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1 Introduction

Almost four decades after its publication, A Theory of Justice ([13]) maintains a prominent role
in political philosophy, economics, and social choice. Among the most influential contributions of
the book is the difference principle contained in Rawls’s second principle of justice, according to
which inequalities should be allowed only insofar as they benefit the worst-off members of society
([13], p-303). Both the difference principle, formally captured by the well-known mazimin social
welfare relation, and especially its lexicographic extension, the leximin social welfare relation, have
generated a vast literature across disciplinary borders.

Rawls’s difference principle and its extension are usually considered to have a strong egalitarian bias
and are taken to represent the main alternative to libertarian and utilitarian approaches (see, e.g.,
[21] and the discussion in [16]). The classic characterisation of leximin, in fact, is due to Hammond
([9]) and it requires an axiom (the so-called Hammond Equity axiom) with a marked egalitarian
content: in a welfaristic framework, Hammond Equity asserts that if z; < y; < y; < x; for two
utility profiles « and y, for which =, = yj, for all agents h # 4, j, then y should be (weakly) socially
preferred to x. In a recent contribution, however, Mariotti and Veneziani ([12]) show that the
leximin can be characterised using an axiom - the Harm Principle - that incorporates a liberal view
of non-interference, without any explicit egalitarian content. This result is surprising and it raises
a number of interesting issues for liberal approaches emphasising notions of individual autonomy
or freedom in political philosophy and social choice, but it also sheds new light on the normative
foundations of standard egalitarian principles.

This paper extends the analysis of the implications of liberal views of noninterference, as expressed
in the Harm Principle, and it generalises ([12]) in a number of directions. Formally, it is shown
that a weaker version of the Harm Principle, together with standard axioms in social choice, pro-
vides a unified axiomatic framework to analyse a set of social welfare relations originating from the
difference principle in a welfaristic framework. Theoretically, the analysis provides a novel state-
ment, based on liberal principles, of the ethical intuitions behind a family of normative principles
stemming from Rawls’s seminal work. On the one hand, the Harm Principle is formally different
from standard informational invariance axioms (see, e.g., [8]) and, unlike the latter, it has a clear
normative content. On the other hand, unlike the Hammond Equity axiom, the Harm principle
does not incorporate an egalitarian intuition. Therefore, quite surprisingly, the ethical foundations
of two social welfare relations traditionally considered as rather egalitarian - the difference principle
and its lexicographic extension - rest only on the two standard axioms of Anonymity and Pareto

efficiency, and on a liberal principle incorporating a noninterfering view. No axiom with a clear



egalitarian content is necessary, and indeed our analysis provides a new meaning to the label ‘liberal
egalitarianism’ usually associated with Rawls’s approach. Actually, our analysis sheds new light
on the importance of the notion of justice as impartiality incorporated in the Anonymity axiom in
egalitarian approaches. This is particularly clear in societies with a finite number of agents: the
Harm principle and the Pareto principle are consistent with some of the least egalitarian social
welfare orderings (e.g. the lexicographic dictatorships), and the Anonymity axiom plays a pivotal
role in determining the egalitarian outcome. Our analysis also raises some interesting issues con-
cerning the actual implications of liberal approaches emphasising a notion of individual autonomy,
or freedom: if one endorses some standard axioms - such as Anonymity and the Pareto principle
- the adoption of an arguably weak liberal view of noninterference leads straight to welfare egali-
tarianism. As noted by Mariotti and Veneziani ([12]), liberal noninterference implies equality, an
insight that is proved to be quite robust in this paper.

To be specific, first of all, in economies with a finite number of agents, it is shown that a weaker
version of the Harm Principle analysed in ([12]) is sufficient to characterise the leximin social
welfare ordering. This result is interesting because the weak Harm Principle captures liberal,
noninterfering views even more clearly than the original Harm Principle. Further, based on the
weak Harm Principle, a new characterisation of the mazximin social welfare ordering is provided.
Second, this paper analyses the maximin and the leximin in the context of societies with an infinite
number of agents. This is arguably a crucial task for egalitarians. In fact, despite Rawls’s claims
to the contrary, there is no compelling reason to restrict the application of the difference principle
to intra-generational justice. In the intergenerational context, a basic concern for impartiality
arguably implies that principles of justice be applied to all present and future generations. The
extension to the case with an infinite number of generations, however, is problematic for all the
main approaches, and indeed impossibility results easily obtain, for there exists no social welfare
ordering that satisfies the standard axioms of Anonymity and Strong Pareto (see [11]). A number of
recent contributions have provided characterisation results for social welfare relations by dropping
either completeness (see, among the others, [4], [2], [5], [7], [3]) or transitivity (see, e.g., [18]). But
the definition of suitable anonymous and paretian social welfare relations is still an open question
in the infinite context (for a thorough discussion, see [1]).

In this tradition, this paper provides various new characterisations of the maximin and the leximin
social welfare relations, based on the weak Harm principle in economies with an infinite number
of agents. Although various formal frameworks and definitions have been proposed to analyse
infinitely-lived societies, it is shown that the weak Harm Principle can be used to derive interesting

results in all the main approaches.



The rest of the paper is structured as follows. Section 2 lays out the basic framework of analysis.
Section 3 characterises the leximin and the maximin social welfare orderings in economies with a
finite number of agents. Section 4 provides a number of characterisation results for leximin and
maximin social welfare relations in societies with an infinite number of agents, in various different

frameworks. Section 5 briefly concludes.

2 The framework

Let X = RY be the set of countably infinite utility streams, where R is the set of real numbers and
N is the set of natural numbers. An element of X is ju = (u1,us,...) and u; is the utility level of a
representative member of generation t € N. For T" € N, yur = (uq, ..., ur) denotes the T-head of ju
and py1u = (Up41,Ur42, ...) denotes its T-tail, so that ju = (yur,r+1u); 1up denotes the welfare
level of the worst-off generation of the T-head of ju, and min(yu) = min({u1,us,...}) denotes the
welfare level of the worst-off generation of 1u whenever it exists. .,€ denotes the stream of constant
level of well-being equal to € € R: for the sake of notational simplicity, the T-head of .., € is denoted
as 1er. A permutation 7 is a bijective mapping of N onto itself. A permutation m of N is finite if
there is T' € N such that 7(¢t) = ¢, V¢t > T, and II is the set of all finite permutations of N. For any

1w € X and any 7 € I1, let 7 (yu) = (uﬁ(t)) be a permutation of ju. For any T' € N and ju € X,

teN
17 is a permutation of jur such that the ceomponents are ranked in ascending order.

For any ju,; v € X, we write ju > 1v to mean u; > vy, Vi € N; ju > 1v to mean ju > 1v and ju #
1v; and 1u > (v to mean u; > vy, Vi € N.

Let = be a (binary) relation over X. For any ju,;v € X, we write ju > jv for (ju,;v) €= and
1w # g for (yu,1v) ¢3=; = stands for “at least as good as”. The asymmetric factor = of = is
defined by 1u > 1v if and only if yu = 1v and 1v %# 1u, and the symmetric part ~ of = is defined
by 1u ~ jv if and only if ju = jv and 1v > 1u. They stand, respectively, for “strictly better than”
and “indifferent to”. A relation 3= on X is said to be: reflexive if, for any 1u € X, 1u = 1u; complete
if, for any ju,;v € X, ju # 1v implies 1u = 1v or 1v = 1u; transitive if, for any ju,; v,; w € X,
1U = 10 = 1w implies ju = jw. = is a quasi-ordering if it is reflexive and transitive, while = is an
ordering if it is a complete quasi-ordering. Let = and =’ be relations on X: =’ is an extension of
= if =C%' and ~C>".

If there are only a finite set {1,...,7} = N C N of agents, or generations, X7 denotes the set of
utility streams of X truncated at 7" = |N|, where |N| is the cardinality of N. In order to simplify
the notation, in economies with a finite number of agents we write u for jur. With the obvious

adaptations, the notation spelled out above is carried over utility streams in X7.



