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1 Introduction

In recent years there has been a growing interest in using belief-dependent preferences

to explain experimental behavior ad odds with classical assumptions about human pref-

erences (e.g. Charness and Dufwenberg (2006), Falk, Fehr, and Fischbacher (2008) and

Charness and Dufwenberg (2010)). Belief-dependent preferences capture the idea that

psychological factors such as people’s beliefs concerning other people’s intentions and

expectations affect decision making.1 Behavior may for example be motivated by the

propensity to avoid feelings of guilt which result from ‘letting down’ others (see e.g. Bat-

tigalli and Dufwenberg, 2007). Guilt averse decision makers form beliefs about what

others expect in order to infer how much these persons can be and are ‘let down’ by their

own decisions. Alternatively, behavior may be motivated by reciprocity, i.e. the propen-

sity to react kindly to perceived kindness and unkindly to perceived unkindness (see e.g.

Dufwenberg and Kirchsteiger (2004)). Reciprocal decision makers form beliefs about the

intentions of others in order to infer the (un)kindness of their behavior.

A natural approach to measure the relevance of belief-dependent preferences has been

to test whether stated beliefs can predict behavior in a way consistent with a given type

of belief-dependent preference. Charness and Dufwenberg (2006) for example ask players

to state their higher-order beliefs in a trust game. They find that stated beliefs correlate

with decisions in a way predicted by models of guilt aversion. More recently, Dhaene and

Bouckaert (2010) measure the relevance of Dufwenberg and Kirchsteiger’s (2004) theory

of sequential reciprocity using stated first- and second-order beliefs and find empirical

support.

Concerns have recently been expressed about the possibility that stated higher-order

beliefs are correlated with preferences in a way which biases the estimated relevance of

belief-dependent preferences. While beliefs and preferences may be correlated for various

reasons, the source of this correlation is most often attributed to the presence of consensus

effects which arise when individuals believe that others feel and think like themselves.

1Geanakoplos, Pearce, and Stacchetti (1989) and Battigalli and Dufwenberg (2009) present general

frameworks to incorporate belief-dependent preferences in economics.
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Consensus effects imply that stated beliefs about play in games correlate with preferences.2

Vanberg (2010) uses a specific example to theoretically show that rational belief formation

implies a correlation between preferences and beliefs of any order as long as preferences

of players are correlated across the population. He concludes that we can expect such a

correlation in experimental settings even when behavior is not driven by belief-dependent

preferences. Bellemare, Sebald, and Strobel (2011) empirically investigate how correlation

between preferences and stated beliefs can affect the estimated willingness to pay to avoid

feeling guilty of letting down another player. They estimate this correlation by jointly

modeling decisions and beliefs of players in a sequential trust game. They find that

correlation between preferences and stated beliefs can exaggerate the measured level of

guilt aversion in a population by a factor of two. Blanco, Engelmann, Koch, and Normann

(2011) analyze the interaction between preferences and beliefs in a sequential prisoner’s

dilemma. They exploit data from a within-subject design (with participants playing both

roles) and vary the information provided to players about the play of others to separately

identify the direct impact of beliefs on decisions from consensus effects. They conclude

that consensus effects are the primary determinants of the observed correlation between

stated beliefs and decisions. These results highlight the complexity of measuring the

relevance of belief-dependent preferences when exploiting data on higher-order beliefs.

This paper presents a new approach to learn about the relevance of belief-dependent

preferences which does not require information about beliefs of players. We formally

characterize conditions under which our approach can be used and we propose a simple

two step estimation procedure to perform the required inferences. Although our approach

is not exclusively tailored for experimental investigations, the conditions which have to

be satisfied in order to use the approach proposed make it more suitable for controlled

environments. Hence, we illustrate our approach by conducting an experiment using

simple binary sequential two-player games to analyze the relevance of belief-dependent

guilt aversion and reciprocity.

2Charness and Dufwenberg (2006) discuss the possibility that false consensus effects explain the cor-

relation between decisions and beliefs in their data.
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Our approach builds on random utility models to interpret the decisions of players in

games.3 We specify the utility of players as a function of their own monetary payoffs,

their psychological payoffs which capture their belief-dependent preferences, as well as

other unobservable factors. Our main parameter of interest measures the effect of belief-

dependent preferences on behavior. Importantly, the psychological payoffs capturing the

belief-dependent preferences are unknown variables without exploiting information on

the beliefs of players. However, they are known to lie within well defined intervals. Our

empirical strategy is to determine what can be learned about belief-dependent preferences

from observing the monetary payoffs and the intervals of the psychological payoffs.

An immediate consequence of interval-measurements of the psychological payoffs is

that the model parameters are set rather than point identified (see Manski and Tamer

(2002)). Set identification implies that a range of parameter values – the identification

region – are consistent with the data given the assumed model. The informativeness of

the data given the model naturally decreases with the size of the identification region.

Existing work has established that identification regions of the parameters of random

utility models with interval measured regressors can be large and uninformative. Manski

(2010) theoretically analyzes the binary random expected utility model when researchers

do not have any information about the expectations of decision makers. He finds that the

identification region of the model parameters is unbounded and thus uninformative when

researchers cannot a priori sign the difference in expectation across both choices. Belle-

mare, Bissonnette, and Kröger (2010) analyze empirically decisions of senders in a binary

trust game and estimate largely uninformative identification regions of their parameters

when they do impose a priori assumptions about the beliefs of players. These results

reveal the important difficulties confronting researchers interested in making inferences

on belief-dependent preferences without using information about the beliefs of players.

One of the main insights of our analysis is that several prominent belief-dependent

preferences satisfy an ‘invariance property’ which can be exploited to substantially reduce

3Random utility models have been extensively used to analyze choice behavior in experiments. See

Cappelan, Hole, Sørensen, and Tungodden (2007), Bellemare, Kröger, and van Soest (2008).
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the size of the identification region in order to produce informative bounds on the relevance

of belief-dependent preferences. This invariance property is best described in the context

of a game with two players – A and B. The invariance property holds if player B’s

decision is unaffected by his/her belief-dependent preferences when his choice cannot

influence the final payoff of player A. To illustrate, suppose player B must choose between

two final allocations, both of which provide player A with the same material payoff.

