycles of industrialised countries. A noticeable exception to this pattern was the seminal paper by Agénor, McDermott and Prasad in 2000 that established a set of stylised facts for the business cycles of developing countries, and it is these stylised facts that are the subject of interest in this paper.

Stylised facts, such as the ones conveyed by Kydland and Prescott (1990) and Agénor *et al.* (2000) are an important stepping-stone to the construction of a successful theoretical model, as they are often used as the empirical basis for formulating and validating theoretic models of the business cycle. Therefore, it is extremely important to ensure that the stylised facts are as accurate as possible. In the case of industrialised countries this is not a huge problem as there is a vast literature, providing substantial country coverage, and with the majority of the findings being robust between countries and authors. However, this is not the case for developing countries.

Since Agénor et al. (2000) there have been numerous papers looking at developing countries, such as Rand and Tarp (2002), Neumeyer and Perri (2005) and Aguar and Gopinath (2007). However the majority of these papers have remarkably small data sets, for example, Agénor et al. (2000) have a sample of twelve middle-income countries, Rand and Tarp (2002) have fifteen, whilst Neumeyer and Perri (2005) have only five developing countries in their sample. Noticeable exceptions to this rule are papers by Pallage and Robe (2001) and Bulir and Hamann (2001) which have 63 and 72 developing countries, respectively, in their samples. These papers, however, concentrate purely on stylised facts relating to foreign aid and consequently their datasets are not applicable in this analysis.<sup>1</sup> A fundamental feature that is clearly apparent from reviewing these papers is that there is not the same consistency of findings as for the industrialised countries; only some of the stylised facts reported in Agénor et al. (2000) are similarly reported in the subsequent literature and there is less consensus between countries, such that the results clearly depend on the countries included in the study. Motivated by this lack of consistency and the importance of business cycle stylised facts, this paper aims to generalise the business cycle statistics for a much larger sample of developing countries, and secondly to construct a more comprehensive set of stylised facts for use in subsequent theoretic modelling of developing country business cycles.

In section two, this paper briefly reviews the literature and documents the stylised facts for both industrialised and developing country business cycles. Section three details the methodology employed in order to carry out the statistical analysis required to compute such stylised facts, whilst section four outlines the data sources and the countries included in this study. Section five documents the empirical regularities found

<sup>&</sup>lt;sup>1</sup> Pallage and Robe (2001) employ annual data for only two variables: GDP per capita and official development assistance. Similarly, Bulir and Hamann (2001) use annual data on aid, fiscal revenue and GDP. Neither of these datasets is sufficient to conduct a comprehensive analysis of developing country business cycles and the related stylised facts.

including persistence of output and prices, volatility and cross-correlation analysis, and compares these results to the stylised facts reported in the literature. Finally, section six concludes and provides a summary of the main stylised facts emerging from this study.

# 2 LITERATURE REVIEW – WHAT ARE THE STYLISED FACTS?

The stylised facts of industrialised country business cycles are well established; a vast body of literature documents a wide range of empirical regularities amongst these countries (Kydland and Prescott, 1990; Backus and Kehoe, 1992; Backus, Kehoe and Kydland, 1995; King and Watson, 1996; Basu and Taylor, 1999; Chari *et al.*, 2002). However, this is not the case for developing countries. It is therefore important when trying to determine a set of developing country stylised facts, to first understand the key features of the industrialised country business cycles. These empirical regularities will then serve as benchmarks for comparison and identification of developing country stylised facts.

The empirical regularities, or stylised facts, for the industrialised countries include:

- Persistent real output fluctuations and real exchange rate fluctuations (in recent years). Real exchange rates are also typically fairly volatile.
- Volatility of output, consumption and net exports very similar (consumption and net exports slightly less volatile than output) whilst investment is consistently 2 to 3 times more volatile and government expenditures are significantly less volatile than output (by around half).
- A remarkably stable relationship between output, consumption and inflation.
- Consumption, investment, employment, inflation and money velocity all generally procyclical.
- Increasing procyclicality of the real wage, whilst price is consistently countercyclical and inflation is generally procyclical.
- Ratio of net exports to output typically countercyclical.
- Government expenditures typically acyclical.
- International comovements in output, consumption and investment, but output correlations are generally higher than consumption correlations.
- Correlations between the real exchange rate and aggregate quantities, in particular relative consumption, are fairly small.

The stylised facts for the industrialised countries are summarised in Table 1. This table reveals that the business cycles of all the countries have fairly similar properties; investment is clearly 2 to 3 times more volatile than output, consumption and net exports; real output, consumption, investment and real wages are all procyclical, whilst net exports and government expenditures are generally countercyclical and acyclical respectively.

| Country     | St. De | ev (%) |     |     | Dev to<br>ev of Y | )   |     |     | Correla | tion with | Υ    |     |
|-------------|--------|--------|-----|-----|-------------------|-----|-----|-----|---------|-----------|------|-----|
|             | У      | nx     | с   | i   | g                 | n   | У   | С   | i       | g         | nx   | n   |
| Australia   | 1.5    | 1.2    | 0.7 | 2.8 | 1.3               | 0.3 | 0.6 | 0.4 | 0.7     | 0.2       | 0    | 0.1 |
| Austria     | 1.3    | 1.2    | 1.1 | 2.9 | 0.4               | 1.2 | 0.6 | 0.7 | 0.8     | -0.2      | -0.5 | 0.6 |
| Canada      | 1.5    | 0.8    | 0.9 | 2.8 | 0.8               | 0.9 | 0.8 | 0.8 | 0.5     | -0.2      | -0.3 | 0.7 |
| France      | 0.9    | 0.8    | 1.0 | 3.0 | 0.7               | 0.6 | 0.8 | 0.6 | 0.8     | 0.3       | -0.3 | 0.8 |
| Germany     | 1.5    | 0.8    | 0.9 | 2.9 | 0.8               | 0.6 | 0.7 | 0.7 | 0.8     | 0.3       | -0.1 | 0.6 |
| Italy       | 1.7    | 1.3    | 0.8 | 2   | 0.4               | 0.4 | 0.9 | 0.8 | 0.9     | 0         | -0.7 | 0.4 |
| Japan       | 1.4    | 0.9    | 1.1 | 2.4 | 0.8               | 0.4 | 0.8 | 0.8 | 0.9     | 0         | -0.2 | 0.6 |
| Switzerland | 1.9    | 1.3    | 0.7 | 2.3 | 0.5               | 0.7 | 0.9 | 0.8 | 0.8     | 0.3       | -0.7 | 0.8 |
| UK          | 1.6    | 1.2    | 1.2 | 2.3 | 0.7               | 0.7 | 0.6 | 0.7 | 0.6     | 0.1       | -0.2 | 0.5 |
| US          | 1.9    | 0.5    | 0.8 | 3.3 | 0.8               | 0.6 | 0.9 | 0.8 | 0.9     | 0.1       | -0.4 | 0.9 |
| Europe      | 1.0    | 0.5    | 0.8 | 2.1 | 0.5               | 0.9 | 0.8 | 0.8 | 0.9     | 0.1       | -0.3 | 0.3 |

Table 1. Properties of Business Cycles in OECD Countries (1970:1 – 1990:2)

Source: Backus, Kehoe and Kydland (1995, p. 334; Table 11.1)

The number of empirical studies for developing countries is rather more limited, however includes works by Agénor *et al.* (2000), Rand and Tarp (2002), Neumeyer and Perri (2005) and Aguar and Gopinath (2007). In 2000, Agénor *et al.* established a set of stylised facts for the business cycles of developing countries and this has become the seminal work upon which most subsequent studies compare their findings.

Based on a sample of twelve middle-income developing countries (Korea, Malaysia, Mexico, Morocco, Nigeria, the Philippines, Tunisia, Turkey and Uruguay) for the period 1978:1 – 1995:4, Agénor et al. (2000) found significant differences from industrialised country business cycles. Their key findings, or stylised facts, and how these compare to the stylised facts for the industrialised countries are as follows. Firstly, output volatility varies substantially across developing countries and is on average much higher than the level typically observed in industrial countries. However, developing countries also show considerable persistence in output fluctuations as observed in the industrialized countries. Secondly, that activity in industrial countries, as measured by world output and world real interest rate, has a significantly positive influence on output in most developing countries. Thirdly, government expenditures and the fiscal impulse appear to be countercyclical whilst there is no distinct pattern in government revenue; it is acyclical in some countries in their sample and significantly countercyclical in others. Fourthly, there is evidence of procyclical real wages as in the developed countries. Fifthly, whilst prices are widely documented as being countercyclical in the industrialised countries, there appears to be no consistent relationship between either output and prices or output and inflation in developing countries. Sixthly, contemporaneous correlations between money and output are broadly positive, but not very strong, which is in contrast to the evidence for many industrial countries, and suggests that there is need to examine the key role often assigned to monetary policy in stabilization programs in developing countries. Furthermore, whilst the velocity of broad money is weakly procyclical in most industrialised countries it appears to be strongly countercyclical in this sample of developing countries. Seventhly, there is no robust relationship between the trade

balance and output. Where it is procyclical, this "may indicate that fluctuations in industrial output are driven by export demand and that imports are not as sensitive to domestic demand fluctuations as they are in industrial countries" (Agénor et al., 2000, p.280). Furthermore, terms of trade are strongly procyclical suggesting much of the fluctuation in output in developing countries can be explained by terms of trade shocks, as has been suggested by Mendoza (1995). However, it is important to note that this is based on results for just three of the sample countries. Finally, there appears to be no systematic pattern for the correlation of nominal or real effective exchange rates and industrial output.

A subsequent paper by Rand and Tarp (2002) added to this work by examining the duration of the business cycles and the volatility of the variables in addition to the crosscorrelation analysis. Based on a sample of fifteen developing countries (five in Sub-Saharan Africa, five in Latin America and five in Asia and North Africa), with a quarterly dataset for the duration analysis (1980:1 – 1999:4) and an annual dataset for the crosscorrelation and volatility analysis (1970 - 1997) they report the following key results. Firstly, that developing country business cycles are significantly shorter than those of the industrialised countries; however, Male (2010) reveals this not to be the case. Secondly, that output is more volatile than in developed countries, but by no more than 15 to 20%, whilst consumption is generally more volatile than output, which is the opposite to what is found in developed countries. Thirdly, that consumption and investment are strongly procyclical, which is consistent with what is observed in the industrialised countries. However, the pattern is not so clear for prices and inflation; prices are not consistently countercyclical as for the industrialised countries and furthermore, inflation appears to have the same cyclical pattern as CPI, such that it is countercyclical for the majority of the sample, whilst in the developed countries inflation is generally procyclical. Fourthly, there is no consistent relationship between government consumption and output such that "governments seem to have a limited stabilising role on the economy" (Rand and Tarp, 2000, p.2084), but this is similar to the observation in industrialised countries; see Table 1. Fifthly, money aggregates are generally procyclical, as in industrialised countries. In addition, there is some indication of a positive relationship between domestic credit and output. Sixthly there is no clear pattern when it comes to the terms of trade, whereas in industrialised countries there is generally positive correlation between lagged values of terms of trade and output. Finally, aid and foreign direct investment (FDI) appear to be highly volatile and show no signs of being procyclical, which is the opposite of the findings of Pallage and Robe (2001) and Bulir and Hamann (2001).

Other recent studies by Aguar and Gopinath (2007) and Neumeyer and Perri (2005) add some interesting finding to the developing country stylised facts. Firstly, based on a sample of thirteen countries (Argentina, Brazil, Ecuador, Israel, Korea, Malaysia, Mexico, Peru, Philippines, Slovakia, South Africa, Thailand and Turkey) Aguar and Gopinath (2007) report a similar degree of output persistence but that output is twice as volatile as in the industrialised countries, whilst consumption is around 40% more volatile. Secondly, that the ratio of investment volatility to output volatility is not dissimilar from that found in the developed countries. Thirdly, that net exports are around 3 times more volatile and strongly countercyclical, as opposed to weakly countercyclical in the developed countries;

and finally, that consumption and investment strongly procyclical, as found in the developed countries.

Neumeyer and Perri (2005) find the very interesting result that real interest rates in developing countries are countercyclical and lead the cycle whereas they find no such pattern with the developed countries; real interest rates are mildly procyclical. They also find the volatility of real interest rates to be on average 40% higher in the developing countries. This is based on a sample of five developing countries (Argentina, Brazil, Korea, Mexico and the Philippines) and five developed countries (Australia, Canada, Netherlands, New Zealand, and Sweden).

In summary, the key features that the literature appears to hail as the stylised facts for developing countries are:

- Business cycles are generally shorter and more volatile than those of the industrialised countries.
- Output is more volatile than in developed countries, but there is a similar degree of persistence in output fluctuations.
- Consumption is more volatile than output in developing countries, opposite of developed country case.
- Activity in developed countries, as measured by world output and world real interest rate, has a significantly positive influence on output in most developing countries.
- Prices are not consistently countercyclical, as for developed countries, and inflation is not consistently procyclical.
- Consumption, investment, real wages, money aggregates are all generally procyclical, which is consistent with the findings for developed countries. However these relationships are typically weaker in the developing country samples.
- Real interest rates are countercyclical and lead the cycle, whereas real interest rates are typically mildly procyclical in developed countries. Real interest rates are also more volatile in the developing countries.
- No clear relationships in terms of government expenditure, nominal or real effective exchange rates or terms of trade and output.

However, these facts are formed on the basis of very small samples of developing countries and even based on these small samples there appears to be less consistency between countries than for the industrialised country samples. Thus, this paper proceeds to an empirical analysis to examine whether the developing country stylised facts hold for a much larger sample of developing countries, or whether they are robust only for specific subsets of countries as chosen by these authors.

# 3 METHODOLOGY

# 3.1. Detrending

The first step is to deseasonalize the data. This is done using the Census Bureau's X-12 ARIMA seasonal adjustment program. This is important for the correct implementation of the subsequent detrending procedure. For example, the HP filter will pass all of the series variations associated with the quarterly seasonal frequencies. Given that seasonal variation should not contaminate the cycle, for seasonal series the HP filter has to be applied to seasonally adjusted series (Kaiser and Maravall, 2001).

Once deseasonalized, logarithms are taken of the data, as is common practice in the business cycle literature, and then the series are filtered to extract the stationary (cyclical) component and the non-stationary (trend) component. This is carried out because, following Lucas (1977), the business cycle component of a variable is defined as its deviation from trend. Furthermore, certain empirical characterisations of the data, including cross-correlations, are only valid if the series are stationary (Agénor *et al.*, 2000).

In choosing a detrending technique, most researchers appear to opt for either the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997) or the band-pass (BP) filter (Baxter and King, 1999), of which the HP filter is the most common choice:

"One can say that the HP filtering of X11-SA series has become the present paradigm for business-cycle estimation in applied work" (Kaiser and Maravall, 2001, p.66)

The HP filter is a linear filter designed to optimally extract a non-stationary trend component, which changes smoothly over time, from an observed non-stationary time series. Assuming that the (deseasonalized) time series  $y_t$  can be decomposed into an additive cyclical component  $c_t$  and trend component  $g_t$ , extracting the trend component will yield a stationary cyclical component, which can be used by researchers to analyse the business cycle:

$$y_t = c_t + g_t$$
 for t = 1, ..., T

The trend component, g<sub>t</sub>, is determined by minimising:

$$\sum_{t=1}^{I} c_{t}^{2} + \lambda \sum_{t=2}^{I} \left[ \left( g_{t} - g_{t-1} \right) - \left( g_{t-1} - g_{t-2} \right) \right]^{2}$$

Where, the smoothing parameter  $\lambda$  penalizes variability in the trend. The smoothing parameter  $\lambda$  is chosen *a priori* 

"... to isolate those cyclical fluctuations which belong to the specific band which the researcher wants to investigate" (Canova, 1998, p.485)

The HP filter has the advantage that it does not amplify high-frequency noise (unlike a standard first differencing approach). However, it does have several disadvantages which mean that the method of detrending an economic time series by means of the HP filter should be used with care. Firstly, it allows much of the high frequency noise to be left outside the business cycle frequency band; the low-frequency BP filter has been adjusted to account for this. However, as a result it tends to underestimate the cyclical component (Rand and Tarp, 2002). Secondly, the HP filter gives imprecise estimates of the trend at the end-points of the time series. Thirdly, the HP filter cannot capture structural breaks in the data series. Fourthly, the HP filter can induce spurious cycles in the filtered series. And finally, the HP filter relies on an arbitrary choice of the smoothing parameter  $\lambda$ .

This final point has caused much controversy over what the optimal value of  $\lambda$  should be. The default choice is that of  $\lambda$  = 1600 for quarterly data as computed, rather arbitrarily, by Hodrick and Prescott (1997):

"Our prior view is that a 5 percent cyclical component is moderately large, as is a one-eighth of 1 percent change in the growth rate in a quarter. This led us to select  $\sqrt{\lambda} = 5/(1/8) = 40$  or  $\lambda = 1600$  as a value for the smoothing parameter" (p.4)

However, Kydland and Prescott (1990), amongst others, find this value to be reasonable for quarterly time series and Hodrick and Prescott (1997) find that their results are little changed if  $\lambda$  is changed by a factor of four to 400 or 6400. Furthermore, using the default value of  $\lambda$  = 1600 Canova (1998) finds that:

"The HP1600 filter produces results which are similar to those obtained with conventional band-pass filters (e.g. frequency domain masking the low frequency components of the data or standard MA filters) and concentrates the attention of the researcher on cycles with an average duration of 4-6 yr" (p.508)

Rand and Tarp (2002) find that "the optimal value of  $\lambda$  is between five and 377 when quarterly data are used" (p.2074) for their sample of 15 developing countries. However, this draws on their finding that business cycles in developing countries are much shorter than those in developed countries.<sup>2</sup> As discussed in Male (2010), there is no clear significant difference between the duration of developing and developed country business cycles. The finding of Rand and Tarp (2002) results from their comparison of developing country business cycles measured from industrial production data with the standard results for developed country cycles, which are almost certainly calculated using real GDP. Thus, since the average length of cycles in this study is approximately 5 years, with a minimum length of 2.2 years and a maximum of 13.8 years, this choice of  $\lambda$  appears to be consistent with this sample.

Despite all the criticisms, the HP filter remains the most commonly applied detrending technique in the business cycle literature and thus is the one applied here, with smoothing parameter  $\lambda$  = 1600. And, as Kaiser and Maravall (2001) note:

"...a positive feature of the generalized use of the HP filter is that it has brought homogeneity in method, so that the effect of the choice of filter has been stabilized" (p.80)

<sup>&</sup>lt;sup>2</sup> They find the length of business cycles in their sample to be between 7.7 and 12 quarters compared with the 24 and 32 quarters reported for developed countries.

# 3.2. Volatility, Persistence and Correlations

After deseasonalizing and detrending the series' to obtain the cyclical components, the statistical analysis of the data can be carried out.<sup>3</sup> It should be noted that, as is standard in the literature, in the subsequent analysis all references to the variables refer to the cyclical components. The statistical analysis concentrates on those statistical features which are commonly quoted as the stylised facts of business cycles, namely volatility, persistence and cross-correlations.

Volatility, or relative volatility, reports the magnitude of fluctuations of the variables of interest. Volatility is measured by the standard deviation of the variable whilst relative volatility is the ratio between the volatility of the variable of interest and the volatility of industrial production. A relative volatility of one implies that the variable has the same cyclical amplitude as the aggregate business cycle (as proxied by industrial production); whilst a relative volatility greater than one implies that the variable has greater cyclical amplitude than the aggregate business cycle.

The persistence of the cyclical component of a variable is measured by its autocorrelation function. The significance of the persistence is measured using the Ljung-Box portmanteau (Q) test for white noise; if the statistic has p > 0.05 then this is not significant and is considered to imply that there is little or no persistence in the cyclical component.

Finally, following Agénor *et al.* (2000), the degree of co-movement of the variables of interest (y<sub>t</sub>) with industrial production (x<sub>t</sub>) is measured by the magnitude of the correlation coefficient  $\rho(j), j \in \{0, \pm 1, \pm 2, ...\}$ . A series y<sub>t</sub> is considered to be pro-cyclical if the contemporaneous coefficient  $\rho$  (0) is positive, acyclical if the contemporaneous coefficient  $\rho$  (0) is zero and countercyclical if the contemporaneous coefficient  $\rho$  (0) is negative. Figure 1 illustrates a procyclical series (y<sub>t</sub>) that either lags, is synchronous or leads the business cycle (x<sub>t</sub>), whilst Figure 2 shows this for a countercyclical series.

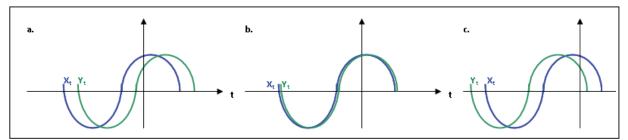



Figure 1. Series y<sub>t</sub> is procyclical and (a) lags the cycle, (b) is synchronous with the cycle, (c) leads the cycle.

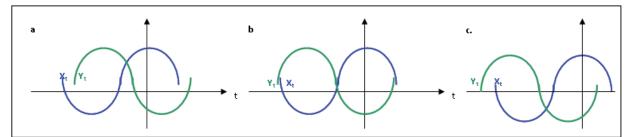



Figure 2. Series  $y_t$  is countercyclical and (a) lags the cycle, (b) is synchronous with the cycle, (c) leads the cycle.

<sup>&</sup>lt;sup>3</sup> PCGive was used for the purposes of deseasonalizing and detrending the data. All subsequent statistical analysis in this paper was performed using STATA.

The cross-correlation coefficients  $\rho(j), j \in \{0, \pm 1, \pm 2, ...\}$  indicate whether a series  $y_t$  leads, lags or is synchronous with the business cycle  $(x_t)$ . Series  $y_t$  is considered to lead the cycle by j periods if the largest cross-correlation coefficient arises for a negative j (i.e. a lagged value of  $y_t$ ), be synchronous with the cycle if the largest cross-correlation coefficient arises at j = 0 or lag the cycle by j periods if the maximum cross-correlation arises for a positive j. For example, let  $y_t$  be a procyclical series that leads the business cycle, as in Figure 1(c). In this case the maximum positive cross-correlation coefficient will occur for the correlation between  $x_t$  and  $y_{t-j}$ .

# 4 DATA

There are thirty-two developing countries included in this sample, of which there are five African countries (Côte d'Ivoire, Malawi, Nigeria, Senegal and South Africa), four North African and Middle Eastern countries (Israel, Jordan, Morocco and Tunisia), nine Latin American countries (Argentina, Barbados, Brazil, Chile, Colombia, Mexico, Peru, Trinidad and Tobago, and Uruguay), eight Asian countries (Bangladesh, Hong Kong, India, South Korea, Malaysia, Pakistan, the Philippines and Turkey) and six Central and Eastern European countries (Hungary, Lithuania, Macedonia, Romania, the Slovak Republic and Slovenia). In addition, three developed countries, the United Kingdom, the United States and Japan, are included as benchmarks upon which to compare the results for the developing countries. For a detailed discussion of the countries included, see Male (2010).

As discussed in Male (2010), reliable real GDP data, which is usually used as a measure of the aggregate business cycle, is not available for a large number of developing countries, especially where quarterly data is concerned. Thus, the suggestion of Agénor *et al.* (2000) is followed, and indexes of industrial production are used as a suitable proxy for the aggregate business cycle.

The other variables selected for analysis are also selected following Agénor *et al.* (2000). They include price variables (the consumer price index, inflation and the real wage rate); public sector variables (government expenditure, government revenue and the fiscal impulse); trade variables (imports, exports, trade balance and terms of trade); exchange rates (real and nominal effective exchange rates); money variables (broad money, private sector credit, interest rate and gross fixed capital formation); and finally, world output and world real interest rate to represent economic activity in the main industrial countries.

The primary data source is the International Monetary Fund (IMF) International Financial Statistics (IFS) database. In the few cases where data was not available through the IMF, the variables were sought through the countries' national statistics databases. The sample period varies depending on the availability of quarterly data for each country. However, there is good data coverage for the period from 1980 to 2004 across countries.<sup>4</sup> Details of the data, including the corresponding IMF IFS series codes, can be found in Appendix A.

<sup>&</sup>lt;sup>4</sup> For a discussion of why this time-frame is appropriate, see Male (2010).

# 5 EMPIRICAL RESULTS

# 5.1. Persistence

A key empirical feature of the industrialised countries' business cycles is the significant persistence of output fluctuations, and the existing stylised facts for developing countries suggest that these cycles also exhibit significant output persistence. There is also evidence of significant persistence of real exchange rate fluctuations in the industrialised countries, although there have been few, if any, empirical studies on this for the developing countries. These two empirical features have drawn much theoretical consideration, and most models incorporate nominal rigidities in the form of sticky prices and sticky wages in-order to explain these features. If such models are also to be applied to developing country business cycles, it is necessary to examine whether prices and nominal wages are indeed sticky in these countries.

Thus, this section examines both the persistence of output and real exchange rate fluctuations for the developing countries, and the persistence of both the consumer price index and real wage. Table 2 reports the persistence of output and real effective exchange rates (REER), whilst Table 3 reports the persistence of the consumer price index and the nominal wage.

Examination of the autocorrelations of output reveals that for most of the developing countries there is significant output persistence. However, the magnitude of this persistence is somewhat lower than for the industrialised countries; for example, the average autocorrelation coefficient at lag one for the industrialised countries is 0.84 whilst it is just 0.59 for the developing countries, furthermore at lag four the average coefficient for the industrialised countries is 0.146, but this has dropped to zero for the developing countries. There are a few exceptions amongst the developing countries, for which output is not significantly persistence, namely Malawi, Morocco and Macedonia.

Secondly, examination of the autocorrelations of the real effective exchange rates reveals that, with the sole exception of the Slovak Republic, all the developing countries exhibit significant real exchange rate persistence. However, the magnitude of this persistence is slightly lower than that for the developed countries; the average autocorrelation coefficient at lag one for the US, UK and Japan is 0.84, whilst it is 0.701 for the developing countries.

Thirdly, for all of the countries, with the exception of Uruguay, there is significant price persistence, although again this persistence is of a lower magnitude than for the industrialised countries. The lack of price persistence observed in Uruguay is explained by the extremely high average annual rate of inflation observed over the sampling period.<sup>5</sup> Finally, the persistence of the nominal wage is examined. In this case, all of the developing countries display significant nominal wage persistence (or stickiness), but as with all the other variables, this is of a significantly lower magnitude than for the industrialised countries.

The finding of significant price and wage persistence is important, because it justifies the use of theoretical models with staggered prices and wages for the modelling of developing country business cycles. However, the fact that this persistence is of a lower

<sup>&</sup>lt;sup>5</sup> The average annual inflation rate in Uruguay for the period 1980:1 – 2002:3 is 46%

magnitude must be taken into consideration, for example by implementing shorter contract durations.

| Region        | Country         |       |        | <u>Output</u> |        |         |       |       | REER   |        |         |
|---------------|-----------------|-------|--------|---------------|--------|---------|-------|-------|--------|--------|---------|
|               |                 | Lag 1 | Lag 2  | Lag 3         | Lag 4  | Q       | Lag 1 | Lag 2 | Lag 3  | Lag 4  | Q       |
| OECD          | US              | 0.886 | 0.672  | 0.440         | 0.199  | 517.8** | 0.883 | 0.639 | 0.503  | 0.349  | 417.4** |
|               | UK              | 0.756 | 0.549  | 0.372         | 0.147  | 451.6** | 0.795 | 0.541 | 0.334  | 0.121  | 409.1** |
|               | Japan           | 0.891 | 0.671  | 0.388         | 0.091  | 396.6** | 0.835 | 0.621 | 0.460  | 0.264  | 650.7** |
| Africa        | Côte D'Ivoire   | 0.432 | 0.149  | 0.189         | 0.047  | 142.6** | 0.689 | 0.429 | 0.222  | 0.042  | 161.3** |
|               | Malawi          | 0.351 | -0.036 | -0.108        | -0.029 | 18.8    | 0.435 | 0.265 | -0.028 | -0.014 | 44.2**  |
|               | Nigeria         | 0.641 | 0.351  | 0.185         | 0.056  | 325.9** | 0.846 | 0.648 | 0.441  | 0.230  | 262.9** |
|               | Senegal         | 0.385 | 0.074  | 0.039         | -0.164 | 76.0**  |       |       |        |        |         |
|               | South Africa    | 0.814 | 0.641  | 0.442         | 0.206  | 598.0** | 0.760 | 0.501 | 0.337  | 0.117  | 214.1** |
| North Africa  | Israel          | 0.635 | 0.427  | 0.208         | -0.032 | 218.3** | 0.679 | 0.323 | 0.057  | -0.128 | 142.9** |
|               | Jordan          | 0.452 | 0.020  | -0.175        | -0.310 | 62.6*   |       |       |        |        |         |
|               | Morocco         | 0.041 | 0.188  | 0.207         | -0.196 | 53.6    | 0.629 | 0.164 | -0.174 | -0.261 | 160.9** |
|               | Tunisia         | 0.422 | 0.233  | 0.138         | -0.104 | 71.3**  | 0.818 | 0.623 | 0.461  | 0.263  | 391.5** |
| Latin America | Argentina       | 0.808 | 0.584  | 0.329         | 0.070  | 99.6**  |       |       |        |        |         |
|               | Barbados        | 0.614 | 0.418  | 0.155         | 0.018  | 168.7** |       |       |        |        |         |
|               | Brazil          | 0.632 | 0.153  | -0.114        | -0.267 | 91.9**  |       |       |        |        |         |
|               | Colombia        | 0.565 | 0.341  | 0.144         | -0.049 | 133.2** | 0.798 | 0.590 | 0.392  | 0.161  | 182.1** |
|               | Chile           | 0.767 | 0.551  | 0.348         | 0.132  | 521.5** | 0.771 | 0.556 | 0.353  | 0.138  | 538.1** |
|               | Mexico          | 0.800 | 0.603  | 0.370         | 0.158  | 377.6** | 0.610 | 0.447 | 0.295  | 0.130  | 377.6** |
|               | Peru            | 0.817 | 0.556  | 0.312         | 0.142  | 325.2** |       |       |        |        |         |
|               | Trinidad        | 0.415 | 0.248  | 0.038         | -0.184 | 91.6**  | 0.814 | 0.620 | 0.474  | 0.325  | 518.1** |
|               | Uruguay         | 0.635 | 0.574  | 0.382         | 0.128  | 186.7** | 0.747 | 0.442 | 0.236  | 0.011  | 212.6** |
| Asia          | Bangladesh      | 0.396 | 0.052  | -0.044        | -0.121 | 72.6**  |       |       |        |        |         |
|               | Hong Kong       | 0.725 | 0.445  | 0.144         | -0.106 | 155.7** | 0.801 | 0.539 | 0.257  | 0.013  | 293.0** |
|               | India           | 0.652 | 0.530  | 0.348         | 0.224  | 348.0** |       |       |        |        |         |
|               | Korea, South    | 0.776 | 0.537  | 0.299         | 0.109  | 371.6** |       |       |        |        |         |
|               | Malaysia        | 0.798 | 0.549  | 0.283         | 0.033  | 313.3** | 0.829 | 0.570 | 0.372  | 0.205  | 271.8** |
|               | Pakistan        | 0.251 | 0.028  | 0.091         | -0.030 | 44.5**  | 0.698 | 0.356 | 0.131  | -0.058 | 141.1** |
|               | Philippines     | 0.717 | 0.495  | 0.275         | 0.084  | 157.8** | 0.733 | 0.388 | 0.095  | -0.169 | 261.9** |
|               | Turkey          | 0.621 | 0.411  | 0.219         | -0.071 | 231.8** |       |       |        |        |         |
| East Europe   | Hungary         | 0.865 | 0.737  | 0.561         | 0.405  | 384.2** | 0.794 | 0.610 | 0.468  | 0.284  | 300.1** |
|               | Lithuania       | 0.539 | 0.096  | -0.071        | -0.274 | 42.2**  |       |       |        |        |         |
|               | Macedonia       | 0.351 | -0.036 | -0.108        | -0.029 | 18.8    | 0.435 | 0.265 | -0.028 | -0.014 | 44.2**  |
|               | Romania         | 0.836 | 0.712  | 0.611         | 0.471  | 678.9** | 0.701 | 0.472 | 0.161  | -0.124 | 155.7** |
|               | Slovenia        | 0.591 | 0.288  | -0.027        | -0.281 | 103.6** |       |       |        |        |         |
|               | Slovak Republic | 0.637 | 0.307  | 0.084         | -0.046 | 93.5**  | 0.442 | 0.050 | -0.228 | -0.298 | 39.1    |
| Average       | Developed       | 0.844 | 0.630  | 0.400         | 0.146  |         | 0.838 | 0.600 | 0.432  | 0.245  |         |
|               | Developing      | 0.593 | 0.351  | 0.180         | 0.000  |         | 0.701 | 0.443 | 0.215  | 0.043  |         |

Table 2. Persistence of Output and the Real Effective Exchange Rate (REER)

Significance is denoted by \* if p<0.05 and \*\* if p<0.01

| Region        | Country         |       |        | CPI    |        |         |       |       | Nominal V | Vage   |         |
|---------------|-----------------|-------|--------|--------|--------|---------|-------|-------|-----------|--------|---------|
|               |                 | Lag 1 | Lag 2  | Lag 3  | Lag 4  | Q       | Lag 1 | Lag 2 | Lag 3     | Lag 4  | Q       |
| OECD          | US              | 0.940 | 0.826  | 0.672  | 0.480  | 846.7** | 0.814 | 0.611 | 0.449     | 0.258  | 343.3** |
|               | UK              | 0.911 | 0.759  | 0.563  | 0.368  | 707.2** | 0.887 | 0.722 | 0.509     | 0.302  | 649.9** |
|               | Japan           | 0.912 | 0.781  | 0.610  | 0.384  | 608.0** | 0.946 | 0.819 | 0.639     | 0.434  | 623.8** |
| Africa        | Côte D'Ivoire   | 0.826 | 0.625  | 0.432  | 0.250  | 488.9** |       |       |           |        |         |
|               | Malawi          | 0.731 | 0.442  | 0.150  | -0.067 | 61.9**  | 0.529 | 0.204 | -0.003    | -0.172 | 32.1*   |
|               | Nigeria         | 0.764 | 0.504  | 0.344  | 0.137  | 298.9** |       |       |           |        |         |
|               | Senegal         | 0.843 | 0.655  | 0.465  | 0.267  | 501.2** |       |       |           |        |         |
|               | South Africa    | 0.781 | 0.571  | 0.347  | 0.109  | 447.1** |       |       |           |        |         |
| North Africa  | Israel          | 0.459 | 0.316  | 0.269  | 0.144  | 109.9** |       |       |           |        |         |
|               | Jordan          | 0.883 | 0.761  | 0.615  | 0.438  | 562.5** |       |       |           |        |         |
|               | Morocco         | 0.814 | 0.572  | 0.321  | 0.062  | 316.9** |       |       |           |        |         |
|               | Tunisia         | 0.808 | 0.481  | 0.145  | -0.100 | 125.9** |       |       |           |        |         |
| Latin America | Argentina       | 0.816 | 0.558  | 0.267  | 0.073  | 114.6** |       |       |           |        | •••     |
|               | Barbados        | 0.902 | 0.756  | 0.592  | 0.405  | 774.5** |       |       |           |        |         |
|               | Brazil          | 0.889 | 0.703  | 0.484  | 0.250  | 150.2** |       |       |           |        |         |
|               | Colombia        | 0.566 | 0.297  | 0.098  | -0.087 | 195.7** |       |       |           |        |         |
|               | Chile           | 0.491 | 0.375  | 0.214  | -0.075 | 123.8** | 0.727 | 0.476 | 0.358     | 0.249  | 104.9** |
|               | Mexico          | 0.829 | 0.671  | 0.521  | 0.384  | 319.4** | 0.467 | 0.549 | 0.386     | 0.178  | 195.4** |
|               | Peru            | 0.328 | 0.523  | 0.266  | 0.085  | 57.2**  |       |       |           |        |         |
|               | Trinidad        | 0.887 | 0.702  | 0.504  | 0.334  | 665.2** |       |       |           |        | •••     |
|               | Uruguay         | 0.418 | -0.091 | -0.096 | -0.114 | 32.8    |       |       |           |        |         |
| Asia          | Bangladesh      | 0.786 | 0.561  | 0.272  | 0.064  | 143.1** |       |       |           |        |         |
|               | Hong Kong       | 0.889 | 0.765  | 0.623  | 0.473  | 469.2** | 0.781 | 0.620 | 0.413     | 0.224  | 76.8**  |
|               | India           | 0.918 | 0.759  | 0.553  | 0.317  | 980.4** |       |       |           |        | •••     |
|               | Korea, South    | 0.913 | 0.762  | 0.583  | 0.377  | 605.9** |       |       |           |        |         |
|               | Malaysia        | 0.931 | 0.788  | 0.598  | 0.388  | 952.5** |       |       |           |        |         |
|               | Pakistan        | 0.906 | 0.757  | 0.593  | 0.417  | 778.4** |       |       |           |        |         |
|               | Philippines     | 0.810 | 0.601  | 0.347  | 0.123  | 403.7** |       |       |           |        |         |
|               | Turkey          | 0.667 | 0.404  | 0.246  | 0.071  | 86.6**  |       |       |           |        |         |
| East Europe   | Hungary         | 0.891 | 0.731  | 0.568  | 0.382  | 358.3** | 0.499 | 0.225 | 0.068     | 0.153  | 104.3** |
|               | Lithuania       | 0.628 | 0.309  | 0.103  | -0.054 | 40.7*   |       |       |           |        |         |
|               | Macedonia       | 0.731 | 0.442  | 0.150  | -0.067 | 61.9**  | 0.529 | 0.204 | -0.003    | -0.172 | 32.1*   |
|               | Romania         | 0.814 | 0.571  | 0.406  | 0.181  | 178.6** | 0.720 | 0.599 | 0.482     | 0.204  | 181.0** |
|               | Slovenia        | 0.451 | 0.309  | 0.183  | 0.098  | 50.3**  | 0.723 | 0.511 | 0.300     | 0.126  | 89.8**  |
|               | Slovak Republic | 0.780 | 0.552  | 0.293  | 0.088  | 158.6** | 0.583 | 0.334 | 0.058     | -0.196 | 44.4**  |
| Average       | Developed       | 0.921 | 0.789  | 0.615  | 0.411  |         | 0.883 | 0.717 | 0.533     | 0.331  |         |
|               | Developing      | 0.755 | 0.554  | 0.358  | 0.167  |         | 0.618 | 0.414 | 0.229     | 0.066  | •••     |

### Table 3. Persistence of Prices and Wages

Significance is denoted by \* if p<0.05 and \*\* if p<0.01

# 5.2. Volatility

The volatility analysis measures the magnitude of fluctuations of the variables of interest. From the previous literature, the stylised facts concerning volatility for developing country business cycles are:

- Output volatility is higher than for the developed countries.
- Consumption volatility is higher than output volatility; the opposite finding to that of the developed economies.
- Inflation volatility is similar to that of the developed countries.
- Investment volatility is two to three times higher than output volatility, which is similar to the levels observed in developed countries.
- The real interest rate is significantly more volatile than for the developed countries.
- Private credit is on average less volatile than in the developed countries.
- Net exports are around three times more volatile than output.
- Real exchange rates volatility is similar to that for the developed countries.

