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Abstract

We propose a framework that allows a portfolio manager to quantify the probability of

simultaneous losses in multiple assets of a collateral portfolio. Using this framework, we propose

a methodology to conduct stress tests on the market value of the portfolio of collateral when

undesirable extreme dependence occurs. This framework permits us to quantify the potential

impact on the portfolio returns of systemic events that change, or ‘break down’, the historical co-

movement structure, imposing an adverse extreme dependence. We illustrate our framework using

securities pledged as collateral in the Canadian securities clearing and settlement system.

JEL classification: G00, G10, C10
Bank classification: Econometric and statistical methods; Financial markets; Financial stability

Résumé

Les auteurs proposent un cadre à l’aide duquel un gestionnaire de portefeuille peut quantifier la

probabilité de pertes simultanées sur les actifs d’un portefeuille composé de garanties. La

méthodologie qu’ils présentent permet de simuler l’évolution de la valeur de marché d’un

portefeuille de garanties dans un scénario de crise caractérisé par une dépendance de queue non

souhaitable. Elle leur permet ainsi de quantifier l’incidence potentielle, sur les rendements du

portefeuille, de chocs systémiques qui modifient ou rompent la relation historique de covariation

et se soldent par une dépendance de queue non souhaitable. Pour illustrer leur méthodologie, les

auteurs étudient le cas des titres pouvant servir de garantie au sein du système canadien de

compensation et de règlement des opérations sur titres.

Classification JEL : G00, G10, C10
Classification de la Banque : Méthodes économétriques et statistiques; Marchés financiers;
Stabilité financière



1 Introduction

Regulators and banking professionals have undertaken several initiatives designed
to improve the safety of the global financial system. These initiatives include the
development of core principals for systemically important payment systems (BIS
2001a), recommendations for securities settlement systems (BIS 2001b), and recom-
mendations for central counterparties (BIS 2004). These initiatives share a common
approach; financial risks, such as market risk, credit risk, etc., are managed by
pledging securities as collateral. Collateral acts as a form of insurance, that is, when
funds are needed to cover losses, collateral is liquidated to obtain the necessary
funds. However, collateral itself may consist of risky assets and thus can change
in value over time. An important concern, therefore, is that sufficient collateral is
pledged, so that if a failure occurs and collateral declines in value, all losses can be
adequately covered. Having sufficient collateral is particularly important to cover
unexpected or extreme events that may threaten the viability of the organization.

During normal market conditions, we observe that some assets from the portfo-
lio of collateral may exhibit losses while others may exhibit profits. The resulting
diversification benefits allow the portfolio to have lower market risk than the sum
of the market risk of the portfolio’s components. Under normal conditions, the be-
haviour of the return distribution for securities can be characterized by one adverse
effect. We call this the individual effect, since the individual securities may take
values from low quantiles of the probability distribution of returns. While there are
losses at the security level, at the portfolio level the dependence structure allows for
diversification benefits. Therefore, market risk management practices during normal
conditions generally focus on covering the risk associated with losses at the security
level.

When extreme events occur—such as banking crises and sovereign debt defaults—
large values of collateral may need to be sold to cover financial losses. During these
episodes, the behaviour of the return distribution for securities can be characterized
by two adverse effects. In addition to the individual effect, the dependence structure
may exhibit lower diversification benefits than those observed historically, and we
call this the portfolio effect.1

In this paper, we propose strategies to manage the market risk that results
from both the individual and portfolio effects. The implementation of the strategy
to manage individual effects is largely based on Garcia and Gençay (2006). We
recommend that both strategies be employed so that the market risk of the portfolio
of collateral is managed during normal market conditions as well as during periods
of extreme events.

To manage the market risk created by the individual effect, the strategy usually
followed is to require collateral in excess of the exposure. The excess collateral is
based on the characteristics of the asset pledged. These characteristics are captured

1Chan et al. (2005) refers to this as a phase locking effect. The authors offer an explanation for
these effects from a financial engineering perspective.
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by a discount, often called a haircut.2 The strategy to mitigate risk associated with
the individual effect requires a robust model for the tail of the return distribution,
for each asset in the portfolio. For this model, we recommend the use of extreme
value theory methods. While this strategy allows the risk manager to quantify the
market risk associated with each individual asset in the portfolio of collateral and
determine how much extra collateral is needed, it does not provide any information
about the co-movement (or dependence) between the returns of the various assets
that may be pledged. Knowing the dependence between the returns of these assets
is important in order to assess the likelihood of bad outcomes (e.g., large negative
returns) occurring at the same time. Capturing the dependence can be done by
modeling the joint distribution of returns for the portfolio of assets pledged.