Then, prominent models of guilt aversion predict that player B cannot feel any guilt

from letting down player A by choosing a specific allocation because player A’s final

payoff is independent of player B’s choice. Similarly, player B cannot act reciprocally if

player A’s payoff is independent of player B’s choice. This is because player B cannot be

(un)kind by providing player A with an (below) above average payoff. It follows that our

empirical strategy involves implementing a sufficiently high number of games in which

the invariance property holds to identify and estimate all other model parameters but

the sensitivity parameter measuring the relevance of belief-dependent preferences. We

show that the ability to recover separate estimates of the remaining parameters is the key

to reduce the size of the identification region and to obtain informative bounds on the

relevance of belief-dependent preferences.

We illustrate our approach by conducting an experiment using simple binary sequen-

tial two-player games. We derive closed form expressions for the bounds of the sensitivity

parameters measuring the relevance of simple guilt aversion (Battigalli and Dufwenberg

(2007)) and reciprocity (Dufwenberg and Kirchsteiger (2004)) in this binary choice set-

ting. We implement our experiment using the LISS panel, a large-scale Internet panel

whose respondents form a representative sample of the Dutch population.4 Close to 1500

panel members completed our experiment which involved 500 payoff-wise unique games.

One third of these games satisfied the payoff invariance condition discussed above. We

exploit the unique features of the panel to perform inferences for different socio-economic

4Other experimental studies which have used similar platforms to obtain a representative sample of

participants from the Dutch population include Bellemare and Kröger (2007), Bellemare, Kröger, and

van Soest (2008).
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groups, allowing us to asses the heterogeneity in belief-dependent preferences across a

broad population.

Our analysis of guilt aversion suggests that the population willingness to pay to avoid

letting down the other player by 1e is significantly different from zero and at least greater

or equal to 0.08e. We also find that the lower bound of the willingness to pay to avoid guilt

is higher for several groups of the population. In particular, we find that high educated

individuals are willing to pay at least 0.14e to avoid letting down the other player by 1e,

while men are willing to pay at least 0.16e to avoid letting down the other player by 1e.

Our approach also produces very narrow and thus highly informative bounds around the

relevance of reciprocity in our experiment. Our results suggest that reciprocity weakly

predicts the final decisions made in our experiment for all groups of the population we

consider. The narrowness of these bounds also suggests that stated belief data are not

needed to make precise inferences on the relevance of reciprocity in our experiment.

The organization of the paper is as follows. Section 2 presents a class of two-player

extensive form games with belief-dependent preferences (also called ‘psychological games’)

which is used to formally characterize the conditions under which our approach can be

used. Section 3 presents our proposed approach and details how it can be applied to the

analysis of guilt aversion and reciprocity. Section 4 describes our experiment, data, and

presents results for the analysis of guilt aversion and reciprocity. Section 5 discusses the

possibility to make inferences at the individual level and concludes.

2 A class of psychological games

In this section we present a class of two-player extensive form games with belief-dependent

preferences building on Battigalli and Dufwenberg (2009). This class of games represents

the strategic environment and class of preferences which we use in the subsequent sections

to formally characterize the conditions under which our identification approach can be

used.

Formally, let the set of players be N = {1, 2}. Denote as H the finite set of histories

5



h, with the empty sequence h0 ∈ H, and Z the set of terminal histories. Histories

h ∈ H are sequences that describe the choices of players on the path to history h. More

precisely, a history of length x ∈ X is a sequence of actions h = (a1, . . . , ax) where each

at = (at1, a
t
2) represents the profile of actions taken at stage t (1 ≤ t ≤ x). The history

h̃ = (ã1, . . . , ãv) precedes h = (a1, . . . , ax), written h̃ < h, if h̃ is a prefix of h (i.e. v < x

and (ã1, . . . , ãv) = (a1, . . . , av)). Turned up side down, we say that h immediately succeeds

h̃ if x = v + 1 and (ã1, . . . , ãv) = (a1, . . . , av). At each non-terminal history h ∈ H\Z

each player i ∈ N has a nonempty, finite set of feasible actions Ai,h. A typical element

of Ai,h is denoted by ai,h. Note, Ai,h can be a singleton, meaning that player i is inactive

at history h. In fact, we assume that players do not choose simultaneously. Whenever

a player i ∈ N is active, player j ∈ N with j ̸= i is inactive. Let Ai be the finite set

of pure strategies of player i ∈ N and A =
∏

i∈N Ai be the set of joint pure strategies.

Pure strategies of player i ∈ N and joint pure strategies are respectively denoted by

ai = (ai,h)h∈H\Z and a. Furthermore, denote by Ai(h) the set of strategies ai of player

i that allow for history h. Terminal histories ζ(a) ∈ Z depend on joint pure strategies

a ∈ A.

To capture belief-dependent preferences like reciprocity and guilt we assume that in

every history players hold

(i) a belief about the strategies of the other player,

(ii) a belief about the belief of the other player,

(iii) a belief about the belief about the belief of the other player etc, and

(iv) we assume players update their beliefs as events unfold.

More specifically, we assume that players hold infinite hierarchies of conditional beliefs.

This means, player i ∈ N holds an updated and revised belief µ1
i (·|h) ∈ ∆(Aj(h)) about

the strategies of the co-player j, where ∆(Aj(h)) denotes the set of behavioral strategies

defined on Aj(h). Given this, µ1
i = (µ1

i (·|h))h∈H represents the system of first-order beliefs

of player i. In addition, at every history h player i forms expectations µ2
i (h) ≡ Ei(µ

1
j) over

6



the system of first-order beliefs of player j, forms expectations µ3
i (h) over the system of

second-order beliefs of player j etc. µ2
i and µ3

i respectively denote the system of second-

and third-order beliefs of player i. More generally, we denote the infinite hierarchy of

conditional probability systems of player i ∈ N by µi where µi = (µk
i )

∞
k=1 and a hierarchy

of conditional probability systems up to order k < ∞ as µk
i .

Given this, we can define belief-dependent preferences:5

Definition 1 The belief-dependent utility u of any player i ∈ N from choosing strategy

ai ∈ Ai(h) in history h is:

ui(ai,µ
k
i ) = πi(ai, µ

1
i ) + ϕBi(ai,µ

k
i ) + λϵi(ai)

where i, j ∈ N .

First, πi(ai, µ
1
i (h)) denotes player i’s expected material payoff depending on his strategy

and first-order belief. Second, Bi(ai,µ
k
i ) denotes player i’s belief-dependent psychological

payoff depending on his strategy and his hierarchy of beliefs µk
i up to order k < ∞. The

belief-dependent payoff Bi(ai,µ
k
i ) can, for example, capture belief-dependent reciprocity

as defined by Dufwenberg and Kirchsteiger (2004) or simple guilt aversion as defined

by Battigalli and Dufwenberg (2007). Our parameter of interest ϕ captures player i’s

sensitivity to his/her psychological payoff. Lastly, ϵi(ai) denotes unobserved preferences

from choosing the strategy ai assumed to be independent of all variables entering the

model, and λ denotes a noise parameter.