These findings are examined here to see whether they are consistent when the sample is expanded to include thirty-two developing countries. Tables 4(a), 4(b) and 4(c) present the results for the volatility of the variables for the individual countries, regional groups and income groups, respectively. Tables 5(a), 5(b) and 5(c) similarly present the results for relative volatility.

Firstly, output is, on average, twice as volatile in the developing countries than in the developed countries. Output is particularly volatile amongst the poorest countries; where, on average, output is 2.5 times more volatile than output in the industrialised economies. This contradicts the finding of Rand and Tarp (2002) who state that output is no more than 20% more volatile in developing countries; however, this discrepancy may result from their choice of HP-filter smoothing parameter.<sup>6</sup>

Loayza *et al.* (2007) similarly document that output in developing economies is significantly more volatile than that of the industrialised economies and suggest that the excessive volatility in developing economies arises from three key sources. The first of these suggestions is that developing countries are subject to greater exogenous shocks. The second is that developing economies may be subject to greater domestic shocks arising, for example, from policy mistakes. The third, and final, is that external shocks have greater effects on volatility because the developing economies do not possess either the financial markets necessary to diversify risks or the ability to perform stabilising macroeconomic policy. This final point has significant implications for the welfare of the economy. Hnatkovska and Loayza (2005) document a significant negative relationship between economic growth and output volatility, which is exacerbated by underdeveloped financial markets and institutions. Thus, under these conditions, external shocks have a greater effect on volatility and consequently lower economic growth. In particular, it is estimated in Hnatkovska and Loayza (2005) that a one-standard-deviation increase in volatility would reduce the economy's growth rate by 1.3%.

<sup>&</sup>lt;sup>6</sup> Rand and Tarp (2002) document that developing country business cycles are significantly shorter than those of the industrialised countries. Thus, they alter the HP-filer smoothing parameter accordingly. However, as revealed in Male (2010), the developing country cycles are not significantly shorter. Thus, it is not necessary to alter the smoothing parameter.

| Country         | OUTPUT | CPI  | CCPI  | RW   | BM   | BMVI | RDC  | GEX   | GREV | FI   | EXP  | IMP  | тв   | тот  | RPC  | RGFCF | RMMR  | RLR  | NEER | REER |
|-----------------|--------|------|-------|------|------|------|------|-------|------|------|------|------|------|------|------|-------|-------|------|------|------|
| US              | 2.9    | 1.3  | 27.6  | 1.1  | 1.6  | 3.4  | 3.1  | 3.2   | 4.5  | 5.8  | 7.2  | 6.1  | 5.7  | 2.7  | 1.5  | 5.2   | 27.3  | 16.5 | 4.9  | 4.5  |
| UK              | 2.6    | 2.0  | 82.2  | 1.5  | 8.4  | 8.4  | 6.5  |       |      |      | 5.4  | 6.1  | 4.9  | 2.9  | 1.9  | 4.5   | 38.4  | 14.4 | 4.4  | 5.1  |
| Japan           | 3.7    | 1.8  | 75.0  | 1.2  | 1.7  | 3.6  | 2.6  |       |      |      | 7.2  | 11.8 | 8.3  | 6.6  | 1.6  | 3.9   | 47.2  | 7.4  | 7.3  | 7.5  |
| Africa          |        |      |       |      |      |      |      |       |      |      |      |      |      |      |      |       |       |      |      |      |
| Côte D'Ivoire   | 8.0    | 3.6  | 91.6  |      | 8.1  | 9.7  | 5.3  |       |      |      | 22.6 | 19.5 | 17.5 | 14.9 | 9.9  | 36.4  | 14.5  | 3.9  | 8.0  | 8.0  |
| Malawi          | 6.2    | 8.0  | 52.8  |      | 7.2  | 8.9  | 14.5 | 20.0  | 9.3  | 21.4 | 14.4 | 13.9 | 18.3 | 12.0 | 8.4  | 20.6  |       | 11.3 | 13.8 | 12.4 |
| Nigeria         | 7.0    | 10.0 | 375.8 |      | 9.4  | 13.2 | 13.0 | 100.6 | 80.8 | 83.7 | 24.6 | 21.7 | 28.9 |      | 22.2 | 52.0  |       | 14.3 | 20.5 | 24.0 |
| South Africa    | 3.4    | 1.4  | 33.9  |      | 3.3  | 3.5  | 3.8  | 6.4   | 7.4  | 7.8  | 11.9 | 15.7 | 13.9 | 3.8  | 2.4  | 6.0   | 21.9  | 13.4 | 8.4  | 8.0  |
| Senegal         | 7.4    | 4.7  | 91.4  |      | 5.4  | 8.2  | 7.7  |       |      |      | 37.7 | 13.3 | 33.6 |      | 6.0  | 11.0  | 14.7  | 2.5  |      |      |
| North Africa    |        |      |       |      |      |      |      |       |      |      |      |      |      |      |      |       |       |      |      |      |
| Israel          | 4.3    | 26.2 | 56.0  |      | 49.9 | 22.4 | 9.2  | 89.4  | 90.7 | 14.1 | 6.5  | 10.6 | 11.1 | 3.9  | 20.2 | 19.9  |       | 37.7 | 19.9 | 7.2  |
| Jordan          | 8.2    | 3.7  | 75.4  |      | 3.3  | 8.5  | 4.9  | 16.3  | 13.1 | 23.1 | 16.3 | 11.8 | 17.0 |      | 13.3 | 19.7  |       | 28.9 | 3.3  | 3.2  |
| Morocco         | 2.9    | 1.7  | 77.0  |      | 2.5  | 3.3  | 5.2  | 6.8   | 6.3  | 14.3 | 14.7 | 10.5 | 13.1 | 11.1 | 5.3  | 16.3  | 10.4  | 3.4  | 2.5  | 1.9  |
| Tunisia         | 3.5    | 0.7  | 25.6  |      | 3.0  | 3.5  | 3.5  | 13.8  | 13.0 | 0.4  | 13.9 | 10.3 | 10.4 |      | 2.4  | 9.0   | 6.6   | 3.4  | 3.4  |      |
| Latin America   |        |      |       |      |      |      |      |       |      |      |      |      |      | -    |      |       |       |      |      |      |
| Argentina       | 9.6    | 56.6 | 104.7 |      | 42.2 | 7.9  | 19.2 | 8.3   | 9.0  | 6.9  | 12.5 | 22.9 | 25.4 | 4.2  | 6.0  | 14.5  |       | 45.2 |      |      |
| Barbados        | 4.3    | 3.5  | 67.2  |      | 3.3  | 4.8  | 7.0  | 7.1   | 7.4  | 9.8  | 16.5 | 8.9  | 16.3 |      | 9.3  |       |       | 8.8  |      |      |
| Brazil          | 3.3    | 59.6 | 63.4  |      | 56.8 | 9.9  | 11.2 | 61.1  | 11.9 | 12.3 | 10.4 | 13.1 | 14.3 | 15.9 | 6.4  | 8.4   | 101.8 | 11.8 |      |      |
| Chile           | 8.3    | 7.1  | 56.7  | 0.9  | 5.8  | 5.6  | 6.1  | 94.1  | 97.0 | 1.3  | 17.2 | 17.3 | 2.0  |      | 7.7  | 23.6  | 22.4  | 14.2 | 6.5  | 2.1  |
| Colombia        | 3.1    | 4.8  | 446.4 |      | 4.0  | 4.6  | 7.4  | 6.7   | 6.4  | 9.6  | 11.0 | 13.1 | 16.5 | 10.2 | 2.3  | 14.4  | 23.2  | 11.5 | 6.8  | 6.8  |
| Mexico          | 3.6    | 37.1 | 39.6  | 10.5 | 11.4 | 14.1 | 15.7 | 14.5  | 11.4 | 9.9  | 11.4 | 16.5 | 14.5 |      | 5.9  | 8.1   | 30.8  | 30.7 |      |      |
| Peru            | 8.5    | 79.1 | 106.1 |      | 42.6 | 7.5  | 9.1  | 34.4  | 12.2 | 14.9 | 13.2 | 19.9 | 23.4 |      |      | 12.7  |       | 26.7 |      |      |
| Trinidad        | 5.9    | 2.4  | 49.3  |      | 3.9  | 7.6  | 6.0  |       |      |      | 18.7 | 17.9 | 20.1 | 13.4 | 19.0 | 36.8  |       | 5.3  | 7.0  | 6.9  |
| Uruguay         | 5.4    | 47.8 | 41.6  |      | 41.3 | 12.2 | 13.1 | 20.3  | 12.7 | 12.3 | 16.2 | 17.5 | 19.6 |      | 13.9 | 19.1  | 35.2  | 26.7 | 14.0 | 9.2  |
| Asia            |        |      |       |      |      |      |      |       |      |      |      |      |      |      |      |       |       |      |      |      |
| Bangladesh      | 4.4    | 1.5  | 59.7  |      | 3.6  | 4.2  | 5.0  |       |      |      | 10.8 | 13.9 | 16.0 |      | 2.5  | 2.8   |       | 4.2  |      |      |
| Hong Kong       | 3.8    | 1.9  | 54.3  | 1.7  | 2.4  | 3.4  | 3.5  | 9.4   | 9.3  | 21.3 | 7.0  | 7.9  | 3.1  | 2.3  | 2.5  | 7.4   | 49.6  | 11.6 | 3.9  | 4.0  |
| India           | 2.6    | 3.9  | 89.2  |      | 5.8  | 6.8  | 4.6  | 8.5   | 8.7  | 1.3  | 7.5  | 11.4 | 10.7 | 9.8  | 4.7  |       | 25.7  | 4.4  |      |      |
| Korea, South    | 5.1    | 3.4  | 50.5  |      | 6.9  | 4.9  | 3.0  | 12.2  | 10.0 | 11.5 | 9.4  | 13.7 | 12.8 | 5.3  | 3.7  | 9.7   | 16.5  | 10.9 |      |      |
| Malaysia        | 6.7    | 2.1  | 60.8  |      | 3.2  | 7.2  | 4.5  | 10.1  | 13.2 | 12.7 | 10.4 | 11.6 | 8.3  | 9.7  | 7.6  | 23.2  | 4.4   | 13.8 | 5.2  | 5.2  |
| Pakistan        | 4.2    | 3.2  | 49.0  |      | 3.6  | 7.5  | 5.5  | 13.2  | 12.5 | 0.7  | 13.5 | 12.2 | 15.2 | 10.4 |      | 11.7  | 19.2  |      | 4.3  | 4.3  |
| Philippines     | 18.0   | 7.1  | 78.7  |      | 3.9  | 19.1 | 9.2  | 11.2  | 20.8 | 10.8 | 11.5 | 11.6 | 12.4 | 6.4  | 8.0  | 12.3  | 19.9  | 14.2 | 6.9  | 6.1  |
| Turkey          | 4.0    | 38.8 | 28.2  |      | 9.6  | 7.5  | 13.7 | 33.3  | 33.5 | 77.1 | 12.3 | 14.1 | 16.8 | 7.0  | 4.6  | 9.6   | 26.8  |      |      |      |
| East Europe     |        |      |       |      |      |      |      |       |      |      |      |      |      |      |      |       |       |      |      |      |
| Hungary         | 4.7    | 2.6  | 28.3  | 3.1  | 4.5  | 7.7  | 5.8  | 7.9   | 9.8  | 7.6  | 7.1  | 7.3  | 7.6  | 2.8  | 2.6  | 3.2   |       | 12.1 | 4.5  | 3.9  |
| Lithuania       | 14.5   | 23.3 | 69.8  |      | 10.0 | 13.3 | 12.6 | 7.5   | 8.2  | 5.1  | 10.6 | 11.6 | 6.9  |      | 5.7  | 11.3  | 26.2  | 20.6 |      |      |
| Macedonia       | 6.7    | 15.1 | 372.5 | 2.4  | 13.4 | 19.5 | 11.7 |       |      |      | 8.4  | 11.2 | 8.7  |      |      |       |       | 28.4 | 34.2 | 8.9  |
| Romania         | 8.3    | 19.1 | 45.4  | 9.3  | 11.6 | 15.5 | 13.5 | 24.7  | 13.4 | 12.3 | 15.0 | 13.9 | 12.3 |      | 6.6  | 8.6   |       |      |      | 12.5 |
| Slovak Republic | 2.7    | 2.1  | 42.4  | 2.9  | 2.5  | 3.3  | 13.9 | 6.3   | 7.2  | 5.6  | 10.8 | 9.7  | 7.2  |      | 2.4  | 10.7  | 15.4  | 14.0 | 4.7  | 3.5  |
| Slovenia        | 2.4    | 4.1  | 26.7  | 9.9  | 7.6  | 4.6  | 5.0  | 3.6   | 3.8  | 4.8  | 9.9  | 8.9  | 4.7  |      | 1.5  | 4.3   | 19.3  | 26.8 |      |      |

Table 4(a). Volatility (measured as percentage standard deviation)

| R egio n                 | OUTPUT           | CPI               | CCPI  | RW   | BM                | BMVI | RDC               | GEX  | GREV | FI   | EXP               | IMP               | тв                | тот  | RPC              | RGFCF             | RMMR             | RLR  | NEER | REER |
|--------------------------|------------------|-------------------|-------|------|-------------------|------|-------------------|------|------|------|-------------------|-------------------|-------------------|------|------------------|-------------------|------------------|------|------|------|
| US,UK and Japan          | 3.1              | 1.7               | 61.6  | 1.2  | 3.9               | 5.1  | 4.1               | 3.2  | 4.5  | 5.8  | 6.6               | 8.0               | 6.3               | 4.1  | 1.7              | 4.5               | 37.6             | 12.7 | 5.5  | 5.7  |
| Africa                   | 6.4 <sup>5</sup> | 5.5               | 129.1 |      | 6.7               | 8.7  | 8.9               | 42.4 | 32.5 | 37.6 | 22.2 <sup>§</sup> | 16.8 <sup>§</sup> | 22.4 <sup>§</sup> | 10.2 | 9.8              | 25.2              | 17.0             | 9.1  | 12.7 | 13.1 |
| North Africa             | 4.7              | 8.1               | 58.5  |      | 14.7              | 9.4  | 5.7               | 31.6 | 30.8 | 13.0 | 12.8              | 10.8              | 12.9 <sup>§</sup> | 7.5  | 10.3             | 16.2 <sup>§</sup> | 8.5 <sup>§</sup> | 18.3 | 7.3  | 4.1  |
| Latin America            | 5.8              | 33.1 <sup>5</sup> | 108.3 | 5.7  | 23.5              | 8.2  | 10.5              | 30.8 | 21.0 | 9.6  | 14.1 <sup>§</sup> | 16.3 <sup>§</sup> | 16.9 <sup>§</sup> | 10.9 | 8.85             | 17.2 <sup>§</sup> | 42.7             | 20.1 | 8.6  | 6.3  |
| Asia                     | 6.1              | 7.7               | 58.8  | 1.7  | 4.9               | 7.6  | 6.1               | 14.0 | 15.4 | 19.3 | 10.3 <sup>§</sup> | 12.0              | 11.9 <sup>5</sup> | 7.3  | 4.8 <sup>5</sup> | 11.05             | 23.2             | 9.8  | 5.1  | 4.9  |
| Eastern Europe           | 6.6              | 11.0              | 97.5  | 5.5  | 8.3               | 10.6 | 10.4 <sup>§</sup> | 10.0 | 8.5  | 7.1  | 10.3 <sup>§</sup> | 10.4              | 7.9               | 2.8  | 3.8              | 7.6               | 20.3             | 20.3 | 14.5 | 7.2  |
| All Developing Countries | 6.0 <sup>8</sup> | 15.2 <sup>§</sup> | 90.9  | 5.15 | 12.2 <sup>§</sup> | 8.7  | 8.5 <sup>§</sup>  | 24.0 | 20.0 | 15.3 | 13.6 <sup>§</sup> | 13.5              | 14.3 <sup>§</sup> | 8.45 | 7.3 <sup>§</sup> | 15.3 <sup>§</sup> | 25.2             | 15.9 | 9.3  | 7.3  |

Table 4(b). Summary of Volatility (by Region)

#### Table 4(c). Summary of Volatility (by Income)

| Income       | OUTPUT           | CPI               | CCPI | RW  | BM                | BMVI | RDC              | GEX  | GREV | FI   | EXP               | IMP               | ТВ                | тот               | RPC              | RGFCF             | RMMR  | RLR  | NEER | REER |
|--------------|------------------|-------------------|------|-----|-------------------|------|------------------|------|------|------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------|------|------|------|
| High         | 3.1              | 1.7               | 61.6 | 1.2 | 3.9               | 5.1  | 4.1              | 3.2  | 4.5  | 5.8  | 6.6               | 8.0               | 6.3               | 4.1               | 1.7              | 4.5               | 37.6  | 12.7 | 5.5  | 5.7  |
| Upper Middle | 5.4 <sup>8</sup> | 18.1 <sup>§</sup> | 71.8 | 5.5 | 14.7 <sup>6</sup> | 8.4  | 9.2 <sup>§</sup> | 23.5 | 20.1 | 13.4 | 11.8 <sup>§</sup> | 13.3              | 12.3 <sup>§</sup> | 7.1               | 6.8 <sup>§</sup> | 13.3 <sup>§</sup> | 30.3  | 18.5 | 8.1  | 6.3  |
| Lower Middle | 5.7              | 17.2              |      | 2.4 | 11.4              | 8.3  | 6.7              | 16.9 | 11.4 | 10.7 | 13.3 <sup>§</sup> | 12.6              | 14.65             | 10.7              | 7.0              | 13.9              | 12.15 | 18.1 | 9.5  | 4.6  |
| Low          | 7.6 <sup>§</sup> | 5.5               |      |     | 6.2               | 10.0 | 8.5              | 35.1 | 29.9 | 29.3 | 18.4 <sup>5</sup> | 15.1 <sup>§</sup> | 19.6 <sup>§</sup> | 10.8 <sup>§</sup> | 8.8              | 22.5              | 18.7  | 7.8  | 12.3 | 12.6 |

OUTPUT – real manufacturing or industrial production, CPI – consumer price index, CCPI – inflation, RW – real wage, BM – broad money, BMVI – broad money velocity indicator, RDC – real domestic private sector credit, GEX – real government expenditure, GREV – real government revenue, FI – fiscal impulse, EXP – real exports of goods and services, IMP – real imports of goods and services, TB – trade balance, TOT – terms of trade, RPC – real private consumption, RGFCF – real gross fixed capital formation (investment), RMMR – real money market rate, RLR – real lending rate, NEER – nominal effective exchange rate, REER – real effective exchange rate.

Note that numbers in italics indicate that annual rather than quarterly data has been used for that particular result. All of the variables refer to the Hodrick-Prescott filtered cyclical component. Significant differences from the developed country benchmarks (the United States, United Kingdom and Japan) are denoted by  $\S$  (p < 0.05) and  $\S$  (p < 0.01).

| Table 5 | (2)    | Rolativo | Volatility | , |
|---------|--------|----------|------------|---|
| Table 5 | (a). I | relative | volatility | ł |

| Country         | CPI  | CCPI  | RW  | BM   | BMVI | RDC | GEX  | GREV | FI   | EXP | IMP | тв  | тот | RPC | RGFCF | RMMR | RLR  | NEER | REER |
|-----------------|------|-------|-----|------|------|-----|------|------|------|-----|-----|-----|-----|-----|-------|------|------|------|------|
| US              | 0.5  | 9.4   | 0.4 | 0.6  | 1.1  | 1.1 | 1.1  | 1.5  | 2.0  | 2.4 | 2.1 | 1.9 | 0.9 | 0.5 | 1.8   | 9.3  | 5.6  | 1.7  | 1.5  |
| UK              | 0.8  | 32.2  | 0.6 | 3.3  | 3.3  | 2.5 |      |      |      | 2.1 | 2.4 | 1.9 | 1.1 | 0.7 | 1.8   | 15.0 | 5.6  | 1.7  | 2.0  |
| Japan           | 0.5  | 20.1  | 0.3 | 0.5  | 1.0  | 0.7 |      |      |      | 1.9 | 3.2 | 2.2 | 1.8 | 0.4 | 1.1   | 12.7 | 2.0  | 2.0  | 2.0  |
| Africa          |      |       |     |      |      |     |      |      |      |     |     |     |     |     |       |      |      |      |      |
| Côte D'Ivoire   | 0.5  | 11.4  |     | 1.0  | 1.2  | 0.7 |      |      |      | 2.8 | 2.4 | 2.2 | 1.9 | 1.2 | 4.5   | 1.8  | 0.5  | 1.0  | 1.0  |
| Malawi          | 1.3  | 8.6   |     | 1.2  | 1.4  | 2.4 | 3.3  | 1.5  | 3.5  | 2.3 | 2.3 | 3.0 | 2.0 | 1.4 | 3.4   |      | 1.8  | 2.3  | 2.0  |
| Nigeria         | 1.4  | 54.0  |     | 1.3  | 1.9  | 1.9 | 14.5 | 11.6 | 12.0 | 3.5 | 3.1 | 4.2 |     | 3.2 | 7.5   |      | 2.1  | 3.0  | 3.4  |
| South Africa    | 0.4  | 10.0  |     | 1.0  | 1.0  | 1.1 | 1.9  | 2.2  | 2.3  | 3.5 | 4.6 | 4.1 | 1.1 | 0.7 | 1.8   | 6.5  | 3.9  | 2.5  | 2.4  |
| Senegal         | 0.6  | 12.4  |     | 0.7  | 1.1  | 1.1 |      |      |      | 5.1 | 1.8 | 4.5 |     | 0.8 | 1.5   | 2.0  | 0.3  |      |      |
| North Africa    |      |       |     |      |      |     |      |      |      |     |     |     |     |     |       |      |      |      |      |
| Israel          | 6.1  | 12.9  |     | 11.5 | 5.2  | 2.1 | 20.7 | 21.0 | 3.3  | 1.5 | 2.4 | 2.6 | 0.9 | 4.7 | 4.6   |      | 8.7  | 4.6  | 1.7  |
| Jordan          | 0.5  | 9.2   |     | 0.4  | 1.0  | 0.6 | 2.0  | 1.6  | 2.8  | 2.0 | 1.5 | 2.1 |     | 1.6 | 2.4   |      | 3.6  | 0.4  | 0.4  |
| Morocco         | 0.6  | 26.9  |     | 0.9  | 1.2  | 1.8 | 2.4  | 2.2  | 5.0  | 5.1 | 3.7 | 4.6 | 3.9 | 1.8 | 5.7   | 3.7  | 1.2  | 0.9  | 0.7  |
| Tunisia         | 0.2  | 7.2   |     | 0.9  | 1.0  | 1.0 | 3.9  | 3.7  | 0.1  | 3.9 | 2.9 | 3.0 |     | 0.7 | 2.5   | 1.9  | 1.0  | 1.0  |      |
| Latin America   |      |       |     |      |      |     |      |      |      |     |     |     |     |     |       |      |      |      |      |
| Argentina       | 5.9  | 10.9  |     | 4.4  | 0.8  | 2.0 | 0.9  | 0.9  | 0.7  | 1.3 | 2.4 | 2.7 | 0.4 | 0.6 | 1.5   |      | 4.7  |      |      |
| Barbados        | 0.8  | 15.7  |     | 0.8  | 1.1  | 1.6 | 1.7  | 1.7  | 2.3  | 3.8 | 2.1 | 3.8 |     | 2.2 |       |      | 2.1  |      |      |
| Brazil          | 18   | 19.1  |     | 17.1 | 3.0  | 3.4 | 18.4 | 3.6  | 3.7  | 3.1 | 4.0 | 4.3 | 4.8 | 1.9 | 2.5   | 30.7 | 3.6  |      |      |
| Chile           | 0.9  | 6.8   | 0.1 | 0.7  | 0.7  | 0.7 | 11.3 | 11.6 | 0.2  | 2.1 | 2.1 | 0.2 |     | 0.9 | 2.8   | 2.7  | 1.7  | 0.8  | 0.3  |
| Colombia        | 1.6  | 145.8 |     | 1.3  | 1.5  | 2.4 | 2.2  | 2.1  | 3.1  | 3.6 | 4.3 | 5.4 | 3.3 | 0.7 | 4.7   | 7.6  | 3.7  | 2.2  | 2.2  |
| Mexico          | 10.3 | 11.0  | 2.9 | 3.2  | 3.9  | 4.4 | 4.0  | 3.2  | 2.8  | 3.2 | 4.6 | 4.0 |     | 1.6 | 2.3   | 8.6  | 8.5  |      |      |
| Peru            | 9.3  | 12.5  |     | 5.0  | 0.9  | 1.1 | 4.0  | 1.4  | 1.7  | 1.6 | 2.3 | 2.8 |     |     | 1.5   |      | 3.1  |      |      |
| Trinidad        | 0.4  | 8.4   |     | 0.7  | 1.3  | 1.0 |      |      |      | 3.2 | 3.0 | 3.4 | 2.3 | 3.2 | 6.3   |      | 0.9  | 1.2  | 1.2  |
| Uruguay         | 8.8  | 7.7   |     | 7.6  | 2.2  | 2.4 | 3.7  | 2.3  | 2.3  | 3.0 | 3.2 | 3.6 |     | 2.6 | 3.5   | 6.5  | 4.9  | 2.6  | 1.7  |
| Asia            |      |       |     |      |      |     |      |      |      |     |     |     |     |     |       |      |      |      |      |
| Bangladesh      | 0.4  | 13.6  |     | 0.8  | 1.0  | 1.1 |      |      |      | 2.5 | 3.2 | 3.7 |     | 0.6 | 0.7   |      | 1.0  |      |      |
| Hong Kong       | 0.5  | 14.5  | 0.5 | 0.6  | 0.9  | 0.9 | 2.5  | 2.5  | 5.7  | 1.9 | 2.1 | 0.8 | 0.6 | 0.7 | 2.0   | 13.2 | 3.1  | 1.0  | 1.1  |
| India           | 1.5  | 34.5  |     | 2.2  | 2.6  | 1.8 | 3.3  | 3.4  | 0.5  | 2.9 | 4.4 | 4.1 | 3.8 | 1.8 |       | 9.9  | 1.7  |      |      |
| Korea, South    | 0.7  | 9.9   |     | 1.3  | 1.0  | 0.6 | 2.4  | 2.0  | 2.2  | 1.8 | 2.7 | 2.5 | 1.0 | 0.7 | 1.9   | 3.2  | 2.1  |      |      |
| Malaysia        | 0.3  | 9.0   |     | 0.5  | 1.1  | 0.7 | 1.5  | 2.0  | 1.9  | 1.5 | 1.7 | 1.2 | 1.4 | 1.1 | 3.5   | 0.7  | 2.1  | 0.8  | 0.8  |
| Pakistan        | 0.8  | 11.7  |     | 0.9  | 1.8  | 1.3 | 3.2  | 3.0  | 0.2  | 3.2 | 2.9 | 3.6 | 2.5 |     | 2.8   | 4.6  |      | 1.0  | 1.0  |
| Philippines     | 0.4  | 4.4   |     | 0.2  | 1.1  | 0.5 | 0.6  | 1.2  | 0.6  | 0.6 | 0.7 | 0.7 | 0.4 | 0.4 | 0.7   | 1.1  | 0.8  | 0.4  | 0.3  |
| Turkey          | 9.7  | 7.0   |     | 2.4  | 1.9  | 3.4 | 8.3  | 8.4  | 19.2 | 3.1 | 3.5 | 4.2 | 1.7 | 1.1 | 2.4   | 6.7  |      |      |      |
| East Europe     |      |       |     |      |      |     |      |      |      |     |     |     |     |     |       |      |      |      |      |
| Hungary         | 0.6  | 6.0   | 0.7 | 1.0  | 1.6  | 1.2 | 1.7  | 2.1  | 1.6  | 1.5 | 1.6 | 1.6 | 0.6 | 0.6 | 0.7   |      | 2.6  | 1.0  | 0.8  |
| Lithuania       | 1.6  | 4.8   |     | 0.7  | 0.9  | 0.9 | 0.5  | 0.6  | 0.4  | 0.7 | 0.8 | 0.5 |     | 0.4 | 0.8   | 1.8  | 1.4  |      |      |
| Macedonia       | 2.2  | 55.4  | 0.4 | 2.0  | 2.9  | 1.7 |      |      |      | 1.3 | 1.7 | 1.3 |     |     |       |      | 4.2  | 5.1  | 1.3  |
| Romania         | 2.3  | 5.5   | 1.1 | 1.4  | 1.9  | 1.6 | 3.0  | 1.6  | 1.5  | 1.8 | 1.7 | 1.5 |     | 0.8 | 1.0   |      |      |      | 1.5  |
| Slovak Republic | 0.8  | 15.6  | 1.1 | 0.9  | 1.2  | 5.1 | 2.3  | 2.6  | 2.1  | 4.0 | 3.6 | 2.6 |     | 0.9 | 3.9   | 5.6  | 5.1  | 1.7  | 1.3  |
| Slovenia        | 1.7  | 11.1  | 4.1 | 3.2  | 1.9  | 2.1 | 1.5  | 1.6  | 2.0  | 4.1 | 3.7 | 2.0 |     | 0.6 | 1.8   | 8.0  | 11.1 |      |      |

| Region                   | CPI              | CCPI | RW  | BM  | BMVI | RDC | GEX | GREV | FI  | EXP              | IMP | тв               | тот | RPC              | RGFCF            | RMMR | RLR | NEER             | REER             |
|--------------------------|------------------|------|-----|-----|------|-----|-----|------|-----|------------------|-----|------------------|-----|------------------|------------------|------|-----|------------------|------------------|
| US,UK and Japan          | 0.6              | 20.6 | 0.4 | 1.5 | 1.8  | 1.4 | 1.1 | 1.5  | 2.0 | 2.1              | 2.6 | 2.0              | 1.3 | 0.5              | 1.6              | 12.3 | 4.4 | 1.8              | 1.8              |
| Africa                   | 0.8              | 19.3 |     | 1.0 | 1.3  | 1.4 | 6.6 | 5.1  | 5.9 | 3.4 <sup>5</sup> | 2.8 | 3.6 <sup>5</sup> | 1.7 | 1.5              | 3.7              | 3.45 | 1.7 | 2.2              | 2.2              |
| North Africa             | 1.9              | 14.1 |     | 3.4 | 2.1  | 1.4 | 7.3 | 7.1  | 2.8 | 3.1              | 2.6 | 3.1              | 2.4 | 2.2              | 3.8              | 2.85 | 3.6 | 1.7              | 0.9              |
| Latin America            | 6.25             | 26.4 | 1.5 | 4.5 | 1.7  | 2.1 | 5.8 | 3.4  | 2.1 | 2.8              | 3.1 | 3.4              | 2.7 | 1.7 <sup>§</sup> | 3.1 <sup>5</sup> | 11.2 | 3.7 | 1.7              | 1.4              |
| Asia                     | 1.8              | 13.1 | 0.5 | 1.1 | 1.4  | 1.3 | 3.1 | 3.2  | 4.3 | 2.2              | 2.7 | 2.6              | 1.6 | 0.9              | 2.0              | 5.6  | 1.8 | 0.8 <sup>§</sup> | 0.8 <sup>§</sup> |
| Eastern Europe           | 1.5              | 16.4 | 1.5 | 1.5 | 1.7  | 2.1 | 1.8 | 1.7  | 1.5 | 2.2              | 2.2 | 1.6              | 0.6 | 0.7              | 1.6              | 5.15 | 4.9 | 2.6              | 1.25             |
| All Developing Countries | 2.7 <sup>8</sup> | 18.7 | 1.1 | 2.3 | 1.6  | 1.7 | 4.5 | 3.7  | 3.1 | 2.6              | 2.7 | 2.8 <sup>§</sup> | 1.8 | 1.3 <sup>§</sup> | 2.7 <sup>8</sup> | 7.15 | 3.3 | 1.8              | 1.4              |

Table 5(b). Summary of Relative Volatility (by Region)

# Table 5(c). Summary of Relative Volatility (by Income)

| Income       | CPI              | CCPI | RW  | BM  | BMVI | RDC | GEX | GREV | FI  | EXP              | IMP | тв               | тот | RPC              | RGFCF            | RMMR | RLR | NEER | REER             |
|--------------|------------------|------|-----|-----|------|-----|-----|------|-----|------------------|-----|------------------|-----|------------------|------------------|------|-----|------|------------------|
| High         | 0.6              | 20.5 | 0.4 | 1.4 | 1.8  | 1.4 | 1.1 | 1.5  | 2.0 | 2.2              | 2.5 | 2.0              | 1.3 | 0.5              | 1.5              | 12.3 | 4.4 | 1.8  | 1.8              |
| Upper Middle | 3.7 <sup>8</sup> | 17.5 | 1.5 | 3.2 | 1.7  | 2.0 | 4.9 | 4.0  | 3.2 | 2.6              | 2.8 | 2.7              | 1.7 | 1.4 <sup>§</sup> | 2.7 <sup>6</sup> | 7.8  | 4.1 | 1.8  | 1.3 <sup>§</sup> |
| Lower Middle | 2.3              |      | 0.4 | 1.7 | 1.5  | 1.3 | 3.1 | 2.4  | 2.0 | 2.8              | 2.5 | 2.9              | 3.2 | 1.4              | 3.0              | 3.45 | 2.6 | 1.7  | 0.9 <sup>§</sup> |
| Low          | 0.9              |      |     | 1.1 | 1.5  | 1.3 | 5.4 | 4.4  | 4.1 | 2.8 <sup>§</sup> | 2.5 | 3.2 <sup>§</sup> | 2.0 | 1.3              | 3.0              | 3.7  | 1.2 | 1.6  | 1.7              |

For notes see Table 4(c)

Returning to Tables 4(a) and 4(b), it is evident that the African and Eastern European countries exhibit the highest average volatilities. However, the Eastern European average is skewed by the exceedingly high output volatility of 14.5% observed in Lithuania, with all the other Eastern European countries exhibiting much lower output volatility. Another country with exceedingly high output volatility is the Philippines; at 18% this is three times greater than the developing country average and six times greater than the developed country average. This high output volatility was similarly observed in the amplitude analysis in Male (2010), where it was observed that the Philippines experience, on average, a 69% increase in output during business cycle expansions and a 50% reduction in output during recessions, compared to a 6.4% rise during expansions and a 2% decline during recessions in the US.<sup>7</sup> Given the previous analysis, the excessive volatility in the Philippines may go some way to explaining the country's relatively poor growth rates, in relation to the other Asian economies.<sup>8</sup>

Secondly, from Tables 5(a),(b) and (c), it is apparent that consumption in the developed countries (the US, the UK and Japan) is on average 50% less volatile than output, whereas in the developing countries consumption is, on average, 30% more volatile than output; however, there is much regional variation. Consumption volatility is highest in North Africa, and in particular in Israel where it is almost five times more volatile than output. Conversely, on average consumption volatility is slightly lower than output volatility in the Asian and Eastern European regions. The fact that consumption volatility is higher than output volatility in Africa, North Africa and Latin America points to a lack of consumption smoothing over the course of the business cycle in these regions. Thus, large welfare gains may be possible through reductions in consumption volatility in these regions (Loayza *et al.*, 2007).

Thirdly, government revenue and expenditure are significantly more volatile in the developing countries, than in the developed countries. On average government expenditure is four and a half times more volatile than output and government revenue is almost four times more volatile than output. This situation is worst in North Africa, where both government expenditure and revenue are more than seven times more volatile than output. The observed high volatility in these developing countries suggests that the government may actually aggravate business cycle fluctuation, rather than help to smooth them.

Fourthly, from the existing stylised facts, it is expected that investment volatility in the developing countries should be two to three times higher than output volatility and of a similar level to that in the developed countries. However, whilst the East European countries have similar investment volatilities to the US, UK and Japan, the other developing countries have significantly higher investment volatilities. In particular, Africa and North Africa where investment volatility is almost four times greater than output volatility; most notably, Nigeria where investment is seven and a half times more volatile than output. However, when aggregating across income groupings the observed relative volatility of investment is consistent with that expected for the developing economies.

<sup>&</sup>lt;sup>7</sup> See Table 9 in Male (2010).

<sup>&</sup>lt;sup>8</sup> For the period 1980 to 2005, the average growth rates of GDP and GDP per capita in the Philippines were 2.86% and 0.59%, respectively, compared with regional averages of 5.05% for GDP and 3.13% for GDP per capita. See Table 2.2 for more information.

Fifthly, considering prices and inflation it is obvious that the Latin American countries exhibit the highest volatilities, with prices more than six times more volatile than output and inflation more than twenty-six times more volatile than output. Prices in the developed countries and in Africa are less volatile than output, whilst prices in the other regions are around 50% more volatile than output. Referring now to inflation, with the exception of the Latin American countries, on average the developing countries exhibit significantly less inflation volatility than the developed countries; however, this result is skewed by the high inflation volatilities in the UK and Japan.