3 Egalitarian Principles in Societies with a Finite Number of

Agents

This section analyses liberal egalitarianism in societies with a finite number of agents. First, the
characterisation of the leximin social welfare ordering (henceforth, swo) derived by Mariotti and
Veneziani ([12], Theorem 1, p.126) is strengthened by weakening the main axiom incorporating a
liberal view of noninterference, the Harm Principle. Then, based on the weak Harm Principle, a

novel characterisation of Rawls’s difference principle, as formalised in the maximin SWO, is provided.

3.1 The Leximin

According to the leximin, that society is best which lexicographically maximises the welfare of its

LM

worst-off members. Formally, the leximin relation ="M =~1M |y ~IM on X7 is defined as follows.

The asymmetric factor =M of =M is defined by:

L

u =My s ay >0 or [Fie N\{1}:a; =0; (Vj € N :j <i) and @; > ;).

The symmetric factor ~“M of =M ig defined by:

UNLMvﬁﬂiZ@i,ViGN.

=M ig easily shown to be an ordering. Classic analyses of the leximin SWo typically involve the

following three axioms (see [9]).

STRONG PARETO OPTIMALITY, SPO: Vu,v € X7 :u>v = u > v.
ANONYMITY, A: Vu € Xp: Im of N = u ~ 7 (u).
HamMonDd Equity, HE. Vu,v € X7t w; <v; <vj <uj 3i,5 € N, up, = v Vb € N\{i,j} = v =

u.

The first two axioms are standard in social choice theory and need no further comment. It is
important to note, instead, that HE expresses a clear concern for equality in welfare distributions,
for it asserts that among any two welfare allocations which differ only in two components, society
should prefer the more egalitarian one. The classic characterisation by Hammond ([9]) states that
a SWO is the leximin ordering if and only if it satisfies SPO, A, and HE.!

In a recent contribution, Mariotti and Veneziani ([12]) drop HE and introduce a new axiom, called

the Harm Principle (HP), which is meant to capture a liberal view of noninterference whenever

!See also the related Hammond ([10]) and the generalisation by Tungodden ([20]; [21]).



individual choices have no effect on others. To be precise, starting from two welfare allocations u
and v for which u is socially preferred to v, consider two different allocations v’ and v’ such that
agent ¢ is worse off at these than at the corresponding starting allocations, the other agents are
equally well off, and agent ¢ prefers «’ to v'. The decrease in agent ¢’s welfare may be due to her
negligence or her bad luck, but in any case HP states that society’s preference over v’ and v’ should
coincide with 4’s preferences. In this sense, HP requires that having already suffered a welfare loss
in both allocations, agent ¢ should not be punished in the SWo by changing social preferences
against her. This seems a rather intuitive way of capturing a liberal view of noninterference, and
the name of the axiom is meant to echo John Stuart Mill’s famous formulation in his essay On
Liberty (see [22], and the discussion in [12]). Yet, although it has no explicit egalitarian content,
quite surprisingly, Mariotti and Veneziani ([12], Theorem 1, p.126) prove that, jointly with SPO
and A, HP characterises the leximin Swo.

In this paper, the implications of liberal, noninterfering views in social choice are explored further.
As a first step, though, a weaker version of HP is presented, which can be formally stated as

follows.

WEAK HARM PRINCIPLE, WHP: Vu,v,v,v' € X7 :u > v and «/,v" are such that, 3i € N,

u, < ug
v < vy
w; = u;Vje N\{i}
vi = v VjeN\{i}

implies v’ % v« whenever u} > v}.

WHP weakens the axiom proposed by Mariotti and Veneziani ([12]) in that it does not require
that society’s preferences over v/ and v’ be identical with agent 4’s, but only that society should
not reverse the strict preference between 1u and v to a strict preference for 10" over 14’ (possibly
except when i prefers otherwise). In this sense, the liberal content of WHP, and the requirement
that agent ¢ should not be punished in the swWo by changing social preferences against her, is
even clearer, and WHP strongly emphasises the negative prescription of the Harm Principle. The

surprising characterisation result provided in ([12]) can then be strengthened.

Theorem 1 A sWO = on Xr is the leximin ordering if and only if it satisfies Anonymity (A),
Strong Pareto Optimality (SPO), and the Weak Harm Principle (WHP).



Proof. (=) Let = on X7 be the leximin ordering, i.e., ==%LM_ Since WHP is weaker than HP,
the proof that = on X7 meets SPO, A, and WHP follows from the proof of necessity in ([12],
Theorem 1, p.126).

(<) Let = on X7 be a swo satisfying SPO, A, and WHP. We show that = on X7 is the leximin
swoO. Thus, we should prove that, Vu,v € Xp,

u~M oy sy~ (3.1)

and

u="My oy (3.2)

M 4, then @ = v, and so u ~ v, by A.

First, we prove the implication = of 3.1. If u ~%
Next, we prove the implication = of 3.2. Suppose that v =™ v, and so, by definition 3¢ € {1,...,T}
such that us = v5 V1 < s < ¢ and u; > v;. Suppose, by contradiction, that v >= u. Note that since
> satisfies A, in what follows we can focus, without loss of generality, either on v and v, or on the
ranked vectors @ and ©. Therefore, suppose v > %. As SPO holds it must be the case that 7; > 4;
for some [ > t. Let

k=min{t <1 <T|vy; > u}.

By A, let v; = ¥}, and let u; = tig_g4, for some 1 < g < k, where tiy_y > vy_4. Then, let two real
numbers di,ds > 0, and consider vectors v/, v' and the corresponding ranked vectors 4/, v’ in X
formed from u, v as follows: first, u;_, is lowered to ug_4 — dy such that @,_s — di > Uj_4; next,
Uy is lowered to vj, — dg such that 4y > vj, — da > Ug_g — dy; finally, all other entries of % and v are
unchanged. By construction E; > 17;- for all j < k, with at least two inequalities, @), g > v)_ g and
uj, > vy, whereas WHP, combined with A, implies ¢’ 3= 4'. By SPO, dy,dy > 0 can be chosen so
that ¢’ = @', without loss of generality. Consider two cases:
a) Suppose that vy > @y, but 4; > v for all [ > k. It follows that @’ > ¥, and so SPO implies that
@' = v, a contradiction.
b) Suppose that v; > @; for some [ > k. Note that by construction ’D{ = 7; and ﬂ; = for all I > k.
Then, let

k' = min{k <1 < T|v, > u}.
where &' > k. The above argument can be applied to @', ¥’ to derive vectors ", o such that @} > v}
for all j < k', whereas WHP, combined with A and SPO, implies " = #”. And so on. After

a finite number of iterations s, two vectors @®, v° can be derived such that, by WHP, combined

with A and SPO, we have that v° > u®, but SPO implies u® > v°, yielding a contradiction.



We have proved that if v =% v then u > v. Suppose now, by contradiction, that v ~ w, or
equivalently © ~ . Since, by our supposition, 7; < 4, there exists € > 0 such that v; < 4y — e < Uy.
Let 1u € X be a vector such that 4§ = u; — € and uj = u; for all j # ¢. It follows that a LM
v but v = u° by SPO and the transitivity of =. Hence, the above argument can be applied to v
and €, yielding the desired contradiction. B

The properties in Theorem 1 are clearly independent.