This brings us to the definition of our class of psychological games

Definition 2 A two-player extensive form game with belief-dependent preferences is a

tuple Γ = ⟨N,H, (ui)i∈N⟩ with ui as defined in Definition 1.

We next present our approach to make inferences on ϕ without information on µk
i .

5Note, in accordance with the existing literature on belief-dependent preferences we assume that

overall utilities of players are additive in own material and belief-dependent psychological payoffs. In

the framework of Battigalli and Dufwenberg (2009) a more general specification is presented in their

definition 4 [p. 12].
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3 The proposed approach

Our objective is to understand whether and under what conditions one can make inferences

on the sensitivity parameter ϕ without information about the set of beliefs µk
i . Consider

first the following condition in the context of the class of extensive form games with

belief-dependent preferences Γ defined in the previous section:

History condition (H) There exists a non-empty set H̃ ⊆ H such that

H̃ = {h ∈ H : Ai,h = {a′

i,h, a
′′

i,h} and h is immediately succeeded

by only terminal histories ζ(a) ∈ Z}.

An extensive form game satisfies condition H if there exists a non-empty set of last non-

terminal histories H̃ ⊆ H in which the active player has two pure actions to choose from.

Consider, for example, the two player sequential game in Figure 1.

[Figure 1]

In this simple two-player game, player j can choose either the outside option R and

determine the monetary payoffs for himself and player i, or he can choose L and let player

i decide the final allocation. If player j chooses the outside option R, then πi(R), πj(R)

respectively denote the monetary payoffs of players i and j. On the other hand, if he

chooses L, then player i must choose between l and r at history h1 in the game tree. We

denote as πz(r) and πz(l) for z ∈ {i, j} the monetary payoffs when playing r and l at

history h1. Both histories h0 and h1 are histories in which the respective active player can

choose between two pure actions, but only history h1 is immediately succeeded by only

terminal histories, i.e. H̃ = {h1}. We say a game does not satisfy condition H whenever

there is no last non-terminal history in this game in which the active player in that history

only has two actions.

Let condition H hold. It follows that the utility of any player i ∈ N in history h̃ ∈ H̃

reduces to

ui(ai,h̃,µ
k
i ) = πi(ai,h̃) + ϕBi(ai,h̃,µ

k
i ) + λϵi(ai,h̃)
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where ai,h̃ ∈ {a′

i,h̃
, a

′′

i,h̃
} and k < ∞. Note that πi(ai, µ

1
i ) = πi(ai) since player i no longer

faces uncertainty over decisions of player j. Given this, define ∆ui,h̃ ≡ ui(a
′

i,h̃
)− ui(a

′′

i,h̃
),

∆πi,h̃ = πi(a
′

i,h̃
) − πi(a

′′

i,h̃
), and ∆ϵi,h̃ = ϵi(a

′

i,h̃
) − ϵi(a

′′

i,h̃
). Assuming expected utility

maximization, player i will choose to play a′
i,h̃

in history h̃ if

∆ui,h̃ = ∆πi,h̃ + ϕ∆Bi,h̃ + λ∆ϵi,h̃ > 0 (1)

The decision rule (1) leads to the following choice probability

Pr(ci = a′
i,h̃
|π,µk

i ) = F
(
[∆πi,h̃ + ϕ∆Bi,h̃]/λ

)
(2)

where π is a vector of payoffs for all ai,h̃ ∈ Ai,h̃ and F (·) denotes the cumulative distri-

bution function of ∆ϵi,h̃. This is a standard binary choice model when beliefs ∆Bi,h̃ are

observed for all i. In the later case, estimation of the model parameters can be performed

by assuming a specific parametric distribution for F (·) (eg. normal of logistic). Alterna-

tively, semiparametric estimation of the parameters is possible (up to some normalization)

by treating F (·) as an unknown nonparametric function (see eg. Klein and Spady (1993)).

Unfortunately, the lack of information on µk
i implies that ∆Bi,h̃ is not observed. Hence,

conventional parametric and semiparametric estimators of binary choice models cannot

be used to make inferences on ϕ. Define ∆Bi,h̃ = infµk
i
∆Bi,h̃ and ∆Bi,h̃ = supµk

i
∆Bi,h̃.

It follows that without information on µk
i ,

∆Bi,h̃ ∈ [∆Bi,h̃,∆Bi,h̃] (3)

Consider the case where ϕ ≥ 0. Then, it follows from equation 3 and the proof of

Proposition 4 in Manski and Tamer (2002) that the following must hold for all i

Pr(ci = a
′

i,h̃
|π,∆Bi,h̃,∆Bi,h̃) ∈ [F

(
[∆πi,h̃ + ϕ∆Bi,h̃]/λ

)
, F

(
∆πi,h̃ + ϕ∆Bi,h̃]/λ

)
] (4)

Inverting Pr(ci = a
′

i,h̃
|π,∆Bi,h̃,∆Bi,h̃) in (4) yields an equivalent and useful expression

given by

∆πi,h̃ + ϕ∆Bi,h̃ ≤ Qiλ ≤ ∆πi,h̃ + ϕ∆Bi,h̃ (5)

9



where Qi ≡ F−1(Pr(ci = a
′

i,h̃
|π,∆Bi,h̃,∆Bi,h̃)). The identification region consists of all

values (ϕ, λ) which are consistent with either (4) or (5) for all i. Our particular focus

is on the identification region for ϕ. The bounds in (5) fall in the class of monotone-

index models with interval regressors analyzed in Manski and Tamer (2002). They have

established in the Corollary to their Proposition 4 that the identification region for (ϕ, λ)

is convex. Our particular focus in this paper is on the identification region of ϕ. Manski

(2010) analyzes the identification in a binary choice monotone-index model when one

covariate is not observable due to lack of information on expectations.