Sixthly the money-related variables are examined. Neumeyer and Perri (2005) suggest that the real interest rate is significantly more volatile for developing economies than for developed countries. Examination of the absolute volatilities in Table 4(b) reveals that whilst for the real lending rate the North African, Latin American and Eastern European countries have higher volatilities than the developed countries. In the case of the real money market rate, only the Latin American countries have higher volatilities than the developed countries. Furthermore, examination of the relative volatilities in Table 5(a) reveals that, with just one exception, the relative volatility of real interest rates is lower in the developing countries than in the developed countries. For all countries, the volatility of the real interest rate is significantly greater than the volatility of output. The relative volatilities of both broad money and the broad money velocity indicator are similar amongst the developing and developed countries, only North Africa and Latin America have significantly greater relative volatilities of broad money. However, in developing countries it is important to additionally examine real domestic private sector credit. This is because, as discussed in Agénor et al. (2000), where equity markets are weakly capitalised private sector credit will have a significant influence on economic activity. Tables 5(a), (b) and (c) show the volatility of real domestic credit to be of a similar level to that of the developed countries, with slightly higher volatility in Latin America and Eastern Europe. This contradicts the finding of Rand and Tarp (2002) that private sector credit is on average less volatile than in the developed countries.

Finally, the trade-related variables are considered. Firstly, the trade balance is examined. From the existing stylised facts, the expectation is that the trade balance should be around three times more volatile than output, and the results in Tables 5(a), (b) and (c) are consistent with this. Additionally, the relative volatility of the trade balance in the developing countries is significantly greater than that of the developed countries. The only exceptions are the Eastern European countries, where the trade balance is, on average, just 0.6 times more volatile than output. The findings for the imports, exports and the terms of trade are fairly similar to those for the trade balance.

The volatility of the nominal and real effective exchange rates for the developing countries are similar to those for the developed countries, which is consistent with the finding of Rand and Tarp (2002). However, the Asian countries display significantly lower exchange rate volatility and moreover for these countries both the nominal and real exchange rates are less volatile than output. This is a significant finding, because one of the key features of international business cycles that has interested macroeconomists in recent years is the volatility and persistence of real exchange rates. Flood and Rose (1995) suggest that whilst the choice of exchange rate regime affects the volatility of the exchange rate, the volatility of output is stable across regimes. Therefore, where economies maintain a fixed exchange rate regime, exchange rates will be less volatile than output. This is a consistent with the Asian experience for Hong Kong, Malaysia and Pakistan; all of which have held fixed, or pegged, exchange rates for significant durations of the sample period. However, the Philippines, which has the lowest relative volatility, has held a free-float since 1983. Nonetheless, the low relative volatility can perhaps be explained simply by the extremely high output volatility experienced in the Philippines. Compared to the other Asian economies, the Philippines has the highest absolute volatility of exchange rates (6.1%), resulting from its free-float, however in relation to its output volatility of 18.0%, the relative volatility of the exchange rates is extremely low.

#### 5.3. Cross-Correlations with Real Domestic Output

The degree of co-movement of the variables of interest (y<sub>t</sub>) with real industrial (or manufacturing) production (x<sub>t</sub>) is measured by the magnitude of the correlation coefficient  $\rho(j), j \in \{0, \pm 1, \pm 2, ...\}$ . Following the reasoning of Agénor *et al.* (2000), the series is considered to be strongly contemporaneously correlated if  $0.22 \le |\rho(j)| < 1$ , weakly contemporaneously correlated if  $0.11 \le |\rho(j)| < 0.22$  and contemporaneously uncorrelated with the cycle if  $0 \le |\rho(j)| < 0.11$ . These values are selected because, given the average number of observations per country, the average standard error of the correlation coefficients, computed under the null hypothesis of no correlation, is 0.11.

Tables 6(a), 6(b) and 6(c) report the contemporaneous correlations for all the variables with output. Tables reporting the cross-correlations between domestic output and each of the variables with leads and lags are available in Appendix B.

### (a) Industrial Country Business Cycles

The first relationship considered is whether output fluctuations in developing countries are positively correlated with economic activity in the main industrialised countries, as proxied by world output and world real interest rate. In particular, Agénor *et al.* (2000) suggest that relationship with the world real interest rate could be important because it is likely to effect economic activity in the developing country by both affecting domestic interest rates and by reflecting credit conditions in international capital markets.

From Table 6(a), it can be seen that there is a clear relationship, the contemporaneous correlation of domestic output with world output is positive for all the developing countries, with the sole exception of Jordan ( $\rho(0) = -0.035$ ). The majority of countries peak at j = 0, or at least by j = 4, suggesting that output fluctuations in the industrialised countries are transmitted fairly rapidly to developing countries.

For world real interest rate, Table 6(a) shows a slightly less clear relationship. The contemporaneous correlation between domestic output and the world real interest rate is positive for most countries; however, it is negative for five countries and there is no significant relationship for six countries. The majority peak at j = 0, suggesting rapid transmission, but again there is more variation than for world output. Where there is a positive correlation, this may reflect the positive spill over effect of pro-cyclical interest rates in the industrialised countries on the developing country's output.

| Country         | CPI    | CCPI   | RW    | BM     | BMVI   | RDC    | GEX    | GREV   | FI     | EXP   | IMP    | тв     | тот    | RPC    | RGFCF  | RMMR   | RLR    | NEER   | REER   | wo    | WIR    |
|-----------------|--------|--------|-------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|
| US              | -0.47* | 0.27*  | 0.41* | 0.03   | -0.69* | 0.77*  | -0.41* | 0.59*  | -0.70* | 0.25* | 0.58*  | -0.31* | -0.25* | 0.68*  | 0.87*  | 0.58*  | 0.58*  | -0.16  | -0.14  | 0.78* | 0.55*  |
| UK              | -0.51* | 0.23*  | 0.26* | 0.10   | -0.06  | 0.23*  | -0.54* |        |        | 0.23* | 0.47*  | -0.34* | -0.17  | 0.52*  | 0.51*  | 0.12   | 0.21   | -0.23* | -0.34* | 0.61* | 0.44*  |
| Japan           | -0.35* | 0.43*  | 0.53* | 0.39*  | -0.68* | 0.36*  | 0.25*  |        |        | 0.42* | 0.62*  | -0.55* | -0.36* | 0.37*  | 0.76*  | 0.31*  | 0.24*  | -0.25* | -0.24* | 0.82* | 0.35*  |
| Africa          |        |        |       |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |        |       |        |
| Côte D'Ivoire   | 0.17   | 0.08   |       | 0.19   | -0.74* | -0.14  |        |        |        | -0.19 | 0.09   | -0.21  | 0.19   |        |        | 0.10   | 0.23*  | -0.06  | -0.17  | 0.01  | 0.24*  |
| Malawi          | -0.24* | -0.41* |       | 0.01   | -0.53* | 0.25*  | 0.09   | 0.03   | 0.08   | 0.13  | 0.26*  | -0.10  | 0.06   |        |        |        | -0.26* | 0.43*  | 0.36*  | 0.13  | -0.02  |
| Nigeria         | -0.26* | -0.22* |       | -0.31* | -0.53* | 0.11   | -0.55* | 0.09   | -0.25* | 0.38* | -0.04  | 0.33*  |        |        |        |        | 0.38*  | -0.09  | -0.22* | 0.30* | 0.11   |
| South Africa    | -0.12  | 0.12   |       | 0.47*  | -0.54* | 0.39*  | 0.04   | -0.43* | -0.28* | 0.32* | 0.71*  | -0.56* | 0.22*  | 0.56*  | 0.63*  | 0.15   | 0.13   | 0.01   | -0.02  | 0.17  | 0.18   |
| Senegal         | 0.12   | 0.02   |       | 0.07   | -0.87* | -0.18  |        |        |        |       |        |        |        |        |        | 0.57*  | 0.45*  |        |        | 0.50* | -0.40* |
| North Africa    |        |        |       |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |        |       |        |
| Israel          | 0.19   | -0.43* |       | 0.19   | -0.49* | 0.04   |        |        |        | 0.14  | 0.35*  | -0.25* | 0.13   | 0.25*  | 0.37*  |        | -0.02  | -0.23* | -0.12  | 0.04  | 0.24*  |
| Jordan          | -0.16  | -0.14  |       | -0.04  | -0.91* | -0.06  | -0.16  | -0.70* | -0.28* | 0.07  | -0.03  | 0.09   |        |        |        | 0.17   | 0.35*  |        |        | -0.04 | 0.73*  |
| Morocco         | -0.24* | -0.07  |       | 0.10   | -0.66* | -0.06  | 0.29*  | 0.24*  | 0.13   | 0.13  | -0.06  | 0.21   | -0.14  |        |        | 0.18   | 0.03   | -0.09  | -0.29* | 0.20  | 0.08   |
| Tunisia         | -0.15  | -0.43* |       | 0.34*  | -0.53* | 0.30*  |        |        |        | 0.31* | 0.08   | 0.32*  |        |        |        | 0.43*  |        | -0.09  | -0.13  | 0.34* | 0.18   |
| Latin America   |        |        |       |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |        |       |        |
| Argentina       | 0.60*  | 0.24*  |       | 0.60*  | -0.79* | 0.18   | 0.74*  | 0.71*  | -0.39* | 0.39* | 0.74*  | -0.69* | 0.28*  | 0.71*  | 0.90*  |        | -0.80* |        |        | 0.61* | 0.20   |
| Barbados        | -0.44* | -0.12  |       | 0.05   | -0.69* | 0.35*  | 0.20   | 0.20   | 0.02   | 0.07  | 0.38*  | -0.15  |        |        |        |        | 0.20   |        |        | 0.45* | 0.28*  |
| Brazil          | 0.42*  | 0.40*  |       | 0.37*  | -0.59* | 0.28*  | 0.51*  | 0.53*  | -0.14  | 0.16  | 0.58*  | -0.52* | -0.32* | 0.49*  | 0.64*  | -0.76* | -0.74* |        |        | 0.56* | -0.07  |
| Colom bia       | -0.30* | 0.23*  |       | 0.07   | -0.48* | 0.09   | 0.35*  | 0.17   | 0.12   | 0.20  | 0.40*  | -0.19  | 0.17   | 0.64*  | 0.67*  | 0.30*  | 0.27*  | 0.26*  | 0.29*  | 0.28* | 0.04   |
| Chile           | -0.01  | -0.13  | -0.05 | 0.45*  | -0.52* | -0.14  |        |        |        | 0.58* | -0.20  | 0.52*  |        | 0.22*  | -0.95* | -0.32* | -0.22* | 0.11   | 1.00*  | 0.60* | 0.31*  |
| Mexico          | -0.33* | -0.52* | 0.28* | 0.05   | 0.02   | 0.47*  | -0.11  | -0.31* | -0.09  | 0.35* | 0.77*  | -0.61* |        | 0.56*  | 0.80*  | -0.47* | -0.48* |        |        | 0.33* | 0.13   |
| Peru            | -0.39* | -0.05  |       | -0.46* | -0.68* | 0.17   | -0.23* | 0.15   | -0.10  | -0.04 | 0.67*  | -0.55* |        |        | 0.77*  |        | -0.34* |        |        | 0.26* | 0.13   |
| Trinidad        | -0.22* | -0.15  |       | -0.19  | -0.83* | 0.02   |        |        |        | 0.02  | 0.01   | 0.02   | -0.09  |        |        |        | -0.07  | -0.13  | -0.23* | 0.17  | 0.11   |
| Uruguay         | -0.14  | -0.04  |       | 0.36*  | -0.40* | -0.20  | 0.36*  | -0.37* | -0.21  | 0.50* | 0.66*  | -0.27* |        |        |        | 0.31*  | -0.36* | -0.27* | -0.12  | 0.33* | 0.25*  |
| Asia            |        |        |       |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |        |       |        |
| Bangladesh      | 0.06   | 0.12   |       | 0.26*  | -0.59* | 0.33*  |        |        |        | -0.01 | 0.31*  | -0.27* |        |        |        |        | 0.06   |        |        | 0.07  | -0.17  |
| Hong Kong       | 0.07   | 0.28*  | 0.41* | 0.69*  | -0.61* | 0.29*  | -0.21  | -0.58* | -0.32* | 0.64* | 0.66*  | -0.32* | -0.56* | 0.63*  | 0.62*  | 0.11   | 0.33*  | 0.09   | 0.07   | 0.22* | 0.35*  |
| India           | -0.40* | -0.10  |       | -0.02  | -0.16  | 0.44*  |        |        |        | 0.06  | -0.45* | 0.20   | 0.32*  |        |        | 0.42*  | 0.04   |        |        | 0.54* | 0.47*  |
| Korea, South    | -0.48* | -0.25* |       | 0.33*  | -0.44* | 0.19   | -0.04  | -0.39* | -0.28* | 0.35* | 0.53*  | -0.32* | 0.36*  | 0.32*  | 0.47*  | -0.30* | -0.36* |        |        | 0.21  | 0.24*  |
| Malaysia        | -0.07  | 0.15   |       | 0.02   | -0.91* | -0.11  | -0.21  | -0.68* | -0.32* | 0.55* | 0.26*  | -0.03  | 0.53*  | -0.32* | -0.06  | 0.81*  | 0.75*  | 0.36*  | 0.32*  | 0.43* | 0.18   |
| Philippines     | 0.05   | 0.13   |       | 0.18   | -0.93* | 0.26*  | -0.03  | -0.89* | -0.20  | 0.10  | 0.59*  | -0.15  | 0.45*  | 0.02   | 0.20   | 0.23*  | 0.08   | 0.28*  | 0.35*  | 0.09  | -0.24* |
| Pakistan        | 0.13   | 0.24*  |       | -0.07  | -0.57* | 0.00   |        |        |        | 0.24* | 0.23*  | 0.03   | 0.05   |        |        | 0.00   |        | -0.01  | 0.00   | 0.15  | -0.02  |
| Turkey          | -0.13  | -0.26* |       | -0.37* | -0.78* | 0.65*  |        |        |        | 0.11  | 0.64*  | -0.55* | 0.08   | 0.67*  | 0.79*  | -0.22* |        |        |        | 0.16  | -0.10  |
| East Europe     |        |        |       |        |        |        |        |        |        |       |        |        |        |        |        |        |        |        |        |       |        |
| Hungary         | -0.59* | 0.18   | 0.30* | -0.57* | -0.84* | 0.42*  | -0.63* | -0.87* | -0.61* | 0.12  | 0.00   | 0.11   | 0.36*  | -0.30* | 0.01   |        | -0.01  | -0.34* | -0.69* | 0.35* | 0.48*  |
| Lithuania       | -0.10  | 0.03   |       | 0.41*  | -0.94* | 0.24*  | 0.44*  | -0.90* | 0.65*  | -0.07 | -0.01  | -0.11  | 0.10   | 0.29*  |        | -0.12  | -0.02  |        |        | 0.20  | 0.23*  |
| Macedonia       | -0.25* | 0.46*  | 0.24* | 0.07   | -0.35* | 0.21   |        |        |        | 0.43* | 0.27*  | 0.07   |        |        |        |        | 0.09   | -0.15  | -0.22* | 0.12  | -0.20  |
| Romania         | -0.62* | -0.28* | 0.56* | -0.31* | -0.86* | -0.42* | -0.02  | 0.10   | 0.44*  | 0.58* | 0.64*  | 0.01   |        | -0.11  | 0.85*  |        |        |        | 0.29*  | 0.23* | 0.14   |
| Slovenia        | 0.58*  | 0.56*  | 0.34* | 0.35*  | -0.56* | -0.27* | 0.27*  | -0.64* | 0.17   | 0.22  | 0.09   | 0.17   |        | -0.59* | -0.63* | -0.04  | 0.25*  |        |        | 0.36* | 0.12   |
| Slovak Republic | 0.13   | -0.46* | 0.00  | 0.38*  | -0.59* | -0.46* |        |        |        | 0.50* | 0.55*  | 0.08   |        | -0.10  | 0.04   | 0.22*  | 0.45*  | 0.02   | -0.11  | 0.11  | -0.14  |

Table 6(a). Contemporaneous Correlation with Real Domestic Output

|                          | CPI                | CCPI    | RW    | BM   | BMVI   | RDC   | GEX    | GREV   | FI     | EXP   | IMP               | ТВ                 | тот               | RPC                | RGFCF | RMMR  | RLR    | NEER              | REER              | wo                 | WIR               |
|--------------------------|--------------------|---------|-------|------|--------|-------|--------|--------|--------|-------|-------------------|--------------------|-------------------|--------------------|-------|-------|--------|-------------------|-------------------|--------------------|-------------------|
| US, UK and Japan         | -0.44*             | 0.31*   | 0.40* | 0.16 | -0.48* | 0.46* | -0.23* | 0.59*  | -0.70* | 0.30* | 0.56*             | -0.40*             | -0.26*            | 0.52*              | 0.71* | 0.34* | 0.34*  | -0.21             | -0.24*            | 0.73*              | 0.45*             |
| Africa                   | -0.07§             | -0.08   |       | 0.08 | -0.64* | 0.09  | -0.14  | -0.10  | -0, 15 | 0.16  | 0.26*             | -0.13              | 0.16 <sup>6</sup> | 0.56*              | 0.63* | 0.28* | 0.18   | 0.07              | -0.01             | 0.22 <sup>*</sup>  | 0.02 <sup>§</sup> |
| North Africa             | -0.09              | -0.27*5 |       | 0.15 | -0.65* | 0.06  | 0.06   | -0.23* | -0.08  | 0.16  | 0.08 <sup>§</sup> | 0.09 <sup>6</sup>  | 0.00              | 0.25*              | 0.37* | 0.26* | 0.12   | -0.13             | -0.18             | 0.14 <sup>§</sup>  | 0.31*             |
| Latin America            | -0.09              | -0.02   | 0.11  | 0.14 | -0.55* | 0.14  | 0.26*  | 0.15   | -0.11  | 0.25* | 0.44*             | -0.27*             | 0.01              | 0.53*              | 0.47* | -0.19 | -0.28* | -0.01             | 0.24*             | 0.40 <sup>‡§</sup> | 0.15 <sup>§</sup> |
| Asia                     | -0.10 <sup>§</sup> | 0.04    | 0.41* | 0.13 | -0.62* | 0.26* | -0.12  | -0.64* | -0.28* | 0.25* | 0.35*             | -0.17              | 0.18              | 0.26*              | 0.40* | 0.15  | 0.15   | 0.18 <sup>5</sup> | 0.18 <sup>§</sup> | 0.24 <sup>‡§</sup> | 0.09 <sup>§</sup> |
| Eastern Europe           | -0.14              | 0.08    | 0.29* | 0.06 | -0.69* | -0.05 | 0.01   | -0.58* | 0.16   | 0.30* | 0.26*             | 0.06 <sup>§</sup>  | 0.23*             | -0.16 <sup>§</sup> | 0.06  | 0.02  | 0.15   | -0.16             | -0.18             | 0.23*              | 0.11 <sup>§</sup> |
| All Developing Countries | -0.10 <sup>§</sup> | -0.03   | 0.26* | 0.11 | -0.62* | 0.11  | 0.05   | -0.23* | -0.09  | 0.24* | 0.31*             | -0.12 <sup>§</sup> | 0.12 <sup>6</sup> | 0.23*              | 0.36* | 0.08  | 0.01   | 0.01 <sup>§</sup> | 0.02 <sup>§</sup> | 0.27* <sup>§</sup> | 0.13 <sup>§</sup> |

Table 6(b). Summary of Contemporaneous Correlations with Real Domestic Output (by Region)

#### Table 6(c). Summary of Contemporaneous Correlations with Real Domestic Output (by Income)

|              | CPI                | CCPI  | RW    | BM   | BMV    | RDC   | GEX    | GREV   | FI     | EXP   | IMP   | ТВ                 | TOT    | RPC   | RGFCF | RMMR  | RLR   | NEER              | REER   | WO                 | WIR               |
|--------------|--------------------|-------|-------|------|--------|-------|--------|--------|--------|-------|-------|--------------------|--------|-------|-------|-------|-------|-------------------|--------|--------------------|-------------------|
| High         | -0.44*             | 0.31* | 0.40* | 0.16 | -0.48* | 0.46* | -0.23* | 0.59*  | -0.70* | 0.30* | 0.56* | -0.40*             | -0.26* | 0.52* | 0.71* | 0.34* | 0.34* | -0.21             | -0.24* | 0.73*              | 0.45*             |
| Upper Middle | -0.08 <sup>§</sup> | -0.04 | 0.26* | 0.16 | -0.57* | 0.06  | 0.15   | -0.21  | -0.10  | 0.27* | 0.39* | -0.11 <sup>§</sup> | 0.04   | 0.22* | 0.34* | 0.01  | -0.04 | 0.00              | 0.07   | 0.30* <sup>§</sup> | 0.17 <sup>§</sup> |
| Lower Middle | -0.19 <sup>§</sup> | -0.02 | 0.24* | 0.03 | -0.68* | 0.14  | -0.03  | -0.30* | -0.11  | 0.17  | 0.25* | 0.00 <sup>§</sup>  | 0.15   | 0.02  | 0.49* | 0.25* | 0.04  | -0.01             | -0.07  | 0. 16 <sup>§</sup> | 0.12              |
| Low          | -0.06 <sup>§</sup> | -0.04 |       | 0.02 | -0.57* | 0.12  | -0.23* | 0.06   | -0.09  | 0.10  | 0.07  | 0.05               | 0.15   |       |       | 0.27* | 0.15  | 0.07 <sup>§</sup> | -0.01  | 0.24* <sup>§</sup> | 0.03 <sup>§</sup> |

WO - world real output, WIR - world real interest rate. For other variable names, see Table 4(c).

Note that numbers marked in bold indicate weak contemporaneous correlation and numbers marked in bold with a \* indicate strong contemporaneous correlation. All of the variables refer to the Hodrick-Prescott filtered cyclical component. Significant differences from the developed country benchmarks (the United States, United Kingdom and Japan) are denoted by g (p < 0.05) and **g** (p < 0.01).

Examination of Table 6(c) would seem to suggest that contemporaneous correlation between domestic output and the world real interest rate increases as economies become relatively more developed. This may reflect the fact that as economies develop, their domestic capital markets become more sophisticated and thus are more likely to be influenced by changes in international credit conditions.

Overall, findings for both of world output and world real interest rate are consistent with Agénor *et al.* (2000).

### (b) Prices, Inflation and Real Wages

For the industrialised countries, there is a clear pattern of countercyclical prices and a substantial literature documenting this. For developing countries, however this pattern is not nearly so clear. Rand and Tarp (2002) report a large negative association between CPI and GDP, whilst Agénor *et al.* (2000) find a generally negative pattern with a few significant positive relationships in Chile, Mexico, the Philippines and Uruguay.

Table 6(a) reports significant countercyclical prices for the US, the UK and Japan, and similarly prices are countercyclical in eighteen of the developing countries, and strongly so in thirteen of these. However, prices are acyclical in six of the developing countries and procyclical in eight. In particular, Argentina, Brazil and the Slovak Republic have strongly procyclical prices. Thus, this supports the findings of Agénor *et al.* (2000) that there is not a consistent negative relationship for the developing countries.

There is a similar lack of consistency in the relationship between output and inflation in the developing countries. Looking at Table 6(a), inflation is strongly procyclical in the industrialised countries and in sixteen of the developing countries, whilst it is countercyclical in the remaining seventeen developing countries. Looking closer, however, there does appear to be a relationship between the CPI correlations and the inflation correlations for the developing countries; there is a tendency for those developing countries with countercyclical CPI to also exhibit countercyclical inflation. This is a significant difference from the pattern of procyclical inflation and countercyclical prices in the industrialised countries.

The identification of the pattern of price and inflation correlations with output is necessary for the correct classification of demand and supply shocks. Chadha and Prasad (1994), amongst others, identify that if fluctuations in output are attributable to demand shocks, then both prices and inflation should be procyclical. Conversely, if such fluctuations are attributable to supply shocks, both prices and inflation should be countercyclical. For many of the countries examined here, including the developed countries, it is therefore difficult to clearly identify whether business cycle fluctuations are driven by supply or demand shocks. However, for several of the developing countries there is a clear pattern of both countercyclical prices and inflation.<sup>9</sup> Consequently, it is plausible that business cycles in these countries are driven by supply shocks. Conversely, both prices and inflation are strongly procyclical in Argentina, Brazil and Slovenia, suggesting that business cycle fluctuations in these countries are attributable to demand shocks.

<sup>&</sup>lt;sup>9</sup> Both prices and inflation are strongly countercyclical in Malawi, Nigeria, Mexico, South Korea and Romania.

The correlation between output and real wages shows much more consistency. In almost all the countries, both developing and developed, the contemporaneous correlation is positive suggesting procyclical real wages. The only exceptions in this case are Chile and the Slovak Republic, where real wages are acyclical. As discussed in Agénor *et al.* (2000), the identification of whether real wages are procyclical or countercyclical has important implications for the choice of theoretical model to represent developing country business cycles. The procyclical wages in this case suggest the application of either a New Keynesian model with imperfect competition and countercyclical mark-ups, or a real business cycle model.

#### (c) Consumption and Investment

Real private consumption is strongly procyclical for the OECD countries and for the majority of the developing countries in the sample. However, real private consumption is countercyclical for four developing countries, three of which are East European countries. With the exception of the East European countries, this is consistent with Rand and Tarp (2002) who find a robust positive relationship between output and both public and private consumption.

Similarly, investment is strongly procyclical for the majority of countries in the sample, and almost all of these peak at a zero lag, which is identical to the finding of Rand and Tarp (2002). Two significant exceptions to this are Chile and Slovenia with very strongly countercyclical investment.

#### (d) Public Sector Variables

Fiscal policy can either dampen or exacerbate business cycle fluctuations depending on its timing. To have a stabilising effect on the economy, government expenditure should be countercyclical, whilst government revenues should be procyclical. Examining Tables 6(a), 6(b) and 6(c) reveals that there is no consistent relationship between output and government expenditures, or government revenues, for either the developed or developing countries. The US and the UK both exhibit strongly countercyclical government expenditures, whilst Japan has strongly procyclical government expenditures. However, upon reducing the time series for the developed countries to 1980:1 to 2005:1, government expenditures in the US and UK remain strongly countercyclical, whilst becoming acyclical in Japan. The situation is worse for the developing countries, where it is even more critical for business cycle fluctuations to be smoothed, with evidence of strongly countercyclical expenditures in just three of the developing countries, whilst there is evidence of strongly procyclical expenditures in seven countries.

Furthermore, just six of the developing countries exhibit procyclical government revenues, whilst eleven of the developing countries have strongly countercyclical government revenues. Thus, the governments in these countries need to address their revenue sources to ensure these do not reinforce fluctuations in the business cycle. Agénor *et al.* (2000) similarly find countercyclical government revenues and suggest this is likely to result from the negative effects of increases in tax revenues; however, this is based on a sample of just four developing countries.

To measure the net effect of government expenditure and revenue on the domestic business cycle, the fiscal impulse is used. The fiscal impulse, as defined by Agénor *et al.* (2000), is the ratio of government expenditures to government revenue, and to be a stabilising influence on the business cycle it should be countercyclical. Eleven of the developing countries have significantly countercyclical fiscal impulses. However, five countries have significantly procyclical fiscal impulses, of which three are Eastern European countries.

#### (e) Money, Credit and Interest Rates

Monetary policy is an important tool in macroeconomic stabilisation. However, the question of whether changes in money actually cause output fluctuations remains a pertinent one, both for developed and developing countries.<sup>10</sup> It is, thus, important to examine the relationship between the business cycle and monetary variables.

The first relationship is that between the business cycle and broad money.<sup>11</sup> Examination of Tables 6(a), (b) and (c) reveals that, on average, broad money is either weakly procyclical or acyclical. However, money is countercyclical in a number of developing countries; Hungary, Nigeria, Tunisia, Peru and Trinidad and Tobago. From the correlations between the business cycle and leads and lags of broad money, it is possible to both assess whether money leads or lags the cycle. Additionally, if money leads the cycle, it is important to assess the speed at which changes in money are transmitted to economic activity. Firstly, for the developed countries, money leads the cycle in both the US and Japan and innovations in money are transmitted fairly quickly; within one quarter for Japan and within three guarters for the US. However, broad money appears to lag the business cycle in the UK, thus suggesting that money is influenced by output, rather than influencing it. Secondly, excluding the countries for which money is countercyclical, this relationship is examined for the developing countries. This analysis reveals that money leads the cycle for eleven, is synchronous for four and lags the cycle for seven developing countries. For all of the countries in which money leads the cycle, monetary innovations are transmitted within three quarters.

To further examine whether *money causes output*, Granger causality tests of the cyclical components of broad money and output were performed. The results provide evidence that *money causes output* in a number of countries, including the US, Japan, Brazil, Chile, Côte D'Ivoire, Lithuania, South Africa and South Korea. Conversely, there was also evidence that *output causes money* in several countries; Hungary, Malawi, Turkey and Trinidad and Tobago. In all other countries there was no clear pattern of causality. However the results were often sensitive to the choice of lags; the results for four and eight lags are available in Appendix B. The Granger causality tests and the examination of whether money leads or lags the business cycle, provide some evidence to suggest that money does influence output in developing countries. Monetary shocks are, therefore, important sources of business cycle fluctuations.

 <sup>&</sup>lt;sup>10</sup> For example, see Sims (1972, 1980), Christiano and Ljungqvist (1988), Hafer and Kutan (2001) and Rusek (2001)
 <sup>11</sup> The results of correlations between output and the other monetary aggregates (reserve money, narrow

<sup>&</sup>lt;sup>14</sup> The results of correlations between output and the other monetary aggregates (reserve money, narrow money (M1) and quasi money) follow a very similar pattern to those for broad money; consequently this analysis follows Agénor *et al.* (2000) and concentrates solely on broad money.

Following Agénor *et al.* (2000), the broad money velocity indicator is used to examine the velocity of money. The contemporaneous correlations are strongly countercyclical for all countries, with the exception of the UK and Mexico. This exactly corresponds to the findings of Agénor *et al.* (2000).

Another monetary variable which has been found by Agénor et al. (2000) and Rand and Tarp (2002) to have an important influence on the business cycle in some developing countries is real domestic private sector credit. Since equity markets are weakly capitalised in developing countries, relative to the industrialised countries, domestic private sector credit is thought to fulfil an important role in determining investment and hence economic activity in these countries. From Tables 6(a), (b) and (c) it is apparent that there is no clear pattern of cyclicality between output and real domestic private sector credit amongst the developing countries. However, it is procyclical for eighteen of the thirty-two countries. In the developed countries, where private sector credit should play a less important role, it is strongly procyclical. To examine whether credit influences output or vice versa, it is necessary to examine whether credit leads or lags the business cycle. For the majority of countries credit lags the business cycle, thus suggesting that it is fluctuations in output that influence credit. There are just three countries in which credit is both procyclical and leads the cycle: Japan, Peru and Nigeria. Granger causality test reveal a similar picture, with either no clear pattern of causation or with output causing credit; the only two countries for which there is significant evidence that credit causes output are Chile and Japan.

Finally, when considering the impact of monetary policy on the business cycle, it is also necessary to examine the relationship between output and interest rates. This relationship was not considered in either Agénor *et al.* (2000) or Rand and Tarp (2002). However, Neumeyer and Perri (2005) find real interest rates to be mildly procyclical in developed countries and countercyclical in developing countries. This is based on results for Argentina, Brazil, Korea, Mexico, and the Philippines. Similarly, Uribe and Yue (2005) find real interest rates to be countercyclical in five developing economies:<sup>12</sup> Argentina, Brazil, Ecuador, Mexico and Peru.

Tables 6(a), (b) and (c) report the correlations between output and both the real money market rate and the real lending rate. Both real interest rate variables are procyclical in the developed countries, and strongly so in the US and Japan. However, the results for the developing countries are much more varied. On average real interest rates are weakly procyclical in Africa, North Africa, Asia and Eastern Europe and countercyclical in Latin America. This countercyclicality of interest rates may be explained by the use of interest rates to target inflation during the 1980s and early 1990s, when most of the Latin American countries experienced a combination of extremely high inflation rates and slow economic growth. Thus, the distinct countercyclical relationship that Neumeyer and Perri (2005) and Uribe and Yue (2005) document is not characteristic of most developing country business cycles. This finding is particularly significant as there have been several recent papers that incorporate this feature into theoretical models of emerging market business cycles, including Neumeyer and Perri (2005), Uribe and Yue (2005), Aguiar and Gopinath (2006) and Arellano (2008).

<sup>&</sup>lt;sup>12</sup> Uribe and Yue (2005) find real interest rates to be acyclical in the Philippines and South Africa, the only other developing countries in their sample.

Examining whether the real interest rates lead or lag the cycle, it is evident that these lag the cycle by around three quarters in the developed countries, whilst they tend to lead the cycle in the North African and Eastern European countries. There is no clear pattern amongst the other regions. To further consider whether interest rates cause the business cycle, Granger causality tests were used. These revealed that real interest rates cause output in one third of the developing countries,<sup>13</sup> whilst being caused by output in just four developing countries; for all the other countries, including the developed countries, there was no evidence of unidirectional causation. Thus, interest rates do appear to be an important source of business cycle movements in developing countries.

#### (f) Trade and Exchange Rates

The final correlation analysis concerns the relationship between the business cycle and trade related variables, including the trade balance, the terms of trade and exchange rates. Following Agénor *et al.* (2000), the trade balance is constructed as the ratio of exports to imports at current prices.

Firstly, imports and exports are strongly procyclical in the developed countries, and are correspondingly procyclical in the majority of the developing countries. The only significant exceptions to this are Chile and India which have weakly and strongly countercyclical imports respectively. However, the results for the trade balance are not as consistent; for the developed countries and sixteen of the developing countries the trade balance is countercyclical, whilst for seven countries it is procyclical, and strongly so in Chile, Nigeria and Tunisia. The procyclicality of the trade balance can be explained by the strong positive relationship between the business cycle and exports and the acyclicality of imports, which in combination will result in a positive trade balance during expansions and a negative trade balance during recessions. This is the opposite of the developed country case, where expansionary business cycle phases result in increased demand for imports and thus a negative trade balance. The close relationship between exports and the business cycle in these countries may extend from the implementation of export-led or outward-looking development strategies.

The terms of trade provide an interesting distinction between the developed and the developing countries. Terms of trade are countercyclical for the developed countries. However, just three of the developing countries are similarly countercyclical (Brazil, Morocco and Hong Kong); for the majority the terms of trade are strongly procyclical. This is similar to the findings of both Agénor *et al.* (2000) and Rand and Tarp (2002), although for somewhat smaller samples. Agénor *et al.* (2000) suggest that, under the assumption that the developing economies are too small to affect world prices, the procyclical relationship may reflect demand shifts that yield simultaneous increases in world prices and demand for the country's exports. As such, both the economy's terms of trade and output would increase.

The weak relationship between the exchange rate and the rest of the economy is well documented in the literature, and is known as the *exchange rate disconnect puzzle* following Obstfeld and Rogoff (2000). Thus, it is unlikely that there will be a clear pattern

<sup>&</sup>lt;sup>13</sup> Brazil, Chile, South Korea, Malaysia, Mexico, Nigeria, Peru, Senegal, Slovenia, South Africa and Turkey.

of correlations between output and exchange rates for the sample of developing countries. However, for completeness this relationship is considered.

For the developed countries, both the nominal and real effective exchange rates are countercyclical, although as expected there is no clear configuration between the developing countries. The only distinct pattern that emerges is that for most countries both nominal and real exchange rates exhibit the same cyclicality relationship. A similar pattern is observed by Agénor *et al.* (2000).

### 5.4. Cross-Correlation of Output between Countries

The final intention of this paper is to examine the degree of business cycle synchronisation by measuring pair-wise correlations, both between developing countries and between developing and developed countries. There is known to be a close relationship between industrialised country business cycles; for example, Backus, Kehoe and Kydland (1995) find strong positive correlations between US output and nine other industrialised country business cycles.<sup>14</sup> However, the degree of synchronisation for developing country cycles is rather more varied. Kose *et al.* (2003) find that a "world factor" explains much of the variation in industrialised country business cycles, whilst developing country business cycle fluctuations tend to be country specific, particularly in Asia and Africa, and consequently they display little comovement with the rest of the world.

There is reason to believe that the business cycles of developing countries will be correlated with the business cycles of their major trading partners and investors. As discussed in Aruoba (2001), a procyclical and leading relationship is expected between the lender country's business cycle and the receiving country's cycle. However, the results show no clear relationship between the business cycles of Turkey and its lender countries. A similarly procyclical and leading relationship is to be expected between a developing country's cycle and the countries that are the key recipients of its exports. If the purchasing country's exports will decline stimulating the onset of a recession. However, Caldéron *et al.* (2007) find that whilst trade intensity is an important factor in increasing business cycle synchronisation amongst the industrialised countries, this is of significantly less importance in the synchronisation between developed and developing country cycles and between developing country cycles.

Table 7 details the cross-country correlations, and as expected there is very strong synchronisation of the US, UK and Japanese business cycles, whilst the degree of synchronisation for the developing countries is rather more varied.

Examining the correlation between the developed and developing country pairs, there is evidence of strong synchronisation for a large proportion of the developing countries, particularly within the Latin American and Asian regions. In most cases where there is a significant correlation, the developed country is one of the key purchasers of the developing country's exports; for example, throughout the sample period the US was the main procurer of Colombia's exports.