The portfolio effect may be linked to periods where there is a global flight to
quality as a result of an extreme event, for example the Mexican peso crisis of 1994
and the Asian crisis of 1997. The dependence structures that existed before the
crises are not indicative of the dependence structures in existence during the ex-
treme event. To reduce the possible losses that may be associated with portfolio
effects, we propose that portfolio managers actively select and hold those portfolios
that have greater diversification at low quantiles of the return distribution. In ad-
dition, we recommend that for the existing portfolio, the degree of diversification
at low quantiles is periodically monitored so that proper actions can be taken to
maintain such a level of diversification. More specifically, we recommend that the
following strategies be employed to manage the portfolio effects. First, when se-
lecting among various possible assets that could be pledged as collateral, take those
that have a lower probability of negative returns occurring simultaneously. Second,
when monitoring the performance of an existing portfolio of collateral, calculate
the probability associated with simultaneous losses occurring for all of the assets
in the portfolio. Compare this calculation with pre-established thresholds for the
probability of the event, and the associated losses. When the estimated probability
and the associated losses breaches the pre-established thresholds, modify the com-
position of assets of the portfolio until the probability and associated losses are less
than the pre-established threshold levels.3 Third, when stress testing the market
value of a portfolio of collateral, include a scenario that imposes undesirable but
plausible ‘extreme’ dependence structures, without changing the marginal return
distributions.

2The haircut corresponds to a mapping from the loss distribution of returns into a single number;
frequently this mapping is achieved using a Value-at-Risk measure. Garcia and Gençay (2006)
explain the use of haircuts, and how to calculate them in the context of a securities settlement
system. We do not elaborate on the different methodologies to calculate haircuts, instead we focus
on the strategies that are designed to manage the portfolio effects.

3For example, for a portfolio of two assets, a risk manager may determine that adequate thresh-
old levels for her institution are 5 per cent probability that each asset in the portfolio declines by 2
per cent. Should the estimated losses for each asset associated with a 5 per cent probability exceed
the 2 per cent threshold, then the risk manager would recommend that the existing portfolio of
collateral be replaced by another that has lower losses.
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The strategies to mitigate risk associated with the portfolio effect requires a
framework to model the joint distribution of returns that is flexible enough to (i)
capture the return characteristics of each asset; and (ii) capture the dependence
structure. Specifically, the framework should allow the marginal distributions of
the various assets to come from different families, and the dependence structure to
depart from the assumption of multivariate normality. We propose a framework
that achieves these two conditions, by relying on the the theory of copulas.

In this paper, we contribute to the literature on financial stability and risk man-
agement in two ways. First, we propose a strategy to manage market risks at the
individual security level that accurately captures different tail behaviors of securi-
ties returns. This is accomplished using extreme value theory methods. Second,
we propose strategies to manage market risk at the portfolio level that are able to
capture a wide range of dependence structures departing from multivariate normal.
The portfolio strategies take into account the properties of each asset and the depen-
dence structure. These strategies are useful for (i) determining when to re-balance
the collateral portfolio to assets that have a more favorable dependence structure
during ‘normal’ periods; and for (ii) stress testing the market value of the collateral
portfolio, to understand the potential impact of systemic events (e.g., stock market
crashes) that are associated with a ‘break-down’ in the historical dependence struc-
ture. To present these strategies, we use data on securities pledged as collateral
in the Canadian securities settlement system. Using these data we illustrate the
implementation of these strategies.

There are benefits and costs of implementing these strategies. For example, the
implementation costs of strategies designed to manage the individual effects are
generally lower than those of portfolio effects since the former rely on modeling the
univariate distribution of returns, a task that is well understood by risk managers.
The costs of those strategies designed to manage portfolio effects are usually greater,
since they require the dependence structure of the portfolio to be modeled, which
is a more involved process. The main benefit of implementing risk management
strategies that address both effects is that they provide a greater confidence level
during normal and extreme events for the organization hedging risk. A secondary
benefit is the resulting reduction in the volatility of portfolio returns.

The remainder of this paper is organized as follows. In section 2, we present
copulas to study the dependence structure. In section 3, we use Canadian bond and
equity data as a case study to present the proposed strategies and show how they
may be implemented. In the final section we offer conclusions.

2 Copula Approach

Copulas are multivariate distributions that have proved to be extremely useful in
financial engineering problems that involve modeling more than one random vari-
able. The main advantage of copulas is that they separate the dependence structure
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from the marginal behaviour, and this separation is not possible with traditional
representations of a multivariate density function. There are practical implications
of this separability property that have made applications of copulas increasingly
popular in a wide range of financial engineering problems.4 For example, one can fit
a t-distribution to one variable and another distribution to the second, and then fit
any copula across the marginals. In contrast, traditional multivariate distributions
require that all the random variables have the same marginals. For example, if we
fit a multivariate t across a portfolio of two assets, we are forced to fit univariate
ts to each of the marginals. This restriction of traditional multivariate distribu-
tions becomes problematic when aggregating across assets that may have different
distributions. Copulas not only provide a flexible way to model the marginals but
also provide greater flexibility in that they permit a greater range of dependence
structures to be imposed on the arbitrary marginals. Going back to our previous
example, consider that we have a set of t marginals, using the traditional multi-
variate representation only allows us one possible type of dependence structure, a
multivariate t distribution. Copulas instead allow us a greater range of additional
dependence structures which include traditional multivariate representations. For
these advantages we selected copulas as our framework to model the joint distribu-
tion for a portfolio of collateral. In the next section, we provide a concise review of
copulas.

2.1 Review

Two components are necessary to model the joint return distribution of a portfolio of
assets. The first is a model for the marginal distribution of each asset, and the second
is a model for the dependence structure between the assets. There are several ways
to model the marginal distribution. These include parametric methods that estimate
the necessary parameters to characterize a given distribution, and non-parametric
approaches that directly use the empirical distribution. Along with choosing one of
the above mentioned approaches, the estimation of the joint distribution requires
an approach to model for the dependence structure. As we have mentioned above,
copulas are a flexible approach to model a wide range of dependence structures.