There is a range of values of ϕ which satisfy (5) for each game. The identification

region is given by the intersection of the ranges across all games. To characterize our

main result, consider a set of games Γ with each Γ ∈ Γ satisfying condition H, a history

h̃ ∈ H̃ and define the following 5 mutually exclusive dummy variables distinguishing the

5 types of games possibly present in the set.

d1i = 1(∆Bi,h̃ > 0,∆Bi,h̃ > 0)

d2i = 1(∆Bi,h̃ < 0,∆Bi,h̃ < 0)

d3i = 1(∆Bi,h̃ < 0,∆Bi,h̃ > 0) (6)

d4i = 1(∆Bi,h̃ = 0,∆Bi,h̃ > 0)

d5i = 1(∆Bi,h̃ < 0,∆Bi,h̃ = 0)

such that
∑5

j=1 d
j
i = 1 for all i and where 1 (A) denotes the indicator function taking a

value of 1 when event A occurs, and 0 otherwise. Let Qi = F−1 (Pr(ci = a′i|πi)) and

ϕA
i =

(
Qiλ−∆πi,h̃

)
/∆Bi,h̃ (7)

ϕB
i =

(
Qiλ−∆πi,h̃

)
/∆Bi,h̃ (8)

ϕC
i = max

{
ϕA
i , ϕ

B
i

}
Given this we can state our main proposition:

Proposition 1 Consider a set of games Γ such that condition H is satisfied and a history

h̃ ∈ H̃. Assume ϕ ≥ 0 and let [ϕl
λ, ϕ

u
λ] denote the identification region of ϕ conditional on

10



λ. Furthermore, let D ⊂ Γ denote the set containing games with d1i = 1 and games with

d2i = 1.

Then, the endpoints of the identification region are given by:6

ϕl
λ = max

∀i
[max[ϕ

i
, 0]] (9)

ϕu
λ = min

i∈D
[max[ϕi, 0]] if D is not empty (10)

= +∞ otherwise

where

ϕ
i

=
(
d1i + d4i

)
ϕA
i +

(
d2i + d5i

)
ϕB
i + d3iϕ

C
i

ϕi = d1iϕ
B
i + d2iϕ

A
i .

Notes. This proposition reveals that the identification region is given by the intersection

of [ϕ
i
, ϕi] across all games, where ϕ

i
and ϕi denote the lowest and highest values of ϕ

consistent with the game played by player i conditional on λ. Which of ϕA
i , ϕ

B
i , and ϕC

i

will be used to compute ϕ
i
and ϕi will depend on the signs of ∆Bi,h̃ and ∆Bi,h̃. Take

games with d1i = 1 and let ϕ → 0. It follows that the upper bound in (5) will equate Qiλ

when ϕ = ϕA
i . This determines the lowest value of ϕ consistent with that game. Now

let ϕ → ∞. It follows that the lower bound in (5) will equate Qiλ when ϕ = ϕB
i . This

determines the highest value of ϕ consistent with that game. A similar analysis applies

to the other four game types. We also note that max[ϕ
i
, 0] and max[ϕi, 0] enter (9) and

(10) to enforce the restriction that ϕ ≥ 0.

It follows from the proposition that knowledge of λ can reduce substantially the iden-

tification region and thus allows for more precise inferences on the relevance of belief-

dependent preferences. The main insight of the paper is summarized in the following

three conditions.

Invariance condition (I) ∆Bi(µ
k
i ) = 0 when πj(a

′
i,h̃
) = πj(a

′′

i,h̃
).

6The proposition is stated for ϕ ≥ 0. The case of ϕ ≤ 0 follows analogously with the endpoints of

the identification region given by ϕl
λ = max

i∈D
[min[ϕ

i
, 0]] if D is not empty and ϕl

λ = −∞ otherwise, while

ϕu
λ = min

∀i
[min[ϕi, 0]].
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Support condition (S) Pr(πj(a
′
i,h̃
) = πj(a

′′

i,h̃
)) > 0.

Noise condition (N) λ is independent of π.

Condition I states that the difference between the psychological payoffs of player i from

his two actions a
′

i,h̃
and a

′′

i,h̃
is zero if the payoffs of player j do not vary with the action

chosen by player i. This condition holds for several important preferences discussed in the

literature (see sections 3.1 and 3.2 below). Condition S states that games where condition

I holds should be present in the data. Note that such games can easily be implemented

in an experiment by appropriate selection of player j payoffs. Condition N states that

the noise parameter does not vary with the payoffs of the game. It can however depend

on the observable characteristics of players. Condition N implies that the value of λ for

games which satisfy condition S is the same as the corresponding noise level present in

games with some payoff variation for player j. Supportive evidence for condition N can

be obtained by estimating a reduced form version of equation (2), allowing the noise

parameter to vary with the payoffs levels. Section 4.1 discusses this in more detail.

Together, conditions I, S and N allow separate identification of λ. In particular, for

preferences satisfying condition I in some history h̃ ∈ H̃, it follows from (2) that the

choice probabilities for games satisfying condition S are given by

Pr(ci = a′
i,h̃
|πi) = F (πi/λ) (11)

where the psychological payoffs drop out of the choice probabilities when πj(a
′
i,h̃
) =

πj(a
′′

i,h̃
). Equation (11) can thus be used to estimate λ using only games which satisfy

condition S.

We thus propose a simple two step estimation procedure. In the first step, we estimate

λ for preferences satisfying condition I using data from games satisfying condition S. In

the second step we estimate the identification region [ϕl
λ̂
, ϕu

λ̂
], conditional on the first

step estimate of λ. We next discuss in detail prominent examples of belief dependent

preferences which can be tested using our proposed two step procedure.
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3.1 Example 1: guilt aversion (ϕ ≤ 0)

Battigalli and Dufwenberg (2007) propose a model of simple guilt, where players are

assumed to be averse to letting down other players. More specifically, player i ‘lets down’

player j when his strategy provides player j with a final payoff below the payoff expected

by player j. Consider a game Γ which satisfies condition H and a history h̃ ∈ H̃.

In history h̃ player i has two actions, a
′

i,h̃
and a

′′

i,h̃
. Define guilt from both actions as

Bi(a
′

i,h̃
, µ2

i (h̃)) =
[
Ei(Ej (πj))− πj(a

′

i,h̃
)
]
1
[
πj(a

′
i,h̃
) ≤ πj(a

′′

i,h̃
)
]

(12)

Bi(a
′′

i,h̃
, µ2

i (h̃)) =
[
Ei(Ej (πj))− πj(a

′′

i,h̃
)
]
1
[
πj(a

′
i,h̃
) > πj(a

′′

i,h̃
)
]

(13)

where 1[A] denotes an indicator function taking a value of 1 when event A occurs and 0

otherwise, Ej (πj) denotes player j’s expectation of the own final payoff, and Ei (Ej (πj))

denotes player i‘s expectation of Ej (πj). More formally

Ei (Ej (πj)) = Ei(µ
1
j(a

′

i,h̃
))πj(a

′

i,h̃
) + (1− Ei(µ

1
j(a

′

i,h̃
)))πj(a

′′

i,h̃
)