<sup>&</sup>lt;sup>14</sup> The industrialised countries include Australia, Austria, Canada, France, Germany, Italy, Japan, Switzerland and the UK.

|    | US | UK    | JP    | AG    | BB    | BR    | СВ    | CL    | MX    | PE    | TT    | UG    | BG     | НК    | IN    | ко    | MY    | PK    | PH    | тк    | N     | MI     | NG     | SG     | SA     | 15    | JO     | MC     | HN    | LT     | MK     | RM     | 5X     | 5J     |
|----|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|--------|--------|--------|
| US |    | 0.65* | 0.62* | 0.55* | 0.30* | 0.18  | 0.32* | 0.43* | 0.23* | 0.05  | 0.04  | 0.34* | -0.08  | 0.37* | 0.21  | 0.28* | 0.45* | 0.09  | -0.03 | 0.20  | 0.09  | 0.05   | 0.17   | -0.15  | 0.04   | 0.16  | 0.20   | 0.07   | 0.46* | 0.05   | 0.23*  | 0.12   | -0.29* | -0.01  |
| υк |    |       | 0.46* | 0.36* | 0.17  | 0.35* | 0.16  | 0.18  | -0.07 | 0.01  | -0.07 | -0.01 | -0.16  | 0.24* | 0.27* | 0.38* | 0.40* | 0.01  | 0.06  | -0.05 | 0.10  | 0.01   | 0.16   | -0.25* | -0.04  | 0.21  | 0.07   | 0.20   | 0.61* | -0.12  | -0.07  | 0.42*  | 0.02   | 0.29*  |
| JP |    |       |       | 0.50* | 0.40* | 0.45* | 0.09  | 0.25* | 0.27* | -0.13 | 0.00  | 0.17  | -0.22* | 0.16  | 0.28* | 0.34* | 0.48* | 0.10  | 0.40* | 0.27* | -0.07 | 0.21   | 0.30*  | -0.17  | 0.23   | 0.06  | 0.06   | 0.21   | 0.21  | -0.25* | 0.01   | 0.37*  | 0.16   | 0.26*  |
| AG |    |       |       |       | 0.34* | 0.10  | 0.15  | 0.47* | 0.51* | 0.09  | -0.02 | 0.58* | -0.05  | -0.01 | 0.17  | -0.11 | 0.32* | 0.02  | -0.21 | 0.63* | -0.10 | 0.41*  | 0.02   | -0.22* | -0.34* | 0.24* | -0.34* | 0.11   | 0.21  | 0.08   | 0.23*  | -0.26* | -0.12  | -0.09  |
| вв |    |       |       |       |       | 0.08  | 0.07  | 0.03  | 0.05  | -0.11 | 0.19  | 0.16  | -0.20  | -0.10 | 0.37* | 0.08  | 0.18  | -0.10 | -0.10 | 0.15  | 0.14  | 0.09   | 0.19   | 0.02   | 0.05   | -0.07 | 0.12   | 0.14   | 0.26* | 0.01   | 0.01   | 0.23*  | 0.03   | 0.22   |
| BR |    |       |       |       |       |       | 0.12  | -0,15 | 0.05  | 0.62* | -0.02 | 0.03  | 0.20   | 0.45* | 0.10  | 0.22* | 0.39* | -0.09 | 0.32* | -0.01 | 0.03  | 0.10   | 0.00   | -0.20  | 0.42*  | 0.35* | 0.21   | 0.03   | 0.30* | -0.18  | -0.14  | 0.42*  | 0.09   | 0.41*  |
| св |    |       |       |       |       |       |       | 0.46* | 0.09  | 0.42* | 0.36* | 0.44* | 0.29*  | 0.31* | 0.05  | -0.07 | 0.20  | 0.24* | 0.17  | 0.26* | 0.25* | -0.01  | 0.03   | 0.16   | 0.19   | 0.11  | 0.31   | -0.06  | 0.07  | 0.32*  | -0.16  | 0.11   | 0.45*  | 0.17   |
| CL |    |       |       |       |       |       |       |       | 0.08  | 0.15  | 0.19  | 0.52* | -0.15  | 0.42* | -0.12 | 0.03  | 0.20  | 0.07  | 0.17  | 0.20  | 0.10  | 0.05   | 0.31*  | -0.12  | 0.01   | -0.15 | 0.20   | -0.12  | -0.06 | 0.07   | 0.05   | 0.01   | 0.21   | 0.07   |
| MX |    |       |       |       |       |       |       |       |       | 0.02  | 0.01  | 0.37* | -0.10  | -0.21 | -0.15 | -0.21 | 0.04  | 0.13  | -0.16 | 0.19  | 0.06  | 0.11   | 0.32*  | -0.05  | 0.20   | -0.03 | 0.01   | 0.02   | -0.12 | 0.02   | 0.36*  | -0.28* | -0.48* | -0.01  |
| PE |    |       |       |       |       |       |       |       |       |       | 0.44* | 0.46* | 0.32*  | 0.25* | 0.17  | 0.16  | 0.02  | 0.08  | 0.14  | 0.19  | 0.59* | -0.31* | 0.03   | 0.05   | 0.13   | 0.25* | 0.26*  | -0.22* | 0.15  | -0.23* | -0.29* | 0.12   | 0.27*  | 0.44*  |
| тт |    |       |       |       |       |       |       |       |       |       |       | 0.32* | 0.05   | 0.14  | 0.00  | 0.04  | -0.05 | 0.19  | -0.05 | 0.10  | 0.23* | -0.15  | -0.06  | 0.21   | -0.09  | 0.11  | 0.10   | 0.01   | -0.13 | 0.02   | -0.10  | -0.09  | 0.26*  | 0.29*  |
| UG |    |       |       |       |       |       |       |       |       |       |       |       | 0.18   | 0.38* | 0.22* | 0.02  | 0.00  | 0.07  | -0.09 | 0.24* | 0.40* | -0.11  | 0.17   | 0.05   | 0.21   | 0.13  | 0.20   | -0.01  | 0.09  | 0.05   | 0.26*  | 0.03   | 0.07   | 0.24*  |
| BG |    |       |       |       |       |       |       |       |       |       |       |       |        | 0.28* | 0.08  | 0.02  | 0.07  | 0.23* | 0.23* | 0.08  | -0.04 | -0.16  | -0.36* | 0.07   | 0.24*  | 0.13  | 0.21   | -0.07  | 0.12  | 0.20   | -0.20  | 0.07   | 0.17   | 0.27*  |
| нк |    |       |       |       |       |       |       |       |       |       |       |       |        |       | 0.16  | 0.50* | 0.34* | -0.12 | 0.3Z* | -0.07 | 0.04  | -0.12  | -0.10  | -0,20  | 0.35*  | 0.40* | 0.16   | -0.01  | 0.32* | 0.04   | -0.21  | 0.21   | 0.21   | 0.39*  |
| IN |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       | 0.32* | 0.26* | -0.20 | 0.24* | 0.13  | 0.12  | -0.01  | 0.02   | 0.05   | 0.08   | 0.30* | 0.13   | 0.11   | 0.47* | -0.22  | -0.13  | 0.41*  | 0.25*  | 0.31*  |
| ко |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       | 0.36* | -0.13 | 0.49* | -0.12 | 0.03  | -0.01  | -0.11  | -0,19  | -0.04  | 0.23* | 0.12   | 0.05   | 0.34* | -0.35* | -0.06  | 0.29*  | -0.04  | 0.24*  |
| MY |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       | -0.03 | 0.43* | 0.02  | -0.10 | 0.03   | 0.05   | -0.36* | 0.49*  | -0.05 | 0.02   | 0.12   | 0.42* | -0.30* | -0.02  | 0.44*  | 0.21   | 0.27*  |
| РК |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       | -0.05 | 0.27* | 0.01  | 0.07   | 0.03   | 0.15   | 0.05   | -0.03 | 0.10   | -0.12  | -0.13 | 0.11   | 0.09   | -0.13  | 0.02   | 0.00   |
| PH |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       | 0.02  | -0.14 | 0.00   | -0.03  | -0.15  | 0.43*  | 0.12  | 0.07   | -0.04  | 0.03  | -0.24* | -0.23* | 0.48*  | 0.18   | 0.17   |
| тк |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       | -     | 0.14  | 0.25*  | 0.17   | 0.08   | -0.09  | 0.23* | 0.08   | -0.12  | -0.08 | 0.25*  | 0.11   | -0.07  | 0.03   | -0.19  |
| N  |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       | -     | -0.20  | 0.16   | 0.07   | -0.07  | -0.01 | 0.10   | -0.01  | 0.11  | 0.10   | -0.13  | 0.02   | -0.18  | -0.01  |
| м  |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        | -0.05  | 0.03   | -0.04  | -0.03 | -0.07  | 0.25*  | -0.20 | -0.22* | -0.10  | -0.03  | 0.34*  | 0.20   |
| NG |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        | -0.01  | 0.10   | -0.02 | -0.20  | 0.12   | 0.06  | -0.09  | 0.19   | 0.11   | 0.22*  | 0.15   |
| SG |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        | -0.33* | -0.15 | 0.12   | 0.05   | -0.18 | 0.05   | -0.08  | -0.21  | 0.09   | -0.13  |
| SA |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        | -      | -0.15 | -0.07  | -0.06  | 0.35* | -0.21  | -0.34* | 0.63*  | 0.46*  | 0.31*  |
| IS |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       | 0.13   | -0.10  | 0.11  | -0.07  | 0.13   | -0.09  | 0.11   | 0.34*  |
| 10 |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       | -      | -0.09  | -0.03 | 0.24*  | -0.29* | 0.02   | 0.10   | 0.32*  |
| MC |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       |        |        | -0.11 | -0.22* |        |        |        |        |
| HN |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       |        |        |       | 0.03   | -0.07  | 0.53*  | 0.07   | 0.26*  |
| LT |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       |        |        |       |        | 0.04   | -0.47* | -0.03  | -0.20  |
| МК |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       |        |        |       |        |        | -0.28* | -0.16  | -0.29* |
| RM |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       |        |        |       |        |        |        | 0.47*  | 0.24*  |
| SX |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       |        |        |       |        |        |        |        | 0.45*  |
| 51 |    |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       |        |        |       |        |        |        |        | -      |

# Table 7. Cross-Correlations of Real Output between Countries

Note that numbers marked in bold indicate weak contemporaneous correlation and numbers marked in bold with a \* indicate strong contemporaneous correlation

However, examining the degree of synchronisation between developing country cycles reveals no clear picture. The results for Africa seem to concur with the findings of Kose *et al.* (2003), namely that fluctuations are country specific. However, the Asian countries appear to exhibit strong regional synchronisation, particularly when considering only the East Asian countries; the correlations for this sub-sample of countries are presented in Table 8. There are also a number of strong correlations between the Latin American countries, and particularly between the members of the Latin American Free Trade Association.<sup>15</sup>

|     | JP | НК   | IN    | КО    | MY    | PH    |
|-----|----|------|-------|-------|-------|-------|
| JP  | •  | 0.16 | 0.28* | 0.34* | 0.48* | 0.40* |
| НК  |    | •    | 0.16  | 0.50* | 0.34* | 0.32* |
| IND |    |      | •     | 0.32* | 0.26* | 0.24* |
| КО  |    |      |       | •     | 0.36* | 0.49* |
| MY  |    |      |       |       | •     | 0.43* |
| РН  |    |      |       |       |       | •     |

Table 8. Cross-Correlations of Real Output between East Asian Countries

Finally, the patterns of business cycle synchronisation observed in this analysis are compared to those found using the concordance statistic in Male (2010). This reveals that whilst no country pair with a significant concordance statistic is found to have an insignificant correlation in this analysis, a large number of the strong procyclical correlations observed in Table 7 are not similarly significant in the concordance analysis. In particular, referring to the East Asian countries in Table 8, the only significant concordance statistics are between India and South Korea and between Malaysia and the Philippines. Thus, this suggests that the concordance statistic is a much more robust measure of business cycle synchronisation and furthermore, that observed patterns of business cycle synchronisation clearly depend on the choice of business cycle definition.

# 6 CONCLUSION AND SUMMARY OF STYLISED FACTS

Identifying the characteristics and statistical properties (or stylised facts) of business cycles is essential as these often form the basis for the construction and validation of theoretical business cycle models. Furthermore, understanding the cyclical patterns in economic activity, and their causes, is important to the decisions of both policymakers and market participants. However, whilst there have been a number of research papers examining these stylised facts in the context of developing countries (e.g. Agénor *et al.,* 2000; Rand and Tarp, 2002; Neumeyer and Perri, 2005; Aguar and Gopinath, 2007), these have been based on very small samples and the results have consequently been subjective and dependent on the countries chosen for inclusion in the study.

Motivated by the importance of the stylised facts and the lack of consistency amongst previous researchers, this paper has made a significant contribution to the literature by both generalising the developing country stylised facts for a much larger

<sup>&</sup>lt;sup>15</sup> The seven members are Argentina, Brazil, Chile, Mexico, Paraguay, Peru and Uruguay.

sample of thirty-two countries, and constructing a more comprehensive set of stylised facts. The stylised facts emerging from this study are summarised below.

Firstly, output is on average twice as volatile in developing than developed countries. This contradicts the finding of Rand and Tarp (2002) who state that output is no more than 20% more volatile in developing countries.

Secondly, with the exception of the Latin American countries, the volatility of prices and wages are similar to those of the developed countries. There is no clear pattern of either pro- or countercyclicality of either prices or inflation amongst the developing countries. There is, however, a tendency for those developing countries with countercyclical CPI to also exhibit countercyclical inflation and vice versa. This is a significant difference from the pattern of procyclical inflation and countercyclical prices observed in the industrialised countries. Real wages, however, are procyclical for both developing and developed countries.

Thirdly, consumption and investment are significantly more volatile than in developed countries. Consumption is on average 30% more volatile than output, whilst investment is between two and four times more volatile than output. Both investment and consumption are procyclical, as observed in developed countries. The findings for consumption and investment are consistent with the previous literature.

Fourthly, government revenue and expenditure are significantly more volatile than in developed countries, and they are, on average, four times more volatile than output. There is less consistency in the correlation analysis; however the fiscal impulse is significantly countercyclical for the majority of the developing country correlations, which implies that fiscal policy is having a stabilising effect on business cycle fluctuations.

Fifthly, real interest rates are, on average, less volatile than in the developed countries; this is the opposite of the finding of Neumeyer and Perri (2005). On average real interest rates are weakly procyclical in Africa, North Africa, Asia and Eastern Europe and countercyclical in Latin America. Thus, the distinct countercyclical relationship that Neumeyer and Perri (2005) and Uribe and Yue (2005) document is not characteristic of most developing country business cycles. This finding is particularly significant as there have been several recent papers that incorporate this feature into theoretical models of emerging market business cycles, including Neumeyer and Perri (2005), Uribe and Yue (2005), Aguiar and Gopinath (2006) and Arellano (2008).

Sixthly, broad money is, on average, procyclical in developed countries and either weakly procyclical or acyclical in developing countries. There is evidence that money leads the business cycle in a number of developing countries, suggesting that money does influence output in developing countries, and thus that monetary shocks are important sources of business cycle fluctuations. The broad money velocity indicator is strongly countercyclical in all the developing countries, except Mexico, exactly corresponding to the findings of Agénor *et al.* (2000).

Seventhly, real private sector domestic credit is procyclical in most developing countries, as by Agénor *et al.* (2000) and Rand and Tarp (2002). However, it tends to lag rather than lead the business cycle, thus suggesting that it is fluctuations in output that influence credit rather than credit influencing the business cycle.

Eighthly, output fluctuations in developing countries are positively correlated with economic activity in the main industrialised countries, as proxied by world output and

world real interest rate. Findings for both of world output and world real interest rate are consistent with Agénor *et al.* (2000). Furthermore, examining the correlation between the developed and developing country pairs, there is evidence of strong synchronisation for a large proportion of the developing countries, particularly within the Latin American and Asian regions.

Ninthly, imports and exports are strongly procyclical in the developed countries and are correspondingly procyclical in the developing countries. However, there is no consistent relationship with the trade balance. The terms of trade provide an interesting distinction between the developed and the developing countries, being countercyclical for the developed countries and strongly procyclical for the majority of developing countries. This is similar to the findings of both Agénor *et al.* (2000) and Rand and Tarp (2002), although for somewhat smaller samples.

Tenthly, nominal and real effective exchange rates are countercyclical in developed countries. However, there is no clear configuration between the developing countries. The only distinct pattern that emerges is that for most countries both nominal and real exchange rates exhibit the same cyclicality relationship. A similar pattern is observed by Agénor *et al.* (2000). However, fluctuations in real exchange rates are persistent and volatile, which is consistent with the findings for the developed countries.

Finally, a central characteristic of developed country business cycles that has concerned macroeconomists in recent years is the persistence of output fluctuations. This analysis has found that the developing country business cycles are also characterised by significantly persistent output fluctuations. The magnitude of this persistence is, however, somewhat lower than for the developed countries. Furthermore, prices and nominal wages are significantly persistent in developing countries. This finding is important, because it justifies the use of theoretical models with staggered prices and wages for the modelling of developing country business cycles.

Together with the business cycle characteristics identified in Male (2010), these act to extend the existing knowledge of developing country business cycles and provide a significant generalisation of the stylised facts. This is important both for use in subsequent theoretical modelling and to inform the decisions of policymakers and market participants alike.

# References

- Agénor, P., McDermott, C., and Prasad, E. (2000) "Macroeconomic fluctuations in developing countries: some stylised facts" World Bank Economic Review 14; pp.251-285
- [2] Aguar, M., and Gopinath, G. (2006) "Defaultable debt, interest rates and the current account" Journal of International Economics 69; pp.64–83
- [3] Aguar, M., and Gopinath, G. (2007) "Emerging Market Business Cycles: The Cycle is the Trend" Journal of Political Economy 115(1); pp.69–102
- [4] Arellano, C. (2008) "Default Risk and Income Fluctuations in Emerging Economies" American Economic Review 98(3); pp.690–712
- [5] Aruoba, S.B. (2001) "Business Cycle Facts for Turkey" Working Paper: Department of Economics, University of Pennsylvania
- [6] Backus, D. K., and Kehoe, P. J. (1992) "International Evidence on the Historical Properties of Business Cycles" American Economic Review 82; pp.864-888

- [7] Backus, D.K., Kehoe, P.J., and Kydland, F.E. (1995) "International Business Cycles: Theory and Evidence" In Frontiers of Business Cycle Analysis, Ed. Thomas F. Cooley, Princeton University Press; pp.331-356
- [8] Basu, S., and Taylor, A.M. (1999) "Business Cycles in International Historical Perspective" The Journal of Economic Perspectives 13(2); pp.45-68
- [9] Baxter, M., and King, R.G. (1999) "Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series," *Review of Economics and Statistics* 81(4); pp.575-593
- [10] Bulir, A., and Hamann, A.J. (2001) "How Volatile and Unpredictable are Aid Flows, and what are the Policy Implications?" IMF Working Paper WP/01/167
- [11] Calderón, C., Chong, A., and Stein, E. (2007) "Trade Intensity and Business Cycle Synchronization: Are Developing Countries Any Different?" *Journal of International Economics* 71; pp.2-21
- [12] Canova, F. (1998) "Detrending and Business Cycle Facts" Journal of Monetary Economics 41; pp.475-512
- [13] Chadha, B., and Prasad, E. (1994) "Are Prices Countercyclical? Evidence from the G-7" Journal of Monetary Economics 34; pp.239-257
- [14] Chari, V.V., Kehoe, P.J., and McGrattan, E.R. (2002) "Can Sticky Price Models Generate Volatile and Persistent Real Exchange Rates?" *Review of Economic Studies* 69; pp.533-563
- [15] Christiano, L., and Ljungqvist, A. (1988) "Money Does Granger Cause Output in the Bivariate Money-Output Relation" *Journal of Monetary Economics* 22(2); pp.217-235
- [16] Flood, R., and Rose, A. (1995) "Fixing Exchange Rates: A Virtual Quest for Fundamentals" Journal of Monetary Economics 36; pp.3–37
- [17] Hafer, R.W. and Kutan, A.M. (2001) "Detrending and the Money-Output Link: International Evidence" Center for European Integration Studies Working Paper B19-2001
- **[18] Hnatkovska, V., and Loayza, N.** (2005) "Volatility and Growth" In *Managing Economic Volatility and Crises*, Eds. Aizenmann, J., and Pinto, B., Cambridge University Press, Cambridge, United Kingdom.
- [19] Hodrick, R.J., and Prescott, E.C. (1997) "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking 29(1); pp.1-16
- [20] International Monetary Fund (IMF), International Financial Statistics (IFS) April 2005, ESDS International, (Mimas) University of Manchester
- [21] Kaiser, R., and Maravall, A. (2001) *Measuring Business Cycles in Economic Time Series,* Lecture Notes in Statistics 154,
- [22] King, R.G., and Watson, M.W. (1996) "Money, Prices, Interest Rates and the Business Cycle" The Review of Economics and Statistics 78(1); pp.35-53
- [23] Kose, M.A., Otrok, C., and Whiteman, C.H. (2003) "International Business Cycles: World, Region and Country-Specific Factors" *American Economic Review* 93(4); pp.1216-1239
- [24] Kydland, F.E., and Precott, E.C. (1990) "Business Cycle: Real Facts and a Monetary Myth" Federal Reserve Bank of Minneapolis Quarterly Review 14(2); pp.3–18
- [25] Loayza, N., Rancière, R., Servén, L., and Ventura, J. (2007) "Macroeconomic Volatility and Welfare in Developing Countries: An Introduction" *The World Bank Economic Review* 21(3); pp.343–357
- [26] Lucas, R.E. (1977) "Understanding Business Cycles" In Stabilization of the domestic and international economy, Eds. Brunner, K., and Meltzer, A., Carnigie-Rochester Conference Series on Public Policy 5, Amsterdam: North Holland; pp.7-29
- [27] Male, R. (2010) "Developing Country Business Cycles: Characterising the Cycle", School of Economics and Finance Working Paper 663, Queen Mary, University of London.
- [28] Mendoza, E.G., (1995) "The Terms of Trade, The Real Exchange Rate, and Economic Fluctuations" International Economic Review 36(1); pp.101–137
- [29] Neumeyer, P.A., and Perri, F. (2005) "Business Cycles in Emerging Economies: The Role of Interest Rates" Journal of Monetary Economics 52; pp.345-380
- [30] Obstfeld, M., and Rogoff, K. (2000) "The Six Major Puzzles in International Macroeconomics: Is There a Common Cause?" NBER Macroeconomics Annual 2000, Volume 15; pp.339-412
- [31] Pallage, S. and Robe, M.A. (2001) "Foreign Aid and the Business Cycle" *Review of International Economics* 9(4); pp.641-672
- [32] Rand, J., and Tarp, F. (2002) "Business Cycles in Developing Countries: Are They Different?" World Development 30(12); pp.2071-2088

- [33] Rusek, A. (2001) "The Role and Impact of Monetary Policy in CEFTA Countries" International Advances in Economic Research 7(1); pp.83-90
- [34] Sims, C.A. (1972) "Money, Income, and Causality" The American Economic Review 62(4); pp.540-552
- [35] Sims, C.A. (1980) "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered" The American Economic Review 70(2); pp.250-257
- [36] Uribe, M., and Yue, V.Z. (2006) "Country spreads and emerging countries: Who drives whom?" Journal of International Economics 69; pp.6–36

# **APPENDIX A**

# A.1. COUNTRY CODES

| AG = Argentina       | <b>JP</b> = Japan        | <b>RM</b> = Romania             |
|----------------------|--------------------------|---------------------------------|
| <b>BB</b> = Barbados | <b>KO</b> = Korea, South | <b>SA</b> = South Africa        |
| BG = Bangladesh      | <b>LT</b> = Lithuania    | SG = Senegal                    |
| <b>BR</b> = Brazil   | MC = Morocco             | <b>SJ</b> = Slovenia            |
| <b>CB</b> = Columbia | MI = Malawi              | SX = Slovak Republic            |
| <b>CL</b> = Chile    | MK = Macedonia           | <b>TK</b> = Turkey              |
| HK = Hong Kong       | MX = Mexico              | <b>TT</b> = Trinidad and Tobago |
| HN = Hungary         | MY = Malaysia            | <b>TU</b> = Tunisia             |
| IN = India           | <b>NG</b> = Nigeria      | <b>UG</b> = Uruguay             |
| IS = Israel          | <b>PE</b> = Peru         | <b>UK</b> = United Kingdom      |
| IV = Cote d'Ivoire   | PH = Philippines         | US = United States              |
| <b>JO</b> = Jordan   | <b>PK</b> = Pakistan     |                                 |

# A.2. DATA

# Table A.1 Variable Name Codes and IMF IFS Series Codes

| VARIABLE                        | CODE  | IMF IFS SERIES   |
|---------------------------------|-------|------------------|
| PR ODU CTION:                   |       |                  |
| MANUFACTURING                   | MP    | 66EY             |
| INDU STRI AL                    | IP    | 66               |
| NOMINAL OUTPUT (Proxy)          | NO    | 66*64            |
| CPI                             | CPI   | 64               |
| INFLATION                       | CCPI  | 64X              |
| WAGE                            | W     | 65               |
| RESERVE MONEY                   | RES   | 14               |
| M1                              | M1    | 34               |
| QUASI-MONEY                     | QUASI | 35               |
| BROAD-MONEY                     | BM    | 34+35            |
| (Velocity Indicator)            | BMVI  | 34+35(index)/NO  |
| DOMESTIC CREDIT                 | DC    | 32D              |
| REAL DOMESTIC CREDIT            | RDC   | 32D/64           |
| GOVERNMENT EXPENDITURE          | GEX   | 82               |
| GOVERNMENT REVENUE              | GREV  | 81               |
| FISCAL IMPULSE                  | FI    | 82/81            |
| EXPORTS                         | EXP   | 70               |
| IMPORTS                         | IMP   | 71               |
| TRADE BALANCE                   | TR    | 70/71            |
| EXPORT UNIT VALUE               | EXPU  | 74               |
| IMPORT UNIT VALUE               | IMPU  | 75               |
| TERMS OF TRADE                  | TOT   | 74/75            |
| PRIVATE CONSUMPTION             | PC    | 96F              |
| REAL CONSUMPTION                | RPC   | 96F/64           |
| GROSS FIXED CAPITAL FORMATION   | GFCF  | 93E              |
| REAL INVESTMENT                 | RGFCF | 93E/64           |
| MONEY MARKET RATE               | MMR   | 60B              |
| REAL MONEY MARKET RATE          | RMMR  | 60B/64           |
| LENDING RATE                    | LR    | 60P              |
| REAL LENDING RATE               | RLR   | 60P/64           |
| NOMINAL EFFECTIVE EXCHANGE RATE | NEER  | NECE             |
| REAL EFFECTIVE EXCHANGE RATE    | REER  | RECE             |
| REAL WORLD OUTPUT               | WO    | 66(110)          |
| REAL WORLD INTEREST RATE        | WIR   | 60D(112)/64(110) |

# **APPENDIX B**

# **B.1. CROSS-CORRELATIONS WITH LEADS AND LAGS**

#### Table B.1

Correlation between Real Domestic Output and World Real Output and World Real Interest Rate