Copulas are multivariate distribution functions with standard uniform marginal
distributions. A d -dimensional copula is represented as follows,

C(u) = C(u1, · · · , ud) (1)

where u1, . . . , ud are standard uniform marginal distributions.5 Copulas are a par-

4Copulas have been applied in credit risk modeling, portfolio management, derivatives pricing,
risk aggregation, and the estimation of risk measures.

5There are three necessary conditions for a copula C(u) to be a probability distribution: (i)
the cumulative distribution functions must always be increasing in each component ui, (ii) the
marginal component i can be obtained by setting uj = 1 for all j 6= i and must be uniformly
distributed, and (iii) the joint probability is non-negative. For the mathematical expressions of
these conditions, we refer the reader to Zivot and Wang (2006).
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simonious approach to model multivariate distributions with arbitrary marginals.
This is possible due to the Sklar (1959) theorem which states that copulas may
be constructed in conjunction with univariate distribution functions to build mul-
tivariate distribution functions. In working with copulas, one can build multivari-
ate distributions using probability transformations to map arbitrary marginals into
standard uniform marginals and then choose a copula function that captures the
dependence structure between the marginals. Also one can backtrack the initial
(arbitrary) marginals from the copula by applying quantile transformations to the
copula’s uniform marginals.

In Figure 1, we illustrate the flexibility of copulas to capture the dependence of
the data. The left panel of Figure 1 presents the scatter plot of actual returns for
two assets r1 and r2 that correspond to Royal Bank of Canada and Bank of Nova
Scotia common stock. The right panel depicts the returns obtained from fitting a
copula to the actual return data.

Figure 1: Scatter plots: Actual Data and Fitted Copula
These figures show scatter plots of daily returns for Royal Bank of Canada (r1), and Bank of Nova Scotia (r2).
Actual returns are depicted in the left panel, and those fitted using a copula are depicted in the right panel.

2.2 Types of copulas

To model the dependence structure between the marginal return distributions, we
need to select among various types of possible copulas. These copulas involve differ-
ent types of dependence structures.6 We classify copulas into three groups: funda-
mental, implicit and explicit copulas.7 For all the copulas presented in this section,
u1 and u2 represent standard uniform marginals.

2.2.1 Fundamental copulas

Fundamental copulas can be used to model marginals that exhibit one of three struc-
tures: perfect negative dependence, independence, or perfect positive dependence.

6For a more exhaustive listing of copulas and their characteristics see Zivot and Wang (2006).
7We use bivariate copulas to present the different types.
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These copulas result from the statistical concept of Fréchet bounds, which states
that the joint probability is constrained within precise bounds,

max(Fx1 + Fx2 − 1, 0) ≤ F (x1, x2) ≤ min(Fx1 , Fx2) (2)

where max(Fx1+Fx2−1, 0) corresponds to the lower Fréchet bound and min(Fx1 , Fx2)
corresponds to the upper Fréchet bound. Based on this result, it is natural to use
these bounds as cases of extreme dependency and define the minimum copula (per-
fect negative dependence case) by,

C(u1, u2) = max(u1 + u2 − 1, 0) (3)

and maximum copula (perfect positive dependence case) by,

C(u1, u2) = min(u1, u2) (4)

The third fundamental copula captures the case of independent random variables.
This is the product copula and it is defined as follows:

C(u1, u2) = u1 · u2 (5)

2.2.2 Implicit copulas

Existing multivariate distributions such as the multivariate normal and multivari-
ate t describe important dependence structures. The same dependence structures
specified by these distributions can be captured in a more general way by copulas.
For example, the multivariate normal gives rise to the normal copula, and the mul-
tivariate t to the t-copula. For example, a bivariate normal copula can be expressed
as,

CN
Σ = ΦΣ(Φ−1(u1), Φ

−1(u2)) (6)

where Φ denotes the probability distribution of a standard normal random variable
while ΦΣ denotes the probability distribution of a normal random variable with mean
zero and covariance matrix Σ. A bivariate normal copula can represent dependence
structures that interpolate from the maximum and minimum copula (including the
product copula), where the linear correlation coefficient represents the strength of
the dependence. Similarly a t-copula can be expressed as,

Ct
v,Σ = tv,Σ(t−1

v (u1), t
−1
v (u2)) (7)

where tv denotes a t probability distribution with v degrees of freedom. The t-
copula can be used instead of a normal copula in situations where it is known that
the marginal distributions have fatter tails than the normal. As it is shown for the
case of the normal– and t–copula, implicit copulas can be extracted from well-known
distributions.
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2.2.3 Explicit copulas

Explicit copulas are obtained using simple closed form expressions.8 One group of
explicit copulas are Archimedean copulas which are all defined using the following
expression,

C(u1, u2) = φ−1(φ(u1) + φ(u1)) (8)

where φ is called the generator function which is different for each type of Archimedean
copula. The generator function is a decreasing function with a domain on [0, 1] and
a rank on [0,∞]. There are a number of different Archimedean copulas that exist;
we report four commonly used ones in Table 1.