= µ2
i (a

′
i,h̃
|h̃)

[
πj(a

′

i,h̃
)− πj(a

′′

i,h̃
)
]
+ πj(a

′′

j,h̃
) (14)

where µ2
i (a

′
i,h̃
|h̃) = Ei(µ

1
j(a

′

i,h̃
|h̃)) and such that µ2

i (a
′
i,h̃
|h̃) ∈ [0, 1]. Assume without loss

of generality that πj(a
′
i,h̃
) < πj(a

′′

i,h̃
). From (13) it follows that player i cannot feel guilt

when choosing a
′′

i,h̃
given the later provides player j with the highest of the two possible

payoffs, i.e. Bi(a
′′

i,h̃
, ·) = 0 for all i. On the other hand, player i feels guilt when choosing

a′
i,h̃

as this provides player j with his lowest possible payoff. Hence,

∆Bi,h̃ =
[
Ei(Ej (πj))− πj(a

′

i,h̃
)
]

= µ2
i (a

′
i,h̃
|h̃)

[
πj(a

′

i,h̃
)− πj(a

′′

i,h̃
)
]
+ πj(a

′′

j,h̃
)− πj(a

′

i,h̃
) (15)

Inspection of (12), (13), and (15) reveals that condition I is satisfied in history h̃. Without

knowledge of µ2
i (a

′
i,h̃
|h̃), it follows that

∆Bi,h̃ ∈ [0, πj(a
′′

i,h̃
)− πj(a

′

i,h̃
)] (16)

where the lower bound ∆Bi,h̃ = 0 is obtained by setting µ2
i (a

′
i,h̃
|h̃) = 1, while the upper

bound ∆Bi,h̃ = πj(a
′′

i,h̃
)− πj(a

′

i,h̃
) is obtained by setting µ2

i (a
′
i,h̃
|h̃) = 0. It follows that all
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games are of the type 4 presented in (6). This implies that the set D defined in Proposition

1 is empty and thus ϕl
λ = −∞. The conditional identification region of ϕ is then given

by [−∞, ϕu
λ], where

ϕu
λ = min

i

[
Qλ−∆πi

πj(a
′′

i,h̃
)− πj(a

′

i,h̃
)

]
(17)

3.2 Example 2: reciprocity (ϕ ≥ 0)

Dufwenberg and Kirchsteiger (2004) propose a model of reciprocity where the psycho-

logical payoff of player i in the last non-terminal history h̃, Bi(ai,h̃,µ
k
i ), is given by the

product PK(h̃) × K(ai,h̃). The first term PK(h̃) involves player i’s perception of the

kindness of player j towards him in history h̃. Let Ej

(
πi|h̃

)
denote player j’s expecta-

tion of i’s final payoff in history h̃, and Ei

(
Ej

(
πi|h̃

))
denote player i‘s expectation of

Ej

(
πi|h̃

)
. That is

Ei

(
Ej

(
πi|h̃

))
= Ei(µ

1
j(a

′
i,h̃
|h̃))πi(a

′
i,h̃
) + (1− Ei(µ

1
j(a

′
i,h̃
|h̃)))πi(a

′′

i,h̃
)

= µ2
i (a

′
i,h̃
|h̃)

[
πi(a

′
i,h̃
)− πi(a

′′

i,h̃
)
]
+ πi(a

′′

i,h̃
) (18)

where µ2
i (a

′
i,h̃
|h̃) = Ei(µ

1
j(a

′
i,h̃
|h̃)). Moreover, define the ‘equitable’ payoff7

π
ej
i (µ2

i (h̃)) =
1

2

[
max
aj∈Aj

{Ei (Ej (πi))}+ min
aj∈Aj

{Ei (Ej (πi))}
]
.

The equitable payoff is used by player i as a reference point to measure the kindness of

player j towards him. In particular, player i’s perceived kindness of player j is given by

the following difference

PK(h̃) = Ei

(
Ej

(
πi|h̃

))
− π

ej
i (µ2

i (h̃))

Expected payoffs Ei

(
Ej

(
πi|h̃

))
higher (lower) than the equitable payoff are thus per-

ceived as kind (unkind). The second term entering the psychological payoff function

7For notational simplicity assume that all of player j’s strategies are efficient as defined by Dufwenberg

and Kirchsteiger (2004) on p. 276.
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involves the kindness of player i towards player j when choosing a′
i,h̃

K(a′
i,h̃
) = πj(a

′
i,h̃
)− 1

2

[
πj(a

′

i,h̃
) + πj(a

′′

i,h̃
)
]

=
1

2

[
πj(a

′
i,h̃
)− πj(a

′′

i,h̃
)
]

A similar expression follows for K(a
′′

i,h̃
), the kindness when choosing a

′′

i,h̃
. Multiplying

PK(h̃) with K(a
′

i,h̃
) and K(a

′′

i,h̃
) and rearranging gives

Bi(a
′
i,h̃
, µ2

i (h̃)) =
1

2

[
Ei

(
Ej

(
πi|h̃

))
− π

ej
i (µ2

i (h̃))
] [

πj(a
′
i,h̃
)− πj(a

′′

i,h̃
)
]

(19)

Bi(a
′′

i,h̃
, µ2

i (h̃)) =
1

2

[
Ei

(
Ej

(
πi|h̃

))
− π

ej
i (µ2

i (h̃))
] [

πj(a
′′

i,h̃
)− πj(a

′

i,h̃
)
]

(20)

Differencing (19) and (20) yields

∆Bi,h̃ =
[
Ei

(
Ej

(
πi|h̃

))
− π

ej
i (µ2

i (h̃))
] [

πj(a
′
i,h̃
)− πj(a

′′

i,h̃
)
]

Inspection of (19), (20), and (21) reveals that condition I is satisfied in history h̃. The

values of ∆Bi,h̃ and ∆Bi,h̃ will depend on the signs of two terms,[
Ei

(
Ej

(
πi|h̃

))
− π

ej
i (µ2

i (h̃))
]
, and

[
πj(a

′
i,h̃
)− πj(a

′′

i,h̃
)
]
,

and thus will potentially vary across games. For games where the terms have the same

sign, ∆Bi,h̃ is a monotonically increasing function of µ2
i (a

′

i,h̃
|h̃). Without knowledge of

µ2
i (h̃), it follows that

∆Bi,h̃ ∈ [∆Bi,h̃,∆Bi,h̃] (21)

where

∆Bi,h̃ = min
µ2
i (h̃)

{∆Bi,h̃} (22)

∆Bi,h̃ = max
µ2
i (h̃)

{∆Bi,h̃} (23)

Values in (22) and (23) can be used to estimate the endpoints using (9) and (10).