| UK-0.507-0.1330.6050.385-0.045-0.3850.2090.4400.221-0.047Japan-0.333-0.1090.1150.0810.0310.0230.0090.1530.141-0.1320.0460.2350.1870.026Afria0.0230.1440.1270.050-0.1470.149-0.0150.015-0.012-0.110Malawi0.0530.1440.1570.052-0.1770.1480.3720.113-0.440-0.615Sotth Africa0.5540.5150.170-0.126-0.2710.4240.1770.182-0.159-0.173Senegal0.5470.7160.502-0.113-0.435-0.2700.734-0.433-0.699-0.275NorthAfria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |        | W      | orld Outp | <u>ut</u> |        |        | World  | Real Intere | st Rate |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|--------|-----------|-----------|--------|--------|--------|-------------|---------|--------|
| UK-0.507-0.1330.6050.385-0.045-0.3850.2090.4400.221-0.047Japan-0.333-0.1090.1150.0810.0310.0230.0090.1530.141-0.1320.0460.2350.1870.026Afria0.0230.1440.1270.050-0.1470.149-0.0150.015-0.012-0.110Malawi0.0530.1440.1570.052-0.1770.1480.3720.113-0.440-0.615Sotth Africa0.5540.5150.170-0.126-0.2710.4240.1770.182-0.159-0.173Senegal0.5470.7160.502-0.113-0.435-0.2700.734-0.433-0.699-0.275NorthAfria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | lag 8  | lag 4  | no lag    | lead 4    | lead 8 | lag 8  | lag 4  | no lag      | lead 4  | lead 8 |
| Japan-0.353-0.1090.8150.370-0.438-0.0060.2810.3510.058-0.292AricaCôte d'Ivoire0.0310.0230.0090.1530.141-0.1320.0460.2350.1870.061Malawi-0.0550.1440.1270.050-0.1970.149-0.015-0.012-0.110Nigeria0.2050.1400.2980.042-0.1370.0780.3720.113-0.440-0.661South Africa0.1540.7160.502-0.113-0.4700.2700.734-0.403-0.699-0.735Senegal0.5470.7160.0230.240-0.3550.278-0.0200.2300.729-0.483-0.117Jordan0.0230.240-0.035-0.5520.278-0.0200.0330.729-0.483-0.117Jordan0.0240.0410.4940.3410.009-0.0940.2280.1110.1810.004-0.115Tunisia-0.0410.4940.3410.009-0.0440.0250.0750.833-0.046-0.017Jarbabos-0.113-0.0220.278-0.0200.2300.7280.236-0.038-0.046Jordan0.026-0.0140.3410.009-0.0940.2280.1110.1810.064-0.019Jarbabos-0.1140.4940.3410.009-0.0460.0250.2780.260 </td <td>US</td> <td>-0.508</td> <td>-0.150</td> <td>0.778</td> <td>0.479</td> <td>-0.214</td> <td>-0.243</td> <td>0.168</td> <td>0.554</td> <td>0.315</td> <td>-0.011</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | US              | -0.508 | -0.150 | 0.778     | 0.479     | -0.214 | -0.243 | 0.168  | 0.554       | 0.315   | -0.011 |
| Africa         Côte d'Ivoire         0.031         0.023         0.009         0.153         0.141         -0.132         0.046         0.235         0.187         0.066           Malawi         -0.053         0.144         0.127         0.050         -0.197         0.149         -0.015         -0.012         -0.110           Nigeria         0.205         0.140         0.228         0.042         -0.137         0.078         0.372         0.113         -0.440         -0.661           South Africa         0.154         0.150         0.170         -0.126         -0.271         0.424         0.177         0.182         -0.403         -0.649         -0.173           Senegal         0.547         0.716         0.502         -0.113         -0.425         -0.270         0.734         -0.403         -0.649         -0.173           Jordan         0.023         0.240         -0.035         -0.552         0.278         -0.200         0.203         0.729         -0.483         -0.147           Morocco         -0.040         -0.011         0.195         0.187         -0.086         -0.020         0.203         0.729         -0.483         -0.140         0.020         0.639         0.622                                                                                                                                                                     | UK              | -0.507 | -0.133 | 0.605     | 0.385     | -0.045 | -0.385 | 0.209  | 0.440       | 0.221   | -0.047 |
| Côte d'Ivoire         0.031         0.023         0.009         0.153         0.141         -0.132         0.046         0.235         0.187         0.066           Malawi         -0.053         0.144         0.177         0.050         -0.197         0.149         -0.015         -0.015         -0.015         -0.015         -0.015         -0.015         -0.015         -0.159         -0.173           South Africa         0.547         0.716         0.502         -0.113         -0.424         0.177         0.182         -0.159         -0.173           Sordal         -0.069         -0.104         0.043         0.145         -0.027         0.734         -0.403         -0.699         -0.275           North Africa         -         -         -0.020         0.230         0.729         -0.483         -0.147           Jordan         0.023         0.240         -0.035         -0.552         0.278         -0.020         0.203         0.729         -0.483         -0.147           Morocco         -0.040         -0.011         0.195         0.187         -0.086         -0.007         0.075         0.083         -0.044         -0.201         Data         Argentina         -0.045         0.552                                                                                                                                                                 | Japan           | -0.353 | -0.109 | 0.815     | 0.370     | -0.438 | -0.006 | 0.281  | 0.351       | 0.058   | -0.029 |
| Malawi-0.0530.1440.1270.050-0.1970.149-0.015-0.015-0.012-0.101Nigeria0.2050.1400.2980.042-0.1370.0780.3720.113-0.400-0.661South Africa0.1540.1500.170-0.126-0.2710.4240.774-0.403-0.699-0.275North AfricaSenegal0.0410.4940.3410.097-0.0750.0350.0080.00700.0750.0350.0080.00700.0750.0350.0260.0370.1350.0260.0380.0270.0350.0360.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Africa          |        |        |           |           |        |        |        |             |         |        |
| Nigeria0.2050.1400.2980.042-0.1370.0780.3720.113-0.401-0.661South Africa0.1540.1500.170-0.126-0.2710.4240.1770.182-0.159-0.173Senegal0.5740.7360.502-0.113-0.435-0.2700.7340.0182-0.169-0.275North Africa </td <td>Côte d'Ivoire</td> <td>0.031</td> <td>0.023</td> <td>0.009</td> <td>0.153</td> <td>0.141</td> <td>-0.132</td> <td>0.046</td> <td>0.235</td> <td>0.187</td> <td>0.066</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Côte d'Ivoire   | 0.031  | 0.023  | 0.009     | 0.153     | 0.141  | -0.132 | 0.046  | 0.235       | 0.187   | 0.066  |
| South Africa         0.154         0.150         0.170         -0.126         -0.271         0.424         0.177         0.182         -0.159         -0.173           Senegal         0.547         0.716         0.502         -0.113         -0.435         -0.270         0.734         -0.403         -0.699         -0.275           North Africa         -         -         -         -         -         -         -         -         -         -         -         -         -0.403         -0.133         -0.137         -0.403         -0.147         -         -         -         -         -         -         -         -         -         -         -         -         0.403         -0.147         -         -         -         0.007         0.007         0.008         -0.238         -         0.443         -         -         0.007         0.014         0.040         -         0.014         -         0.014         -         0.014         -         0.014         -         0.014         -         0.018         -         0.0183         -         0.028         0.113         -0.014         0.017         0.161         0.130         0.127         0.336         -                                                                                                                                                                                                   | Malawi          | -0.053 | 0.144  | 0.127     | 0.050     | -0.197 | 0.149  | -0.015 | -0.015      | -0.012  | -0.110 |
| Senegal0.5470.7160.502-0.113-0.435-0.2700.734-0.403-0.699-0.275North AfricaIsrael-0.069-0.1040.0430.145-0.007-0.1370.0080.2380.153-0.117Jordan0.0230.204-0.035-0.5520.278-0.0200.2030.729-0.483-0.117Jordan-0.0410.4940.3410.009-0.0940.2280.4110.1810.046-0.019Tunisia-0.0410.4940.3410.009-0.0940.2280.4110.1810.046-0.019Latin America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nigeria         | 0.205  | 0.140  | 0.298     | 0.042     | -0.137 | 0.078  | 0.372  | 0.113       | -0.440  | -0.661 |
| North Africa         Israel         -0.069         -0.104         0.043         0.145         -0.007         -0.137         0.008         0.238         0.153         0.017           Jordan         0.023         0.240         -0.035         -0.552         0.278         -0.020         0.203         0.729         -0.483         -0.147           Morocco         -0.040         -0.011         0.195         0.187         -0.086         -0.007         0.075         0.083         -0.004         -0.115           Tunisia         -0.041         0.494         0.341         0.009         -0.094         0.228         0.411         0.181         -0.046         -0.014         -0.020         0.639         0.622           Barbados         -0.130         0.202         0.447         0.239         0.081         0.035         0.256         -0.377         -0.305           Columbia         -0.145         0.022         0.279         -0.092         0.126         -0.170         -0.166         0.037         0.145         0.208           Columbia         -0.289         0.077         0.602         0.208         -0.143         -0.083         0.110         0.308         0.173         0.055 <t< td=""><td>South Africa</td><td>0.154</td><td>0.150</td><td>0.170</td><td>-0.126</td><td>-0.271</td><td>0.424</td><td>0.177</td><td>0.182</td><td>-0.159</td><td>-0.173</td></t<> | South Africa    | 0.154  | 0.150  | 0.170     | -0.126    | -0.271 | 0.424  | 0.177  | 0.182       | -0.159  | -0.173 |
| Israel         -0.069         -0.104         0.043         0.145         -0.007         -0.137         0.008         0.238         0.153         0.017           Jordan         0.023         0.240         -0.035         -0.552         0.278         -0.020         0.203         0.729         -0.483         -0.147           Morocco         -0.041         0.494         0.341         0.009         -0.094         0.228         0.411         0.181         -0.046         -0.004         -0.015           Latin America         Argentina         -0.067         -0.456         0.614         0.510         0.083         -0.064         -0.014         0.200         0.639         0.622           Barbados         -0.130         0.202         0.447         0.239         0.081         0.035         0.250         0.278         0.236         -0.038           Brazil         -0.145         0.024         0.557         -0.563         -0.465         0.692         0.260         -0.070         -0.377         -0.305           Columbia         -0.171         -0.062         0.278         -0.120         -0.103         -0.166         0.037         0.145         0.216           Mexico         0.242                                                                                                                                                                                 | Senegal         | 0.547  | 0.716  | 0.502     | -0.113    | -0.435 | -0.270 | 0.734  | -0.403      | -0.699  | -0.275 |
| Jordan0.0230.240-0.035-0.5520.278-0.0200.2030.729-0.483-0.147Morocco-0.040-0.0110.1950.187-0.086-0.0070.0750.083-0.004-0.115Tunisia-0.0410.4940.3410.009-0.0940.2280.4110.1810.046-0.094Latin America0.0750.083-0.0440.2000.6390.6220.2780.236-0.0380.622Barbados-0.1300.2020.4470.2390.0810.0350.2500.2780.236-0.038Barbados-0.171-0.0620.279-0.0920.126-0.170-0.1660.0370.1450.2010.1930.055Columbia-0.171-0.0620.279-0.0920.126-0.170-0.1660.0370.1450.2010.1730.0050.1430.0440.311-0.0330.1730.055-0.170-0.1610.1300.1270.0580.170-0.1610.1300.1270.0580.1610.1300.1270.0540.2440.141-0.4440.131-0.040-0.1210.2530.4240.1610.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | North Africa    |        |        |           |           |        |        |        |             |         |        |
| Morocco-0.040-0.0110.1950.187-0.086-0.0070.0750.083-0.004-0.014Tunisia-0.0410.4940.3410.009-0.0940.2280.4110.1810.004-0.019LatinamericaArgentina-0.067-0.4560.6140.5100.083-0.064-0.0140.2000.6390.622Barbados-0.1300.2020.4470.2390.0810.0350.2500.2780.236-0.038Brail-0.1450.0240.557-0.563-0.4650.6920.260-0.0700.377-0.305Columbia-0.171-0.0620.279-0.0920.126-0.170-0.1660.0370.1450.201Chile-0.2890.0770.6020.208-0.134-0.0830.1100.3080.1730.055Mexico0.2420.4060.329-0.154-0.5200.3000.2160.131-0.03-0.193Peru-0.369-0.5390.2580.158-0.255-0.170-0.1610.1300.1270.058Uruguay0.2650.2380.3340.050-0.132-0.0600.199-0.0930.114Uruguay0.2650.2380.3240.1500.0900.190-0.1610.1300.1270.058Uruguay0.2650.2380.2240.1500.0900.190-0.1610.1300.124-0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Israel          | -0.069 | -0.104 | 0.043     | 0.145     | -0.007 | -0.137 | 0.008  | 0.238       | 0.153   | 0.017  |
| Tunisia-0.0410.4940.3410.009-0.0940.2280.4110.1810.046-0.099Latin AmericaArgentina-0.067-0.4560.6140.5100.083-0.064-0.0140.2000.6390.622Barbados-0.1300.2020.4470.2390.0810.0350.2500.2780.236-0.038Brazil-0.1450.0240.557-0.563-0.4650.6920.260-0.070-0.377-0.305Columbia-0.171-0.0620.279-0.0920.126-0.170-0.1660.0370.1430.003-0.173Chile-0.2890.0770.6020.288-0.154-0.5200.3000.2160.131-0.003-0.193Peru-0.369-0.5390.2580.158-0.255-0.170-0.1610.1300.1270.094Asia-0.369-0.3330.171-0.1340.044-0.137-0.0060.109-0.0330.114Urguay0.2650.2380.3340.050-0.1120.2530.0420.2480.1870.094Asia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jordan          | 0.023  | 0.240  | -0.035    | -0.552    | 0.278  | -0.020 | 0.203  | 0.729       | -0.483  | -0.147 |
| Latin America           Argentina         -0.067         -0.456         0.614         0.510         0.083         -0.064         -0.014         0.200         0.639         0.622           Barbados         -0.130         0.202         0.447         0.239         0.081         0.035         0.250         0.278         0.236         -0.038           Brazil         -0.145         0.024         0.557         -0.563         -0.465         0.692         0.260         -0.070         -0.377         -0.305           Columbia         -0.171         -0.062         0.279         -0.092         0.124         -0.083         0.110         0.308         0.173         0.0055           Mexico         0.242         0.406         0.329         -0.154         -0.520         0.300         0.216         0.131         -0.003         -0.139           Peru         -0.369         -0.539         0.258         0.158         -0.255         -0.170         -0.161         0.130         0.127         0.058           Trinidad         0.075         0.033         0.171         -0.134         0.044         -0.137         -0.006         0.109         -0.033         0.127         0.084         -0.161 <td>Morocco</td> <td>-0.040</td> <td>-0.011</td> <td>0.195</td> <td>0.187</td> <td>-0.086</td> <td>-0.007</td> <td>0.075</td> <td>0.083</td> <td>-0.004</td> <td>-0.115</td>      | Morocco         | -0.040 | -0.011 | 0.195     | 0.187     | -0.086 | -0.007 | 0.075  | 0.083       | -0.004  | -0.115 |
| Argentina         -0.067         -0.456         0.614         0.510         0.083         -0.064         -0.014         0.200         0.639         0.622           Barbados         -0.130         0.202         0.447         0.239         0.081         0.035         0.250         0.278         0.236         -0.038           Brazil         -0.145         0.024         0.557         -0.563         -0.465         0.692         0.260         -0.070         -0.377         -0.305           Columbia         -0.171         -0.062         0.279         -0.092         0.126         -0.170         -0.166         0.037         0.145         0.201           Chile         -0.289         0.077         0.602         0.208         -0.143         -0.083         0.110         0.308         0.173         0.005           Mexico         0.242         0.406         0.329         -0.154         -0.520         0.300         0.216         0.131         -0.033         -0.177         0.003         0.117         0.058           Trinidad         0.075         0.033         0.171         -0.132         0.253         0.042         0.248         0.187         0.094         0.193           Uruguy <td>Tunisia</td> <td>-0.041</td> <td>0.494</td> <td>0.341</td> <td>0.009</td> <td>-0.094</td> <td>0.228</td> <td>0.411</td> <td>0.181</td> <td>0.046</td> <td>-0.099</td>       | Tunisia         | -0.041 | 0.494  | 0.341     | 0.009     | -0.094 | 0.228  | 0.411  | 0.181       | 0.046   | -0.099 |
| Barbados-0.1300.2020.4470.2390.0810.0350.2500.2780.236-0.038Brazil-0.1450.0240.557-0.563-0.4650.6920.260-0.070-0.377-0.305Columbia-0.171-0.0620.279-0.0920.126-0.170-0.1660.0370.1450.201Chile-0.2890.0770.6020.208-0.143-0.0830.1100.3080.1730.055Mexico0.2420.4060.329-0.154-0.5200.3000.2160.131-0.003-0.193Peru-0.369-0.5390.2580.158-0.255-0.170-0.1610.1300.1270.058Trinidad0.0750.0330.171-0.1340.044-0.137-0.0060.109-0.0930.114Uruguay0.2650.2380.3400.505-0.1120.2530.0450.2480.1870.094Hong Kong-0.074-0.2550.071-0.102-0.033-0.269-0.1660.0140.128Hong Kong-0.074-0.2520.2140.341-0.040-0.1610.0380.237-0.044-0.551India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.255India-0.1780.2520.930.025-0.530.0860.55-0.236-0.1840.055Paistan-0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Latin America   |        |        |           |           |        |        |        |             |         |        |
| Brazil-0.1450.0240.557-0.563-0.4650.6920.260-0.070-0.377-0.305Columbia-0.171-0.0620.279-0.0920.126-0.170-0.1660.0370.1450.201Chile-0.2890.0770.6020.208-0.143-0.0830.1100.3080.1730.055Mexico0.2420.4060.329-0.154-0.5200.3000.2160.131-0.003-0.193Peru-0.369-0.5390.2580.158-0.255-0.170-0.1610.1300.1270.058Trinidad0.0750.0330.171-0.1340.044-0.137-0.0060.109-0.0930.114Uruguay0.2650.2380.3340.050-0.1120.2530.0420.2480.1870.094Asia0.074-0.2850.2740.102-0.033-0.269-0.025-0.1660.0140.128Hong Kong-0.074-0.2850.2240.1500.0900.190-0.0190.3500.084-0.125India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265Korea, South-0.197-0.2520.2140.128-0.025-0.0360.1640.055-0.269-0.1550.124-0.0420.037Malaysia-0.283-0.1780.4290.2250.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Argentina       | -0.067 | -0.456 | 0.614     | 0.510     | 0.083  | -0.064 | -0.014 | 0.200       | 0.639   | 0.622  |
| Columbia-0.171-0.0620.279-0.0920.126-0.170-0.1660.0370.1450.201Chile-0.2890.0770.6020.208-0.143-0.0830.1100.3080.1730.055Mexico0.2420.4060.329-0.154-0.5200.3000.2160.131-0.003-0.193Peru-0.369-0.5390.2580.158-0.255-0.170-0.1610.1300.1270.058Trinidad0.0750.0330.171-0.1340.044-0.137-0.0060.109-0.0930.114Uruguay0.2650.2380.3340.050-0.1120.2530.0420.2480.1870.094AsiaBangladesh-0.318-0.2250.071-0.102-0.033-0.269-0.025-0.1660.0140.128Hong Kong-0.074-0.2850.2240.1500.0900.190-0.0190.3500.084-0.152India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265Korea, South-0.197-0.2520.2140.341-0.040-0.1610.0380.237-0.004-0.053Malaysia-0.283-0.1780.4290.258-0.072-0.0020.2380.1820.0370.044Philippines-0.186-0.2550.0930.025-0.2530.0860.055-0.266-0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Barbados        | -0.130 | 0.202  | 0.447     | 0.239     | 0.081  | 0.035  | 0.250  | 0.278       | 0.236   | -0.038 |
| Chile-0.2890.0770.6020.208-0.143-0.0830.1100.3080.1730.055Mexico0.2420.4060.329-0.154-0.5200.3000.2160.131-0.003-0.193Peru-0.369-0.5390.2580.158-0.255-0.170-0.1610.1300.1270.058Trinidad0.0750.0330.171-0.1340.044-0.137-0.0060.109-0.0930.114Uruguay0.2650.2380.3340.050-0.1120.2530.0420.2480.1870.094Asia0.055-0.170-0.102-0.033-0.269-0.025-0.1660.0140.128Hong Kong-0.074-0.2850.2240.1500.0900.190-0.0190.3500.084-0.125India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265Korea, South-0.197-0.2520.2140.341-0.040-0.1610.0380.237-0.004-0.053Malaysia-0.283-0.1780.4290.258-0.072-0.0020.2380.1820.0370.044Philippines-0.186-0.2520.0930.025-0.2530.0860.055-0.236-0.1840.055Pakistan-0.1790.2870.152-0.199-0.229-0.1150.192-0.016-0.042 </td <td>Brazil</td> <td>-0.145</td> <td>0.024</td> <td>0.557</td> <td>-0.563</td> <td>-0.465</td> <td>0.692</td> <td>0.260</td> <td>-0.070</td> <td>-0.377</td> <td>-0.305</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Brazil          | -0.145 | 0.024  | 0.557     | -0.563    | -0.465 | 0.692  | 0.260  | -0.070      | -0.377  | -0.305 |
| Mexico0.2420.4060.329-0.154-0.5200.3000.2160.131-0.033-0.193Peru-0.369-0.5390.2580.158-0.255-0.170-0.1610.1300.1270.058Trinidad0.0750.0330.171-0.1340.044-0.137-0.0060.109-0.0930.114Uruguay0.2650.2380.3340.050-0.1120.2530.0420.2480.1870.094AsiaBangladesh-0.318-0.2250.071-0.102-0.033-0.269-0.025-0.1660.0140.128Hong Kong-0.074-0.2850.2240.1500.0900.190-0.0190.3500.084-0.125India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265Korea, South-0.197-0.2520.2140.341-0.040-0.1610.0380.237-0.004-0.53Malaysia-0.283-0.1780.4290.258-0.072-0.0220.2380.1820.0370.044Philippines-0.186-0.2250.0930.025-0.2530.0860.055-0.266-0.1840.055Pakistan-0.1790.2870.152-0.199-0.229-0.1150.192-0.016-0.0420.037Ithugary-0.327-0.1380.3520.4130.2640.0220.3220.4760.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Columbia        | -0.171 | -0.062 | 0.279     | -0.092    | 0.126  | -0.170 | -0.166 | 0.037       | 0.145   | 0.201  |
| Peru-0.369-0.5390.2580.158-0.255-0.170-0.1610.1300.1270.058Trinidad0.0750.0330.171-0.1340.044-0.137-0.0060.109-0.0930.114Uruguay0.2650.2380.3340.050-0.1120.2530.0420.2480.1870.0930.114Asia0.1360.1270.0580.1240.0500.1420.2530.0420.2480.1870.0930.114Hong Kong-0.074-0.2850.071-0.102-0.033-0.269-0.025-0.1660.0140.128Hong Kong-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265Korea, South-0.197-0.2520.2140.341-0.040-0.1610.0380.237-0.004-0.053Malaysia-0.283-0.1780.4290.258-0.072-0.0220.2380.1820.0370.044Philippines-0.186-0.2250.0930.025-0.2530.0860.055-0.236-0.1480.501Turkey-0.520.680.1640.0750.42-0.1020.99-0.0760.1780.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chile           | -0.289 | 0.077  | 0.602     | 0.208     | -0.143 | -0.083 | 0.110  | 0.308       | 0.173   | 0.055  |
| Trinidad0.0750.0330.171-0.1340.044-0.137-0.0060.109-0.0930.114Uruguay0.2650.2380.3340.050-0.1120.2530.0420.2480.1870.094AsiaBangladesh-0.318-0.2250.071-0.102-0.033-0.269-0.025-0.1660.0140.128Hong Kong-0.074-0.2850.2240.1500.0900.190-0.0190.3500.084-0.125India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265Korea, South-0.197-0.2520.2140.341-0.040-0.1610.0380.237-0.004-0.053Malaysia-0.283-0.1780.4290.258-0.072-0.0020.2380.1820.0370.044Philippines-0.186-0.2250.0930.025-0.2530.0860.055-0.236-0.1840.055Pakistan-0.1790.2870.152-0.199-0.229-0.1150.192-0.016-0.0420.037Turkey-0.0520.0680.1640.0750.4240.1020.099-0.0700.1780.501Bast Europe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mexico          | 0.242  | 0.406  | 0.329     | -0.154    | -0.520 | 0.300  | 0.216  | 0.131       | -0.003  | -0.193 |
| Uruguay0.2650.2380.3340.050-0.1120.2530.0420.2480.1870.094Asia-0.318-0.2250.071-0.102-0.033-0.269-0.025-0.1660.0140.128Bangladesh-0.318-0.2250.2240.1500.0900.190-0.0190.3500.084-0.125India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265Korea, South-0.197-0.2520.2140.341-0.040-0.1610.0380.237-0.004-0.053Malaysia-0.283-0.1780.4290.258-0.072-0.0020.2380.1820.0370.044Philippines-0.186-0.2250.0930.025-0.2530.0860.055-0.236-0.1840.055Pakistan-0.1790.2870.152-0.199-0.229-0.1150.192-0.016-0.0420.037Turkey-0.0520.0680.1640.0750.042-0.1020.999-0.0970.1780.501Bast Europe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peru            | -0.369 | -0.539 | 0.258     | 0.158     | -0.255 | -0.170 | -0.161 | 0.130       | 0.127   | 0.058  |
| Asia         Asia           Bangladesh         -0.318         -0.225         0.071         -0.102         -0.033         -0.269         -0.025         -0.166         0.014         0.128           Hong Kong         -0.074         -0.285         0.224         0.150         0.090         0.190         -0.019         0.350         0.084         -0.125           India         -0.161         0.183         0.540         0.324         0.048         0.064         0.441         0.467         -0.021         -0.265           Korea, South         -0.197         -0.252         0.214         0.341         -0.040         -0.161         0.038         0.237         -0.004         -0.053           Malaysia         -0.283         -0.178         0.429         0.258         -0.072         -0.002         0.238         0.182         0.037         0.044           Philippines         -0.186         -0.225         0.093         0.025         -0.253         0.086         0.055         -0.236         -0.184         0.055           Pakistan         -0.179         0.287         0.152         -0.199         -0.229         -0.115         0.192         -0.016         -0.042         0.037                                                                                                                                                                                         | Trinidad        | 0.075  | 0.033  | 0.171     | -0.134    | 0.044  | -0.137 | -0.006 | 0.109       | -0.093  | 0.114  |
| Bangladesh<br>Hong Kong-0.318<br>-0.074-0.225<br>-0.2850.071<br>0.285-0.102<br>0.224-0.033<br>0.090-0.269<br>0.190-0.025<br>-0.019-0.166<br>0.3500.014<br>0.1280.128<br>-0.125India-0.1610.1830.5400.3240.0480.0640.4410.467<br>0.038-0.021<br>-0.237-0.265Korea, South-0.197-0.2520.2140.341<br>0.341-0.040-0.1610.0380.237<br>0.238-0.004<br>0.037-0.053Malaysia-0.283-0.1780.4290.258<br>0.025-0.2530.0860.055<br>0.055-0.236<br>-0.236-0.1840.055Pakistan-0.1790.2870.152<br>0.152-0.199<br>-0.199-0.229<br>-0.125-0.1150.192<br>0.192-0.016<br>-0.042-0.042<br>0.037Turkey-0.0520.0680.1640.0750.042<br>0.042-0.1020.099<br>0.099-0.0970.1780.501East Europe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Uruguay         | 0.265  | 0.238  | 0.334     | 0.050     | -0.112 | 0.253  | 0.042  | 0.248       | 0.187   | 0.094  |
| Hong Kong<br>India-0.074-0.2850.2240.1500.0900.190-0.0190.3500.084-0.125India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265Korea, South-0.197-0.2520.2140.341-0.040-0.1610.0380.237-0.004-0.053Malaysia-0.283-0.1780.4290.258-0.072-0.0020.2380.1820.0370.044Philippines-0.166-0.2250.0930.025-0.2530.0860.055-0.236-0.1840.055Pakistan-0.1790.2870.152-0.199-0.229-0.1150.192-0.016-0.0420.037Turkey-0.0520.0680.1640.0750.042-0.1020.099-0.0970.1780.501East Europe0.1950.1011.92-0.192-0.192-0.192-0.192-0.192-0.0170.0420.0370.0410.2070.195-0.2690.2140.1020.099-0.0970.1780.501-0.195-0.195-0.195-0.195-0.195-0.195-0.195-0.195-0.195-0.1950.192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Asia            |        |        |           |           |        |        |        |             |         |        |
| India-0.1610.1830.5400.3240.0480.0640.4410.467-0.021-0.265Korea, South-0.197-0.2520.2140.341-0.040-0.1610.0380.237-0.004-0.053Malaysia-0.283-0.1780.4290.258-0.072-0.0020.2380.1820.0370.044Philippines-0.186-0.2250.0930.025-0.2530.0860.055-0.236-0.1840.055Pakistan-0.1790.2870.152-0.199-0.229-0.1150.192-0.016-0.0420.037Turkey-0.0520.0680.1640.0750.042-0.1020.099-0.0770.1780.501Est Europe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bangladesh      | -0.318 | -0.225 | 0.071     | -0.102    | -0.033 | -0.269 | -0.025 | -0.166      | 0.014   | 0.128  |
| Korea, South-0.197-0.2520.2140.341-0.040-0.1610.0380.237-0.004-0.053Malaysia-0.283-0.1780.4290.258-0.072-0.0020.2380.1820.0370.044Philippines-0.186-0.2250.0930.025-0.2530.0860.055-0.236-0.1840.055Pakistan-0.1790.2870.152-0.199-0.229-0.1150.192-0.016-0.0420.037Turkey-0.0520.0680.1640.0750.042-0.1020.099-0.0770.1780.501Est EuropeHungary-0.327-0.1380.3520.4130.2640.0220.3220.4760.332-0.107Lithuania-0.0510.2070.195-0.2690.214-0.101-0.1440.2290.192-0.195Macedonia0.297-0.0890.1150.144-0.1220.0450.236-0.196-0.0580.308Romania-0.322-0.0130.2300.2910.2210.1650.2470.1380.050-0.028Slovenia-0.217-0.0480.361-0.253-0.3890.206-0.1350.124-0.064-0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hong Kong       | -0.074 | -0.285 | 0.224     | 0.150     | 0.090  | 0.190  | -0.019 | 0.350       | 0.084   | -0.125 |
| Malaysia-0.283-0.1780.4290.258-0.072-0.0020.2380.1820.0370.044Philippines-0.186-0.2250.0930.025-0.2530.0860.055-0.236-0.1840.055Pakistan-0.1790.2870.152-0.199-0.229-0.1150.192-0.016-0.0420.037Turkey-0.0520.0680.1640.0750.042-0.1020.099-0.0970.1780.501East EuropeHungary-0.327-0.1380.3520.4130.2640.0220.3220.4760.332-0.107Lithuania-0.0510.2070.195-0.2690.214-0.101-0.1440.2290.192-0.195Macedonia0.297-0.0380.1150.144-0.1220.0450.236-0.196-0.0580.308Romania-0.322-0.0130.2300.2910.2210.1650.2470.1380.050-0.028Slovenia-0.217-0.0480.361-0.253-0.3890.206-0.1350.124-0.064-0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | India           | -0.161 | 0.183  | 0.540     | 0.324     | 0.048  | 0.064  | 0.441  | 0.467       | -0.021  | -0.265 |
| Philippines         -0.186         -0.225         0.093         0.025         -0.253         0.086         0.055         -0.236         -0.184         0.055           Pakistan         -0.179         0.287         0.152         -0.199         -0.229         -0.115         0.192         -0.016         -0.042         0.037           Turkey         -0.052         0.068         0.164         0.075         0.042         -0.102         0.099         -0.077         0.178         0.501           East Europe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Korea, South    | -0.197 | -0.252 | 0.214     | 0.341     | -0.040 | -0.161 | 0.038  | 0.237       | -0.004  | -0.053 |
| Pakistan-0.1790.2870.152-0.199-0.229-0.1150.192-0.016-0.0420.037Turkey-0.0520.0680.1640.0750.042-0.1020.099-0.0970.1780.501East EuropeHungary-0.327-0.1380.3520.4130.2640.0220.3220.4760.332-0.107Lithuania-0.0510.2070.195-0.2690.214-0.101-0.1440.2290.192-0.195Macedonia0.297-0.0890.1150.144-0.1220.0450.236-0.196-0.0580.308Romania-0.322-0.0130.2300.2910.2210.1650.2470.1380.050-0.028Slovenia-0.217-0.0480.361-0.253-0.3890.206-0.1350.124-0.064-0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Malaysia        | -0.283 | -0.178 | 0.429     | 0.258     | -0.072 | -0.002 | 0.238  | 0.182       | 0.037   | 0.044  |
| Turkey-0.0520.0680.1640.0750.042-0.1020.099-0.0970.1780.501East EuropeHungary-0.327-0.1380.3520.4130.2640.0220.3220.4760.332-0.107Lithuania-0.0510.2070.195-0.2690.214-0.101-0.1440.2290.192-0.195Macedonia0.297-0.0890.1150.144-0.1220.0450.236-0.196-0.0580.308Romania-0.322-0.0130.2300.2910.2210.1650.2470.1380.050-0.028Slovenia-0.217-0.0480.361-0.253-0.3890.206-0.1350.124-0.064-0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Philippines     | -0.186 | -0.225 | 0.093     | 0.025     | -0.253 | 0.086  | 0.055  | -0.236      | -0.184  | 0.055  |
| East Europe         Hungary         -0.327         -0.138         0.352         0.413         0.264         0.022         0.322         0.476         0.332         -0.107           Lithuania         -0.051         0.207         0.195         -0.269         0.214         -0.101         -0.144         0.229         0.192         -0.195           Macedonia         0.297         -0.089         0.115         0.144         -0.122         0.045         0.236         -0.196         -0.058         0.308           Romania         -0.322         -0.013         0.230         0.291         0.221         0.165         0.247         0.138         0.050         -0.028           Slovenia         -0.217         -0.048         0.361         -0.253         -0.389         0.206         -0.135         0.124         -0.064         -0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pakistan        | -0.179 | 0.287  | 0.152     | -0.199    | -0.229 | -0.115 | 0.192  | -0.016      | -0.042  | 0.037  |
| Hungary-0.327-0.1380.3520.4130.2640.0220.3220.4760.332-0.107Lithuania-0.0510.2070.195-0.2690.214-0.101-0.1440.2290.192-0.195Macedonia0.297-0.0890.1150.144-0.1220.0450.236-0.196-0.0580.308Romania-0.322-0.0130.2300.2910.2210.1650.2470.1380.050-0.028Slovenia-0.217-0.0480.361-0.253-0.3890.206-0.1350.124-0.064-0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turkey          | -0.052 | 0.068  | 0.164     | 0.075     | 0.042  | -0.102 | 0.099  | -0.097      | 0.178   | 0.501  |
| Lithuania-0.0510.2070.195-0.2690.214-0.101-0.1440.2290.192-0.195Macedonia0.297-0.0890.1150.144-0.1220.0450.236-0.196-0.0580.308Romania-0.322-0.0130.2300.2910.2210.1650.2470.1380.050-0.028Slovenia-0.217-0.0480.361-0.253-0.3890.206-0.1350.124-0.064-0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | East Europe     |        |        |           |           |        |        |        |             |         |        |
| Macedonia         0.297         -0.089         0.115         0.144         -0.122         0.045         0.236         -0.196         -0.058         0.308           Romania         -0.322         -0.013         0.230         0.291         0.221         0.165         0.247         0.138         0.050         -0.028           Slovenia         -0.217         -0.048         0.361         -0.253         -0.389         0.206         -0.135         0.124         -0.064         -0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hungary         | -0.327 | -0.138 | 0.352     | 0.413     | 0.264  | 0.022  | 0.322  | 0.476       | 0.332   | -0.107 |
| Romania         -0.322         -0.013         0.230         0.291         0.221         0.165         0.247         0.138         0.050         -0.028           Slovenia         -0.217         -0.048         0.361         -0.253         -0.389         0.206         -0.135         0.124         -0.064         -0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lithuania       | -0.051 | 0.207  | 0.195     | -0.269    | 0.214  |        | -0.144 | 0.229       | 0.192   | -0.195 |
| Slovenia -0.217 -0.048 0.361 -0.253 -0.389 0.206 -0.135 0.124 -0.064 -0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Macedonia       | 0.297  | -0.089 | 0.115     | 0.144     | -0.122 | 0.045  | 0.236  | -0.196      | -0.058  | 0.308  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Romania         | -0.322 | -0.013 | 0.230     | 0.291     | 0.221  | 0.165  | 0.247  | 0.138       | 0.050   | -0.028 |
| Slovak Republic         -0.274         -0.104         0.114         -0.492         0.180         -0.027         -0.134         -0.136         -0.298         0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Slovenia        | -0.217 | -0.048 | 0.361     | -0.253    | -0.389 | 0.206  | -0.135 | 0.124       | -0.064  | -0.338 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Slovak Republic | -0.274 | -0.104 | 0.114     | -0.492    | 0.180  | -0.027 | -0.134 | -0.136      | -0.298  | 0.018  |

#### Correlation between Real Domestic Output and Prices, Inflation and Real Wages

|                 |        |        | <u>CPI</u> |        |        |        |        | Inflation | 1      |        |        | R      | eal Wag | e      |        |
|-----------------|--------|--------|------------|--------|--------|--------|--------|-----------|--------|--------|--------|--------|---------|--------|--------|
|                 | lag 8  | lag 4  | no lag     | lead 4 | lead 8 | lag 8  | lag 4  | no lag    | lead 4 | lead 8 | lag 8  | lag 4  | no lag  | —      | lead 8 |
| US              | -0.172 | -0.714 | -0.465     | 0.238  | 0.556  | -0.509 | -0.477 | 0.270     | 0.573  | 0.185  |        |        |         |        |        |
| UK              | 0.111  | -0.459 | -0.514     | -0.049 | 0.441  | -0.221 | -0.392 | 0.230     | 0.302  | 0.227  |        |        |         |        |        |
| Japan           | 0.018  | -0.642 | -0.351     | 0.217  | 0.108  | -0.341 | -0.328 | 0.430     | 0.191  | -0.163 |        |        |         |        |        |
| Africa          |        |        |            |        |        |        |        |           |        |        |        |        |         |        |        |
| Côte d'Ivoire   | 0.006  | 0.012  | 0.165      | 0.262  | 0.111  | -0.019 | -0.002 | 0.082     | 0.130  | -0.174 |        |        |         |        |        |
| Malawi          | 0.279  | 0.327  | -0.235     | -0.388 | -0.264 | 0.135  | -0.065 | -0.409    | -0.070 | 0.147  |        |        |         |        |        |
| Nigeria         | 0.165  | 0.053  | -0.256     | -0.227 | -0.098 | -0.123 | -0.030 | -0.216    | 0.046  | 0.149  |        |        |         |        |        |
| South Africa    | -0.033 | -0.196 | -0.120     | 0.200  | 0.151  | -0.048 | -0.087 | 0.117     | 0.169  | -0.096 |        |        |         |        |        |
| Senegal         | -0.054 | 0.230  | 0.116      | -0.269 | -0.035 | -0.016 | 0.141  | 0.020     | -0.315 | 0.057  |        |        |         |        |        |
| North Africa    |        |        |            |        |        |        |        |           |        |        |        |        |         |        |        |
| Israel          | 0.073  | 0.267  | 0.190      | 0.174  | -0.015 | 0.443  | 0.211  | -0.426    | -0.102 | 0.261  |        |        |         |        |        |
| Jordan          | 0.033  | 0.016  | -0.158     | -0.234 | 0.017  | -0.047 | -0.050 | -0.143    | -0.046 | 0.102  |        |        |         |        |        |
| Morocco         | -0.039 | -0.070 | -0.236     | 0.031  | -0.002 | 0.031  | -0.063 | -0.074    | 0.105  | 0.071  |        |        |         |        |        |
| Tunisia         | 0.119  | 0.674  | -0.149     | -0.378 | -0.142 | 0.421  | 0.213  | -0.432    | -0.097 | 0.083  |        |        |         |        |        |
| Latin America   |        |        |            |        |        |        |        |           |        |        |        |        |         |        |        |
| Argentina       | -0.323 | 0.068  | 0.595      | -0.632 | -0.267 | 0.081  | 0.113  | 0.239     | -0.811 | 0.213  |        |        |         |        |        |
| Barbados        | 0.204  | -0.012 | -0.443     | -0.201 | 0.208  | -0.008 | -0.041 | -0.124    | 0.166  | 0.280  |        |        |         |        |        |
| Brazil          | -0.164 | 0.081  | 0.421      | 0.350  | 0.149  | -0.010 | -0.008 | 0.400     | 0.275  | 0.317  |        |        |         |        |        |
| Columbia        | -0.171 | -0.345 | -0.302     | 0.147  | 0.118  | -0.101 | -0.046 | 0.225     | 0.094  | -0.007 |        |        |         |        |        |
| Chile           | 0.163  | -0.138 | -0.009     | -0.025 | -0.105 | 0.028  | -0.344 | -0.130    | -0.100 | 0.442  | 0.041  | 0.371  | -0.048  | 0.303  | 0.118  |
| Mexico          | 0.011  | -0.083 | -0.330     | -0.332 | -0.010 | 0.251  | -0.021 | -0.516    | -0.070 | 0.139  | -0.115 | -0.151 | 0.277   | 0.312  | 0.100  |
| Peru            | -0.085 | -0.423 | -0.387     | -0.357 | -0.076 | -0.286 | -0.076 | -0.045    | 0.057  | 0.099  |        |        |         |        |        |
| Trinidad        | 0.082  | -0.055 | -0.217     | -0.208 | -0.087 | 0.057  | -0.110 | -0.146    | 0.016  | 0.080  |        |        |         |        |        |
| Uruguay         | 0.043  | -0.307 | -0.135     | 0.107  | -0.147 | 0.312  | 0.352  | -0.041    | -0.444 | -0.182 |        |        |         |        |        |
| Asia            |        |        |            |        |        |        |        |           |        |        |        |        |         |        |        |
| Bangladesh      | -0.035 | -0.090 | 0.055      | 0.061  | -0.061 | 0.006  | -0.014 | 0.117     | -0.049 | 0.060  |        |        |         |        |        |
| Hong Kong       | 0.871  | -0.696 | 0.074      | -0.176 | -0.582 | -0.446 | -0.540 | 0.275     | -0.427 | -0.113 | -0.869 | -0.621 | 0.405   | 0.751  | 0.683  |
| India           | 0.048  | -0.197 | -0.398     | -0.151 | 0.160  | -0.084 | -0.157 | -0.099    | 0.265  | 0.179  |        |        |         |        |        |
| Korea, South    | 0.143  | -0.164 | -0.482     | -0.192 | 0.238  | 0.061  | -0.300 | -0.248    | 0.457  | 0.288  |        |        |         |        |        |
| Malaysia        | -0.036 | -0.186 | -0.071     | -0.007 | -0.031 | -0.103 | -0.059 | 0.150     | 0.039  | 0.042  |        |        |         |        |        |
| Philippines     | -0.120 | -0.192 | 0.047      | 0.086  | -0.080 | -0.180 | -0.079 | 0.127     | 0.060  | -0.152 |        |        |         |        |        |
| Pakistan        | -0.340 | -0.144 | 0.132      | 0.278  | 0.006  | -0.264 | 0.191  | 0.238     | 0.111  | -0.206 |        |        |         |        |        |
| Turkey          | -0.038 | -0.014 | -0.132     | -0.192 | 0.079  | 0.079  | 0.048  | -0.261    | -0.039 | 0.008  |        |        |         |        |        |
| East Europe     |        |        |            |        |        |        |        |           |        |        |        |        |         |        |        |
| Hungary         | -0.017 | -0.680 | -0.591     | -0.090 | 0.251  | -0.338 | -0.374 | 0.176     | 0.411  | 0.183  | 0.034  | 0.413  | 0.297   | -0.122 | -0.225 |
| Lithuania       | -0.152 | -0.141 | -0.095     | -0.032 | 0.041  | 0.121  | 0.019  | 0.028     | -0.310 | -0.233 |        |        |         |        |        |
| Macedonia       | -0.157 | -0.341 | -0.253     | 0.031  | 0.330  | 0.138  | -0.109 | 0.455     | 0.192  | 0.150  | -0.276 | 0.579  | 0.244   | -0.230 | -0.394 |
| Romania         | 0.612  | -0.211 | -0.617     | -0.352 | 0.143  | -0.137 | -0.600 | -0.278    | 0.243  | 0.345  | -0.311 | 0.486  | 0.557   | 0.182  | -0.134 |
| Slovenia        | 0.077  | 0.097  | 0.579      | 0.337  | 0.061  | 0.082  | -0.309 | 0.557     | -0.340 | -0.209 | -0.245 | -0.487 | 0.336   | 0.186  | 0.323  |
| Slovak Republic | 0.153  | 0.558  | 0.130      | -0.476 | -0.307 | 0.270  | -0.039 | -0.460    | -0.406 | 0.099  | -0.513 | -0.450 | 0.000   | 0.539  | 0.430  |