Theorem 1 has a number of interesting theoretical implications. First of all, Theorem 1 implies that
HE and WHP are equivalent in the presence of A and SPO, even though they are completely
independent. Actually, it can be proved that if N = {1,2}, then in the presence of SPO, HE
implies WHP, but the converse is not true. This implies that the above characterisation is far
from trivial, given that, at least in some cases, and if SPO is assumed, HE is actually stronger
than WHP. Secondly, and perhaps more interestingly, Theorem 1 puts the normative foundations
of leximin under a rather different light. For, unlike in standard results, the egalitarian SWoO is
characterised without appealing to any axioms with a clear egalitarian content. Actually, it is
easily shown that SPO and WHP alone are compatible with some of the least egalitarian Swos,
namely the lexicographic dictatorships, which forcefully shows that WHP imposes no significant
egalitarian restriction. As a result, Theorem 1 interestingly shows the normative strength of the
Anonymity axiom in determining the egalitarian outcome, an important insight which is not obvious
in standard characterisations based on HE.

The main implication of Theorem 1, however, is that it proves that the core intuition of Mariotti
and Veneziani ([12], Theorem 1, p.126) concerning the implications of liberal noninterfering views
is robust: a strongly egalitarian SWO can be characterised with an even weaker axiom that only
incorporates a liberal view of non-interference. In the next sections, this intuition is extended
further and it is shown that the counterintuitive implications of liberal noninterfering principles in
terms of egalitarian orderings are quite general and robust. Analogous characterisations of a whole
family of principles inspired by Rawls’s theory are obtained in societies with both finite and infinite

populations, based on the weak Harm Principle.

3.2 The Difference Principle

The mazimin relation =M==M U ~M on X7 is defined as follows. The asymmetric factor =M of
=M is defined by:

U>MU<=>111>771.



The symmetric factor ~* of = is defined by:
u~Moy & U = 1.

=M is easily shown to be an ordering. The maximin Swo formalises Rawls’s difference principle.
As is well-known, the maximin does not satisfy SPO, and therefore the following, weaker axiom is

imposed on the SWo.
WEAK PARETO OPTIMALITY, WPO: YVu,v € Xp:u>v = u > v.

Second, a continuity axiom is imposed, which represents a standard interprofile condition requiring
the SWO to vary continuosly with variations in utility streams. This axiom is common in charac-

terisations of the maximin SWO (see, e.g., [6]).
ConTINuITY, C: Yu € X7, {v € Xr|v = u} is closed and {v € Xr|u = v} is closed.

The next Theorem shows that the combination of Anonymity (A ), Weak Pareto Optimality (WPO),
Continuity (C), and the Weak Harm Principle (WHP) characterises the maximin SWo.

Theorem 2 A SWO = on Xr is the mazximin ordering if and only if it satisfies Anonymity (A),
Weak Pareto Optimality (WPO), Continuity (C), and the Weak Harm Principle (WHP).

Proof. (=) Let = on X7 be the maximin ordering, i.e., ==2=M_ Tt can be easily verified that =M
on X7 satisfies WPO, A, C, and WHP.

(<) Let = on X7 be a swo satisfying A, WPO, WHP, and C. We show that = is the maximin
swoO. We shall prove that, Vu,v € X7,

ur-Mveu-v (3.3)

and

u~My s u~ . (3.4)

Note that as = on X satisfies A, in what follows we can focus either on v and v, or on the ranked
vectors @ and v, without loss of generality.

First, we show that the implication (=) of (3.3) is satisfied. Take any w,v € Xp. Suppose that
u =M v & @ > 7; and assume, by contradiction, that v > u, or equivalently, 7 > @. As WPO
holds, v; > u; for some j € N, otherwise a contradiction immediately obtains. We prooceed

according to the following steps.

Step 1. Let
k:min{l€N|T)l Zfbl}



By A, let v; = U and let u; = @;. Then, consider two real numbers di,ds > 0, and two vectors
u',v* - together with the corresponding ranked vectors @', v* € Xp - formed from @, as follows:
17 is lowered to @y — di > ©1; Uy, is lowered to uy > U — do > U1 — di; and all other entries of @
and v are unchanged. By construction 'EL; > o5 for all j < k, whereas by WHP and A, we have
vt =l
Step 2. Let

0 < e < min{a}; — v7|¥j <k}

and define ¥ = 0% + cope. By construction, v* < ¢', and @} < @} for all j < k. WPO implies
v = v*. As 0" =/, by step 1, the transitivity of = implies v’ = @’.

If @ > v} for all j € N, WPO implies @' » ¢', a contradiction. Otherwise, let 7} > @ for some !
> k. Then, let

k' =min {l € N| v, > u}
where k' > k.

The above steps 1-2 can be applied to @',?’ to derive vectors @”,7” such that ﬂ;’ > 17;’ for all
j <K', whereas v" = 4. By WPO, a contradiction is obtained whenever @] > v} for all j € N.
Otherwise, let 7' > @} for some [ > k. And so on. After a finite number s of iterations, two vectors
u°,v° can be derived such that v° = 4°, by steps 1-2, but 4° > v, by WPO, a contradiction.
Therefore, it must be @ = ¥ whenever @ =™ ©. We have to rule out the possibility that @ ~ .
We proceed by contradiction. Suppose that @ ~ v. Since v; < u;, there exists € > 0 such that
V¢ = U+ con€ and 0§ < 4y so that @ =M ¢, However, by WPO and transitivity of = it follows
that v > 4. Then the above reasoning can be applied to vectors v and @ to obtain the desired
contradiction.

Now, we show that the implication (=) of (3.4) is met as well. Suppose that @ ~M © < @, = 7.
Assume, to the contrary, that v ¢ v. Without loss of generality, let @ > v. By A, it must be u # .
As @ > v, it follows from C that there exists neighborhoods S (@) and S (v) of @ and v such that
u = for all W € S (@) and for all v' € S (v). Then, there exists v' € S (v) such that v' > ¥ and
@ = v ~ ¥, so that @ > @ but @ =M 4. By the implication (3.3) proved above, it follows that
v’ = 1, a contradiction. H

The properties in Theorem 2 are clearly independent.?

2Tt is worth noting that a stronger characterisation result of the maximin SwWoO can be provided by replacing the
standard continuity property C with the following weaker property, where € denotes the stream of constant level of
well-being equal to € € R:
WEAK CONTINUITY, WC: Vu,v € X, u=v=3e>0: u> v+ € I >0: ju— € = 10.

10



The theoretical relevance of the latter result can be appreciated if Theorem 2 is compared with
alternative characterisations. On the one hand, unlike axioms on informational comparability often
used in the literature (see, e.g., [14], [15]), the weak Harm Principle has a clear ethical foundation,
but, as noted above it has no obvious egalitarian implication. In a recent contribution, Bosmans
and Ooghe ([6]) characterise the maximin SWO using Anonymity (A), Weak Pareto Optimality
(WPO), Continuity (C), and Hammond Equity (HE). Instead, as in the case of the leximin
ordering analysed above, Theorem 2 characterises an egalitarian SW0 such as the maximin without
appealing to an axiom like HE, which arguably has a marked egalitarian content, and using instead

WHP, which only incorporates a liberal, noninterfering view of society.

4 Egalitarian Principles in the Infinitely-Lived Society

In this section, the axiomatic analysis of the difference principle and of its lexicographic refinement
is extended to infinitely-lived economies, focusing on the role of liberal views of noninterference as
formulated in the weak Harm Principle. As is well-known, the case with an infinite number of agents
raises a number of issues concerning the existence and the characterisation of SWos (see, e.g., [1])
and different definitions of the leximin social welfare relation (henceforth, SWR) can be provided in
order to compare (countably) infinite utility streams. In this section, first, the framework proposed
by Asheim and Tungodden ([2]) is adopted, and an alternative characterisation of their leximin
SWRs is provided. Then, a new characterisation of an infinite-horizon ordering extension of a
leximin SWR recently proposed by Bossert, Sprumont and Suzumura ([7]) is provided. Finally, the
framework of Asheim and Tungodden ([2]) is extended to analyse the maximin SWR, and a new

characterisation of the difference principle is proposed in the context of infinitely-lived economies.