3.3 Estimation and inference on the bounds of the identification

region

We propose a two step procedure to estimate the endpoints of the conditional identification

region. We estimate λ in a first step using the subset of games which satisfy condition
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S by assuming that ∆ϵi,h̃ follows a logistic distribution. This is a standard logit model

which can be estimated by Maximum Likelihood. Let λ̂ denote the estimated value

of λ obtained in this way. The second step consists of estimating the endpoints of the

identification region conditional on the Maximum Likelihood estimate λ̂ and the estimated

values of Qi. We obtain estimates of Qi by inverting estimated choice probabilities derived

from a reduced form model (equation (30) in the following section). Näıve estimators of

the endpoints of the conditional identification region are given by the following sample

counterparts to Proposition 1

ϕ̂l
λ̂

= max
i∈I

ϕ̂
i

(24)

ϕ̂u
λ̂

= min
i∈I

ϕ̂i (25)

where ϕ̂
i
and ϕ̂i are the estimated values of ϕ

i
and ϕi defined in Proposition 1 (with the

unknown value of λ replaced with λ̂) and where I and I denote the set of games which

can be used to estimate the lower and upper endpoints respectively. It is well known that

the estimators (24) and (25) are possibly biased in finite samples. This reflects the fact

that the expectation of the maximum (minimum) of random variables is generally higher

(lower) than the maximum (minimum) of the expectations. We can thus expect ϕ̂l
λ̂
to

have an upward finite sample bias while we can expect that ϕ̂l
λ̂
has a downward finite

sample bias. This implies that naive estimators based on (24) and (25) will on average

tend to produce overly narrow conditional identification regions.

Chernozhukov, Lee and Rosen (2009) (hereafter CLR) propose a median-unbiased

estimator of the endpoints of the identification region and propose a method to construct

confidence intervals which can take into account the two step nature of our approach.

Here, we implement their proposed approach for parametric models (see their appendix

C.1). In particular, we define

ϕ̂l
λ̂,θ

= max
i∈Î

{
ϕ̂
i
− Ĝ(θ)s(i)

}
(26)

ϕ̂u
λ̂,θ

= min
i∈Î

{
ϕ̂i + Ĝ(θ)s(i)

}
(27)

where s(i) denotes the estimated standard error of either ϕ̂
i
or ϕ̂i, Ĝ(θ) denotes the
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estimated θ−quantile of max
i∈Î

{(
ϕ̂
i
− ϕ

i

)
/s(i)

}
, Ĝ(θ) denotes the estimated θ−quantile

of min
i∈Î

{(
ϕ̂i − ϕ

i

)
/s(i)

}
, Î and Î denote estimated sets of games used to make inferences

on the endpoints. Note that Ĝ(θ)s(i) represents a bias correction term which intuitively

enters negatively in (26) to correct for the upward bias of the estimator in (24). In a similar

way, Ĝ(θ)s(i) represents a bias correction term which enters positively in (27) to correct

for the downward bias of the estimator in (25). Both Ĝ(θ)s(i) and Ĝ(θ)s(i) account for

the sampling variability of λ̂ and Q̂i. Details concerning computation of Ĝ(θ)s(i) and

Ĝ(θ)s(i) can be found in CLR.

Under conditions discussed in CLR it can be shown that

lim
N→∞

Pr
(
ϕ (λ) ≤ ϕ̂l

λ̂,θ

)
= θ (28)

lim
N→∞

Pr
(
ϕ (λ) ≤ ϕ̂u

λ̂,θ

)
= θ (29)

It follows that setting θ = 0.5 yields median-unbiased lower and upper endpoint estima-

tors. These estimators are median-unbiased in the sense that the asymptotic probability

that the estimated values lie above their true value is at least a half. Moreover, one sided

p% confidence intervals can be obtained by computing ϕ̂l
λ̂,p

and/or ϕ̂u
λ̂,1−p

for the relevant

endpoints. Finally, results in CLR imply that a valid p% confidence interval for [ϕl
λ, ϕ

u
λ]

can be obtained by computing [ϕ̂l
λ̂,p/2

, ϕ̂u
λ̂,1−p/2

].

4 Empirical illustration

4.1 Experimental design and data

Our experiment is based on the sequential game in Figure 1. The experiment was run

in January and February 2010 via the LISS-panel, an Internet survey panel managed by

CentERdata at Tilburg University. In total 2000 members of the panel were invited to

participate in the experiment involving 500 payoffwise different games as shown in Figure

1. Only the associated monetary payoffs of the players differed across the games. The

payoffs of the games randomly chosen from a set of similar games used in Bellemare,
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Sebald, and Strobel (2010). Approximately 1/3 of the 500 payoffwise unique games were

recoded to ensure that condition S holds, that is such that πj(l) = πj(r) (dark circles in

Figure 1).

Each panel member was initially randomly assigned a role and a payoffwise unique

game in the following way. First, 1500 panel members were assigned the role of player i

while 500 panel members were assigned the role of player j. This role assignment allowed

us to gather more decisions of i-players whose behavior is the primary focus of the paper.

Subsequently, we randomly assigned each of the 500 payoff different games to three i

players and to one j-player. In other words, each of the 500 games could potentially be

played by three i-players and one j-player.

Given the infrastructure of the LISS-panel, the game was played across two consecutive

survey months. In the first month, only panel members assigned to the role of player i were

contacted and offered the possibility to participate in the experiment. Before revealing

their role and specific game, they were provided general instructions, informed that 50

payoff-wise unique games would randomly be chosen ex-post and paid out two months

later. Furthermore, they were given the possibility to withdraw from the experiment.

After the revelation of their role and game, they were told that they would be making

their decisions before j-players and that decisions would be matched ex-post. 1139 of

the 1500 invited panel members accepted the invitation and completed the experiment in

the role of player i.8 Panel members who completed the experiment were first presented

their unique game and then asked to send a message to player j. We allowed participants

to send messages in order to increase their awareness concerning the other person they

were grouped with. They could choose between two different messages and not sending a

message:

� If you let me decide between l and r, I will choose l

� If you let me decide between l and r, I will choose r

� I do not want to send a message

87 more invited panel members logged on but did not complete the experiment.
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Each player i then made his/her decision using the strategy method: i-players chose

between l and r at history h1 before knowing the decision of player j at history h0.