#### Correlation between Real Domestic Output and Consumption and Investment

|                 |        | Real Pri | vate Consi | umption |        | B      | eal Gross F | ived Canita | al Formatio | 'n     |
|-----------------|--------|----------|------------|---------|--------|--------|-------------|-------------|-------------|--------|
|                 | lag 8  | lag 4    | no lag     | lead 4  | lead 8 | lag 8  | lag 4       | no lag      | lead 4      | lead 8 |
| US              | -0.113 | 0.617    | 0.675      | -0.097  | -0.493 | -0.239 | 0.383       | 0.869       | 0.146       | -0.500 |
| UK              | -0.323 | 0.152    | 0.518      | 0.264   | -0.001 | -0.327 | 0.032       | 0.510       | 0.494       | 0.007  |
| Japan           | -0.238 | 0.425    | 0.368      | -0.084  | -0.126 | -0.506 | 0.056       | 0.764       | 0.338       | -0.106 |
| Africa          | 0.200  | 0.125    | 0.500      | 0.001   | 0.120  | 0.500  | 0.000       | 0.701       | 0.000       | 0.100  |
| Côte d'Ivoire   |        |          |            |         |        |        |             |             |             |        |
| Malawi          |        |          |            |         |        |        |             |             |             |        |
| Nigeria         |        |          |            |         |        |        |             |             |             |        |
| South Africa    | -0.508 | 0.039    | 0.564      | 0.332   | 0.183  | -0.619 | -0.060      | 0.631       | 0.605       | 0.108  |
| Senegal         |        |          |            |         |        |        |             |             |             |        |
| North Africa    |        |          |            |         |        |        |             |             |             |        |
| Israel          | 0.056  | -0.065   | 0.250      | 0.100   | -0.141 | -0.010 | -0.011      | 0.374       | -0.060      | -0.398 |
| Jordan          |        |          |            |         |        |        |             |             |             |        |
| Morocco         |        |          |            |         |        |        |             |             |             |        |
| Tunisia         |        |          |            |         |        |        |             |             |             |        |
| Latin America   |        |          |            |         |        |        |             |             |             |        |
| Argentina       | -0.359 | -0.187   | 0.707      | 0.685   | -0.407 | -0.121 | 0.206       | 0.897       | 0.474       | -0.551 |
| Barbados        |        |          |            |         |        |        |             |             |             |        |
| Brazil          | -0.112 | -0.281   | 0.488      | -0.061  | 0.071  | -0.080 | -0.309      | 0.642       | -0.116      | -0.262 |
| Columbia        | 0.000  | 0.174    | 0.643      | -0.298  | -0.203 | -0.397 | 0.013       | 0.666       | -0.211      | -0.074 |
| Chile           | 0.781  | -0.271   | 0.224      | -0.574  | 0.876  | 0.152  | 0.853       | -0.954      | 0.142       | 0.720  |
| Mexico          | -0.246 | -0.230   | 0.563      | 0.290   | 0.081  | -0.324 | -0.109      | 0.802       | 0.218       | -0.067 |
| Peru            |        |          |            |         |        | -0.152 | 0.166       | 0.771       | 0.355       | -0.066 |
| Trinidad        |        |          |            |         |        |        |             |             |             |        |
| Uruguay         |        |          |            |         |        |        |             |             |             |        |
| Asia            |        |          |            |         |        |        |             |             |             |        |
| Bangladesh      |        |          |            |         |        |        |             |             |             |        |
| Hong Kong       | -0.379 | 0.118    | 0.625      | -0.002  | -0.412 | -0.253 | -0.032      | 0.622       | 0.123       | -0.239 |
| India           |        |          |            |         |        |        |             |             |             |        |
| Korea, South    | -0.372 | -0.280   | 0.322      | 0.414   | 0.179  | -0.445 | -0.163      | 0.469       | 0.434       | 0.035  |
| Malaysia        | 0.030  | -0.168   | -0.316     | 0.025   | 0.065  | -0.147 | -0.629      | -0.064      | 0.321       | 0.311  |
| Philippines     | -0.071 | 0.100    | 0.016      | -0.014  | 0.181  | -0.158 | 0.099       | 0.203       | 0.007       | -0.057 |
| Pakistan        |        |          |            |         |        |        |             |             |             |        |
| Turkey          | 0.122  | -0.111   | 0.665      | -0.008  | -0.072 | 0.072  | -0.235      | 0.789       | 0.095       | -0.074 |
| East Europe     |        |          |            |         |        |        |             |             |             |        |
| Hungary         | -0.176 | 0.322    | -0.301     | -0.379  | 0.554  | 0.366  | 0.199       | 0.008       | -0.089      | -0.075 |
| Lithuania       | 0.285  | 0.079    | 0.287      | -0.177  | -0.441 |        |             |             |             |        |
| Macedonia       |        |          |            |         |        |        |             |             |             |        |
| Romania         | -0.534 | -0.587   | -0.105     | 0.102   | 0.225  | -0.640 | 0.294       | 0.845       | 0.634       | 0.051  |
| Slovenia        | 0.460  | 0.260    | -0.587     | -0.016  | -0.135 | 0.221  | 0.317       | -0.633      | -0.139      | -0.017 |
| Slovak Republic | 0.008  | -0.517   | -0.095     | 0.352   | 0.106  | -0.179 | -0.467      | 0.039       | 0.453       | 0.232  |
|                 |        |          |            |         |        |        |             |             |             |        |

| Correlation between Real Domestic Output and Government Expenditure, Government Revenue |
|-----------------------------------------------------------------------------------------|
| and the Fiscal Impulse                                                                  |

|                 |           |           |          | а       | nd the     | Fiscal | Impuls     | e         |           |        |        |            |                 |           |        |
|-----------------|-----------|-----------|----------|---------|------------|--------|------------|-----------|-----------|--------|--------|------------|-----------------|-----------|--------|
|                 | 1         | Governn   | nent Exp | enditur | <u>e</u>   |        | Govern     | iment Re  | evenue    |        |        | <u>Fis</u> | <u>cal Impu</u> | lse       |        |
|                 | lag 8     | lag 4     | no lag   | lead 4  | lead 8     | lag 8  | lag 4      | no lag    | lead 4    | lead 8 | lag 8  | lag 4      | no lag          | lead 4    | lead 8 |
| US              | 0.005     | -0.193    | -0.414   | 0.029   | 0.221      | -0.481 | -0.191     | 0.594     | 0.451     | 0.031  | 0.364  | 0.033      | -0.695          | -0.332    | 0.103  |
| UK              |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Japan           |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Africa          |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Côte d'Ivoire   |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Malawi          | -0.134    | -0.064    | 0.092    | 0.003   | 0.097      | 0.047  | -0.123     | 0.032     | -0.133    | -0.176 | -0.135 | 0.016      | 0.076           | 0.057     | 0.150  |
| Nigeria         | 0.111     | -0.095    | -0.547   | 0.239   | 0.237      | 0.219  | -0.410     | 0.094     | 0.076     | -0.244 | -0.042 | 0.346      | -0.254          | 0.118     | -0.060 |
| South Africa    | -0.146    | -0.115    | 0.040    | 0.149   | 0.057      | 0.012  | -0.176     | -0.431    | -0.023    | 0.164  | 0.060  | -0.165     | -0.282          | -0.136    | 0.142  |
| Senegal         |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| North Africa    |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Israel          |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Jordan          | -0.070    | 0.157     | -0.159   | 0.123   | 0.032      | 0.000  | 0.373      | -0.701    | 0.416     | 0.143  | -0.150 | 0.273      | -0.280          | 0.150     | 0.091  |
| Morocco         | -0.199    | 0.212     | 0.288    | -0.258  | -0.174     | -0.145 | 0.262      | 0.237     | -0.215    | -0.136 | -0.613 | 0.030      | 0.130           | -0.309    | 0.525  |
| Tunisia         |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Latin America   |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Argentina       | -0.457    | 0.106     | 0.737    | 0.124   | -0.392     | 0.197  | 0.269      | 0.710     | -0.174    | -0.521 | -0.379 | -0.491     | -0.386          | 0.348     | 0.348  |
| Barbados        | -0.165    | 0.070     | 0.202    | 0.131   | 0.030      | -0.113 | 0.131      | 0.195     | 0.149     | -0.098 | -0.037 | -0.046     | 0.020           | -0.004    | 0.093  |
| Brazil          | -0.023    | 0.301     | 0.505    | 0.065   | -0.467     | -0.036 | 0.265      | 0.525     | 0.053     | -0.468 | 0.019  | 0.228      | -0.143          | 0.056     | 0.104  |
| Columbia        | -0.149    | 0.076     | 0.349    | -0.373  | 0.129      | -0.185 | -0.184     | 0.167     | -0.044    | 0.272  | 0.040  | 0.182      | 0.119           | -0.208    | -0.065 |
| Chile           |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Mexico          | 0.300     | 0.141     | -0.113   | -0.277  | 0.052      | 0.083  | -0.221     | -0.311    | -0.087    | 0.245  | -0.125 | -0.177     | -0.093          | -0.018    | 0.119  |
| Peru            | -0.089    | -0.455    | -0.234   | -0.328  | -0.441     | -0.102 | 0.322      | 0.152     | 0.205     | -0.190 | -0.096 | 0.167      | -0.097          | 0.117     | 0.248  |
| Trinidad        |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Uruguay         | -0.323    | -0.055    | 0.357    | 0.100   | -0.153     | -0.048 | -0.364     | -0.370    | -0.043    | 0.233  | -0.025 | -0.432     | -0.213          | -0.066    | 0.257  |
| Asia            |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Bangladesh      |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Hong Kong       | 0.237     | -0.230    | -0.205   | 0.107   | 0.094      | 0.394  | -0.087     | -0.580    | 0.079     | 0.258  | 0.181  | 0.090      | -0.320          | 0.025     | -0.008 |
| India           |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Korea, South    | -0.191    | -0.037    | -0.040   | 0.062   | 0.169      | -0.111 | -0.031     | -0.391    | 0.070     | 0.254  | -0.072 | 0.009      | -0.280          | -0.057    | 0.095  |
| Malaysia        | -0.004    | -0.292    | -0.211   | 0.043   | 0.153      | 0.166  | -0.235     | -0.684    | 0.002     | 0.294  | 0.261  | -0.062     | -0.318          | -0.076    | 0.110  |
| Philippines     | -0.122    | -0.082    | -0.025   | -0.027  | 0.045      | 0.255  | -0.053     | -0.887    | -0.096    | 0.292  | 0.051  | 0.027      | -0.198          | -0.104    | 0.022  |
| Pakistan        |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Turkey          |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| East Europe     |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Hungary         | 0.207     | 0.139     | -0.633   | -0.138  | 0.529      | 0.302  | 0.211      | -0.866    | -0.248    | 0.599  | 0.479  | 0.101      | -0.607          | -0.191    | 0.446  |
| Lithuania       | -0.435    | -0.959    | 0.440    | 0.747   | 0.882      | -0.480 | -0.747     | -0.899    | -0.387    | 0.436  | -0.449 | -0.805     | 0.648           | 0.174     | 0.823  |
| Macedonia       |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
| Romania         | <br>0.661 | <br>0.218 | -0.022   | -0.087  | <br>-0.146 | -0.146 | <br>-0.171 | <br>0.097 | <br>0.298 | -0.100 | -0.291 | 0.203      | <br>0.435       | <br>0.214 | -0.552 |
| Slovenia        | -0.251    | -0.258    | 0.272    | 0.459   | -0.062     | 0.131  | -0.061     | -0.641    | 0.313     | 0.095  | 0.059  | 0.042      | 0.165           | 0.004     | -0.167 |
| Slovak Republic |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |
|                 |           |           |          |         |            |        |            |           |           |        |        |            |                 |           |        |

## Correlation between Real Domestic Output and Broad Money and the Broad Money Velocity Indicator

|                 |        | В      | road Mone | ev.    |        |        | Broad Mo | ney Velocit | y Indicator |        |
|-----------------|--------|--------|-----------|--------|--------|--------|----------|-------------|-------------|--------|
|                 | lag8   | lag4   | no lag    | lead4  | lead8  | lag 8  | lag 4    | no lag      | lead 4      | lead 8 |
| US              | 0.017  | 0.392  | 0.026     | -0.230 | -0.096 | 0.478  | 0.297    | -0.690      | -0.393      | 0.116  |
| UK              | -0.230 | -0.077 | 0.102     | 0.195  | 0.296  | -0.149 | -0.025   | -0.143      | 0.307       | 0.501  |
| Japan           | -0.342 | 0.255  | 0.388     | -0.012 | 0.016  | 0.277  | 0.359    | -0.681      | -0.205      | 0.414  |
| Africa          |        |        |           |        |        |        |          |             |             |        |
| Côte d'Ivoire   | 0.329  | 0.192  | 0.196     | 0.098  | -0.192 | 0.454  | 0.129    | -0.735      | -0.065      | -0.029 |
| Malawi          | -0.289 | 0.222  | 0.071     | -0.124 | 0.301  | 0.163  | -0.207   | -0.534      | 0.108       | 0.129  |
| Nigeria         | 0.108  | -0.124 | -0.291    | -0.139 | 0.000  | -0.012 | -0.267   | -0.527      | 0.080       | 0.131  |
| South Africa    | -0.693 | -0.177 | 0.466     | 0.575  | 0.340  | -0.347 | -0.354   | -0.540      | 0.206       | 0.541  |
| Senegal         | -0.042 | 0.081  | 0.099     | -0.313 | 0.189  | 0.230  | 0.151    | -0.873      | 0.164       | 0.382  |
| North Africa    |        |        |           |        |        |        |          |             |             |        |
| Israel          | 0.202  | 0.080  | 0.115     | -0.126 | -0.041 | 0.121  | -0.239   | -0.493      | -0.017      | 0.206  |
| Jordan          | 0.345  | -0.021 | -0.015    | -0.158 | -0.132 | 0.153  | 0.344    | -0.909      | 0.436       | 0.135  |
| Morocco         | -0.149 | 0.059  | 0.098     | -0.027 | 0.057  | -0.059 | 0.263    | -0.663      | 0.151       | 0.063  |
| Tunisia         | 0.054  | -0.283 | -0.173    | 0.154  | 0.237  | 0.083  | -0.177   | -0.534      | 0.639       | -0.097 |
| Latin America   |        |        |           |        |        |        |          |             |             |        |
| Argentina       | -0.357 | -0.020 | 0.617     | 0.258  | -0.281 | -0.371 | -0.183   | -0.794      | 0.597       | 0.364  |
| Barbados        | -0.222 | 0.316  | 0.111     | -0.052 | 0.291  | 0.014  | 0.145    | -0.692      | 0.074       | 0.255  |
| Brazil          | 0.046  | 0.279  | 0.388     | 0.006  | -0.329 | 0.189  | 0.235    | -0.592      | 0.409       | 0.141  |
| Columbia        | -0.268 | -0.471 | 0.040     | 0.260  | 0.194  | -0.107 | -0.194   | -0.481      | 0.188       | 0.176  |
| Chile           | -0.549 | -0.177 | 0.447     | 0.592  | 0.045  | 0.052  | -0.307   | -0.518      | 0.604       | 0.424  |
| Mexico          | 0.023  | 0.093  | -0.029    | -0.063 | 0.096  | -0.075 | 0.056    | 0.015       | 0.134       | 0.133  |
| Peru            | -0.078 | -0.338 | -0.420    | -0.476 | -0.019 | -0.006 | 0.184    | -0.678      | -0.211      | 0.475  |
| Trinidad        | 0.106  | -0.014 | -0.177    | -0.343 | -0.067 | 0.069  | 0.129    | -0.833      | 0.025       | 0.026  |
| Uruguay         | -0.274 | 0.182  | 0.332     | 0.136  | -0.021 | -0.090 | -0.269   | -0.398      | -0.073      | 0.480  |
| Asia            |        |        |           |        |        |        |          |             |             |        |
| Bangladesh      | -0.070 | 0.044  | 0.201     | -0.160 | -0.214 | 0.198  | 0.398    | -0.588      | 0.093       | -0.294 |
| Hong Kong       | 0.013  | 0.521  | 0.732     | -0.185 | -0.885 | 0.139  | 0.711    | -0.606      | -0.431      | 0.466  |
| India           | -0.070 | -0.063 | -0.018    | 0.031  | 0.214  | 0.019  | -0.029   | -0.162      | 0.024       | 0.200  |
| Korea, South    | -0.063 | 0.397  | 0.430     | 0.094  | -0.189 | 0.004  | 0.094    | -0.442      | 0.061       | 0.066  |
| Malaysia        | -0.162 | -0.127 | 0.038     | -0.049 | -0.207 | 0.282  | -0.039   | -0.906      | -0.050      | 0.254  |
| Philippines     | -0.256 | 0.017  | 0.167     | 0.087  | 0.004  | 0.268  | -0.024   | -0.926      | -0.072      | 0.307  |
| Pakistan        | 0.189  | 0.270  | -0.081    | -0.211 | -0.009 | 0.374  | 0.219    | -0.570      | -0.214      | 0.064  |
| Turkey          | -0.100 | 0.156  | -0.372    | 0.097  | 0.273  | -0.250 | 0.165    | -0.776      | 0.210       | 0.213  |
| East Europe     |        |        |           |        |        |        |          |             |             |        |
| Hungary         | 0.679  | 0.120  | -0.565    | -0.711 | 0.128  | 0.473  | 0.013    | -0.838      | -0.637      | 0.104  |
| Lithuania       | -0.335 | -0.418 | 0.407     | -0.316 | -0.235 | 0.013  | 0.217    | -0.935      | 0.331       | 0.426  |
| Macedonia       | -0.289 | 0.222  | 0.071     | -0.124 | 0.301  | -0.232 | 0.561    | -0.354      | 0.006       | 0.191  |
| Romania         | 0.536  | 0.379  | 0.065     | -0.263 | -0.504 | 0.255  | -0.573   | -0.855      | -0.070      | 0.683  |
| Slovenia        | 0.158  | 0.076  | 0.304     | 0.482  | 0.033  | 0.074  | 0.093    | -0.561      | 0.626       | 0.150  |
| Slovak Republic | -0.057 | 0.212  | 0.383     | 0.153  | -0.237 | 0.061  | -0.109   | -0.594      | 0.465       | 0.130  |

#### Correlation between Real Domestic Output and Credit

|                 |        | Real I | Domestic ( | <u>Credit</u> |        |        | Nomina | al Domesti | c Credit |        |
|-----------------|--------|--------|------------|---------------|--------|--------|--------|------------|----------|--------|
|                 | lag 8  | lag 4  | no lag     | lead 4        | lead 8 | lag 8  | lag 4  | no lag     | lead 4   | lead 8 |
| US              | -0.342 | 0.184  | 0.771      | 0.482         | -0.213 | -0.476 | -0.164 | 0.655      | 0.670    | 0.044  |
| UK              | -0.314 | -0.030 | 0.234      | 0.152         | 0.093  | -0.245 | -0.134 | 0.063      | 0.112    | 0.210  |
| Japan           | -0.255 | 0.529  | 0.362      | -0.121        | -0.024 | -0.365 | 0.120  | 0.180      | 0.052    | 0.071  |
| Africa          |        |        |            |               |        |        |        |            |          |        |
| Côte d'Ivoire   | 0.084  | 0.065  | -0.136     | 0.065         | 0.000  | 0.105  | 0.074  | 0.009      | 0.248    | 0.094  |
| Malawi          | -0.139 | -0.108 | 0.245      | 0.335         | 0.143  | 0.017  | -0.002 | 0.059      | 0.209    | 0.034  |
| Nigeria         | -0.122 | -0.028 | 0.109      | 0.086         | 0.036  | -0.081 | 0.126  | -0.056     | -0.186   | -0.037 |
| South Africa    | -0.658 | -0.275 | 0.394      | 0.391         | 0.167  | 0.199  | 0.069  | -0.200     | -0.028   | 0.055  |
| Senegal         | 0.179  | -0.080 | -0.177     | 0.132         | 0.062  | -0.664 | -0.350 | 0.367      | 0.471    | 0.225  |
| North Africa    |        |        |            |               |        |        |        |            |          |        |
| Israel          | -0.049 | -0.349 | 0.042      | 0.282         | 0.243  | -0.018 | 0.227  | 0.219      | 0.161    | 0.038  |
| Jordan          | -0.098 | 0.127  | -0.061     | 0.215         | 0.091  | 0.209  | 0.238  | -0.200     | -0.032   | 0.065  |
| Morocco         | 0.054  | 0.054  | -0.057     | -0.055        | 0.014  | 0.043  | 0.024  | -0.134     | -0.044   | 0.011  |
| Tunisia         | -0.359 | -0.230 | 0.298      | -0.119        | 0.228  | -0.041 | -0.280 | -0.194     | -0.149   | 0.064  |
| Latin America   |        |        |            |               |        |        |        |            |          |        |
| Argentina       | -0.604 | -0.725 | 0.177      | 0.868         | 0.433  | -0.347 | -0.250 | 0.208      | 0.473    | 0.302  |
| Barbados        | -0.317 | -0.106 | 0.354      | 0.370         | -0.078 | -0.255 | -0.182 | 0.225      | 0.318    | -0.002 |
| Brazil          | 0.089  | 0.095  | 0.281      | 0.532         | -0.448 | 0.025  | 0.333  | 0.476      | 0.066    | -0.456 |
| Columbia        | -0.189 | -0.339 | 0.094      | 0.321         | 0.146  | -0.262 | -0.471 | -0.017     | 0.378    | 0.205  |
| Chile           | -0.169 | -0.476 | -0.143     | 0.353         | 0.118  | -0.495 | -0.422 | 0.112      | 0.398    | 0.115  |
| Mexico          | -0.298 | -0.015 | 0.471      | 0.367         | -0.149 | -0.223 | -0.072 | 0.217      | 0.270    | -0.077 |
| Peru            | 0.077  | 0.264  | 0.174      | 0.284         | 0.523  | -0.088 | -0.435 | -0.418     | -0.368   | 0.009  |
| Trinidad        | 0.063  | 0.061  | 0.019      | -0.096        | -0.065 | 0.135  | 0.061  | -0.086     | -0.218   | -0.091 |
| Uruguay         | 0.005  | -0.191 | -0.196     | 0.065         | 0.422  | -0.181 | 0.243  | 0.036      | 0.102    | 0.201  |
| Asia            |        |        |            |               |        |        |        |            |          |        |
| Bangladesh      | 0.292  | -0.151 | 0.333      | 0.172         | 0.101  | -0.101 | -0.259 | 0.024      | 0.061    | 0.048  |
| Hong Kong       | -0.499 | -0.772 | 0.289      | 0.699         | -0.463 | -0.340 | -0.568 | 0.330      | 0.362    | -0.234 |
| India           | -0.026 | 0.171  | 0.437      | 0.112         | -0.223 | 0.026  | 0.176  | 0.225      | -0.075   | -0.206 |
| Korea, South    | -0.351 | -0.320 | 0.187      | 0.268         | 0.049  | -0.073 | -0.064 | -0.025     | 0.178    | 0.183  |
| Malaysia        | -0.261 | -0.496 | -0.108     | 0.226         | 0.431  | -0.232 | -0.521 | -0.124     | 0.206    | 0.336  |
| Philippines     | -0.364 | -0.087 | 0.259      | 0.385         | 0.181  | -0.016 | 0.102  | 0.057      | -0.052   | -0.120 |
| Pakistan        | 0.218  | 0.189  | 0.000      | -0.151        | -0.142 | -0.467 | -0.205 | 0.299      | 0.375    | 0.129  |
| Turkey          | -0.224 | -0.126 | 0.651      | 0.400         | -0.123 | -0.175 | -0.086 | 0.538      | 0.411    | -0.022 |
| East Europe     |        |        |            |               |        |        |        |            |          |        |
| Hungary         | -0.614 | -0.132 | 0.415      | 0.050         | 0.006  | -0.496 | -0.404 | 0.293      | 0.216    | 0.237  |
| Lithuania       | -0.354 | -0.300 | 0.239      | 0.228         | -0.075 | -0.259 | -0.354 | 0.135      | 0.183    | -0.095 |
| Macedonia       | -0.173 | -0.227 | 0.207      | 0.026         | -0.137 | -0.061 | -0.357 | 0.111      | 0.038    | -0.010 |
| Romania         | 0.007  | -0.705 | -0.422     | 0.834         | 0.863  | 0.280  | -0.732 | -0.434     | 0.851    | 0.563  |
| Slovenia        | 0.157  | 0.141  | -0.272     | 0.112         | -0.134 | -0.146 | -0.354 | -0.480     | -0.176   | 0.521  |
| Slovak Republic | -0.155 | -0.404 | -0.460     | -0.082        | 0.549  | 0.322  | 0.198  | 0.031      | 0.236    | -0.165 |

#### Correlation between Real Domestic Output and the Real Interest Rate

| UK         -0.500         -0.376         0.123         0.551         0.482         -0.461         -0.462         0.206         0.555         0.419           Japan         -0.032         -0.464         0.010         0.318         0.003         -0.525         0.322         0.236         0.246         0.246           Africa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |        | <u>Real M</u> | oney Mark | et Rate |        |        | Rea    | l Lending R | late   |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|---------------|-----------|---------|--------|--------|--------|-------------|--------|--------|
| UK         -0.500         -0.376         0.123         0.551         0.482         -0.461         -0.462         0.206         0.555         0.419           Japan         -0.032         -0.464         0.100         0.318         0.003         -0.525         0.322         0.236         0.246         0.266           Africa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | lag 8  | lag 4         | no lag    | lead 4  | lead 8 | lag 8  | lag 4  | no lag      | lead 4 | lead 8 |
| Japan-0.032-0.4640.3100.3180.003-0.525-0.3220.2370.3480.296AfricaNorth Africa-0.5290.5310.1530.5130.3500.4410.5320.1330.0440.1320.4790.2300.3300.0300.2610.1320.4790.2600.7570.4480.4830.1670.1780.1330.0440.1330.0240.211-0.1780.1330.0340.0310.0340.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.0310.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US              | -0.410 | -0.188        | 0.583     | 0.543   | 0.069  | -0.440 | -0.300 | 0.577       | 0.555  | -0.002 |
| Africa         Câte d'hoire         0.134         -0.049         0.099         -0.064         -0.069         -0.038         -0.136         0.226         -0.076         -0.131           Malawi             0.061         -0.099         -0.266         -0.173         0.242           Migeria              0.124         0.033         0.375         0.260         -0.178         0.242           South Africa               0.214         -0.133         -0.024         -0.233         0.375         0.260         -0.178           North Africa               0.214         -0.133         -0.024         -0.230         0.300         0.009           Morcoco         -0.163         -0.178         0.178         -0.138         0.008         0.073         0.133         0.034         0.261         -0.133         0.024         0.221         -0.178           Jordan         0.331         -0.123                                                                                                                                                                                                                                                                                                                                                                                     | UK              | -0.500 | -0.376        | 0.123     | 0.551   | 0.482  | -0.461 | -0.462 | 0.206       | 0.555  | 0.419  |
| Côte d'Ivoire         0.134         -0.049         0.099         -0.064         -0.069         -0.038         -0.136         0.226         -0.076         -0.131           Malawi              0.051         -0.124         0.033         0.375         0.277         0.263           South Africa         -0.529         -0.551         0.153         0.346         -0.560         -0.561         0.132         0.4497         0.290           Sonda Africa            0.214         -0.133         -0.024         -0.221         -0.178           Jordan         0.331         -0.343         0.172         0.144         -0.465         0.058         0.127         0.330         0.009           Morecco         -0.163         -0.178         0.178         -0.138         0.008         0.073         0.133         0.34         0.276         0.071           Tunisia         -0.271         0.226         0.430         -0.133                                                                                                                                                                                                                                                                                                                                                         | Japan           | -0.032 | -0.464        | 0.310     | 0.318   | 0.003  | -0.525 | -0.322 | 0.237       | 0.348  | 0.296  |
| Malawi             0.061         -0.099         -0.260         -0.153         0.242           Nigeria             -0.124         0.033         0.375         0.277         0.263           South Africa         -0.529         -0.551         0.153         0.350         0.441         -0.522         0.557         0.448         -0.483         -0.178           Senegal             0.214         -0.133         -0.483         -0.178           Jordan         0.331         -0.343         0.172         0.148         -0.465         0.058         0.127         0.300         -0.071           Morocco         -0.178         0.178         0.138         0.008         0.0133         0.034         0.207           Tunisia         -0.271         0.226         0.430         -0.423         0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Africa          |        |               |           |         |        |        |        |             |        |        |
| Nigeria             0.124         0.033         0.375         0.277         0.263           South Africa         0.529         -0.551         0.153         0.350         0.441         -0.560         -0.512         0.132         0.447         0.290           North Africa           0.350         0.344         -0.465         0.568         0.127         0.350         -0.441           North Africa            0.214         -0.133         -0.024         -0.21         -0.178           Jordan         0.331         -0.343         0.172         0.144         -0.465         0.058         0.127         0.350         -0.301         0.071           Jordan         0.331         -0.343         0.172         0.144         -0.465         0.058         0.127         0.350         0.071           Jordan         0.216         -0.178         0.430         0.013         0.133         0.021         0.424         0.172           Jordan         0.276         0.340         0.300         0.629         -0.282         0.739         0.346         0.515           Gamano <td>Côte d'Ivoire</td> <td>0.134</td> <td>-0.049</td> <td>0.099</td> <td>-0.064</td> <td>-0.069</td> <td>-0.038</td> <td>-0.136</td> <td>0.226</td> <td>-0.076</td> <td>-0.131</td>              | Côte d'Ivoire   | 0.134  | -0.049        | 0.099     | -0.064  | -0.069 | -0.038 | -0.136 | 0.226       | -0.076 | -0.131 |
| South Africa         -0.529         -0.551         0.153         0.513         0.346         -0.560         -0.561         0.132         0.497         0.290           Senegal         0.503         0.479         0.573         0.350         0.441         -0.592         0.557         0.448         -0.483         -0.167           North Africa             0.214         -0.133         -0.024         -0.221         -0.178           Jordan         0.331         -0.343         0.172         0.144         -0.465         0.058         0.127         0.024         -0.271         0.026         0.071           Tunisia         -0.271         0.226         0.430         -0.423         0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Malawi          |        |               |           |         |        | 0.061  | -0.099 | -0.260      | -0.153 | 0.242  |
| Senegal         0.503         0.479         0.573         0.350         0.441         -0.592         0.557         0.448         -0.483         -0.167           North Africa             0.214         -0.133         -0.224         -0.123         -0.178           Jordan         0.331         -0.343         0.172         0.144         -0.465         0.058         0.127         0.350         -0.300         0.009           Morocco         -0.163         -0.178         0.178         -0.188         0.008         0.073         0.133         0.034         0.201         0.426         0.071           Tunisia         -0.271         0.226         0.430         -0.423         0.113 <td< td=""><td>Nigeria</td><td></td><td></td><td></td><td></td><td></td><td>-0.124</td><td>0.033</td><td>0.375</td><td>0.277</td><td>0.263</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nigeria         |        |               |           |         |        | -0.124 | 0.033  | 0.375       | 0.277  | 0.263  |
| North Africa         Israel             0.214         -0.133         -0.024         -0.221         -0.178           Jordan         0.331         -0.343         0.172         0.144         -0.465         0.058         0.172         0.330         0.009           Morocco         -0.163         -0.178         0.178         -0.138         0.008         0.073         0.133         0.034         0.276         0.071           Tunisia         -0.271         0.226         0.430         -0.423         0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | South Africa    | -0.529 | -0.551        | 0.153     | 0.513   | 0.346  | -0.560 | -0.561 | 0.132       | 0.497  | 0.290  |
| Israel           0.214       -0.133       -0.024       -0.221       -0.178         Jordan       0.331       -0.343       0.172       0.144       -0.465       0.058       0.127       0.350       -0.330       0.009         Morocco       -0.163       -0.178       0.178       -0.138       0.008       0.073       0.133       0.034       0.276       0.071         Tunisia       -0.271       0.226       0.430       -0.423       0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Senegal         | 0.503  | 0.479         | 0.573     | 0.350   | 0.441  | -0.592 | 0.557  | 0.448       | -0.483 | -0.167 |
| Jordan         0.331         -0.343         0.172         0.144         -0.465         0.058         0.127         0.350         -0.330         0.009           Morocco         -0.163         -0.178         0.178         -0.138         0.008         0.073         0.133         0.034         0.276         0.071           Tunisia         -0.271         0.226         0.430         -0.423         0.113                                                                       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | North Africa    |        |               |           |         |        |        |        |             |        |        |
| Morocco         -0.163         -0.178         0.178         -0.138         0.008         0.073         0.133         0.034         0.276         0.071           Tunisia         -0.271         0.226         0.430         -0.423         0.113 <td>Israel</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.214</td> <td>-0.133</td> <td>-0.024</td> <td>-0.221</td> <td>-0.178</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Israel          |        |               |           |         |        | 0.214  | -0.133 | -0.024      | -0.221 | -0.178 |
| Tunisia         -0.271         0.226         0.430         -0.423         0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jordan          | 0.331  | -0.343        | 0.172     | 0.144   | -0.465 | 0.058  | 0.127  | 0.350       | -0.330 | 0.009  |
| Latin America         Argentina             0.368         -0.208         -0.802         -0.332         0.439           Barbados             0.368         -0.261         -0.198         0.201         0.424         0.142           Brazil         0.798         -0.166         -0.760         0.034         0.300         0.609         -0.282         -0.739         0.346         0.734           Columbia         0.156         -0.399         0.300         0.325         -0.325         0.273         -0.480         -0.178         -0.178         -0.178         -0.179           Chile         0.313         -0.311         -0.316         0.331         -0.079         0.035         -0.588         -0.218         -0.178         -0.189           Mexico         0.248         -0.037         -0.467         0.095         0.083         0.238         0.004         -0.475         0.144         0.165           Peru             0.621         -0.226         0.521         -0.007         -0.362         -0.218         -0.119           Uruguay         -0.167 <t< td=""><td>Morocco</td><td>-0.163</td><td>-0.178</td><td>0.178</td><td>-0.138</td><td>0.008</td><td>0.073</td><td>0.133</td><td>0.034</td><td>0.276</td><td>0.071</td></t<>                                    | Morocco         | -0.163 | -0.178        | 0.178     | -0.138  | 0.008  | 0.073  | 0.133  | 0.034       | 0.276  | 0.071  |
| Argentina           0.368       -0.208       -0.802       -0.332       0.439         Barbados             -0.261       -0.198       0.201       0.424       0.142         Brazil       0.798       -0.166       -0.760       0.034       0.300       0.609       -0.282       -0.739       0.346       0.734         Columbia       0.156       -0.399       0.300       0.325       -0.325       0.273       -0.380       0.274       0.445       -0.515         Chile       0.313       -0.311       -0.316       0.331       -0.079       0.035       -0.588       -0.218       -0.073       -0.139         Mexico       0.248       -0.037       -0.467       0.095       0.083       0.238       0.004       -0.475       0.144       0.165         Peru           0.167       -0.159       0.313       -0.172       -0.252       0.521       -0.069       -0.012       0.195         Uruguay       -0.167       -0.153       0.104       0.106       0.210       0.026       -0.114       0.297       <                                                                                                                                                                                                                                                                                  | Tunisia         | -0.271 | 0.226         | 0.430     | -0.423  | 0.113  |        |        |             |        |        |
| Barbados <th< td=""><td>Latin America</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Latin America   |        |               |           |         |        |        |        |             |        |        |
| Brazil         0.798         -0.166         -0.760         0.034         0.300         0.609         -0.282         -0.739         0.346         0.734           Columbia         0.156         -0.399         0.300         0.325         -0.325         0.273         -0.380         0.274         0.445         -0.515           Chile         0.313         -0.311         -0.316         0.331         -0.079         0.035         -0.588         -0.218         -0.073         -0.139           Mexico         0.248         -0.037         -0.467         0.095         0.083         0.238         0.004         -0.475         0.144         0.165           Peru             -0.621         -0.246         -0.337         -0.076         0.356           Trinidad             0.172         -0.252         0.521         -0.07         -0.362         -0.18         -0.199           Magandesh             0.180         -0.134         -0.163         -0.163         -0.163         0.210         0.026         -0.114         0.297         0.328         -0.523         -0.35                                                                                                                                                                                                    | Argentina       |        |               |           |         |        | 0.368  | -0.208 | -0.802      | -0.332 | 0.439  |
| Columbia         0.156         -0.399         0.300         0.325         -0.325         0.273         -0.380         0.274         0.445         -0.515           Chile         0.313         -0.311         -0.316         0.331         -0.079         0.035         -0.588         -0.218         -0.073         -0.139           Mexico         0.248         -0.037         -0.467         0.095         0.083         0.238         0.004         -0.475         0.144         0.165           Peru             -0.621         -0.246         -0.337         -0.076         0.356           Trinidad             0.180         -0.158         -0.069         -0.12         0.195           Uruguay         -0.167         -0.159         0.313         -0.172         -0.252         0.521         -0.007         -0.362         -0.218         -0.119           Asia             0.120         0.026         -0.114         0.297         0.328         -0.523         -0.362         -0.231           Hong Kong         -0.198         0.104         0.106         0.217 </td <td>Barbados</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.261</td> <td>-0.198</td> <td>0.201</td> <td>0.424</td> <td>0.142</td>                                                        | Barbados        |        |               |           |         |        | -0.261 | -0.198 | 0.201       | 0.424  | 0.142  |
| Chile0.313-0.311-0.3160.331-0.0790.035-0.588-0.218-0.073-0.139Mexico0.248-0.037-0.4670.0950.0830.2380.004-0.4750.1440.165Peru0.621-0.246-0.337-0.0760.356Trinidad0.180-0.158-0.069-0.0120.195Uruguay-0.167-0.1590.313-0.172-0.2520.521-0.007-0.362-0.218-0.119AsiaBangladesh0.272-0.1090.060-0.167-0.031Hong Kong-0.1980.1040.1060.2100.026-0.1140.2970.328-0.523-0.362India-0.517-0.1630.4160.174-0.140-0.349-0.4680.0420.4340.218Korea, South0.068-0.431-0.2960.3990.2480.264-0.295-0.3570.3370.259Malaysia-0.030-0.1180.097-0.145-0.225-0.2570.0770.3380.0403Philippines-0.030-0.011-0.099Turkey0.037-0.129-0.2170.179-0.099Hungary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brazil          | 0.798  | -0.166        | -0.760    | 0.034   | 0.300  | 0.609  | -0.282 | -0.739      | 0.346  | 0.734  |
| Mexico0.248-0.037-0.4670.0950.0830.2380.004-0.4750.1440.165Peru0.621-0.246-0.337-0.0760.356Trinidad0.180-0.158-0.069-0.0120.195Uruguay-0.167-0.1590.313-0.172-0.2520.521-0.007-0.362-0.218-0.119Asia0.272-0.1090.060-0.167-0.031Hong Kong-0.1980.1040.1060.2100.026-0.1140.2970.328-0.523-0.362India-0.517-0.1630.4160.174-0.140-0.349-0.4680.0420.4340.218Korea, South0.068-0.431-0.2960.3990.2480.264-0.295-0.3570.3370.259Malaysia-0.430-0.1180.8050.086-0.459-0.296-0.2660.7490.163-0.408Philippines-0.208-0.1860.2310.097-0.145-0.225-0.2570.0770.3380.007Pakistan-0.010-0.011-0.0030.665-0.020Hungary0.338-0.504-0.0100.299-0.197Lithuania0.017-0.107-0.1210.4770.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Columbia        | 0.156  | -0.399        | 0.300     | 0.325   | -0.325 | 0.273  | -0.380 | 0.274       | 0.445  | -0.515 |
| Peru0.6210.02460.03370.0760.356Trinidad0.180-0.158-0.069-0.0120.195Uruguay-0.167-0.1590.313-0.172-0.2520.521-0.007-0.362-0.218-0.119AsiaBangladesh0.272-0.1090.060-0.167-0.031Hong Kong-0.1980.1040.1060.2100.026-0.1140.2970.328-0.523-0.362India-0.517-0.1630.4160.174-0.140-0.349-0.4680.0420.4340.218Korea, South0.068-0.431-0.2960.3990.2480.264-0.295-0.3570.3370.259Malaysia-0.430-0.1180.8050.086-0.459-0.296-0.2660.7490.163-0.408Philippines-0.208-0.1860.2310.097-0.145-0.225-0.2570.0770.3380.007Pakistan-0.010-0.011-0.0030.065-0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chile           | 0.313  | -0.311        | -0.316    | 0.331   | -0.079 | 0.035  | -0.588 | -0.218      | -0.073 | -0.139 |
| Trinidad0.180-0.158-0.069-0.0120.019Uruguay-0.167-0.1590.313-0.172-0.2520.521-0.007-0.362-0.218-0.119Asia0.272-0.1090.060-0.167-0.031Hong Kong-0.1980.1040.1060.2100.026-0.1140.2970.328-0.523-0.362India-0.517-0.1630.4160.174-0.140-0.349-0.4680.0420.4340.218Korea, South0.068-0.431-0.2960.3990.2480.264-0.295-0.3570.3370.259Malaysia-0.400-0.1180.8050.086-0.459-0.2660.7490.163-0.408Philippines-0.208-0.1860.2310.097-0.145-0.225-0.2570.0770.3380.007Pakistan-0.010-0.011-0.0030.065-0.020Hungary0.338-0.504-0.0100.299-0.197Utrukey0.037-0.107-0.1210.4770.1350.0180.151-0.0230.4420.379Macedonia0.338-0.504-0.0100.299-0.197Macedonia<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mexico          | 0.248  | -0.037        | -0.467    | 0.095   | 0.083  | 0.238  | 0.004  | -0.475      | 0.144  | 0.165  |
| Uruguay-0.167-0.1590.313-0.172-0.2520.521-0.007-0.362-0.218-0.119Asia0.272-0.1090.060-0.167-0.031Bangladesh0.272-0.1090.060-0.167-0.031Hong Kong-0.1980.1040.1060.2100.026-0.1140.2970.328-0.523-0.362India-0.517-0.1630.4160.174-0.140-0.349-0.4680.0420.4340.218Korea, South0.068-0.431-0.2960.3990.2480.264-0.295-0.3570.3370.259Malaysia-0.430-0.1180.8050.086-0.459-0.296-0.2660.7490.163-0.408Philippines-0.208-0.1860.2310.097-0.145-0.225-0.2570.0770.3380.007Pakistan-0.010-0.011-0.0030.065-0.020Hungary0.338-0.504-0.0100.299-0.197Lithuania0.017-0.107-0.1210.4770.1350.0180.151-0.0230.4420.379MacedoniaRomania <td>Peru</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.621</td> <td>-0.246</td> <td>-0.337</td> <td>-0.076</td> <td>0.356</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peru            |        |               |           |         |        | -0.621 | -0.246 | -0.337      | -0.076 | 0.356  |
| Asia         Asia           Bangladesh            0.272         -0.109         0.060         -0.167         -0.031           Hong Kong         -0.198         0.104         0.106         0.210         0.026         -0.114         0.297         0.328         -0.523         -0.362           India         -0.517         -0.163         0.416         0.174         -0.140         -0.349         -0.468         0.042         0.434         0.218           Korea, South         0.068         -0.431         -0.296         0.399         0.248         0.264         -0.295         -0.357         0.337         0.259           Malaysia         -0.430         -0.118         0.805         0.086         -0.459         -0.296         -0.266         0.749         0.163         -0.408           Philippines         -0.208         -0.186         0.231         0.097         -0.145         -0.225         -0.257         0.077         0.338         0.007           Pakistan         -0.010         -0.011         -0.003         0.065         -0.020                Hurgary                                                                                                                                                                                                 | Trinidad        |        |               |           |         |        | 0.180  | -0.158 | -0.069      | -0.012 | 0.195  |
| Bangladesh             0.272         -0.109         0.060         -0.167         -0.031           Hong Kong         -0.198         0.104         0.106         0.210         0.026         -0.114         0.297         0.328         -0.523         -0.362           India         -0.517         -0.163         0.416         0.174         -0.140         -0.349         -0.468         0.042         0.434         0.218           Korea, South         0.068         -0.431         -0.296         0.399         0.248         0.264         -0.295         -0.357         0.337         0.259           Malaysia         -0.430         -0.118         0.805         0.086         -0.459         -0.296         -0.266         0.749         0.163         -0.408           Philippines         -0.208         -0.186         0.231         0.097         -0.145         -0.225         -0.257         0.077         0.338         0.007           Pakistan         -0.010         -0.011         -0.003         0.065         -0.020                 Turkey         0.037         -0.129         -0.217 <td>Uruguay</td> <td>-0.167</td> <td>-0.159</td> <td>0.313</td> <td>-0.172</td> <td>-0.252</td> <td>0.521</td> <td>-0.007</td> <td>-0.362</td> <td>-0.218</td> <td>-0.119</td> | Uruguay         | -0.167 | -0.159        | 0.313     | -0.172  | -0.252 | 0.521  | -0.007 | -0.362      | -0.218 | -0.119 |
| Hong Kong<br>India-0.1980.1040.1060.2100.026-0.1140.2970.328-0.523-0.362India-0.517-0.1630.4160.174-0.140-0.349-0.4680.0420.4340.218Korea, South0.068-0.431-0.2960.3990.2480.264-0.295-0.3570.3370.259Malaysia-0.430-0.1180.8050.086-0.459-0.296-0.2660.7490.163-0.408Philippines-0.208-0.1860.2310.097-0.145-0.225-0.2570.0770.3380.007Pakistan-0.010-0.011-0.0030.065-0.020Turkey0.037-0.129-0.2170.179-0.099East Europe0.338-0.0100.299-0.197Lithuania0.017-0.107-0.1210.4770.1350.0180.151-0.0230.4420.379MacedoniaRomania0.0870.159-0.044-0.118-0.341-0.343-0.2160.253-0.139-0.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asia            |        |               |           |         |        |        |        |             |        |        |
| India       -0.517       -0.163       0.416       0.174       -0.140       -0.349       -0.468       0.042       0.434       0.218         Korea, South       0.068       -0.431       -0.296       0.399       0.248       0.264       -0.295       -0.357       0.337       0.259         Malaysia       -0.430       -0.118       0.805       0.086       -0.459       -0.296       -0.266       0.749       0.163       -0.408         Philippines       -0.208       -0.186       0.231       0.097       -0.145       -0.225       -0.257       0.077       0.338       0.007         Pakistan       -0.010       -0.011       -0.003       0.065       -0.020                 Turkey       0.037       -0.129       -0.217       0.179       -0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bangladesh      |        |               |           |         |        | 0.272  | -0.109 | 0.060       | -0.167 | -0.031 |
| Korea, South0.068-0.431-0.2960.3990.2480.264-0.295-0.3570.3370.259Malaysia-0.430-0.1180.8050.086-0.459-0.296-0.2660.7490.163-0.408Philippines-0.208-0.1860.2310.097-0.145-0.225-0.2570.0770.3380.007Pakistan-0.010-0.011-0.0030.065-0.020Turkey0.037-0.129-0.2170.179-0.099East Europe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hong Kong       | -0.198 | 0.104         | 0.106     | 0.210   | 0.026  | -0.114 | 0.297  | 0.328       | -0.523 | -0.362 |
| Malaysia-0.430-0.1180.8050.086-0.459-0.296-0.2660.7490.163-0.408Philippines-0.208-0.1860.2310.097-0.145-0.225-0.2570.0770.3380.007Pakistan-0.010-0.011-0.0030.065-0.020Turkey0.037-0.129-0.2170.179-0.099East Europe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | India           | -0.517 | -0.163        | 0.416     | 0.174   | -0.140 | -0.349 | -0.468 | 0.042       | 0.434  | 0.218  |
| Philippines       -0.208       -0.186       0.231       0.097       -0.145       -0.225       -0.257       0.077       0.338       0.007         Pakistan       -0.010       -0.011       -0.003       0.065       -0.020 <td>Korea, South</td> <td>0.068</td> <td>-0.431</td> <td>-0.296</td> <td>0.399</td> <td>0.248</td> <td>0.264</td> <td>-0.295</td> <td>-0.357</td> <td>0.337</td> <td>0.259</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Korea, South    | 0.068  | -0.431        | -0.296    | 0.399   | 0.248  | 0.264  | -0.295 | -0.357      | 0.337  | 0.259  |
| Pakistan       -0.010       -0.011       -0.003       0.065       -0.020               Turkey       0.037       -0.129       -0.217       0.179       -0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Malaysia        | -0.430 | -0.118        | 0.805     | 0.086   | -0.459 | -0.296 | -0.266 | 0.749       | 0.163  | -0.408 |
| Turkey0.037-0.129-0.2170.179-0.099East EuropeHungary0.338-0.504-0.0100.299-0.197Lithuania0.017-0.107-0.1210.4770.1350.0180.151-0.0230.4420.379Macedonia0.0920.2870.0890.1000.403RomaniaSlovenia0.0870.159-0.044-0.118-0.341-0.2160.253-0.139-0.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Philippines     | -0.208 | -0.186        | 0.231     | 0.097   | -0.145 | -0.225 | -0.257 | 0.077       | 0.338  | 0.007  |
| East Europe         -0.338         -0.504         -0.010         0.299         -0.197           Hungary            -0.338         -0.504         -0.010         0.299         -0.197           Lithuania         0.017         -0.107         -0.121         0.477         0.135         0.018         0.151         -0.023         0.442         0.379           Macedonia            -0.092         0.287         0.089         0.100         0.403           Romania <td>Pakistan</td> <td>-0.010</td> <td>-0.011</td> <td>-0.003</td> <td>0.065</td> <td>-0.020</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pakistan        | -0.010 | -0.011        | -0.003    | 0.065   | -0.020 |        |        |             |        |        |
| Hungary             -0.338         -0.504         -0.010         0.299         -0.197           Lithuania         0.017         -0.107         -0.121         0.477         0.135         0.018         0.151         -0.023         0.442         0.379           Macedonia             -0.092         0.287         0.089         0.100         0.403           Romania                     Slovenia         0.087         0.159         -0.044         -0.118         -0.341         -0.343         -0.216         0.253         -0.139         -0.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Turkey          | 0.037  | -0.129        | -0.217    | 0.179   | -0.099 |        |        |             |        |        |
| Lithuania         0.017         -0.107         -0.121         0.477         0.135         0.018         0.151         -0.023         0.442         0.379           Macedonia              -0.092         0.287         0.089         0.100         0.403           Romania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | East Europe     |        |               |           |         |        |        |        |             |        |        |
| Macedonia            -0.092         0.287         0.089         0.100         0.403           Romania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hungary         |        |               |           |         |        | -0.338 | -0.504 | -0.010      | 0.299  | -0.197 |
| Romania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithuania       | 0.017  | -0.107        | -0.121    | 0.477   | 0.135  | 0.018  | 0.151  | -0.023      | 0.442  | 0.379  |
| Slovenia 0.087 0.159 -0.044 -0.118 -0.341 -0.343 -0.216 0.253 -0.139 -0.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Macedonia       |        |               |           |         |        | -0.092 | 0.287  | 0.089       | 0.100  | 0.403  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Romania         |        |               |           |         |        |        |        |             |        |        |
| Slovak Republic -0.444 0.381 0.220 0.763 -0.364 -0.892 -0.532 0.448 -0.266 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Slovenia        | 0.087  | 0.159         | -0.044    | -0.118  | -0.341 | -0.343 | -0.216 | 0.253       | -0.139 | -0.266 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Slovak Republic | -0.444 | 0.381         | 0.220     | 0.763   | -0.364 | -0.892 | -0.532 | 0.448       | -0.266 | 0.788  |