4.1 The Leximin SWR

Following Asheim and Tungodden, there are two different ways of formally defining the leximin

SWR. The first one is the so-called ‘weak leximin’, or W-Leximin, and can be formalised as follows.

Definition 1 (Definition 2, [2], p. 224) For all juyv € X, ju ~*M" 1v & 3T > 1 such that VT >
T: vup = 107, and 1u =M v < 3T > 1 such that VI > T 3t € {1,., Tt us =0, V1 < s <t

and up > V.

The characterisation results below are based on a number of standard axioms. The first three

axioms are similar to those used in the finite case, and need no further comment, except possibly

11



noting that in this context, WHP is weaker than the version in Section 2 above, since it only holds
for vectors with the same tail.

FiNniTE ANONYMITY, FA: Viu € X and V 7 € II, w(1u) ~ ju.

STRONG PARETO OPTIMALITY, SPO: Yiu, v € X : 1u > 10 = 1u > 10.

WEAK HARM PrINCIPLE, WHP*: YViu,jv, v/ 10" € X 0 3T > 1 3u = (qup,r41v) > 1v, and

11,1 v are such that, 31 < T,

u; < U

v, < v

12 . .
u; = ujVj#i

/ o . . .
v; = v Vj#i
implies 10’ % 1u' whenever u} > ).

Next, following Asheim and Tungodden ([2], p. 223), an axiom is imposed, which represents a

mainly technical requirement to deal with infinite dimensional vectors.

WEAK PREFERENCE CONTINUITY, WPC: Viu,;v € X : 3T > 1 such that (1ur,r+1v) =10 VT >
T = 11U > 10.

WPC (and the same is true for the stronger SPC discussed below) provides a condition that estab-
lishes “a link to the standard finite setting of distributive justice, by transforming the comparison of
any two infinite utility paths to an infinite number of comparisons of utility paths each containing
a finite number of generations” ([2], p. 223). In the same vein, the next axiom states that the SWR
should at least be able to compare (infinite-dimensional) vectors with the same tail. This seems an

obviously desirable property which imposes a minimum requirement of completeness.
MINIMAL COMPLETENESS, MC: Viu, 1v € X, 3T > 1 (qup,p+1v) # 1v = (qup,7+10) % 10 or
1 = (1ur,r41 ).

The next Theorem proves that the combination of Finite Anonymity (FA), Strong Pareto Optimal-
ity (SPO), Weak Harm Principle (WHP*), Weak Preference Continuity (WPC), and Minimal

Completeness (MC), characterises the leximin SWR.

Theorem 3 3= is an extension of ="M if and only if = satisfies Finite Anonymity (FA), Strong
Pareto Optimality (SPO), Weak Harm Principle (WHP*), Weak Preference Continuity (WPC),
and Minimal Completeness (MC).
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Proof. (=) Let =M Ci=. Tt is easy to see that = meets FA and SPO. By observing that ="
is complete for comparisons between utility streams having the same tail it is also easy to see that
5= satisfies WPC and MC. We show that = meets WHP*. Take any ju,; v,1 ©',1 v € X such that
3T > 1 ju = (yur,74+1v) > 1v, and 1o/, 10’ are such that, 3 < T, u} < u;, v < v, u; =u; Vj #1,
v = v; Vj # i. We show that 11/ = 19’ whenever u} > v!. As :=I'M" is complete for comparisons

bjetvveen utility streams having the same tail, it must be true that ju > “™" ju. Therefore, by
definition, 37 > 1 such that VI" > T 3t € {1,...,7'} g = v, V1 < s < t and 4 > ©;. Take any
T'>T. As T' < oo it follows from Theorem 1 in [[12], p. 126] that there exists t* < t < T” such
that @, = @, V1 < 5 < t* and 7 < @. As it holds true for any 77 > T it follows that ju’ > 10’
as =M Co

(<) Suppose that = satisfies FA, SPO, WHP*, WPC, and MC. We show that ~“M"C~ and
—LM"Cy  Take any 1u,1 v € X.

Assume that ju ~EM" o, By definition, 3T > 1 such that VI' > T qur = 197, and so 74ju =
7419, for any T' > T. Tt follows that 1u ~ 1v, by FA.

Next, suppose that 1u =" jv, and so, by definition, 3T > 1 such that VI' > T' 3t € {1,...,T} such
that us = 05 V1 < s < t and u; > v;. Take any such T" and consider the vector yw = (yup,p4+1v).
We want to show that yw > jv. By FA and transitivity, we can consider ;w = (147,7+1v) and
10 = (107,741 v) . Suppose that 19 = jw. We distinguish two cases.

Case 1. 10 = 1w

As SPO holds it must be the case that v; > w; for some | > ¢. Let

k= min{t << T|’l_)l > ﬂ}l}.

Let v; = v}, and let w; = wy_g, for some 1 < g < k, where wy_g > U_4. Then, let two real numbers
di1,ds > 0, and consider vectors jw’, 1v' formed from 1w, 10 as follows: W—g is lowered to wy_gy —dy
such that wy_,—d; > vg_4; V) is lowered to vy —dz such that wy > vy —da > wy_y—dy; and all other
entries of 1w and 17 are unchanged. By FA, consider @' = (1@/},7+1v) and 10" = (195,741 v).
By construction ’lf); > 17;- for all j < k, with at least two inequalities, w;_g > @,’c_g and w), > vy,
whereas WHP*, combined with MC and FA, implies ¥’ = w’. Furthermore, by SPO, it is possible
to choose dy,ds > 0, such that v’ = w’, without loss of generality. Consider two cases:
a) Suppose that vy, > wy, but w; > 7; for all | > k. It follows that @’ > 17’, and so SPO implies
that 1@’ = 17’, a contradiction.
b) Suppose that v; > w; for some [ > k. Note that by construction v} = ; and w; = w; for all
[ > k. Then, let

k' =min{k <1 < T|v; > w;}.

13



where k' > k. The above argument can be applied to 110, 19’ to derive vectors 11", 19" such that
w} > v for all j < k', whereas WHP*, combined with MC, FA, and SPO, implies 19" ~ 10"
And so on. After a finite number of iterations s, two vectors 1w®, 12° can be derived such that,
by WHP*, combined with MC, FA, and SPO, we have that 19° > 1w®, but SPO implies ;w°® >~

10°, yielding a contradiction.

Case 2. v ~w

Since, by our supposition, v; < @y = wy, there exists € > 0 such that vy < w; —e < wy. Let 1w0° € X
be a vector such that w; = wy — € and w; = wj for all j # t. It follows that ¢ —LM* 5 but 19 -
1w€ by SPO and the transitivity of »=. Hence, the argument of Case 1 above can be applied to 1o
and jw¢, yielding the desired contradiction.

It follows from MC that jw > 19. FA, combined with the transitivity of %=, implies that (;ur,
74+1v) = 1v. Since it holds true for any T > T, WPC implies 1u > v, as desired. B

The properties in Theorem 3 are easily shown to be independent (see Appendix).

It is worth stressing again that in societies with an infinite number of agents, or generations, there
is no obvious, and unanimously accepted, definition of the leximin SWR. Asheim and Tungodden
([2], p. 224), for example, provide an alternative, stronger definition of the leximin - the S-Leximin

- that can be formalised as follows.

Definition 2 (Definition 1, [2], p. 224) For all yuqv € X, 1u =5M" v & 3T > 1 such that
VT > T: either jup = 107 or 3t € {1,..,T}: us =05 V1 < s <t and uy > vy.

The above analysis has focused on the W-Leximin, because the continuity axiom WPC is arguably
more appealing than the Strong Preference Continuity property adopted by Asheim and Tungodden
([2], p- 223) to characterise the S-leximin, which seems a rather strong requirement (as forcefully
argued, for example, by Basu and Mitra [5], p. 358). Strong Preference Continuity can be formalised

as follows.