Name Copula Parameter Range
Clayton C(u1, u2) = (u−θ

1 + u−θ
2 − 1)−

1
θ ) 0 < θ < ∞

Gumbel C(u1, u2) = e−[(− ln u1)
θ+(ln u2)

θ]
1
θ 1 ≤ θ < ∞

Frank C(u1, u2) = 1
θ ln(1 + (eθu1−1)(eθu2−1)

eθ−1
) −∞ < θ < ∞

BB1 C(u1, u2) = (1 + [(u−θ
1 − 1)δ + (u−θ

2 − 1)δ]−1/θ) θ > 0, δ ≥ 1
BB4 C(u1, u2) = (u−θ

1 + u−θ
2 − 1− [(u−θ

1 − 1)−δ + (u−δ
2 − 1)−δ]−1/δ)−1/θ θ ≥ 0, δ > 0

Table 1: Archimedean Copulas
This table presents various commonly used Archimedean copulas. These copulas capture various types of dependence
ranging from lower tail dependence (Clayton), to perfect positive dependence (Gumbel).

The Clayton (1978) copula, also known as the Kimeldorf and Sampson (1975)
copula, is useful to represent dependence structures that exhibit only lower tail
dependence. The Gumbel copula can be used to represent dependence structures
that interpolate from the case of no dependence (θ = 1) to the case of perfect
dependence (θ → ∞). The Gumbel copula is also said to belong to the class of
extreme value (EV) copulas. EV copulas are those where the following scaling
property holds,

C(uδ
1, u

δ
2) = (C(u1, u2))

δ (9)

where δ > 0 and Equation 9 holds for all (u1, u2) ε [0, 1] · [0, 1]. Durrleman et al.
(2000) is a good reference for EV-copulas and their relationship with extreme value
theory. The Frank copula does not exhibit lower or upper tail dependence, whereas
the BB1 copula and BB4 are able to capture tail dependence. The BB4 copula also
belongs to the class of Archimax copulas which is a combination of extreme value
and Archimedean copulas.

8We focus on the Archimedean copulas and do not cover the Marshall-Olkin copulas. For the
interested reader we recommend Embrechts et al. (2001) and Schmidt (2006) as excellent references.
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2.3 Choosing the appropriate copula

There are various visual techniques available for studying the dependence structure
between the return distributions of two assets. These techniques are used to identify
the type of dependence structure that exists in the historical return time series.
Drawing from the information provided by these techniques, we can determine the
appropriate copula model for the data. Two of these techniques are scatter plots of
returns, and level plots. A scatter plot of returns is useful to visualize the dependence
structure at different quantiles. Of particular importance for risk management, is
the determination of whether or not there is any evidence of lower tail dependence
(i.e. simultaneous losses). The fundamental copulas can be used as benchmark cases
where one can compare their scatter and level plots with those of the data. This
comparison can help to identify the type of dependence in the data. For example,
the minimum copula exhibits negative dependence, the independence copula no
dependence, and the maximum copula positive dependence. One may note that
the maximum copula represents the riskiest case because it involves simultaneous
losses in both assets. Scatter plots for the minimum, independent, and maximum
copulas are shown in the first row of Figure 2 in the left, middle, and right panels
respectively.

A level plot is another technique that is used to visualize the dependence struc-
ture between returns. Level plots for the three fundamental copulas (minimum,
independent, and maximum) are shown in the second row of Figure 2 in the left,
middle, and right panels. In Figure 2 the minimum copula is characterized by a
linear negative relationship, the maximum copula is characterized by sharp angles,
and the independent copula is characterized by a positive convexity. Using scatter
and level plots on the historical data are useful in suggesting what type of copulas
may provide an accurate fit to the data.
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Figure 2: Scatter and level plots
From left to right, the panels in the first row show the scatter plot of the marginals for the minimum, independent
and maximum bivariate fundamental copulas. The second row shows the level plots for the minimum, independent
and maximum bivariate fundamental copulas.

In section 3.3.2, we present the copula approach to estimate the joint return dis-
tribution for a portfolio of two assets that could be pledged as collateral in Canada’s
securities clearing and settlement system. Subsequently, we construct various port-
folios of equities and bonds, estimate the joint return distribution, and implement
the proposed risk management strategies.

3 Risk Management Strategies for Bond and Eq-

uity Portfolios

To manage the market risk for a portfolio of collateral we propose strategies de-
signed to manage the market risk associated with losses of each asset (previously
defined as individual effect), and strategies to address the market risk associated
with changes in the dependence structure between the assets of the portfolio (pre-
viously defined as portfolio effect). We use data from equities and bonds that are
pledged in Canada’s securities clearing and settlement system to show how these
strategies can be implemented. These strategies are as follows:
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• Strategy for individual effects

1. For each asset in the portfolio, discount (or haircut) its market value.
This haircut should reflect the market risk of the asset and should be
used to require a greater amount of collateral so that a given exposure is
covered with greater certainty.

This strategy requires the estimation of haircuts, which consists of selecting a model
of the distribution of losses as well as a risk measure.9

• Strategies for portfolio effects

1. To select among various portfolios of collateral, calculate the probability
of observing simultaneous losses. Select the portfolio that has the lowest
joint probability of exhibiting joint losses.