#### Correlation between Real Domestic Output and Imports and Exports

|                 |        |        | Imports |        |        |        |        | Exports |        |        |
|-----------------|--------|--------|---------|--------|--------|--------|--------|---------|--------|--------|
|                 | lag 8  | lag 4  | no lag  | lead 4 | lead 8 | lag 8  | lag 4  | no lag  | lead 4 | lead 8 |
| US              | -0.353 | -0.223 | 0.583   | 0.356  | -0.071 | -0.498 | -0.512 | 0.247   | 0.544  | 0.295  |
| UK              | -0.243 | -0.192 | 0.471   | 0.223  | -0.204 | -0.123 | -0.219 | 0.230   | 0.171  | -0.081 |
| Japan           | -0.438 | -0.051 | 0.621   | 0.364  | -0.218 | -0.422 | 0.365  | 0.422   | 0.446  | 0.017  |
| Africa          |        |        |         |        |        |        |        |         |        |        |
| Côte d'Ivoire   | 0.397  | 0.016  | 0.091   | 0.142  | 0.323  | 0.238  | 0.026  | -0.191  | -0.013 | 0.037  |
| Malawi          | -0.289 | -0.193 | 0.255   | -0.009 | -0.075 | 0.032  | 0.096  | 0.126   | 0.125  | -0.146 |
| Nigeria         | 0.001  | -0.077 | -0.035  | 0.130  | 0.193  | -0.011 | -0.116 | 0.381   | 0.005  | -0.019 |
| South Africa    | -0.242 | 0.353  | 0.711   | 0.201  | -0.137 | 0.087  | 0.585  | 0.322   | -0.061 | -0.277 |
| Senegal         |        |        |         |        |        |        |        |         |        |        |
| North Africa    |        |        |         |        |        |        |        |         |        |        |
| Israel          | -0.223 | -0.002 | 0.348   | 0.072  | -0.156 | -0.255 | -0.060 | 0.138   | 0.039  | 0.053  |
| Jordan          | -0.105 | 0.103  | -0.030  | -0.107 | -0.003 | -0.102 | -0.243 | 0.074   | -0.034 | 0.103  |
| Morocco         | -0.068 | 0.087  | -0.056  | 0.041  | 0.002  | 0.026  | -0.093 | 0.130   | -0.055 | -0.108 |
| Tunisia         | -0.343 | -0.002 | 0.077   | 0.084  | 0.202  | -0.276 | -0.106 | 0.310   | 0.105  | 0.149  |
| Latin America   |        |        |         |        |        |        |        |         |        |        |
| Argentina       | -0.350 | -0.222 | 0.740   | 0.605  | -0.389 | 0.554  | 0.107  | 0.390   | -0.079 | -0.504 |
| Barbados        | -0.069 | 0.068  | 0.375   | 0.066  | -0.138 | 0.034  | -0.013 | 0.065   | -0.085 | 0.035  |
| Brazil          | -0.091 | -0.201 | 0.581   | 0.066  | -0.105 | 0.149  | 0.025  | 0.161   | -0.025 | -0.308 |
| Columbia        | -0.274 | -0.144 | 0.396   | 0.063  | 0.249  | -0.023 | 0.284  | 0.200   | -0.126 | 0.265  |
| Chile           | -0.371 | 0.380  | -0.202  | 0.288  | -0.102 | 0.210  | -0.310 | 0.581   | -0.085 | -0.306 |
| Mexico          | -0.307 | 0.303  | 0.766   | 0.168  | -0.242 | -0.123 | 0.329  | 0.347   | 0.063  | -0.002 |
| Peru            | -0.525 | 0.015  | 0.667   | 0.218  | 0.041  | 0.113  | 0.011  | -0.042  | 0.048  | 0.195  |
| Trinidad        | -0.142 | -0.464 | 0.010   | -0.092 | 0.162  | -0.115 | -0.291 | 0.024   | 0.182  | -0.296 |
| Uruguay         | -0.203 | 0.218  | 0.656   | 0.246  | -0.151 | -0.358 | 0.084  | 0.500   | 0.143  | 0.143  |
| Asia            |        |        |         |        |        |        |        |         |        |        |
| Bangladesh      | -0.044 | -0.243 | 0.305   | -0.013 | -0.192 | -0.060 | -0.057 | -0.014  | 0.133  | -0.128 |
| Hong Kong       | -0.288 | -0.067 | 0.662   | -0.019 | -0.286 | -0.230 | -0.186 | 0.638   | 0.053  | -0.339 |
| India           | -0.008 | -0.255 | -0.446  | 0.057  | 0.411  | 0.066  | 0.059  | 0.063   | 0.186  | -0.093 |
| Korea, South    | -0.246 | -0.087 | 0.529   | 0.197  | -0.303 | -0.142 | -0.087 | 0.345   | -0.143 | -0.289 |
| Malaysia        | -0.261 | -0.406 | 0.255   | 0.144  | -0.095 | -0.388 | -0.151 | 0.547   | 0.067  | -0.312 |
| Philippines     | -0.803 | -0.726 | 0.590   | -0.036 | 0.041  | 0.338  | 0.154  | 0.103   | -0.446 | -0.422 |
| Pakistan        | -0.246 | -0.055 | 0.225   | 0.301  | -0.103 | -0.089 | 0.216  | 0.242   | 0.069  | -0.073 |
| Turkey          | 0.083  | -0.080 | 0.641   | -0.271 | -0.144 | 0.102  | -0.016 | 0.112   | -0.040 | -0.112 |
| East Europe     |        |        |         |        |        |        |        |         |        |        |
| Hungary         | 0.286  | 0.002  | 0.001   | -0.101 | -0.114 | 0.034  | -0.102 | 0.117   | 0.304  | 0.317  |
| Lithuania       | 0.362  | 0.131  | -0.007  | -0.419 | -0.139 | 0.042  | 0.301  | -0.068  | -0.547 | 0.016  |
| Macedonia       | -0.059 | -0.016 | 0.265   | -0.429 | -0.035 | -0.043 | 0.006  | 0.433   | -0.109 | -0.180 |
| Romania         | -0.068 | 0.507  | 0.640   | 0.372  | -0.129 | 0.323  | 0.679  | 0.583   | 0.083  | -0.325 |
| Slovenia        | 0.398  | -0.369 | 0.088   | 0.054  | 0.001  | 0.351  | -0.609 | 0.220   | 0.177  | 0.085  |
| Slovak Republic | 0.048  | -0.313 | 0.545   | 0.181  | 0.171  | 0.023  | -0.048 | 0.502   | 0.180  | 0.313  |

Correlation between Real Domestic Output and the Trade Balance and the Terms of Trade

|               |        |        | Trade Ratio | 5      |        |        | Te     | erms of Tra | de     |        |
|---------------|--------|--------|-------------|--------|--------|--------|--------|-------------|--------|--------|
|               | lag 8  | lag 4  | no lag      | lead 4 | lead 8 | lag 8  | lag 4  | no lag      | lead 4 | lead 8 |
| US            | -0.247 | -0.403 | -0.309      | 0.314  | 0.448  | 0.356  | 0.386  | -0.006      | -0.370 | -0.261 |
| UK            | 0.169  | 0.001  | -0.343      | -0.110 | 0.174  | 0.151  | 0.191  | -0.172      | -0.158 | 0.244  |
| Japan         | 0.275  | -0.244 | -0.545      | -0.154 | 0.330  | 0.425  | 0.239  | -0.361      | -0.276 | 0.029  |
| Africa        |        |        |             |        |        |        |        |             |        |        |
| Côte d'Ivoire | -0.047 | 0.049  | -0.209      | -0.107 | -0.230 | 0.083  | 0.080  | 0.193       | 0.155  | -0.197 |
| Malawi        | 0.215  | 0.204  | -0.098      | 0.090  | -0.057 | 0.090  | 0.275  | 0.058       | 0.047  | -0.381 |
| Nigeria       | -0.009 | -0.039 | 0.333       | -0.090 | -0.156 |        |        |             |        |        |
| South Africa  | 0.344  | 0.072  | -0.557      | -0.290 | -0.080 | -0.205 | 0.026  | 0.221       | -0.006 | 0.005  |
| Senegal       |        |        |             |        |        |        |        |             |        |        |
| North Africa  |        |        |             |        |        |        |        |             |        |        |
| Israel        | 0.068  | -0.029 | -0.253      | -0.045 | 0.186  | -0.008 | 0.072  | 0.133       | -0.020 | -0.126 |
| Jordan        | -0.034 | -0.325 | 0.086       | 0.042  | 0.102  |        |        |             |        |        |
| Morocco       | 0.091  | -0.165 | 0.210       | -0.086 | -0.123 | 0.111  | -0.145 | -0.142      | -0.007 | -0.087 |
| Tunisia       | -0.055 | -0.208 | 0.321       | -0.069 | 0.049  |        |        |             |        |        |
| Latin America |        |        |             |        |        |        |        |             |        |        |
| Argentina     | 0.558  | 0.254  | -0.692      | -0.711 | 0.314  | 0.281  | -0.089 | 0.284       | -0.462 | -0.519 |
| Barbados      | 0.067  | -0.058 | -0.153      | -0.123 | 0.122  |        |        |             |        |        |
| Brazil        | 0.185  | 0.233  | -0.515      | -0.077 | -0.062 | 0.175  | 0.147  | -0.315      | -0.096 | -0.179 |
| Columbia      | 0.202  | 0.294  | -0.191      | -0.127 | -0.043 | -0.002 | 0.237  | 0.170       | -0.126 | 0.139  |
| Chile         | 0.151  | -0.439 | 0.523       | -0.452 | -0.036 |        |        |             |        |        |
| Mexico        | 0.250  | -0.092 | -0.608      | -0.146 | 0.277  |        |        |             |        |        |
| Peru          | 0.526  | -0.009 | -0.554      | -0.163 | 0.043  |        |        |             |        |        |
| Trinidad      | 0.022  | 0.159  | 0.018       | 0.231  | -0.340 | 0.219  | 0.139  | -0.093      | -0.176 | -0.406 |
| Uruguay       | -0.036 | -0.148 | -0.273      | -0.151 | 0.307  |        |        |             |        |        |
| Asia          |        |        |             |        |        |        |        |             |        |        |
| Bangladesh    | -0.004 | 0.177  | -0.269      | 0.084  | 0.084  |        |        |             |        |        |
| Hong Kong     | 0.284  | -0.327 | -0.317      | 0.204  | 0.010  | 0.416  | -0.288 | -0.555      | 0.276  | 0.078  |
| India         | 0.092  | 0.140  | 0.203       | 0.044  | -0.265 | -0.405 | 0.046  | 0.321       | 0.394  | -0.009 |
| Korea, South  | 0.168  | 0.029  | -0.322      | -0.343 | 0.107  | -0.035 | 0.349  | 0.362       | -0.055 | -0.004 |
| Malaysia      | 0.106  | 0.328  | -0.026      | -0.265 | -0.200 | -0.052 | -0.280 | 0.525       | 0.272  | -0.596 |
| Philippines   | 0.764  | 0.546  | -0.152      | -0.471 | -0.472 | 0.249  | 0.672  | 0.451       | -0.759 | -0.487 |
| Pakistan      | 0.111  | 0.220  | 0.032       | -0.160 | 0.027  | 0.046  | 0.248  | 0.046       | -0.166 | -0.139 |
| Turkey        | -0.022 | 0.058  | -0.545      | 0.249  | 0.078  | -0.023 | 0.166  | 0.075       | 0.057  | -0.041 |
| East Europe   |        |        |             |        |        |        |        |             |        |        |
| Hungary       | -0.231 | -0.095 | 0.107       | 0.371  | 0.398  | -0.261 | 0.238  | 0.357       | 0.235  | -0.067 |
| Lithuania     | -0.531 | 0.258  | -0.109      | -0.272 | 0.337  | 0.199  | 0.052  | 0.101       | -0.119 | -0.263 |
| Macedonia     | 0.048  | 0.021  | 0.074       | 0.518  | -0.207 |        |        |             |        |        |
| Romania       | 0.469  | 0.274  | 0.013       | -0.304 | -0.265 |        |        |             |        |        |
|               |        |        |             |        |        |        |        |             |        |        |
| Slovenia      | 0.028  | -0.477 | 0.171       | 0.171  | 0.128  |        |        |             |        |        |

#### Correlation between Real Domestic Output and the Exchange Rate

|                 |        |        | <u>NEER</u> |        |        |        |        | REER   |        |        |
|-----------------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|
|                 | lag 8  | lag 4  | no lag      | lead 4 | lead 8 | lag 8  | lag 4  | no lag | lead 4 | lead 8 |
| US              | 0.133  | -0.186 | -0.164      | -0.051 | -0.007 | 0.039  | -0.256 | -0.144 | 0.101  | -0.211 |
| UK              | -0.358 | -0.437 | -0.234      | 0.139  | 0.455  | -0.194 | -0.408 | -0.342 | 0.077  | 0.504  |
| Japan           | 0.189  | -0.078 | -0.247      | -0.518 | -0.086 | 0.224  | -0.027 | -0.242 | -0.544 | -0.121 |
| Africa          |        |        |             |        |        |        |        |        |        |        |
| Côte d'Ivoire   | 0.088  | 0.066  | -0.062      | 0.363  | -0.087 | 0.199  | 0.065  | -0.166 | 0.240  | -0.102 |
| Malawi          | -0.300 | -0.016 | 0.428       | 0.179  | 0.165  | -0.218 | 0.161  | 0.364  | -0.033 | 0.054  |
| Nigeria         | -0.137 | -0.344 | -0.092      | -0.067 | -0.007 | -0.088 | -0.293 | -0.219 | -0.161 | -0.034 |
| South Africa    | -0.227 | 0.107  | 0.008       | 0.051  | 0.221  | -0.203 | 0.087  | -0.021 | 0.058  | 0.263  |
| Senegal         |        |        |             |        |        |        |        |        |        |        |
| North Africa    |        |        |             |        |        |        |        |        |        |        |
| Israel          | -0.168 | -0.334 | -0.225      | -0.141 | 0.010  | 0.005  | -0.399 | -0.115 | 0.126  | -0.026 |
| Jordan          |        |        |             |        |        |        |        |        |        |        |
| Morocco         | 0.090  | -0.093 | -0.090      | -0.144 | 0.071  | 0.201  | -0.061 | -0.290 | -0.072 | 0.137  |
| Tunisia         | -0.073 | 0.097  | -0.086      | 0.095  | 0.076  | 0.121  | 0.395  | -0.128 | -0.140 | 0.027  |
| Latin America   |        |        |             |        |        |        |        |        |        |        |
| Argentina       |        |        |             |        |        |        |        |        |        |        |
| Barbados        |        |        |             |        |        |        |        |        |        |        |
| Brazil          |        |        |             |        |        |        |        |        |        |        |
| Columbia        | -0.199 | 0.383  | 0.263       | 0.225  | -0.427 | -0.371 | 0.228  | 0.292  | 0.354  | -0.402 |
| Chile           | 0.101  | -0.458 | 0.110       | -0.062 | -0.320 | -0.538 | -0.182 | 0.998  | 0.048  | -0.274 |
| Mexico          |        |        |             |        |        |        |        |        |        |        |
| Peru            |        |        |             |        |        |        |        |        |        |        |
| Trinidad        | 0.328  | 0.145  | -0.129      | -0.144 | -0.226 | 0.379  | 0.093  | -0.229 | -0.142 | -0.219 |
| Uruguay         | -0.404 | -0.512 | -0.274      | -0.037 | 0.081  | -0.477 | -0.413 | -0.115 | -0.085 | 0.028  |
| Asia            |        |        |             |        |        |        |        |        |        |        |
| Bangladesh      |        |        |             |        |        |        |        |        |        |        |
| Hong Kong       | -0.046 | -0.681 | 0.091       | 0.724  | -0.083 | -0.108 | -0.356 | 0.069  | 0.381  | -0.013 |
| India           |        |        |             |        |        |        |        |        |        |        |
| Korea, South    |        |        |             |        |        |        |        |        |        |        |
| Malaysia        | -0.393 | 0.017  | 0.359       | 0.119  | -0.150 | -0.446 | -0.005 | 0.318  | 0.132  | -0.077 |
| Philippines     | 0.005  | 0.119  | 0.277       | 0.014  | -0.039 | -0.156 | -0.038 | 0.354  | 0.067  | -0.082 |
| Pakistan        | -0.085 | 0.170  | -0.008      | -0.212 | -0.210 | -0.131 | 0.196  | -0.003 | -0.194 | -0.227 |
| Turkey          |        |        |             |        |        |        |        |        |        |        |
| East Europe     |        |        |             |        |        |        |        |        |        |        |
| Hungary         | 0.200  | 0.238  | -0.339      | -0.623 | -0.243 | 0.422  | -0.098 | -0.688 | -0.617 | -0.014 |
| Lithuania       |        |        |             |        |        |        |        |        |        |        |
| Macedonia       | 0.094  | 0.373  | -0.153      | -0.051 | -0.237 | -0.424 | -0.192 | -0.216 | 0.139  | 0.094  |
| Romania         |        |        |             |        |        | 0.159  | 0.186  | 0.285  | 0.034  | -0.062 |
| Slovenia        |        |        |             |        |        |        |        |        |        |        |
| Slovak Republic | -0.241 | 0.631  | 0.018       | -0.365 | 0.456  | -0.447 | 0.383  | -0.108 | -0.200 | 0.189  |

# **B.2. GRANGER CAUSALITY TEST RESULTS**

Table B. 11

# Does Money Cause Output?

| Null Hypothesis                                                          | Obs        | <u>Lags: 4</u><br>F | Р                | Obs        | <u>Lags: 8</u><br>F | Р                          |
|--------------------------------------------------------------------------|------------|---------------------|------------------|------------|---------------------|----------------------------|
| AG BM does not Granger Cause AG MP                                       | 37         | 2.1919              | 0.0957           | 33         | 0.7861              | 0.6219                     |
| AG_MP does not Granger Cause AG_BM                                       |            | 0.7009              | 0.5979           |            | 4.4014              | 0.0057                     |
| BB_BM does not Granger Cause BB_IP                                       | 124        | 1.8252              | 0.1287           | 120        | 2.0067              | 0.0528                     |
| BB_IP does not Granger Cause BB_BM                                       |            | 0.1809              | 0.9479           |            | 1.3773              | 0.2152                     |
| BR_BM does not Granger Cause BR_IP                                       | 53         | 2.2823              | 0.0755           | 49         | 2.6625              | 0.0231                     |
| BR_IP does not Granger Cause BR_BM                                       |            | 0.1283              | 0.9714           |            | 0.8401              | 0.5748                     |
| BS_BM does not Granger Cause BS_IP                                       | 118        | 0.8785              | 0.4794           | 114        | 2.2999              | 0.0266                     |
| BS_IP does not Granger Cause BS_BM<br>CB_BM does not Granger Cause CB_MP | 97         | 4.3233<br>4.2270    | 0.0028<br>0.0035 | 93         | 1.4198<br>3.1572    | 0.1979<br>0.0039           |
| CB MP does not Granger Cause CB_MP                                       | 57         | 2.4241              | 0.0540           | 33         | 0.8855              | 0.5328                     |
| CL BM does not Granger Cause CL MP                                       | 102        | 3.0685              | 0.0201           | 98         | 1.7621              | 0.0968                     |
| CL_MP does not Granger Cause CL_BM                                       | 102        | 2.2016              | 0.0748           | 50         | 2.0232              | 0.0538                     |
| HK_BM does not Granger Cause HK_MP                                       | 29         | 0.6264              | 0.6492           | 25         | 0.3913              | 0.8970                     |
| HK_MP does not Granger Cause HK_BM                                       |            | 0.6169              | 0.6555           |            | 0.9053              | 0.5543                     |
| HN_BM does not Granger Cause HN_IP                                       | 66         | 1.1843              | 0.3275           | 62         | 0.7322              | 0.6625                     |
| HN_IP does not Granger Cause HN_BM                                       |            | 5.3906              | 0.0009           |            | 1.9762              | 0.0716                     |
| IN_BM does not Granger Cause IN_IP                                       | 154        | 0.4939              | 0.7402           | 150        | 0.2843              | 0.9702                     |
| IN_IP does not Granger Cause IN_BM                                       |            | 0.0586              | 0.9936           |            | 1.0634              | 0.3926                     |
| IS_BM does not Granger Cause IS_IP                                       | 139        | 0.2616              | 0.9021           | 135        | 1.5388              | 0.1511                     |
| IS_IP does not Granger Cause IS_BM                                       |            | 1.0742              | 0.3720           |            | 1.6890              | 0.1080                     |
| IV_BM does not Granger Cause IV_IP                                       | 140        | 1.0431              | 0.3876           | 136        | 2.6862              | 0.0095                     |
| IV_IP does not Granger Cause IV_BM                                       |            | 1.1956              | 0.3158           |            | 1.2504              | 0.2761                     |
| JO_BM does not Granger Cause JO_IP                                       | 128        | 0.1866              | 0.9450           | 124        | 2.0027              | 0.0529                     |
| JO_IP does not Granger Cause JO_BM                                       |            | 1.4780              | 0.2132           |            | 0.7696              | 0.6302                     |
| KO_BM does not Granger Cause KO_IP                                       | 154        | 3.3582              | 0.0116           | 150        | 1.8056              | 0.0813                     |
| KO_IP does not Granger Cause KO_BM                                       |            | 1.3423              | 0.2571           | 40         | 1.6352              | 0.1206                     |
| LN_BM does not Granger Cause LN_IP                                       | 44         | 2.9966              | 0.0316           | 40         | 5.1691              | 0.0009                     |
| LN_IP does not Granger Cause LN_BM                                       | 140        | 1.1365              | 0.3554           | 145        | 1.4042              | 0.2471                     |
| MC_BM does not Granger Cause MC_MP<br>MC_MP does not Granger Cause MC_BM | 149        | 1.0551<br>0.7292    | 0.3812<br>0.5735 | 145        | 0.8227<br>0.7331    | 0.5840                     |
| MI_BM does not Granger Cause MI_IP                                       | 134        | 1.8497              | 0.1235           | 130        | 1.0075              | 0.4345                     |
| MI IP does not Granger Cause MI BM                                       | 134        | 4.7217              | 0.0014           | 150        | 2.6592              | 0.0103                     |
| MK_BM does not Granger Cause MK_IP                                       | 41         | 0.6490              | 0.6317           | 37         | 1.3384              | 0.2816                     |
| MK IP does not Granger Cause MK BM                                       | 12         | 0.5658              | 0.6892           | 0,         | 0.9670              | 0.4881                     |
| MX BM does not Granger Cause MX IP                                       | 155        | 0.9671              | 0.4275           | 151        | 1.4275              | 0.1905                     |
| MX_IP does not Granger Cause MX_BM                                       |            | 0.2818              | 0.8894           |            | 0.8111              | 0.5940                     |
| MY_BM does not Granger Cause MY_IP                                       | 136        | 0.6341              | 0.6391           | 132        | 0.8908              | 0.5267                     |
| MY_IP does not Granger Cause MY_BM                                       |            | 1.1310              | 0.3449           |            | 0.5456              | 0.8199                     |
| NG_BM does not Granger Cause NG_IP                                       | 132        | 1.7859              | 0.1359           | 128        | 1.7390              | 0.0971                     |
| NG_IP does not Granger Cause NG_BM                                       |            | 0.7809              | 0.5397           |            | 0.5033              | 0.8516                     |
| PE_BM does not Granger Cause PE_IP                                       | 61         | 2.6658              | 0.0425           | 57         | 2.7583              | 0.0159                     |
| PE_IP does not Granger Cause PE_BM                                       |            | 9.8509              | 0.0000           |            | 4.6841              | 0.0004                     |
| PH_BM does not Granger Cause PH_MP                                       | 92         | 0.0595              | 0.9933           | 88         | 0.4091              | 0.9118                     |
| PH_MP does not Granger Cause PH_BM                                       |            | 0.5744              | 0.6820           |            | 0.3104              | 0.9597                     |
| PK_BM does not Granger Cause PK_MP                                       | 133        | 1.9957              | 0.0993           | 129        | 1.2513              | 0.2764                     |
| PK_MP does not Granger Cause PK_BM                                       | 07         | 1.2390              | 0.2979           | 02         | 0.6772              | 0.7107                     |
| RM_BM does not Granger Cause RM_IP                                       | 97         | 3.8949              | 0.0058           | 93         | 2.7233              | 0.0108                     |
| RM_IP does not Granger Cause RM_BM<br>SA BM does not Granger Cause SA MP | 132        | 4.5843<br>3.5500    | 0.0021<br>0.0089 | 128        | 3.0519<br>2.7599    | 0.0030                     |
| SA_DM does not Granger Cause SA_MF                                       | 152        | 2.1909              | 0.0739           | 120        | 1.6522              | 0.1182                     |
| SG_BM does not Granger Cause SG_IP                                       | 69         | 0.8743              | 0.4848           | 65         | 0.9980              | 0.4499                     |
| SG IP does not Granger Cause SG BM                                       | 05         | 1.3272              | 0.2703           | 05         | 0.7432              | 0.6533                     |
| SJ BM does not Granger Cause SJ IP                                       | 49         | 1.8644              | 0.1356           | 45         | 1.3989              | 0.2401                     |
| SJ_IP does not Granger Cause SJ_BM                                       |            | 0.3601              | 0.8355           |            | 1.2533              | 0.3065                     |
| SX_BM does not Granger Cause SX_IP                                       | 45         | 1.4592              | 0.2349           | 41         | 0.9902              | 0.4679                     |
| SX_IP does not Granger Cause SX_BM                                       |            | 1.7499              | 0.1605           |            | 0.4219              | 0.8964                     |
| TK_BM does not Granger Cause TK_IP                                       | 72         | 0.9036              | 0.4674           | 68         | 0.6996              | 0.6903                     |
| TK_IP does not Granger Cause TK_BM                                       |            | 5.2531              | 0.0010           |            | 2.3070              | 0.0341                     |
| TT_BM does not Granger Cause TT_IP                                       | 100        | 0.4171              | 0.7959           | 96         | 0.4817              | 0.8657                     |
| TT_IP does not Granger Cause TT_BM                                       |            | 2.6532              | 0.0380           |            | 2.5398              | 0.0163                     |
| TU_BM does not Granger Cause TU_IP                                       | 108        | 2.6560              | 0.0373           | 100        | 1.6618              | 0.1201                     |
| TU_IP does not Granger Cause TU_BM                                       | <b>C</b> - | 1.7411              | 0.1470           | ~-         | 1.0680              | 0.3935                     |
| UY_BM does not Granger Cause UY_MP                                       | 91         | 1.2846              | 0.2828           | 87         | 0.8196              | 0.5879                     |
| UY_MP does not Granger Cause UY_BM                                       | 155        | 1.4745              | 0.2175           | 154        | 0.7040              | 0.6869                     |
| ID DM deservet C C 12 12                                                 | 155        | 3.9066              | 0.0048           | 151        | 2.2055              | 0.0307                     |
| JP_BM does not Granger Cause JP_IP                                       |            | 1 6 4 4 2           |                  |            |                     |                            |
| JP_IP does not Granger Cause JP_BM                                       |            | 1.6442              | 0.1663           | 151        | 1.3841              |                            |
| JP_IP does not Granger Cause JP_BM<br>UK_BM does not Granger Cause UK_IP | 155        | 1.0114              | 0.4036           | 151        | 1.0596              | 0.3953                     |
| JP_IP does not Granger Cause JP_BM                                       |            |                     |                  | 151<br>151 |                     | 0.3953<br>0.5487<br>0.0605 |