STRONG PREFERENCE CONTINUITY, SPC: Viu,; v € X : 3T > 1 such that (tur,7+1v) =10 VT >
T, and VT > 1 3T > T such that (Lur,7+10) = 10 = 1u = 10.

A result analogous to Theorem 3 can be established for the stronger definition 2 by replacing
WPC with SPC. It can be easily obtained through a trivial modification of the parts of the proof
of Theorem 3 that involve WPC, and by observing that the necessity of WHP* can be easily

established along the same lines as in Theorem 3.
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Theorem 4 = is an extension of &fg’M* if and only if = satisfies Finite Anonymity (FA), Strong
Pareto Optimality (SPO), Weak Harm Principle (WHP*), Strong Preference Continuity (SPC),
and Minimal Completeness (MC).

The properties in Theorem 4 are easily shown to be independent (see Appendix).

Theorems 3 and 4 identify the relevant class of leximin SWRs by postulating a continuity prop-
erty on the quasi-ordering (respectively, WPC and SPC), which represents a mainly technical
requirement in ranking infinite utility streams. As axioms such as SPO and FA may be considered
ethically more defensible than continuity axioms, Bossert, Sprumont and Suzumura ([7]) have not
postulated any continuity property on the quasi-ordering and have provided a characterisation of
a subclass of the class of orderings satisfying SPO, FA, and an infinite version of HE. Formally,
the relationship between the characterisation of the leximin by Bossert et al. ([7]) and that by
Asheim and Tungodden ([2]) is analogous to the relationship between the characterisation of the
utilitarian SWR by Basu and Mitra ([5]) and the characterisations of the more restrictive utilitarian
SWR induced by the overtaking criterion (see the discussion in [7], p.580). This relationship is
explored below by extending the analysis of WHP* to the framework developed by Bossert et al.
(7).

For each T' € N, let the leximin ordering on X7 be denoted as %%M . The definition of the leximin
SWR proposed by Bossert et al. ([7]) can be formulated as follows. Define a relation =4C X x X

by letting, for all 1u,; v € X,
1U >;7L~ 1V & qur >;§’~M wr and prqu > v, (4.1)

The relation k% can be shown to be reflexive and transitive for all T € N. Then the leximin SWR is
== Uren 7% ([7], p. 586): it is reflexive and transitive, but not necessarily complete. Moreover,
Bossert et al. ([7]) show that =" satisfies the following property ([7], p. 586, equation (14)):

Viu,p v € X : 3T € N such that ju >% we qu =t (4.2)

The set of ordering extensions of =" characterised by the next theorem, based on Finite Anonymity
(FA), Strong Pareto Optimality (SPO), and the weak Harm Principle (WHP*), is shown to be

non-empty.

Theorem 5 3= is an extension of = if and only if = satisfies Finite Anonymity (FA), Strong
Pareto Optimality (SPO), and Weak Harm Principle (WHP*).
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Proof. (=) The proof that any ordering extension of = satisfies FA and SPO is as in ([7],
Theorem 2, p. 586). We only need to prove that any ordering extension = of =" satisfies WHP*.
Consider any ju, 1v, 1u/, 1v" € X such that 37 > 1 ju = (yup,r4+1v) = 1v, and 14/, 10’ are such
that, 3 < T, u; < w;, v; < v, u; = u;Vj # 4, vj = v;Vj # i. We show that 1u’ > 10/
whenever u, > v!. Since =%M is complete and 7,1v = 741 it cannot be jvr =EM jup, otherwise
(1v,1u) ex=LC> which contradicts ju = . Thus, we have that jur ?{;M 107, 10T %{;M 1ur, and
T41V = 741U, so that (1u,; v) €-% by (4.1). It follows from (4.2) that (yu,;v) €-L. As ju’ and
10" are such that, 3i < T, uj < u;, v; < v, uj = u; Vj # i, v; = v; Vj # i, it can easily be shown,
as in ([12]), that 1u} =ZM 107, whenever ) > vl. As 7410 = p1u’ and juf, =EM o) it follows
from (4.1) that 14’ >—% 1v', and therefore 1u’ =% 10’ by (4.2). But since = is an ordering extension
of =L it follows that v/ = 1.

(<) The proof is identical to ([7], Theorem 2, p. 587) using the characterisation of the T-person
leximin in Theorem (1). W

Theorem 5 leaves a larger class of orderings than that identified by Theorems 3 or 4, because in the
latter results two additional axioms are employed, but it is strikingly similar to the characterisation
in the finite context.

Finally, it is worth noting that the Weak Harm Principle (WHP*) can also be used to characterise
the intergenerational version of the leximin SWO recently proposed by Sakai ([18]), which drops
transitivity but retains completenss. In particular, if one replaces Hammond Equity with WHP*,
a modified version of his characterisation results ([18], Lemma 6, p.17; and Theorem 5, p.18) can

easily be proved.

4.2 The Maximin SWR

In this subsection, Rawls’s difference principle is analysed in the context of economies with an
infinite number of agents. First of all, the analysis focuses on the subset of utility streams that

reach a minimum in a finite period. Formally, define the following subset Y of X :
Y={weX3T">1 jup = 1up YT >T'}.

The maximin SWR can be formally defined as follows.

M

Definition 3 For all ju,1v € Y, 1u ~™" 1v & min(1u) = min(1v), and 1u =" (v < min(qu) >

min(;v).

Let =M ==M" |J ~M" 1t is easy to show that =" is a quasi-ordering on X and that ="
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is complete for any ju,;v € Y. In the framework proposed by Asheim and Tungodden ( [2]),

Definition 3 has equivalent reformulations.

Proposition 6 For all yu, v € Y, the following statements are equivalent:

(a) either min(;u) = min(1v) or min(;u) > min(1v).

(b) 3T € N : either Uy = 107 VT > T or 1up > 1up VT > T.

(c) 3T € N : either 1ur = 107 and up = 105 = 1vp VT > T] or 1up > 1vp and [\ur = 1uz and
1w = 15 VI > TJ.

Proof. Obvious, so omitted. B

It is worth noting that the relevant 7" in part (b) may be different from that in part (c).

In order to prove the main characterisation result, the following four standard axioms are imposed,
which are similar to those used in the finite setting, and need no further comment, except noting
that WC is a weakening of standard continuity axioms. Continuity requires that if ju is strictly
better than jv, then any vector sufficient close to ju should be strictly better than any vector

sufficient close to ;v. WC only requires the existence of some vectors with the latter property.
FINITE ANONYMITY, FA*: Viu € Y and V 7 € Il = 7(1u) ~qu.
WEAK PARETO OPTIMALITY, WPO*: Yiu, 1v €Y, 14> 1v = 1u > 1v.

WEAK HARM PRINCIPLE, WHP**: Viu,; v,y v/ ,1v € Y, ju = 1v and 14/, 10 are such that 3i € N,

/
U’i < ’U,i,
/ .
v, < v,
/ . .
u; = ujVj#i
/ _ ) . .
v; = v Vj#i

implies 1’ % 1u/ whenever u} > ).
WEAK CONTINUITY, WC: Viu,1v €Y, 1u > 1v=3e>0: 1u> 10+ con€, 3€ > 0: 1% — con€ >

10.

In addition to the above requirements, following again Asheim and Tungodden ( [2]), a weak

consistency requirement on the symmetric part of = is imposed.

WEAK INDIFFERENCE CONTINUITY, WIC: Viu,; v € Y, 37" > 1 such that ju ~ (yvp,re1u) VT >
T = 11U~ 1.

In analogy with WPC, the latter axiom represents a mainly technical requirement that provides

a link to the standard finite setting of distributive justice. WIC imposes that “an infinite utility
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path should be considered indifferent to another infinite utility path if the head of the former is
considered indifferent to the latter at every point in time beyond a certain initial phase” ([2], p.229).
Axioms similar to WIC are common in the literature (see, e.g., [5], [1]).