2. When monitoring an existing portfolio of collateral, set a threshold level
for: (i) the probability that losses for all assets in the portfolio occur at
the same time, and (ii) the magnitude of these losses. Regularly calculate
this probability for the portfolio and check that the associated losses are
less than the established threshold.

3. Stress test the dependence structure of the portfolio. Capture the effect
of the different scenarios by estimating the resulting haircut for the port-
folio. Construct these scenarios by imposing copulas that correspond to
adverse dependence structures, and for each copula calculate the haircut
for various degrees positive dependence.

These strategies require the estimation of the joint distribution of returns. We do
this using a copula approach. This approach can be thought of as a two-step process.
The first consists of finding a model for the marginal return distributions, and the
second consists of finding a copula that fits the dependence structure of the data.
An example of the implementation of this two-step process is presented in section
3.2 for a portfolio of two equities, and by, following this, the process is replicated
for other (equities and fixed income) portfolios created from randomly sampling our
data set.

3.1 Data

Our sample data consists of securities that are eligible to be pledged in the Canadian
securities clearing and settlement system. These data include bonds and equities.
The bond data are obtained from the Bank of Canada, and contains the closing
secondary market bond prices (bid, offer, mid) and yields (mid) for all Canadian

9Garcia and Gençay (2006) present various combinations of parametric and non-parametric
methods to estimate the loss distribution and various risk measures to estimate haircuts.
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dollar denominated Government of Canada domestic marketable bonds auctioned
by the Bank of Canada on behalf of the Minister of Finance. This data contains
250 bond securities. For our analysis, we focus on bid prices as a proxy for the price
that could be realized should these securities need to be sold. Using the bid price we
calculate the returns for each security as the daily percentage changes. We classify
the bid returns in five groups based on their maturity; the corresponding descriptive
statistics are found in Table 2.

Maturity # of Series Skewness < 0 Kurtosis > 3
# of Series % # of Series %

< 1 16 5 31.3 % 12 75 %
1 to 3 71 46 64.8 % 71 100 %
3 to 5 31 8 25.8 % 31 100 %
5 to 10 59 30 50.8 % 58 98.3 %
> 10 73 27 37.0 % 71 97.3 %

Table 2: Bond Bid Returns: Descriptive Statistics
This table shows the descriptive characteristics for secondary market bid returns for selected Government of Canada
domestic marketable bonds. The data includes bonds with a maturity starting in 1988 and up. Source: dmb
database, Bank of Canada, Financial Market Department.

In Table 2 we observe that a large percentage of securities exhibit negative skew-
ness, and excess kurtosis with respect to a normal distribution. In Table 3 we present
the statistical properties for each maturity class by constructing a single vector of
returns per class.

Maturity Mean Std. Dev. Skewness Kurtosis
0 to 1 0.0024 0.0784 0.3506 41.36
1 to 3 -0.0004 0.1041 -0.4063 21.56
3 to 5 -0.0014 0.1933 0.0536 13.50
5 to 10 0.0020 0.2666 0.4034 64.28
> 10 0.0042 0.3902 0.0830 17.27

Table 3: Bond Bid Returns: Group Descriptive Statistics
This table shows the statistical characteristics for secondary market bid returns for selected Government of Canada
domestic marketable bonds. The data includes bonds with a maturity starting in 1988 and up. Source: dmb
database, Bank of Canada, Financial Markets Department.

Table 3 shows that for all groups there is evidence of positive skewness, with the
exception of the group that contains securities with a maturity from 1 to 3 years.
As for kurtosis, all groups exhibit excess kurtosis.

The equity data is obtained from the Canadian Depository for Securities (CDS)
and consists of closing stock prices for 130 equity instruments that constitute a
representative sample of securities that are acceptable as collateral in the system.
CDS imposes sector limits per asset class for eligible collateral; this is done to
encourage diversification in the portfolio of collateral. For the case of equities,
each participant is allowed a maximum of $100 million which suggests—given the
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large values that must be collateralized—that the share of equities from the overall
collateral portfolio is small. The sample period for the equities data is from 5
January 1998 to 12 March 2004. For all equity returns there is excess kurtosis and
58 of the 131 equities exhibit negative skewness.

The statistical properties for both bond and equity returns suggest that fat tails
in the return distribution are common and therefore, appropriate methods—such
as those based on extreme value theory—should be used to estimate the return
distributions.

3.2 Methodology

To present the methodology, we use equity return data for two assets in our database:
Royal Bank of Canada common stock (asset 1), and Bank of Nova Scotia common
stock (asset 2) which from now on we jointly refer to as portfolio 1. Both of these se-
curities are among the acceptable assets that can be pledged as collateral in Canada’s
securities clearing and settlement system.

We first present the methodology to implement the risk management strategy
that addresses individual effects. This requires us to model the marginal distri-
butions of returns. Next we present the methodology to implement the strategies
that address portfolio effects. The latter strategies require a model for the marginal
distributions, as well as a model for the dependence structure.