# Table B. 12(a)

## Does Credit Cause Output? (Real Domestic Credit)

| Null Hypothesis                     | Obs | Lags: 4<br>F | Р      | Obs | Lags: 8<br>F | Р    |
|-------------------------------------|-----|--------------|--------|-----|--------------|------|
| AG RDC does not Granger Cause AG MP | 37  | 1.1727       | 0.3441 | 33  | 0.7980       | 0.61 |
| AG_MP does not Granger Cause AG_RDC |     | 3.8289       | 0.0132 |     | 5.9729       | 0.00 |
| BB_RDC does not Granger Cause BB_IP | 124 | 3.4717       | 0.0102 | 120 | 0.9761       | 0.45 |
| BB_IP does not Granger Cause BB_RDC |     | 1.9546       | 0.1061 |     | 1.2587       | 0.27 |
| BR RDC does not Granger Cause BR IP | 48  | 0.3070       | 0.8716 | 44  | 1.4607       | 0.21 |
|                                     | 40  |              |        | 44  |              |      |
| BR_IP does not Granger Cause BR_RDC |     | 0.9963       | 0.4212 |     | 4.3665       | 0.00 |
| BS_RDC does not Granger Cause BS_IP | 41  | 1.3018       | 0.2903 | 37  | 1.8592       | 0.12 |
| BS_IP does not Granger Cause BS_RDC |     | 2.5047       | 0.0616 |     | 0.7665       | 0.63 |
| CB_RDC does not Granger Cause CB_MP | 97  | 2.8641       | 0.0278 | 93  | 2.6339       | 0.0  |
| CB MP does not Granger Cause CB RDC |     | 2.3315       | 0.0620 |     | 0.9268       | 0.4  |
| CL RDC does not Granger Cause CL MP | 102 | 2.6193       | 0.0399 | 98  | 2.7016       | 0.0  |
| CL MP does not Granger Cause CL RDC | 102 |              |        | 50  | 1.3854       | 0.2  |
|                                     | 41  | 2.0302       | 0.0965 | 27  |              |      |
| HK_RDC does not Granger Cause HK_MP | 41  | 3.2913       | 0.0228 | 37  | 1.9455       | 0.1  |
| HK_MP does not Granger Cause HK_RDC |     | 0.1304       | 0.9702 |     | 0.4897       | 0.84 |
| HN_RDC does not Granger Cause HN_IP | 66  | 2.0716       | 0.0965 | 62  | 1.8288       | 0.0  |
| HN_IP does not Granger Cause HN_RDC |     | 0.5141       | 0.7256 |     | 0.5928       | 0.7  |
| IN RDC does not Granger Cause IN IP | 154 | 1.5708       | 0.1852 | 150 | 1.5600       | 0.1  |
| IN IP does not Granger Cause IN RDC | 10. | 2.2546       | 0.0661 | 100 | 2.7494       | 0.0  |
|                                     | 05  |              |        | 01  |              |      |
| IS_RDC does not Granger Cause IS_IP | 95  | 1.6683       | 0.1647 | 91  | 1.6046       | 0.1  |
| IS_IP does not Granger Cause IS_RDC |     | 1.7859       | 0.1390 |     | 1.5711       | 0.1  |
| IV_RDC does not Granger Cause IV_IP | 140 | 0.3075       | 0.8726 | 136 | 0.2742       | 0.9  |
| IV_IP does not Granger Cause IV_RDC |     | 1.6794       | 0.1585 |     | 1.0368       | 0.4  |
| JO RDC does not Granger Cause JO IP | 112 | 4.4628       | 0.0023 | 108 | 3.9781       | 0.0  |
| JO IP does not Granger Cause JO RDC |     | 13.7641      | 0.0000 |     | 8.1485       | 0.0  |
| KO_RDC does not Granger Cause KO_IP | 136 | 1.0423       | 0.3881 | 132 | 0.8627       | 0.5  |
|                                     | 130 |              |        | 132 |              |      |
| KO_IP does not Granger Cause KO_RDC |     | 0.8725       | 0.4825 |     | 0.6887       | 0.7  |
| LT_RDC does not Granger Cause LT_IP | 45  | 1.6244       | 0.1893 | 41  | 1.0931       | 0.4  |
| LT_IP does not Granger Cause LT_RDC |     | 0.2931       | 0.8806 |     | 1.0735       | 0.4  |
| MC RDC does not Granger Cause MC MP | 149 | 0.2047       | 0.9354 | 145 | 0.8914       | 0.5  |
| MC MP does not Granger Cause MC RDC |     | 0.3468       | 0.8459 |     | 0.4115       | 0.9  |
| MI_RDC does not Granger Cause MI_IP | 94  | 0.5014       | 0.7348 | 90  | 1.6930       | 0.1  |
|                                     | 54  |              |        | 50  |              |      |
| MI_IP does not Granger Cause MI_RDC |     | 2.7621       | 0.0327 | 27  | 1.1868       | 0.3  |
| MK_RDC does not Granger Cause MK_IP | 41  | 0.2328       | 0.9178 | 37  | 0.4281       | 0.8  |
| MK_IP does not Granger Cause MK_RDC |     | 0.9719       | 0.4365 |     | 1.3709       | 0.2  |
| MX_RDC does not Granger Cause MX_IP | 113 | 1.6358       | 0.1708 | 109 | 1.4936       | 0.1  |
| MX IP does not Granger Cause MX RDC |     | 2.5917       | 0.0408 |     | 1.4449       | 0.1  |
| MY_RDC does not Granger Cause MY_IP | 136 | 3.6070       | 0.0081 | 132 | 1.7051       | 0.1  |
| MY IP does not Granger Cause MY RDC |     | 0.3481       | 0.8450 |     | 0.9868       | 0.4  |
|                                     | 122 |              |        | 120 |              |      |
| NG_RDC does not Granger Cause NG_IP | 132 | 0.3944       | 0.8123 | 128 | 0.6896       | 0.7  |
| NG_IP does not Granger Cause NG_RDC |     | 0.2829       | 0.8886 |     | 0.3765       | 0.9  |
| PE_RDC does not Granger Cause PE_IP | 59  | 6.0709       | 0.0005 | 55  | 2.6011       | 0.0  |
| PE IP does not Granger Cause PE RDC |     | 6.9774       | 0.0002 |     | 1.1384       | 0.3  |
| PH_RDC does not Granger Cause PH_MP | 92  | 0.5952       | 0.6671 | 88  | 0.5730       | 0.7  |
| PH MP does not Granger Cause PH RDC |     | 0.2773       | 0.8919 |     | 0.2514       | 0.9  |
|                                     | 122 |              |        | 120 |              |      |
| PK_RDC does not Granger Cause PK_MP | 133 | 1.6816       | 0.1584 | 129 | 1.2129       | 0.2  |
| PK_MP does not Granger Cause PK_RDC | _   | 2.9627       | 0.0223 | _   | 1.2409       | 0.2  |
| RM_RDC does not Granger Cause RM_IP | 30  | 0.4113       | 0.7985 | 26  | 1.7973       | 0.2  |
| RM_IP does not Granger Cause RM_RDC |     | 2.7090       | 0.0579 |     | 21.0137      | 0.0  |
| SA_RDC does not Granger Cause SA_MP | 132 | 2.3210       | 0.0605 | 128 | 2.2046       | 0.0  |
| SA MP does not Granger Cause SA RDC |     | 1.2723       | 0.2845 | -   | 0.9675       | 0.4  |
|                                     | 69  |              | 0.2345 | 65  |              | 0.4  |
| SG_RDC does not Granger Cause SG_IP | 03  | 2.8512       |        | 05  | 0.8758       |      |
| SG_IP does not Granger Cause SG_RDC |     | 2.3851       | 0.0611 |     | 2.9076       | 0.0  |
| SJ_RDC does not Granger Cause SJ_IP | 49  | 0.7213       | 0.5825 | 45  | 1.1337       | 0.3  |
| SJ_IP does not Granger Cause SJ_RDC |     | 1.8064       | 0.1466 |     | 1.3684       | 0.2  |
| SX RDC does not Granger Cause SX IP | 45  | 2.0129       | 0.1134 | 41  | 1.3703       | 0.2  |
| SX IP does not Granger Cause SX RDC | -   | 0.3641       | 0.8325 |     | 0.7728       | 0.6  |
| TK_RDC does not Granger Cause TK_IP | 72  | 2.6562       | 0.0409 | 68  | 1.2435       | 0.0  |
|                                     | 12  |              |        | 00  |              |      |
| TK_IP does not Granger Cause TK_RDC |     | 1.6383       | 0.1757 | _   | 1.3754       | 0.2  |
| TT_RDC does not Granger Cause TT_IP | 100 | 3.2870       | 0.0145 | 96  | 2.0557       | 0.0  |
| TT_IP does not Granger Cause TT_RDC |     | 1.3359       | 0.2627 |     | 1.4137       | 0.2  |
| TU_RDC does not Granger Cause TU_IP | 45  | 1.2773       | 0.2970 | 41  | 1.0062       | 0.4  |
| TU IP does not Granger Cause TU RDC | -   | 1.3316       | 0.2770 | . – | 0.7972       | 0.6  |
|                                     | 07  |              |        | 70  |              |      |
| UY_RDC does not Granger Cause UY_MP | 83  | 1.2132       | 0.3125 | 79  | 1.0595       | 0.4  |
| UY_MP does not Granger Cause UY_RDC |     | 0.9454       | 0.4427 |     | 1.2317       | 0.2  |
| JP_RDC does not Granger Cause JP_IP | 155 | 5.5683       | 0.0003 | 151 | 2.7293       | 0.0  |
| JP_IP does not Granger Cause JP_RDC |     | 0.4164       | 0.7966 |     | 0.5385       | 0.8  |
| UK_RDC does not Granger Cause UK_IP | 155 | 1.6511       | 0.1646 | 151 | 1.3621       | 0.2  |
| UK IP does not Granger Cause UK RDC |     |              | 0.7373 | 101 |              |      |
|                                     | 155 | 0.4979       |        | 151 | 0.5228       | 0.8  |
| US_RDC does not Granger Cause US_IP | 155 | 6.6815       | 0.0001 | 151 | 3.3792       | 0.0  |
| US_IP does not Granger Cause US_RDC |     | 2.9220       | 0.0232 |     | 2.8620       | 0.0  |

# Table B. 12(b)

## Does Credit Cause Output? (Nominal Domestic Credit)

| Null Hypothesis                                                                                                                                                                                                                  | 0                | Lags: 4                                                  |                                                | 01               | Lags: 8                                        |                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------|------------------------------------------------|------------------|------------------------------------------------|------------------------------------------------|
| AG DC does not Granger Cause AG MP                                                                                                                                                                                               | <b>Obs</b><br>37 | F<br>0.3035                                              | P<br>0.8731                                    | <b>Obs</b><br>33 | <b>F</b><br>0.7991                             | P<br>0.6121                                    |
| AG_DC does not Granger Cause AG_MP<br>AG_MP does not Granger Cause AG_DC                                                                                                                                                         | 57               | 0.3035                                                   | 0.8731                                         | 55               | 0.7991<br>0.6133                               | 0.6121                                         |
| BB_DC does not Granger Cause BB_IP                                                                                                                                                                                               | 124              | 3.2328                                                   | 0.0149                                         | 120              | 1.5521                                         | 0.1486                                         |
| BB_IP does not Granger Cause BB_DC                                                                                                                                                                                               |                  | 0.9066                                                   | 0.4626                                         |                  | 0.7188                                         | 0.6745                                         |
| BR_DC does not Granger Cause BR_IP                                                                                                                                                                                               | 53               | 3.3618                                                   | 0.0174                                         | 49               | 2.6349                                         | 0.0243                                         |
| BR_IP does not Granger Cause BR_DC                                                                                                                                                                                               |                  | 0.2835                                                   | 0.8871                                         |                  | 0.6132                                         | 0.7601                                         |
| BS_DC does not Granger Cause BS_IP                                                                                                                                                                                               | 118              | 1.9449                                                   | 0.1081                                         | 114              | 2.2338                                         | 0.0312                                         |
| BS_IP does not Granger Cause BS_DC                                                                                                                                                                                               |                  | 0.6721                                                   | 0.6127                                         |                  | 0.5992                                         | 0.7765                                         |
| CB_DC does not Granger Cause CB_MP                                                                                                                                                                                               | 97               | 3.1355                                                   | 0.0185                                         | 93               | 2.6758                                         | 0.0120                                         |
| CB_MP does not Granger Cause CB_DC                                                                                                                                                                                               | 102              | 1.8365                                                   | 0.1289<br>0.0620                               | 0.9              | 0.7383                                         | 0.6574                                         |
| CL_DC does not Granger Cause CL_MP<br>CL MP does not Granger Cause CL DC                                                                                                                                                         | 102              | 2.3271<br>2.2861                                         | 0.0620                                         | 98               | 2.5009<br>2.0422                               | 0.0176<br>0.0515                               |
| HK_DC does not Granger Cause HK_MP                                                                                                                                                                                               | 41               | 2.2001                                                   | 0.0033                                         | 37               | 2.0422                                         | 0.0949                                         |
| HK MP does not Granger Cause HK DC                                                                                                                                                                                               |                  | 0.0917                                                   | 0.9844                                         | 0,               | 0.1693                                         | 0.9927                                         |
| HN_DC does not Granger Cause HN_IP                                                                                                                                                                                               | 66               | 2.7322                                                   | 0.0377                                         | 62               | 1.3197                                         | 0.2585                                         |
| HN_IP does not Granger Cause HN_DC                                                                                                                                                                                               |                  | 0.5488                                                   | 0.7006                                         |                  | 0.9269                                         | 0.5038                                         |
| IN_DC does not Granger Cause IN_IP                                                                                                                                                                                               | 154              | 0.6305                                                   | 0.6415                                         | 150              | 0.7963                                         | 0.6068                                         |
| IN_IP does not Granger Cause IN_DC                                                                                                                                                                                               |                  | 2.8665                                                   | 0.0253                                         |                  | 3.0677                                         | 0.0033                                         |
| IS_DC does not Granger Cause IS_IP                                                                                                                                                                                               | 136              | 2.5895                                                   | 0.0398                                         | 132              | 2.3372                                         | 0.0230                                         |
| IS_IP does not Granger Cause IS_DC                                                                                                                                                                                               |                  | 1.7144                                                   | 0.1508                                         |                  | 2.7985                                         | 0.0072                                         |
| IV_DC does not Granger Cause IV_IP                                                                                                                                                                                               | 140              | 0.1976                                                   | 0.9393                                         | 136              | 0.3279                                         | 0.9539                                         |
| IV_IP does not Granger Cause IV_DC                                                                                                                                                                                               | 120              | 2.6618                                                   | 0.0355                                         | 124              | 1.7771                                         | 0.0882                                         |
| JO_DC does not Granger Cause JO_IP<br>JO IP does not Granger Cause JO DC                                                                                                                                                         | 128              | 12.9022                                                  | 0.0000                                         | 124              | 5.9984                                         | 0.0000                                         |
| KO_DC does not Granger Cause KO_IP                                                                                                                                                                                               | 154              | 7.5532<br>0.3222                                         | 0.0000<br>0.8627                               | 150              | 3.2757<br>0.5214                               | 0.0022<br>0.8388                               |
| KO IP does not Granger Cause KO DC                                                                                                                                                                                               | 134              | 1.6915                                                   | 0.1551                                         | 150              | 0.6170                                         | 0.7624                                         |
| LT_DC does not Granger Cause LT_IP                                                                                                                                                                                               | 45               | 0.7241                                                   | 0.5812                                         | 41               | 1.1135                                         | 0.3891                                         |
| LT IP does not Granger Cause LT DC                                                                                                                                                                                               |                  | 0.6323                                                   | 0.6427                                         |                  | 0.6405                                         | 0.7363                                         |
| MC_DC does not Granger Cause MC_MP                                                                                                                                                                                               | 149              | 0.5549                                                   | 0.6958                                         | 145              | 0.8869                                         | 0.5296                                         |
| MC_MP does not Granger Cause MC_DC                                                                                                                                                                                               |                  | 0.1803                                                   | 0.9483                                         |                  | 0.3072                                         | 0.9621                                         |
| MI_DC does not Granger Cause MI_IP                                                                                                                                                                                               | 134              | 0.2532                                                   | 0.9073                                         | 130              | 1.1946                                         | 0.3086                                         |
| MI_IP does not Granger Cause MI_DC                                                                                                                                                                                               |                  | 1.3353                                                   | 0.2606                                         |                  | 0.8893                                         | 0.5280                                         |
| MK_DC does not Granger Cause MK_IP                                                                                                                                                                                               | 41               | 0.4352                                                   | 0.7822                                         | 37               | 0.8128                                         | 0.5999                                         |
| MK_IP does not Granger Cause MK_DC                                                                                                                                                                                               |                  | 0.7109                                                   | 0.5905                                         |                  | 0.5169                                         | 0.8298                                         |
| MX_DC does not Granger Cause MX_IP                                                                                                                                                                                               | 155              | 3.1106                                                   | 0.0172                                         | 151              | 2.0187                                         | 0.0487                                         |
| MX_IP does not Granger Cause MX_ID                                                                                                                                                                                               | 136              | 1.1839<br>4.0124                                         | 0.3204<br>0.0042                               | 132              | 1.4209<br>1.7562                               | 0.1932<br>0.0929                               |
| MY_DC does not Granger Cause MY_IP<br>MY_IP does not Granger Cause MY_DC                                                                                                                                                         | 150              | 0.1902                                                   | 0.9431                                         | 152              | 1.0658                                         | 0.3920                                         |
| NG_DC does not Granger Cause NG_IP                                                                                                                                                                                               | 132              | 0.0396                                                   | 0.9970                                         | 128              | 0.1487                                         | 0.9965                                         |
| NG IP does not Granger Cause NG DC                                                                                                                                                                                               |                  | 0.4715                                                   | 0.7566                                         |                  | 0.5472                                         | 0.8185                                         |
| PE DC does not Granger Cause PE IP                                                                                                                                                                                               | 61               | 7.5592                                                   | 0.0001                                         | 57               | 3.5090                                         | 0.0037                                         |
| PE_IP does not Granger Cause PE_DC                                                                                                                                                                                               |                  | 16.3311                                                  | 0.0000                                         |                  | 2.4440                                         | 0.0296                                         |
| PH_DC does not Granger Cause PH_MP                                                                                                                                                                                               | 92               | 1.3542                                                   | 0.2570                                         | 88               | 0.8161                                         | 0.5908                                         |
| PH_MP does not Granger Cause PH_DC                                                                                                                                                                                               |                  | 0.4616                                                   | 0.7637                                         |                  | 0.1375                                         | 0.9972                                         |
| PK_DC does not Granger Cause PK_MP                                                                                                                                                                                               | 133              | 0.8667                                                   | 0.4860                                         | 129              | 0.6921                                         | 0.6978                                         |
| PK_MP does not Granger Cause PK_DC                                                                                                                                                                                               |                  | 1.6867                                                   | 0.1572                                         |                  | 0.9096                                         | 0.5113                                         |
| RM_DC does not Granger Cause RM_IP                                                                                                                                                                                               | 30               | 0.7726                                                   | 0.5552                                         | 26               | 2.6874                                         | 0.0812                                         |
| RM_IP does not Granger Cause RM_DC                                                                                                                                                                                               | 122              | 3.3325                                                   | 0.0291                                         | 120              | 6.6317                                         | 0.0052                                         |
| SA_DC does not Granger Cause SA_MP                                                                                                                                                                                               | 132              | 2.2363                                                   | 0.0689                                         | 128              | 1.9980<br>1.0249                               | 0.0531                                         |
| SA_MP does not Granger Cause SA_DC<br>SG_DC does not Granger Cause SG_IP                                                                                                                                                         | 69               | 1.8296<br>2.7171                                         | 0.1274<br>0.0379                               | 65               | 1.1832                                         | 0.4217<br>0.3288                               |
| SG_IP does not Granger Cause SG_DC                                                                                                                                                                                               | 05               | 3.5130                                                   | 0.0373                                         | 05               | 3.2098                                         | 0.0053                                         |
| SJ DC does not Granger Cause SJ IP                                                                                                                                                                                               | 49               | 0.6962                                                   | 0.5991                                         | 45               | 1.7006                                         | 0.1423                                         |
| SJ IP does not Granger Cause SJ DC                                                                                                                                                                                               |                  | 1.9350                                                   | 0.1234                                         |                  | 1.3526                                         | 0.2597                                         |
| SX_DC does not Granger Cause SX_IP                                                                                                                                                                                               | 45               | 1.8227                                                   | 0.1458                                         | 41               | 1.3564                                         | 0.2648                                         |
| SX_IP does not Granger Cause SX_DC                                                                                                                                                                                               |                  | 0.2993                                                   | 0.8765                                         |                  | 0.9289                                         | 0.5110                                         |
| TK_DC does not Granger Cause TK_IP                                                                                                                                                                                               | 72               | 2.7031                                                   | 0.0382                                         | 68               | 1.5041                                         | 0.1791                                         |
| TK_IP does not Granger Cause TK_DC                                                                                                                                                                                               |                  | 2.4131                                                   | 0.0582                                         |                  | 1.4044                                         | 0.2174                                         |
| TT_DC does not Granger Cause TT_IP                                                                                                                                                                                               | 100              | 3.3857                                                   | 0.0125                                         | 96               | 1.6833                                         | 0.1155                                         |
| TT_IP does not Granger Cause TT_DC                                                                                                                                                                                               |                  | 1.8859                                                   | 0.1196                                         |                  | 2.1078                                         | 0.0446                                         |
|                                                                                                                                                                                                                                  |                  | 1.7445                                                   | 0.1462                                         | 101              | 1.5616                                         | 0.1488                                         |
| TU_DC does not Granger Cause TU_IP                                                                                                                                                                                               | 109              |                                                          | 0.1100                                         |                  | 1 0 4 0 4                                      |                                                |
| TU_IP does not Granger Cause TU_DC                                                                                                                                                                                               |                  | 1.8981                                                   | 0.1166                                         | 07               | 1.0491                                         | 0.4066                                         |
| TU_IP does not Granger Cause TU_DC<br>UY_DC does not Granger Cause UY_MP                                                                                                                                                         | 109<br>91        | 1.8981<br>1.0391                                         | 0.3922                                         | 87               | 0.7973                                         | 0.6068                                         |
| TU_IP does not Granger Cause TU_DC<br>UY_DC does not Granger Cause UY_MP<br>UY_MP does not Granger Cause UY_DC                                                                                                                   | 91               | 1.8981<br>1.0391<br>1.0711                               | 0.3922<br>0.3762                               |                  | 0.7973<br>1.0621                               | 0.6068<br>0.3995                               |
| TU_IP does not Granger Cause TU_DC<br>UY_DC does not Granger Cause UY_MP<br>UY_MP does not Granger Cause UY_DC<br>JP_DC does not Granger Cause JP_IP                                                                             |                  | 1.8981<br>1.0391<br>1.0711<br>1.6363                     | 0.3922<br>0.3762<br>0.1682                     | 87<br>151        | 0.7973<br>1.0621<br>1.9825                     | 0.6068<br>0.3995<br>0.0532                     |
| TU_IP does not Granger Cause TU_DC<br>UY_DC does not Granger Cause UY_MP<br>UY_MP does not Granger Cause UY_DC<br>JP_DC does not Granger Cause JP_IP<br>JP_IP does not Granger Cause JP_DC                                       | 91<br>155        | 1.8981<br>1.0391<br>1.0711<br>1.6363<br>1.2097           | 0.3922<br>0.3762<br>0.1682<br>0.3092           | 151              | 0.7973<br>1.0621<br>1.9825<br>0.9662           | 0.6068<br>0.3995<br>0.0532<br>0.4652           |
| TU_IP does not Granger Cause TU_DC<br>UY_DC does not Granger Cause UY_MP<br>UY_MP does not Granger Cause UY_DC<br>JP_DC does not Granger Cause JP_IP<br>JP_IP does not Granger Cause JP_DC<br>UK_DC does not Granger Cause UK_IP | 91               | 1.8981<br>1.0391<br>1.0711<br>1.6363<br>1.2097<br>0.9722 | 0.3922<br>0.3762<br>0.1682<br>0.3092<br>0.4247 |                  | 0.7973<br>1.0621<br>1.9825<br>0.9662<br>1.0190 | 0.6068<br>0.3995<br>0.0532<br>0.4652<br>0.4248 |
| TU_IP does not Granger Cause TU_DC<br>UY_DC does not Granger Cause UY_MP<br>UY_MP does not Granger Cause UY_DC<br>JP_DC does not Granger Cause JP_IP<br>JP_IP does not Granger Cause JP_DC                                       | 91<br>155        | 1.8981<br>1.0391<br>1.0711<br>1.6363<br>1.2097           | 0.3922<br>0.3762<br>0.1682<br>0.3092           | 151              | 0.7973<br>1.0621<br>1.9825<br>0.9662           | 0.6068<br>0.3995<br>0.0532<br>0.4652           |

# Table B.13(a)

## Do Interest Rates Cause Output? (Real Lending Rate)

| Null Hypothesis                     |     | Lags: 4             |         |     | Lags: 8 |        |
|-------------------------------------|-----|---------------------|---------|-----|---------|--------|
| Null Hypothesis                     | Obs | <u>Lags. 4</u><br>F | Ρ.      | Obs | F       | Р      |
| AG RLR does not Granger Cause AG MP | 37  | 2.5503              | 0.0612  | 33  | 0.7682  | 0.6353 |
| AG MP does not Granger Cause AG RLR |     | 1.0727              | 0.3886  |     | 1.7859  | 0.1540 |
| BB_RLR does not Granger Cause BB_IP | 92  | 1.1281              | 0.3489  | 88  | 0.5418  | 0.8211 |
| BB_IP does not Granger Cause BB_RLR |     | 1.9602              | 0.1082  |     | 1.4952  | 0.1744 |
| BR_RLR does not Granger Cause BR_IP | 29  | 2.9483              | 0.0457  | 25  | 0.3305  | 0.9309 |
| BR IP does not Granger Cause BR RLR |     | 2.4338              | 0.0810  |     | 2.3153  | 0.1282 |
| BS_RLR does not Granger Cause BS_IP | 41  | 0.8238              | 0.5198  | 37  | 1.1363  | 0.3824 |
| BS IP does not Granger Cause BS RLR |     | 0.0645              | 0.9920  |     | 0.0266  | 1.0000 |
| CB_RLR does not Granger Cause CB_MP | 73  | 2.1617              | 0.0833  | 69  | 1.1212  | 0.3648 |
| CB MP does not Granger Cause CB RLR |     | 2.8167              | 0.0323  |     | 1.8840  | 0.0825 |
| CL RLR does not Granger Cause CL MP | 117 | 3.4036              | 0.0116  | 113 | 2.6644  | 0.0110 |
| CL MP does not Granger Cause CL RLR |     | 1.4565              | 0.2205  |     | 2.5780  | 0.0136 |
| HK_RLR does not Granger Cause HK_MP | 53  | 2.4805              | 0.0576  | 49  | 1.0988  | 0.3896 |
| HK MP does not Granger Cause HK RLR |     | 0.5299              | 0.7144  |     | 1.0697  | 0.4082 |
| HN_RLR does not Granger Cause HN_IP | 62  | 1.4750              | 0.2229  | 58  | 0.7464  | 0.6506 |
| HN_IP does not Granger Cause HN_RLR |     | 0.9333              | 0.4518  |     | 0.7533  | 0.6448 |
| IN_RLR does not Granger Cause IN_IP | 101 | 1.1012              | 0.3608  | 97  | 1.1111  | 0.3648 |
| IN IP does not Granger Cause IN RLR |     | 1.3893              | 0.2438  |     | 0.6418  | 0.7403 |
| IS RLR does not Granger Cause IS IP | 100 | 2.5025              | 0.0477  | 96  | 1.3338  | 0.2393 |
| IS IP does not Granger Cause IS RLR |     | 2.1866              | 0.0767  |     | 1.4537  | 0.1878 |
| JO_RLR does not Granger Cause JO_IP | 49  | 1.8919              | 0.1307  | 45  | 1.6623  | 0.1522 |
| JO IP does not Granger Cause JO RLR |     | 0.8875              | 0.4802  |     | 0.6361  | 0.7407 |
| KO RLR does not Granger Cause KO IP | 95  | 3.4601              | 0.0114  | 91  | 2.0991  | 0.0464 |
| KO_IP does not Granger Cause KO_RLR | 55  | 1.5287              | 0.2010  | 51  | 1.1020  | 0.3718 |
| LT_RLR does not Granger Cause LT_IP | 44  | 0.2455              | 0.9104  | 40  | 1.9184  | 0.1059 |
| LT IP does not Granger Cause LT RLR |     | 2.0217              | 0.1127  |     | 2.5242  | 0.0393 |
| MC_RLR does not Granger Cause MC_MP | 97  | 0.6200              | 0.6494  | 93  | 1.0390  | 0.4148 |
| MC MP does not Granger Cause MC RLR | 57  | 2.7917              | 0.0310  | 50  | 2.8541  | 0.0079 |
| MI RLR does not Granger Cause MI IP | 94  | 1.3636              | 0.2534  | 90  | 0.6823  | 0.7056 |
| MI_IP does not Granger Cause MI_RLR | 5.  | 1.9953              | 0.1025  | 50  | 1.8011  | 0.0906 |
| MK_RLR does not Granger Cause MK_IP | 40  | 0.4654              | 0.7606  | 36  | 0.2930  | 0.9597 |
| MK_IP does not Granger Cause MK_RLR | 10  | 0.7094              | 0.5917  | 00  | 1.7901  | 0.1418 |
| MX_RLR does not Granger Cause MX_IP | 45  | 3.3696              | 0.0193  | 41  | 1.4169  | 0.2399 |
| MX_IP does not Granger Cause MX_RLR |     | 1.2720              | 0.2990  |     | 0.6382  | 0.7381 |
| MY RLR does not Granger Cause MY IP | 112 | 1.6633              | 0.1642  | 108 | 1.3939  | 0.2098 |
| MY IP does not Granger Cause MY RLR |     | 1.0707              | 0.3749  | 100 | 0.7222  | 0.6714 |
| NG_RLR does not Granger Cause NG_IP | 132 | 6.0214              | 0.0002  | 128 | 3.2750  | 0.0022 |
| NG IP does not Granger Cause NG RLR | 102 | 0.8248              | 0.5118  | 120 | 2.0939  | 0.0422 |
| PE_RLR does not Granger Cause PE_IP | 54  | 2.5363              | 0.0530  | 50  | 4.0388  | 0.0020 |
| PE_IP does not Granger Cause PE_RLR | 0.  | 0.8948              | 0.4750  | 50  | 1.0248  | 0.4374 |
| PH_RLR does not Granger Cause PH_MP | 93  | 2.5444              | 0.0454  | 89  | 1.4673  | 0.1844 |
| PH MP does not Granger Cause PH RLR | 50  | 2.5775              | 0.0432  | 00  | 1.4322  | 0.1981 |
| SA_RLR does not Granger Cause SA_MP | 155 | 3.6299              | 0.0075  | 151 | 4.2528  | 0.0001 |
| SA_MP does not Granger Cause SA_RLR | 100 | 1.8537              | 0.1217  | 131 | 2.7803  | 0.0071 |
| SJ_RLR does not Granger Cause SJ_IP | 49  | 3.0739              | 0.0268  | 45  | 1.9369  | 0.0937 |
| SJ_IP does not Granger Cause SJ_RLR | 45  | 0.8194              | 0.5205  | 45  | 0.6069  | 0.7642 |
| SX_RLR does not Granger Cause SX_IP | 45  | 1.8110              | 0.1481  | 41  | 1.9402  | 0.1001 |
| SX_IP does not Granger Cause SX_II  | 45  | 1.3277              | 0.2784  | 41  | 1.7012  | 0.1496 |
| TT RLR does not Granger Cause TT IP | 80  | 0.5110              | 0.7278  | 76  | 0.3060  | 0.9609 |
| TT_IP does not Granger Cause TT_RLR | 00  | 2.1218              | 0.0870  | 70  | 1.7530  | 0.1051 |
| UY_RLR does not Granger Cause UY_MP | 83  | 1.6154              | 0.1794  | 79  | 1.0618  | 0.4013 |
| UY_MP does not Granger Cause UY_RLR | 00  | 2.1595              | 0.0819  | , , | 1.0463  | 0.4013 |
| JP_RLR does not Granger Cause JP_IP | 155 | 1.1276              | 0.3459  | 151 | 1.8110  | 0.0802 |
| JP IP does not Granger Cause JP IR  | 100 | 2.2665              | 0.0648  | 101 | 1.3851  | 0.2085 |
| UK RLR does not Granger Cause UK IP | 151 | 2.2005              | 0.0648  | 147 | 1.3851  | 0.2085 |
| UK_IP does not Granger Cause UK_RLR | 101 | 2.0298              | 0.0382  | T+1 | 2.8466  | 0.1008 |
| US_RLR does not Granger Cause US_IP | 155 | 4.4765              | 0.0934  | 151 | 2.8466  | 0.0080 |
| US_IP does not Granger Cause US_RLR | 100 | 11.9227             | 0.00019 | 101 | 6.1030  | 0.0000 |
| Co Counger Cause OS_ALK             |     | 11.3221             | 0.0000  |     | 0.1030  | 0.0000 |

# Table B.13(b)

## Do Interest Rates Cause Output? (Real Money Market Rate)

| Null Hypothesis                      | Lags: 4 |        |        | Lags: 8 |        |        |
|--------------------------------------|---------|--------|--------|---------|--------|--------|
|                                      | Obs     | F      | Р      | Obs     | F      | Р      |
| BR_RMMR does not Granger Cause BR_IP | 47      | 3.2568 | 0.0158 | 44      | 2.3502 | 0.0462 |
| BR_IP does not Granger Cause BR_RMMR |         | 0.3939 | 0.8498 |         | 0.1748 | 0.9925 |
| CB_RMMR does not Granger Cause CB_MP | 36      | 1.1471 | 0.3622 | 33      | 1.3281 | 0.2985 |
| CB_MP does not Granger Cause CB_RMMR |         | 3.7649 | 0.0112 |         | 3.2476 | 0.0215 |
| CL_RMMR does not Granger Cause CL_MP | 108     | 3.1562 | 0.0111 | 105     | 2.0903 | 0.0450 |
| CL_MP does not Granger Cause CL_RMMR |         | 0.5763 | 0.7180 |         | 0.3907 | 0.9229 |
| HK_RMMR does not Granger Cause HK_MP | 40      | 1.2139 | 0.3276 | 37      | 0.9144 | 0.5247 |
| HK_MP does not Granger Cause HK_RMMR |         | 2.7178 | 0.0393 |         | 1.5793 | 0.1934 |
| IN_RMMR does not Granger Cause IN_IP | 126     | 0.1518 | 0.9791 | 123     | 0.4254 | 0.9035 |
| IN_IP does not Granger Cause IN_RMMR |         | 3.3790 | 0.0069 |         | 1.9291 | 0.0630 |
| IV_RMMR does not Granger Cause IV_IP | 109     | 1.1866 | 0.3213 | 106     | 1.9999 | 0.0554 |
| IV_IP does not Granger Cause IV_RMMR |         | 0.5506 | 0.7375 |         | 0.4709 | 0.8736 |
| KO_RMMR does not Granger Cause KO_IP | 109     | 4.2491 | 0.0015 | 106     | 3.1829 | 0.0032 |
| KO_IP does not Granger Cause KO_RMMR |         | 2.4734 | 0.0373 |         | 1.0935 | 0.3753 |
| LT_RMMR does not Granger Cause LT_IP | 40      | 0.3097 | 0.9031 | 37      | 0.2350 | 0.9793 |
| LT_IP does not Granger Cause LT_RMMR |         | 1.3994 | 0.2538 |         | 1.4240 | 0.2466 |
| MX_RMMR does not Granger Cause MX_IP | 91      | 3.7132 | 0.0045 | 88      | 2.6524 | 0.0132 |
| MX_IP does not Granger Cause MX_RMMR |         | 0.6033 | 0.6976 |         | 0.5065 | 0.8476 |
| MY_RMMR does not Granger Cause MY_IP | 135     | 4.5021 | 0.0008 | 132     | 2.2458 | 0.0289 |
| MY_IP does not Granger Cause MY_RMMR |         | 1.3283 | 0.2565 |         | 0.6479 | 0.7359 |
| PH_RMMR does not Granger Cause PH_MP | 92      | 1.7247 | 0.1383 | 89      | 1.2474 | 0.2847 |
| PH_MP does not Granger Cause PH_RMMR |         | 0.3277 | 0.8949 |         | 0.1337 | 0.9975 |
| PK_RMMR does not Granger Cause PK_MP | 132     | 1.6681 | 0.1474 | 129     | 2.4206 | 0.0189 |
| PK_MP does not Granger Cause PK_RMMR |         | 1.6644 | 0.1483 |         | 0.7709 | 0.6290 |
| SA_RMMR does not Granger Cause SA_MP | 154     | 3.3202 | 0.0072 | 151     | 2.9908 | 0.0041 |
| SA_MP does not Granger Cause SA_RMMR |         | 2.1976 | 0.0578 |         | 2.8731 | 0.0055 |
| SG_RMMR does not Granger Cause SG_IP | 68      | 4.5966 | 0.0014 | 65      | 2.9993 | 0.0082 |
| SG_IP does not Granger Cause SG_RMMR |         | 0.8447 | 0.5238 |         | 0.7734 | 0.6277 |
| SJ_RMMR does not Granger Cause SJ_IP | 45      | 1.5947 | 0.1881 | 42      | 0.9741 | 0.4781 |
| SJ_IP does not Granger Cause SJ_RMMR |         | 0.9264 | 0.4760 |         | 0.8499 | 0.5694 |
| TK_RMMR does not Granger Cause TK_IP | 70      | 8.6879 | 0.0000 | 67      | 6.2854 | 0.0000 |
| TK_IP does not Granger Cause TK_RMMR |         | 0.2995 | 0.9112 |         | 0.3641 | 0.9345 |
| TU_RMMR does not Granger Cause TU_IP | 44      | 0.0907 | 0.9932 | 41      | 0.9006 | 0.5316 |
| TU IP does not Granger Cause TU RMMR |         | 1.2652 | 0.3021 |         | 1.3107 | 0.2852 |
| JP RMMR does not Granger Cause JP IP | 154     | 4.0262 | 0.0019 | 151     | 2.8529 | 0.0058 |
| JP IP does not Granger Cause JP RMMR |         | 2.6660 | 0.0246 |         | 1.3680 | 0.2161 |
| UK_RMMR does not Granger Cause UK_IP | 128     | 3.7452 | 0.0035 | 125     | 2.6230 | 0.0115 |
| UK IP does not Granger Cause UK RMMR |         | 6.1153 | 0.0001 |         | 5.1332 | 0.0000 |
| US RMMR does not Granger Cause US IP | 154     | 2.0440 | 0.0760 | 151     | 1.6788 | 0.1091 |
| US IP does not Granger Cause US RMMR |         | 5.4516 | 0.0001 |         | 3.2145 | 0.0023 |

Notes: IP – real industrial production, MP – real manufacturing production, BM – broad money, DC – domestic private sector credit, RDC – real domestic private sector credit, RMMR – real money market rate, RLR – real lending rate



This working paper has been produced by the School of Economics and Finance at Queen Mary, University of London

Copyright © 2010 Rachel Male All rights reserved

School of Economics and Finance Queen Mary, University of London Mile End Road London E1 4NS Tel: +44 (0)20 7882 5096 Fax: +44 (0)20 8983 3580 Web: www.econ.qmul.ac.uk/papers/wp.htm