Finally, the next axiom requires that = be complete at least when comparing elements of Y with the
same tail: this is an even weaker completeness requirement than MC, and it seems uncontroversial,

for it is obviously desirable to be able to rank as many vectors as possible.
MINIMAL COMPLETENESS, MC*: Yiu,3v € Y, ju # 1v = (ur,7+1v) = 1v or 10 = (1ur,741v).

In order to derive the main characterisation result concerning the maximin SWRr, first two useful
Lemmas are proved. The next result states that any SWR satisfying WC, MC*, and WPO* also

satisfies monotonicity.

Lemma 7 Let = on X be a SWR satisfying WC, MC*, and WPO*. Then, YViu,yv eY : 3T >

Liu> (1r,re1u) = 1u = (1or,741u).

Proof. See appendix. B

Lemma 8 provides sufficient conditions to implement some type of Pareto-rankings. In particular,
it proves that, for a subset of allocations in Y, there is a finite number 7" such that, starting from
a given allocation, if the welfare of at least the first 7" generations increases uniformly, then the

new allocation is strictly preferred.

Lemma 8 Let = on X be a SWR satisfying FA*, WPO*, WC, WHP**, WIC, and MC*. Let
1w, 1v €Y be such that 1u =M" v, let T € N be such that Wi = 1V and 1Up = 1Up VT’ > T,

and let € > 0 be such that v + € < 1up. Then, (1o + 1€, 141 w) = (Lo, 741 U).

Proof. See appendix. B

Given Lemmas 7 and 8, the next Theorem proves that the combination of Finite Anonymity
(FA*), Weak Pareto Optimality (WPO*), Weak Harm Principle (WHP**), Weak Continuity
(WC), Weak Indifference Continuity (WIC), and Minimal Completeness (MC*), characterises

the maximin SWR.

Theorem 9 = on X is an extension of = on Y if and only if = satisfies Finite Anonymity
(FA*), Weak Pareto Optimality (WPO*), Weak Harm Principle (WHP** ), Weak Continuity
(WC), Weak Indifference Continuity (WIC), and Minimal Completeness (MC* ).

Proof. (=) It is easy to see that = meets FA*, WPO*, WHP**, WC, WIC, and MC* whenever

. . *
= is an extension of =M",
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(<) Suppose that = meets FA*, WPO*, WHP**, WC, WIC, and MC*. We show that =" C:=,
that is, Viu,jv €Y,

w =M = qu - o (4.3)

and

*

1U ~M 1V = 11U~ 10. (44)

We prove (4.3) and (4.4) by showing: 1) that (4.3) holds for vector having the same T-tail; 2) that
the implication (4.4) holds Viu,; v € Y; and, finally, 8) that the implication (4.3) is met Yiu,; v € Y

too.

Proof of (1)
Take any ju, v € Y such that min (;u) > min (1v). By proposition 6 it follows that 37" > 1 such
that jus > 1v7 and yup = 1uf and (07 = vy VT > T. Take any T > T and let jw = (1or, 741 ).
Observe that jw € Y. We show that ju > jw since ju =M jw, by construction. Assume, to the
contrary, that ju ¥ jw, so that jw = ju as the premises of MC* are met. We distinguish two
cases.
Case 1: 1w > 1u
As FA* holds, let 1w,1% be such that 7110 = 71w = 7414 = 7414, and 1wy, 147 are such that
wy < ... <wpand 41 < ... < ap. If ywop <€ 14y, Lemma 7 implies 1@ »= 1@ , a contradiction.
Otherwise, let w; > u; 3t < T. We proceed in two steps.
Step 1.
Let

kE=min{l < T|w > u;}.

Let 1w and 14 be two finite permutations of N such that 711w = 711W = 7414 = 7414 and, for
some 1 < T, w; = wy and 4; = 4. By FA*, 10 ~ 1w and 1@ ~ 14, so that 1w > 14. Then, let
two real numbers di,dy > 0, and consider vectors 1u/,; w’ formed as follows: first, 4; is lowered to
U; —dy > w1; next, w; is lowered to w; — dg such that u, > w; —de > U; —dy > wy; finally, all other
entries of 14 and 11 are unchanged. It follows from WHP** and MC*, that v’ = 1u'. Let 1w’
and 12’ be two finite permutations of N such that 710" = 7w’ = 7w’ = @ and (@7, 107,
are such that @] < ... <@/ and @} < ... < @/.. By construction, ﬂ; > w; for all j < k. By FA*
and transitivity, (@’ = 1%’
Step 2.
Let

0 < e < min{a; — wj|Vj <k}
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and define 105 = 1@} + 1er, where jep is T-head of cope. Let 10¢ = (105, 74+1@'), and observe
that jw® € Y. Lemma 8 implies 1w¢ = 1w’. As 1w’ = 1@, by step 1, transitivity of = implies
1w - qa.
If a; > w§ for all j < T, Lemma 7 implies 1t = qw€, a contradiction. Otherwise, let wf > u; for
some T > 1 > k. Then, let

k' =min {l < T| wf > u}

where k' > k.

The above steps 1-2 can be applied to 1%’, 1w¢ to derive vectors 1", ;w" such that @ > w} for
all j <k < T, whereas ;w” = 14”. By Lemma 7, a contradiction is obtained whenever ﬂ;’ > ’U_};-/
for all j < T. Otherwise, let w;’ > @} for some T'> 1 > k. And so on. After a finite number s of
iterations, two vectors 14°, 1w® can be derived such that y@® > 1a°, but 14° > 1@*, by Lemma 7,

yielding a contradiction.

Case 2: 1w ~ qu.
Since jwy < 1up, there exists € > 0 such that w5 = 1wy + € < 1up. Then fix such € > 0 and
€

let yw® = (ywr + 167,741 W), where 1ep is the T-head of .,n,e. Thus, by construction, ju =M e,

By Lemma 8, jw* = 1w , and thus by the transitivity of =, jw® > 1u and so Case 1 above obtains.

Proof of (2)

Take any ju,yv € Y such that min (;u) = min (yv). By proposition 6 it follows that r > 1
such that ju; = 1v7 and 1up = 1u; = 1vp VI > T. If jv = 7 (1u) for some m € II, FA*
implies ju ~ jv. Otherwise, let v # 7 (yu) for all 7 € II. Take any T > T and let jw =
(1or,r+1u). We show that ju ~ jw. Observe that ju ~M* 1w, by construction, so that 3r >1
such that ju; = 1wy and 1up = 1up = qwp VI > T. Assume, to the contrary, that ju ¢
1w, so that either jw > ju or ju > jw holds by MC*. Without loss of generality, suppose
1u = qw. As >= meets WC it follows that Jde > 0 such that 4 > 1w + cone = 1w°. WC
implies, da > 0, 1u — cpa = 1w€. By another application of WC, it follows that, 38 > 0,
1U — con@® — conB = 1w°. Let us consider the feasible utility stream (jur — 17,741 U+ 741€) €
Y. Asw =M (yur — 1ar,r11u+ 7€), we have that jwe = (jur — 107,741 U + 741€), by
(1) proved above. Furthermore, (ur — 17,741 U+ 741€) > 1U — con@® — conl3, and therefore
(1ur — 107,741 U + T41€) > 1U — con® — conB by WPO*. It then follows from the transitivity
of = that jw® > 1u — con@ — conf3, & contradiction. Therefore, ju ~ 1w = (yvp,r4+1u). Since

1w~ qw = (1vr,r+1w) holds for any T > T , WIC implies ju ~ 1v.

Proof of (3)
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Take any ju,; v € Y such that min (;u) > min (1v). As ju,yv € Y, 3T > 1 such that 1Uf > 1V
and 1up = 1us and (v = vy VT > T. Take any T > T and let jw = (1vr,r+1u). Observe
that yw € Y. We show that ju = 1v. Observe that ju =M" 1w, by construction. By (1) proved
above, it follows that ju = jw. As jw ~M" ju, it follows from (2) proved above that jw ~ jv.
Transitivity of = implies ju > 1v, as desired. B

The properties in Theorem 9 are easily shown to be tight (see Appendix).