3.2.1 Strategy for individual effects: Estimating marginal return dis-
tributions

To model the marginal return distributions we first create a qq-plot (quantile-
quantile plot) to examine whether the sample returns for both assets come from
a specific distribution. Specifically, we compare the empirical quantiles with those
of a normal distribution. We use the normal as the benchmark case for a thin tailed
distribution. If the returns can be in fact modeled with the hypothesized distribution
(i.e. normal), the qq-plot should be linear.

12



Figure 3: QQ-plots of returns
The left panel shows the qq-plot of the return distribution for asset 1 (portfolio 1). The right panel shows the
corresponding qq-plot for asset 2 (portfolio 1). The qq-plots compare the quantiles of the sample return distributions
with those of a normal distribution.

Figure 3 shows that for both returns, the qq-plot indicates that the empirical dis-
tribution comes from a fat-tailed distribution. We confirm these results by applying
the Jarque-Bera test on the sample returns. This is shown in Table 4.10

Equity Portfolio 1
Asset 1 Asset 2

Test statistic 357.46 478.26
p-value 0.00 0.00

Table 4: Test of normality
This table presents the results of Jarque-Bera tests on the return sample distributions for asset 1 and asset 2 in
portfolio 1. The distribution under null is a chi-square with 2 degrees of freedom. The total number of observations
is 1482.

Table 4 shows that we can reject the null hypothesis that the individual returns
are normally distributed. Since the marginal distributions of the two return series
are not normal, we model the tails of the marginal return distributions using a
generalized Pareto distribution (GPD), and for the center of the distribution, we
use non-parametric techniques based on the empirical distribution.

10We corroborated the results of the Jarque-Bera (JB) test with the Shapiro-Wilks (SW) test.
The SW test statistic for asset 1 is 0.9758 (p-value 0.0000) and for asset 2 is 0.9794 (p-value 0.0000).
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Figure 4: Fit of the tails
This figure shows on the first row the estimated models for the lower and upper tail of asset 1 (represented by a
smooth line) and the actual observations (represented by points). The second row shows the estimated models for
the lower and upper tail for asset 2 and the actual observations.

Figure 5: Fit of the Semiparametric GPD marginals
This figure shows two panels for the qq-plots of the semi-parametric GPD model and the data. The qq-plots show
a linear relationship which provides evidence that the semi-parametric GPD marginal provides a good fit to the
marginal distributions of portfolio 1.
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This semi-parametric approach is based on Carmona (2004), and Zivot and Wang
(2006). Note that other approaches may be followed to capture the fat tails. For
example one could use t-distributions to model the marginals or one can make use of
extreme value theory techniques. We follow the latter approach. For the estimation
of the tails we choose lower and upper threshold values of -1.78 and 1.88 per cent
for asset 1, and lower and upper threshold values of -2.16 and 2.16 for asset 2.
Using these thresholds the semi-parametric GPD models are estimated. To evaluate
the fit of the tails, we create plots of the excesses over the specified lower and
upper thresholds against the quantiles of the fitted GPD model, as shown in Figure
4. Figure 4 indicates that there is a good fit of the tails of the marginal return
distributions.11

Similarly we can observe the overall fit of the semi-parametric GPD marginals
in Figure 5. The linearity of the qq-plots shown in Figure 5 confirms that the semi-
parametric GPD models adequately describe the marginal return distributions.

3.2.2 Strategy for portfolio effects: Estimating the dependence struc-
ture

We now model the dependence structure for the semi-parametric generalized Pareto
distribution (GPD) marginals. We start by constructing a scatter plot of the his-
torical returns for the assets of portfolio 1. This scatter plot is shown in the top
left panel of Figure 6 where we observe the presence of a moderately positive de-
pendence in the return data. We also notice that there are joint realizations at
the lower and upper quantiles of the return distributions that require selecting a
copula that can capture these observations. Note that if we create a scatter plot of
a bivariate normal model calibrated to the data depicted in the top right panel of
Figure 6, we observe that the bivariate normal model is not able to replicate well
the lower and upper dependence observed in the return data. Also note that the
two copulas (normal and BB1 in the lower panels) with semiparametric marginals
provide a closer fit to the actual returns.

11Standard tools in extreme value theory such as mean excess plots are used to select adequate
values for the corresponding thresholds.
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Figure 6: Scatter plot for the data, a bivariate normal model, a nor-
mal copula, and a BB1 copula
These figures show scatter plots for the returns of portfolio 1. Top left panel: Shows the actual returns. Top
right panel: Shows returns coming from a bivariate normal with the correlation of the data and the mean and
standard deviation of the corresponding returns. Bottom left panel: Shows returns coming from a normal copula
with semi-parametric GPD marginals. Bottom right panel: Shows returns coming from a BB1 copula with
semi-parametric GPD marginals.

We now proceed to estimate the copula models following the approach proposed
by Zivot and Wang (2006). This requires us to calculate an empirical copula and
use maximum likelihood to obtain the parameters associated with the copula model.
We use five potential copula models to estimate the dependence structure of the
returns, which are: the normal copula, the Gumbel copula, the Frank copula, the
BB1 copula, and the BB4 copula. Our choice of copulas is not exhaustive. We
select five copulas that are commonly used and are able to capture various types of
dependence. To select the appropriate copula among the various possibilities, we
compare the log-likelihood value of the fitted copula model. These results are shown
in Table 5.
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Log-likelihood
Normal copula 443.2
Gumbel copula 439.1
Frank copula 400.6
BB1 466.4
BB4 463.9

Table 5: Choosing the copula
This table presents the log-likelihood fit of five competing copula models. The results indicate that the BB1 copula
is the best fit.