Panel members assigned to the role of player j made their decisions during the second

survey months. All j players were first provided instructions and were informed that

50 payoff-wise unique games would randomly be chosen ex-post and paid out at the

completion of the experiment. Again, before revealing their roles and games, they were

given the possibility to withdraw from the experiment. 328 of the 500 invited panel

members accepted the invitation and completed the experiment in the role of player j.9

For the unique games for which we had more than one complete set of i-players decisions,

we randomly chose one of them to be used in the interaction with player j. Invited panel

members who accepted to participate in the experiment were then presented their unique

game, were given the message of their matched i-player, and were asked to chose between

L and R at history h0 in the game.

After the second survey month we randomly chose 50 payoff-wise unique games (i.e.

15% of the 328 games that had been completed by one i and one j player) and paid the

participants that had played these games according to the decisions that they had taken

in the game. Average values of πi(R) and πj(R) were 28.386e and 21.150e respectively.

Moreover, average values of πi(l) and πj(l) were 17.184e and 25.899e while corresponding

averages of πi(l) and πj(l) were 18.746e and 25.933e. Figure 5 illustrates the payoff

variation of both players which follow from history h1 in Figure 1. In particular, we plot

∆πi = πi(r) − πi(l) and ∆πj = πj(r) − πj(l) for all 500 randomly chosen games. Games

for which condition S holds (i.e. ∆πj = 0) are denoted Invariant and are marked by full

circles. All other games are denoted V ariant and marked by empty circles. We can see

that the payoff differences for player j lie between -50e and 50e while payoff differences

for player i vary between -35e and 35e.

Our data reveals that 70.45% of j players (first movers) determined the final allocation

by choosing the outside option. We perform a preliminary analysis of the decisions of i

players by estimating a logit model relating their decisions (l or r at history h1) to the

97 more invited panel members logged on but did not complete the experiment.
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difference in payoffs of both players as well as to their respective outside options. In

particular, we estimate the following equation

Pr(c = r|∆πj,∆πi, πj(R), πi(R)) =

F ([∆πi + α1∆πj + α2πj(R) + α3πi(R)]/λ̃). (30)

where (30) can be interpreted as a reduced form model of equation (2). We find that

the probability that i players chooses r increases significantly with ∆πj (α̂1 = 0.160, se.

= 0.043), suggesting that i players take into account the well being of j players. Not

surprisingly, the size of α̂1 is substantially lower than 1, an indication that i players

value their own well-being more than that of others. Interestingly, we do not find that

any of the outside options have a significant impact on the decisions of i players (α̂2 =

0.103, p-value = 0.221; α̂3 = -0.006, p-value = 0.928). Finally, we estimated an extended

specification where we allowed the noise parameter λ̃ to depend on ∆πi and ∆πj by

specifying λ̃ = exp(γ0 + γ1∆πi + γ2∆πj). We found no significant increase in the log-

likelihood function value (p-value = 0.9531), suggesting that the noise level does not

vary with the level of payoff differences of each player in the game. This provides some

indication that condition N is likely to hold in the data.

4.2 Results for guilt aversion

Consider first the model of guilt aversion discussed in section 3.1 in the context of Figure

1, i.e. the strategic environment underlying our experiment. Furthermore, denote by l the

action of player i which implies the higher payoff for player j, i.e. πj(r) < πj(l). Given

this the conditional identification region of ϕ is given by [−∞, ϕu
λ], where

ϕu
λ = min

i

[
Qiλ−∆πi

πj(l)− πj(r)

]
(31)

We first assess what can be learned about the model parameters without exploiting the

invariance condition. The grey area in Figure 2 presents the estimated identification

region for (ϕ, λ) derived by computing (31) replacing Qi with Q̂i for different values of

λ. The diagonal line presents the locus of values of ϕu
λ for a selected range of values

20



of λ. We see that ϕu
λ is below zero for values of λ between 0 and (approximately) 21,

suggesting that players are guilt averse over this range of λ values. However, ϕu
λ equals

zero when λ is greater than 21. It follows that the data is largely uninformative about

the relevance of guilt aversion in our experiment when we do not exploit the invariance

condition. This is one illustration of the analysis in Manski (2010) where he argues that

choice data alone are in general insufficient to make meaningful inferences on preferences

without information about the beliefs of players.

We next exploited the invariance condition to estimate (31) by replacing λ with a

consistent estimate obtained in a first step using games which satisfy condition S. Table 1

presents the results. Column λ contains the estimated value of the scale parameter while

column
(
−∞, ϕ̂u

λ̂

]
presents the estimated identification region using the naive endpoint

estimator based on (17). As discussed in section 3.3, the naive estimator is potentially bi-

ased downwards in finite samples. Columns ϕ̂u
λ̂,0.5

and ϕ̂u
λ̂,0.95

present the median-unbiased

estimator and the corresponding one-sided 95% confidence band based on CLR.

The estimated value of λ obtained using all games which satisfy condition S is 14.140

and is significant at the 1% level.10 This estimate implies that ϕu
λ̂
is estimated to be -

0.881, suggesting that players are on average willing to pay at least 0.88e to avoid letting

down player j by 1e. This value can alternatively be derived from Figure 2 which plots

λ̂ and the corresponding estimated values of ϕu
λ̂
. Inspection of the Figure illustrates the

identification power of conditions I and S – the identification region is reduced to a single

(vertical) line. Column ϕ̂u
λ̂,0.5

reveals that the downward bias of these estimated upper

endpoints is substantial. In particular, the estimated upper endpoint for the entire sample

10This suggests that a significant proportion of i players chose the option providing them with the

lowest payoff, given the payoff invariance for player j. One interpretation of this result is that ∆ϵi,h̃

captures noise and sub-optimal decision making. Another interpretation is that part of ∆ϵi,h̃ captures

unobserved preferences such as inequity aversion. Then, some players may be selecting the lowest payoff

for themselves in order to reduce the payoff difference with player j. This would be consistent with results

presented in Bellemare, Kröger, and van Soest (2008) who analyze responder behavior in the ultimatum

game in the Dutch population. They found that a substantial proportion of responders were willing reject

overly generous offers which provided them higher payoffs than proposers.
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increases from -0.881 to -0.475 when controlling for the finite sample bias. The last column

of the table presents the estimated one-sided 95% confidence interval for ϕu
λ. Values less

than zero reveal significant guilt aversion. The estimated 95% confidence interval for ϕu
λ

is -0.077, suggesting significant guilt aversion in the broad population.