Theorem 9 provides an original characterisation of the maximin SWR in the context of societies
with an infinite number of agents. This result is interesting per se, as compared to alternative
characterisations of the maximin. For example, Lauwers ([11]) characterises the maximin SWO by
an anonymous social welfare function (SWF) defined over the set of bounded infinite utility streams,
by imposing a strong version of HE according to which for any two bounded infinite vectors ju, v
such that u; > v; > v; > u; for some 4,5 € N and uy = vy Vk € N\{4,j}, then jv = ju. The
main focus of this paper is different and so the question of the characterisation of the maximin
SWO by an anonymous and liberal SWF remains open. It is worth noting, however, that Theorem
9 does characterise the maximin SWR on a different set of infinite utility streams, which can be
unbounded above, and to this aim neither the continuity condition, nor to the so-called “repetition
approximation principle” imposed by Lauwers ([11], p.146) are necessary. Indeed, subject to the
domain restriction, and except for the rather mild condition WIC, the axioms are strikingly similar
to those used to characterise the maximin SWO in finite economies.?

Perhaps more importantly, Theorem 9 provides further support to the main theoretical arguments
of this paper. For it confirms that the main intuitions concerning the role of the liberal notion of
noninterference embodied in the Harm Principle are robust and they do not depend on the specific
definition of the maximin and leximin SWR adopted to rank infinite utility streams (pionereed by

Swensson, [19]).

5 Conclusions

This paper analyses Rawls’s celebrated difference principle, and its lexicographic refinement, in
societies with a finite and an infinite number of agents. A unified framework of analysis is set up,
which allows one to characterise a family of egalitarian principles by means of a weaker version of
a new axiom - the Harm Principle - recently proposed in [12]. This is quite surprising, because the
Harm Principle is meant to capture a liberal requirement of noninterference and it incorporates no

obvious egalitarian content. A set of new characterisations of the maximin and of its lexicographic

3This is even more evident in the light of the discussion in footnote 2 above.
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refinement are derived, including in the intergenerational context with an infinite number of agents
and using different definitions of the relevant social welfare relations proposed in the literature.

The results presented in this paper have two main sets of implications from a theoretical view-
point. First, they shed new light on the ethical foundations of the egalitarian approaches stemming
from Rawls’s difference principle. In fact, both the leximin and the maximin are characterised
by some standard axioms (such as Anonymity and the Pareto Principle) together with a liberal
principle incorporating only a noninterfering view of society. No axiom with an explicitly egali-
tarian content is necessary in order to derive the main liberal egalitarian principles. Second, from
the viewpoint of liberal approaches emphasising a notion of individual autonomy, or freedom, they
have a rather counterintuitive implication. For they prove that, in a number of different contexts,

liberal noninterfering principles lead straight to welfare egalitarianism.
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Appendix

6 Proofs of Lemmas

Lemma 7. Let > on X be a sWR satisfying WPO*, WC, and MC*. Then, Yiu,yv €Y : 3T >

Liu> (1vrre1u) = 1u = (107,741 1),

Proof. Let = on X be a swr satisfying WPO*, WC, and MC*. Let ju, 1v € Y be such
that 37 > 1 ju > (yvp,r41u). We show that ju = (1vr,ry1w). Assume, to the contrary, that
1w ¥ (up,req u). MC* implies (yur,r41w) = 1u. It follows from WC that Je > 0, (yor,r41u) —
con€ = 1u. However, since ju > (1vr,7+1u) we have that 1u > (1ur,741 U) — con€, so that WPO*

implies 1u > (1U7,741 U) — con€, a contradiction. W

In order to prove Lemma 8, some preliminary results are derived, which are interesting per se. They
are Lemma A.1 and Lemma A.2. The former Lemma proves a property of the SWR »= in ranking a
subset of vectors with the same tail. The latter Lemma provides sufficient conditions to implement
some type of Pareto-rankings. In particular, it proves that, for a subset of allocations in Y, there
is a finite number T such that, starting from a given allocation, if the welfare of at least the first

T generations increases uniformly, then the new allocation is strictly preferred.

Lemma A.1. Let = on X be a SWR satisfying FA*, WPO*, WHP**, WC, and MC*. Let
1u, 1v € Y be such that ju M 1v, and let T € N be such that wyp = 1wrp and 1up = 1Up
YT > T. Then, (1vr,71u) ~ (1or41,712u) VT > T.

Proof. Take any T > T. If ur+1 = vr41, then the result follows by FA*. Otherwise, let

ur+1 # vr+1. Lemma 7 implies

(1vr+1,742u) = (1op,re1 u) whenever vpyq > upyq, (6.1)

or

(1or,r+1u) = (1vr41,742 u) whenever upyq > vpyq. (6.2)

Let vry1 > urs1, and suppose that (yvryi,riou) = (Lor,ry1u). It follows from WC that
(141,742 U) — con > (1op,r41u) Ja > 0. If v — @ < upyr, WPO™* implies (yor,ry1u) =
(1074+1,7+2U) — con®, & contradiction. Otherwise, let vy — a > upyi. As qu, 1v € Y, are such
that ju =M" v and T > T, then 3¢t < T such that vy < upry; and, obviously, vy — a < vy.
For the sake of notational simplicity, let (yvor,ry1u) = 12 and (Ur4+1,742U) — con® = 1Y, SO

that 1y > 1z. Let 12 be a finite permutation of 1z such that 741 = v, and &; = upy1, while
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all other entries are unchanged. By FA*, 1Z ~ jx, so that 1y > 1%, by the transitivity of >=.
Then, let two real numbers di,ds > 0, and consider vectors 14',14’ formed from 1% and 1y as
follows: first, 741 is lowered to 71 — dy > vy — o; next, yr41 is lowered to yry1 — do such that
ury1 > yYyr4+1 — d2 > Tryq — dp; finally, all other entries of 12 and ;y are unchanged. It follows
from WHP** that 12" # 13'. Let 12’ be a finite permutation of 12’ such that 2%, ; = ury1 and
xp = &py1 — di. FA* and the transitivity of = imply 12 # 17/, but WPO* implies 12’ > 1¢/, a
contradiction. Therefore, (1vr4+1,7+2u) ¥ (1vr,r+1 ©) whenever vry1 > upt1. MC* implies that
(1or,r+1u) = (1vr41,742 w), and it follows from (6.1) that (yor,r41u) ~ (1U741,742 ).