Figure 7: Level Plots: Copula Model Fit
The five panels show both level plots for the return data for asset 1 and asset 2 (black line) and level plots for the
copula that is fitted to the data (orange dotted line). Observing the panels, we corroborate that BB1 copula is a
closer fit to the dependence structure of data.
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We also calculate level plots for the empirical copula and the fitted copula models
to visually determine which model is a better fit. This is shown in Figure 7. Both
results presented in Table 5 and Figure 7 suggest that the BB1 copula provides a
better fit to the dependence in the data. Also by constructing the scatter plot of
the estimated BB1 copula (shown in the bottom right panel of Figure 6) we observe
that the BB1 copula with semi-parametric GPD marginals is able to reproduce the
lower and upper dependence behaviour observed in the data.

3.3 Implementing risk management strategies

We now apply the methodology outlined in section 3.2 to various portfolios and
report the results of implementing these strategies.12

3.3.1 Strategy for individual effects

Strategy 1: Apply haircuts to determine collateral requirements

To implement this strategy, we require a model of the lower tail (losses) of the
marginal return distributions. We model the tail with a generalized Pareto distri-
bution (GPD) and estimate the haircuts. The GPD methodology provides a good
approximation of various different tail behaviors (e.g., thin, fat or finite tail).13

Using the GPD methodology, the haircut for asset 1 using a 99 per cent confi-
dence level corresponds to 4.09 per cent with a Value-at-Risk measure, and 5.23 per
cent with an expected shortfall measure. For asset 2 the haircuts also using a 99
confidence interval correspond to 4.68 per cent with a Value-at-Risk measure, and
6.01 per cent with an expected shortfall measure.14

An interesting comparison to make is to calculate the haircut that would result
for the portfolio. We do this assuming an equally weighted portfolio. For such
a portfolio, the associated haircuts are 4.01 per cent when Value-at-Risk is used,
and 5.06 per cent when expected shortfall is used. As it is expected, these results
confirm that when haircuts are calculated on a asset-by-asset basis they exceed the
haircut that would be required for the entire portfolio. This result makes the total

12The portfolios studied are constructed by randomly drawing securities without replacement
from the dataset.

13A theorem by Balkema and de Haan (1974) and Pickands (1975) shows that for a sufficiently
high threshold, the distribution function of the excess may be approximated by the GPD, because
as the threshold gets large, the excess distribution converges to the GPD.

14The expected shortfall (ES) of an asset or a portfolio is the average loss given that Value-
at-Risk has been exceeded. For example, the α per cent ES is the conditional mean of negative
returns rt, given that rt > V aRt(α) :

ESt(α) = E[rt|rt > V aRt(α)].
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collateral resulting from individual haircuts cover a greater confidence level than
the confidence level calculated for the entire portfolio. This difference is due to
the diversification effects at the portfolio level. It is this difference that may be
eliminated during extreme events due to large liquidation of portfolios which lead
the correlations to become much greater. To reduce the probability of entirely losing
the diversification benefits we propose the following strategies.

3.3.2 Strategies for portfolio effects

Strategy 1: Select those portfolios that exhibit a lower probability of
simultaneous losses

To implement this strategy we require a model for the marginals, and a model for
the joint distribution. These models are obtained using the extreme value theory
methods for the marginals and a copula approach for the joint distribution. We
apply this strategy to portfolios of two securities consisting of equities or bonds
where each asset accounts for 50 per cent of the portfolio. For all the portfolios
we compare the fit of a normal copula, a Gumbel copula, a Frank copula, and BB1
copula, and a BB4 copula. The estimation of the copula is carried out by maximizing
the likelihood function.

Having a model for the marginals and dependence allows us to estimate the
probability of simultaneous losses for both assets in each portfolio. Table 6 shows
the probabilities of observing simultaneous equal losses for both assets of each of
the randomly selected portfolios of equities. The corresponding results for bond
portfolios are shown in Table 7. A more detailed analysis of Tables 6 and 7 allows
us to identify the portfolios with the lowest joint probability of simultaneous losses.
For example, among the equity portfolios, portfolio 28 has the lowest probability (1.8
per cent) of observing a 1 per cent simultaneous loss in both assets, and portfolio
25 has the lowest probability (0.19 per cent) of observing a 2 per cent simultaneous
loss in both assets.