We then repeated the analysis for different sub-groups of the population. In particular,

we performed a separate analysis for men and women, for three education levels (low,

intermediate, and high levels), and for two age groups (below or above median sample age).

Finer partitions potentially including other socio-economic variables or their interactions

are in principle possible. However, our chosen partitions ensure that we have sample

sizes which allow us to make meaningful comparisons. We find that the estimated values

of λ are positive and significant at the 1% level for all sub-populations considered. The

estimated values of ϕu
λ̂
vary substantially across the sub-populations. For example, players

with low education levels have the highest estimated upper endpoint (-0.337) while players

with high levels of education have the lowest estimated upper endpoint (-1.306). The bias-

corrected estimated upper endpoints for the other partitions are also substantially higher

then the corresponding estimates based on the naive estimator, suggesting important

finite sample bias for the naive endpoint estimator. Overall, the median bias-corrected

upper endpoints vary from -0.871 (men) to 0.029 (low education). Finally, the estimated

one-sided 95% confidence intervals for ϕu
λ suggest that guilt aversion is significant for men,

high educated players, and players above 47 years of age.

4.3 Results for reciprocity

We now consider the possibility that players have reciprocal preferences as outlined in

section 3.2. Given the strategic environment displayed in Figure 1 the equitable payoff

π
ej
i and the perceived kindness PK(h1) of player i in history h1 respectively reduce to

π
ej
i =

1

2

[
Ei

(
Ej

(
πi|h1

))
+ πi(R)

]
,
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with

Ei

(
Ej

(
πi|h1

))
= Ei(µ

1
j(r|h1))πi(r) + (1− Ei(µ

1
j(r|h1)))πi(l)

= µ2
i (r|h1) [πi(r)− πi(l)] + πi(l)

and

PK(h1) = Ei

(
Ej

(
πi|h1

))
− 1

2

[
Ei

(
Ej

(
πi|h1

))
+ πi(R)

]
=

1

2

[
µ2
i (r|h1) [πi(r)− πi(l)] + πi(l)− πi(R)

]
Table 2 presents the results for the same sub-populations used in our analysis of guilt

aversion. All results concerning the estimation of λ are identical to the one presented

for guilt aversion. Column [ϕ̂l
λ̂
, ϕ̂u

λ̂
] presents the identification region estimated using

the naive endpoint estimator for both endpoints. Columns ϕ̂l
λ̂,0.5

and ϕ̂l
λ̂,0.025

present

respectively the median-unbiased estimated lower endpoint and the corresponding one-

sided 97.5% confidence band using the approach proposed by CLR. Columns ϕ̂u
λ̂,0.5

and

ϕ̂u
λ̂,0.975

present the corresponding estimates for the upper endpoint of the identification

region. The interval ϕ̂l
λ̂,0.025

, ϕ̂u
λ̂,0.975

forms a 95% confidence interval for the identification

region ϕl
λ, ϕ

u
λ.

We find that the naive estimator produces estimated endpoints which cross: the esti-

mated values of ϕl
λ̂
exceed the estimated values of ϕu

λ̂
for all sub-populations considered.11

Moreover, the estimated upper endpoints are censored at zero for all sub-populations.

Both these results can be explained by the fact that naive estimators of the lower (upper)

endpoints are potentially biased upwards (downwards) in finite samples. We find that the

median-unbiased estimator of CLR resolves most of the crossings observed when using

the naive estimators. A notable exception concerns the sub-population of players with

intermediate levels of education. There, the median-unbiased estimated lower endpoint

remains slightly above the median-unbiased estimated upper endpoint. We find that all

95% confidence intervals [ϕ̂l
λ̂,0.025

, ϕ̂u
λ̂,0.975

] are narrow and are either close to zero or over-

lap with zero. In line with the aforementioned fact that outside options did not have a

11Crossing of endpoints estimated using ”naive” estimators of the form discussed in this paper are not

uncommon. Chesher (2009) provides further examples.
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significant impact on the decisions of i players, these results suggests that reciprocity is a

weak predictor of decisions of i players in our experiment.

5 Conclusion

We proposed an approach to learn about the empirical relevance of belief-dependent pref-

erences in sequential two-player games without exploiting information about the beliefs of

players. Our approach exploits the natural bounds of the psychological payoffs of players

to make set inferences on the relevance of the underlying belief-dependent preferences.

Existing research has established that the identification regions of the model parame-

ters are typically large an uninformative without information on beliefs. However, we

showed that the identification regions can be substantially reduced by exploiting a simple

invariance property which is embedded in several prominent belief-dependent preferences.

Our approach produced informative bounds for the relevance of belief-dependent pref-

erences in our experiment. In particular, our analysis of guilt aversion suggests that the

population willingness to pay to avoid letting down the other player by 1e is significantly

different from zero and at least greater or equal to 0.08e. We also found that several

groups of the population are willing to pay more at a minimum. In particular, high edu-

cated individuals are willing to pay at least 0.14e while men are willing to pay at least

0.16e to avoid letting down the other player by 1e. We were also able to obtain tight and

very informative bounds around the relevance of reciprocity in our experiment. Our re-

sults suggest that reciprocity weakly predicts the final decisions made in our experiment.

This result holds for all groups of the population we considered.

These results can be interpreted as providing approximate bounds around the average

sensitivity parameter for each of the sub-groups of the population considered. Researchers

may additionally want to conduct an individual-specific analysis to learn about the entire

distribution of the sensitivity parameter within each sub-group of the population. Our

approach can in principle be extended to make individual-specific inferences by exploiting

data from subjects making multiple decisions in games satisfying condition S and games
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where payoffs of player j vary with the action taken by player i. Future work should deter-

mine the properties of the proposed approach in relationship to the number of decisions

available for each subject in order to bound individual sensitivity parameters. Future

work should also try to extend the approach to settings with more than two decisions

as well as to settings where researchers are interested in combining data from different

games.

The approach proposed in this paper ultimately allows researchers to assess the added

value of exploiting data on stated beliefs to learn about the relevance of belief-dependent

preferences in games. Our analysis of reciprocity provides an example where little can

be gained by further exploiting stated belief-data: the estimated identification regions

are narrow and precisely estimated. Our results also suggests that this result is unlikely

to hold in general. Estimated identification regions in the case of guilt aversion remain

large despite revealing significant guilt aversion in various sub-groups of the population.

Researchers requiring more precise information about the exact level of guilt aversion (or

other preferences in the class) must then exploit data on higher-order beliefs to point

identify the sensitivity parameters. This will require more work to carefully address the

possibility that stated beliefs are measured with error and/or correlated with preferences

entering the model.
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