Let upy1 > vpyp and suppose that (yup,priu) > (ors1,re2u). It follows from WC that
(1or,r41u) = (10741,7428) + conex Ja > 0. If v + @ > upy, WPO* implies (1vry1,742u) +
con@ = (107,741 1), a contradiction. Otherwise, let vry1 + o < upyq. For the sake of notational
simplicity, let (op,p+1u) = 12 and (1vp41,742U) + con® = 1Y, SO that 12 = 1y. Again, note that
Jt < T such that vy < ury1. Let 19 be a finite permutation of 1y such that g1 = v and g = yr41,
while all other entries are unchanged. By FA*, 15 ~ 1y, so that ;z > 14, by the transitivity of
=. Then, let two real numbers dq,ds > 0, and consider vectors 1%, 12’ formed from 19 and 1z as
follows: first, g1 = y: is lowered to gry1 — d1 > x4 = vy; next, x4 is lowered to 741 — da such
that yr41 > zr41 —da > gry1 — dp; finally, all other entries of 19 and ;2 are unchanged. It follows
from WHP** that 1¢’ # 12'. Let 13 be a finite permutation of 1§’ such that y7..; = yri1 and
Yy = Jr+1 — d1. FA* and the transitivity of = imply 13 # 12/, but WPO* implies 1y > 12/, a
contradiction. Therefore, (1ur,74+1u) ¥ (1v7+1,74+2w) whenever uri1 > vpy1. MC* implies that
(1v7+1,7+2u) = (1ur,r4+1 w), and it follows from (6.2) that (yvr,741u) ~ (1vr41,742uw). W
Lemma A.2. Let > on X be a SWR satisfying FA*, WPO*, WHP**, WC, WIC, and MC*. Let
1u, 1v € Y be such that ju M 1v, let T € N be such that 105 = 10 and 1Up = 1Up VT > T,
and let € > 0 be such that jvp + € < jugp. Then, (yor + 167,741 1) = (Lop,perw) 3T > T,
Proof. Let the premises hold and assume, to the contrary, that 3e € R such that jvp+€ < 1up,
9T > T’ such that (yor + 1er,7+1u) = (1vr,re1uw). MC* implies that, VT' > T', (yur,ry1u) =
(1ur + 167,741 v). By Lemma 7, we can rule out (yup,p41u) > (1or + 1€p,pp1w) 3T > T,
Therefore let (yor,741u) ~ (1ur + 1€p,p41w) VT > T'. By Lemma A.1, (yur,p41u) ~ (10r41,742 1),
VT > T, and so, VI > T’, we have that

(1vr + 1eryr+1w) ~ (Lor,r41w) ~ (041,742 8) ~ (10741 + 1€741,742 1)
By the transitivity of 3=, it follows that, V7 € N\ {1,...,7" — 1},
(tvrryrrsw) ~ (o + e, u) ~ (o, 7 u) ~ (10T + €T, TR W),
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so that, by the transitivity of =, it follows that, V7 € N\ {1, ..., 7" — 1},

(tvrrr41w) ~ (1o + 167,741 1) (6.3)
and
(1vrr + 1€, u) ~ (10T, 741 W) - (6.4)

WIC and (6.3) imply (yvp7,7711u) ~ 10+ 1€, whereas WIC and (6.4) imply that (yop + 1€77,77401 u) ~
1v. By the transitivity of =, it follows that v + 1€ ~ (v, but WPO* implies (v + 1€ = 1v, a
contradiction. H

Lemma 8. Let = on X be a SWR satisfying FA*, WPO*, WHP**, WC, WIC, and MC*. Let
1, 1v € Y be such that ju =" jv, let T € N be such that 107 = 1vp and (up = jup VT > T,
and let € > 0 be such that 1vp + € < 1ugp. Then, (yop + 1€p,rp1u) = (Lo, 41 w).

Proof. By Lemma A.2, 3T > T’ such that (107 + 165,744 ) = (107,74 ¢). By Lemma A.1

(1wr,rs1u) ~ (uri1,rreuw) VT > T (6.5)

and

(1vr + 1e7yry1u) ~ (1orsr + 1erp1,rpow) VT > T (6.6)

The transitivity of = and (6.5) imply (1v7,r741u) ~ (105,74 «). And again, the transitivity of =
and (6.6) imply (1o + 1e77,741u) ~ (10p + 165,70 w). As (107 + 165,70 u) = (105741 u) it

follows from the transitivity of = that (yvp + 1€77,7711w) = (Lopr,prpqu). A

7 Independence of Axioms

The proofs of the independence of the axioms used to characterise the maximin and leximin SWO
are obvious and therefore they are omitted. It is worth noting, however, that some of the examples
below can be easily adapted to apply to the finite context.

7.1 Independence of axioms used in Theorem 3

In order to complete the proof of Theorem 3, we show that the axioms are tight.

For an example violating only FA, define = on X in the following way: Viu, 1v € X,

11U = 1V = 1u~ 1v

dI' € N:wu= v Vi<Tand up >vpr = 1u > v
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The SWR = on X is not an extension of the leximin SWR =2M". The SWR = on X satisfies all

properties except FA.

For an example violating only SPO, define = on X in the following way: Viu, 1v € X, ju ~ jv.
The SWR 3= on X is not an extension of the leximin SWR =5M". Clearly, the SWR 3= on X satisfies

all properties except SPO.

For an example violating only WHP?*, define = on X be the leximax SWR, i.e., Viu,; v € X,
1U ~LX 1V & r >1st. VI > T: 1471 = 107,
and
w-I Xy e 3r>1st. YT >T,3t € {1,..,T} with 4, = 75 (Vt < s < T) and @ > .

It follows that the SWR 5= on X is not an extension of the leximin SWR. The SWR = on X satisfies

all properties except WHP*.

For an example violating only WC, define > on X in the following way: Viu, v € X,
11U > 7T(1U) drell = ju = qv.

The relation = on X is the Suppes-Sen grading principle. The SWR = on X satisfies all properties
except WC.

For an example violating only WPC, VI' € N, let the leximin ordering on X7 be denoted as
%%M. Define >% on X as in (4.1). Then, let == UTeN %%. By definition, this relation is
reflexive and transitive. The SWR = on X satisfies all properties but WPC. [To see that WPC is
violated consider the following vectors, 1v = (3, ¢on0) and 1u = (2, copl). Then, (yu,; v) €= and

((Lur,r41v) 1v) €5 VT > 2].

Independence of axioms used in Theorem 4

In order to complete the proof of Theorem 4, we show that the axioms are tight.
As Strong Preference Continuity (SPC) implies Weak Preference Continuity (WPC), the above

examples show that the axioms used in Theorem 4 are tight as well.

26



Independence of axioms used in Theorem 9
In order to complete the proof of Theorem 9, we show that the axioms are tight.

For an example violating only FA*, define = on X in the following way: Viu, 1v € X, i) u; = v; &
1w~ 105 9i) up > v1 < 1u > 1v. The SWR = on X is not an extension of the maximin SWR =M

The SWR = on X satisfies all properties except FA*.

For an example violating only WPO*, define = on X in the following way: Yiu, 1v € X, 1u ~ 1v.
The SWR = on X is not an extension of the maximin swr =M". Clearly, the SWR = on X satisfies

all properties except WPO*.

For an example violating only WC, fix 7 € N such that 1 <7 < oco. For ju € X, let 1% denote a
permutation of ju such that @7 < g < ... < 47 and 4; > @7 Vt > 7. Let us define = on X in the
following way: Viu, v € X

wo o= wif H<T: 4, =05 (Vs<t) &ty >0

U ~ 10 if 17?1/1’ = 1’[)7.
The SWR = on X is not an extension of the maximin sWr =", Clearly, the SWR = on X satisfies

all properties except WC.

For an example violating only HP*, fix 7 € N such that 1 <7 < oco. For ju € X, let 1% denote a
permutation of ju such that @7 < s < ... < 47 and 4; > @7 Vt > 7. Let us define = on X in the
following way: Viu, ;v € X

T T
1u = qu if Zﬂi > Z@i
=1 =1
and

T T
1u~1vifE ﬂizg s
i=1 i=1

The SWR = on X is not an extension of the maximin SWRr =M". Clearly, the SWR 3= on X satisfies

all properties except HP*.

For an example violating only M C*, let o be a permuation of N, Let X be the set of all permutations

of N. Define %= on X in the following way: Viu,1v € X,

w = 7w()Irell= ju~ v

1 > 0(1’0)30'622> 1U > 1V
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The SWR 3= on X is not an extension of the maximin SWR =", Clearly, the SWR = on X satisfies

all properties except MC*.
For an example violating only WIC, define > on Y in the following way: Viu, jv € Y,

o~ M 1w, AT >1: pu= 7v= u~ 1V

11U > M 1V = 1U > 1V

U~ M*lv,3T21:Tu=Tv:> 1u ¥ v and 1v ¥ 1u.

The SWR 3= on Y is not an extension of the maximin SWr =", Clearly, the SWR = on Y satisfies

all properties except WIC.
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