One result that stands out, is that bond portfolios exhibit much lower probabil-
ities of joint losses than equities. Comparing Tables 6 and 7, we observe that bond
portfolios exhibit probabilities of simultaneous losses of practically zero for losses
of 2 per cent or more, whereas equity portfolios exhibit probabilities with greater
values. This result suggests that operators of financial infrastructures that take a
large proportion of these particular bond portfolios are better protected against si-
multaneous losses, when compared to other operators who may take mostly equities
as collateral.
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Portfolios of Equities
Simultaneous Losses

Assets Copula 1 per cent 2 per cent 3 per cent 4 per cent 5 per cent
Portfolio1 2 , 3 BB1 0.1272 0.0448 0.0150 0.0055 0.0022
Portfolio2 126 , 103 Normal 0.0247 0.0025 0.0003 0.0001 0.0000
Portfolio3 65 , 46 BB1 0.0796 0.0218 0.0069 0.0024 0.0009
Portfolio4 72 , 62 BB1 0.0183 0.0020 0.0002 0.0000 0.0000
Portfolio5 14 , 122 BB1 0.0874 0.0258 0.0086 0.0029 0.0010
Portfolio6 45 , 61 BB1 0.0877 0.0227 0.0062 0.0018 0.0006
Portfolio7 37 , 49 BB4 0.0593 0.0120 0.0035 0.0013 0.0006
Portfolio8 2 , 124 BB1 0.0733 0.0169 0.0043 0.0013 0.0004
Portfolio9 103 , 130 Frank 0.1704 0.0703 0.0312 0.0125 0.0052
Portfolio10 122 , 8 BB1 0.0828 0.0269 0.0092 0.0034 0.0014
Portfolio11 60 , 127 Frank 0.0707 0.0136 0.0016 0.0000 0.0000
Portfolio12 32 , 16 BB1 0.0918 0.0217 0.0069 0.0028 0.0013
Portfolio13 30 , 86 BB1 0.0937 0.0315 0.0126 0.0048 0.0021
Portfolio14 8 , 2 BB1 0.0745 0.0172 0.0045 0.0013 0.0004
Portfolio15 77 , 15 BB1 0.0912 0.0223 0.0052 0.0015 0.0005
Portfolio16 15 , 61 BB1 0.1083 0.0310 0.0084 0.0027 0.0010
Portfolio17 51 , 2 BB1 0.0957 0.0263 0.0079 0.0027 0.0010
Portfolio18 84 , 127 BB4 0.0719 0.0127 0.0021 0.0003 0.0000
Portfolio19 56 , 50 BB1 0.1390 0.0546 0.0233 0.0109 0.0055
Portfolio20 68 , 114 BB1 0.1754 0.0905 0.0398 0.0194 0.0095
Portfolio25 14 , 81 Frank 0.0240 0.0019 0.0002 0.0000 0.0000
Portfolio26 104 , 70 BB1 0.0432 0.0075 0.0015 0.0003 0.0001
Portfolio27 120 , 125 Frank 0.1272 0.0419 0.0159 0.0058 0.0022
Portfolio28 42 , 81 BB4 0.0180 0.0021 0.0004 0.0001 0.0000
Portfolio29 113 , 67 BB4 0.0461 0.0083 0.0020 0.0006 0.0002
Portfolio30 91 , 99 Frank 0.1157 0.0376 0.0121 0.0046 0.0020
Portfolio31 34 , 103 BB1 0.0999 0.0257 0.0086 0.0032 0.0013
Portfolio32 18 , 11 Normal 0.1160 0.0449 0.0174 0.0065 0.0026
Portfolio33 39 , 55 BB1 0.0571 0.0071 0.0016 0.0005 0.0002
Portfolio34 102 , 69 BB1 0.0516 0.0089 0.0021 0.0006 0.0002
Portfolio35 37 , 44 BB1 0.1626 0.0708 0.0294 0.0130 0.0062

Table 6: Probability of simultaneous percentage losses
This table presents the probability that both assets in the portfolio decline by the same amounts or more. A value
of 0.1 in the table corresponds to 10 per cent. Asset numbers and the corresponding tickers are presented in Table
9.
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Portfolios of Bonds
Simultaneous Losses

Copula 1 per cent 2 per cent 3 per cent 4 per cent 5 per cent
Portfolio1 BB4 0.0041 0.0001 0.0000 0.0000 0.0000
Portfolio2 BB4 0.0016 0.0002 0.0000 0.0000 0.0000
Portfolio3 BB1 0.0060 0.0004 0.0000 0.0000 0.0000
Portfolio4 BB1 0.0055 0.0001 0.0000 0.0000 0.0000
Portfolio5 BB1 0.0104 0.0004 0.0000 0.0000 0.0000
Portfolio6 BB1 0.0073 0.0001 0.0000 0.0000 0.0000
Portfolio7 BB4 0.0001 0.0000 0.0000 0.0000 0.0000
Portfolio8 BB4 0.0014 0.0001 0.0000 0.0000 0.0000
Portfolio9 Frank 0.0000 0.0000 0.0000 0.0000 0.0000
Portfolio10 BB1 0.0066 0.0000 0.0000 0.0000 0.0000
Portfolio11 BB1 0.0040 0.0000 0.0000 0.0000 0.0000
Portfolio12 BB4 0.0053 0.0002 0.0000 0.0000 0.0000
Portfolio13 BB1 0.0064 0.0002 0.0000 0.0000 0.0000
Portfolio14 BB1 0.0062 0.0000 0.0000 0.0000 0.0000
Portfolio15 BB1 0.0011 0.0001 0.0000 0.0000 0.0000
Portfolio16 BB1 0.0120 0.0003 0.0000 0.0000 0.0000
Portfolio17 BB1 0.0036 0.0001 0.0000 0.0000 0.0000
Portfolio18 BB1 0.0067 0.0001 0.0000 0.0000 0.0000
Portfolio19 BB1 0.0069 0.0004 0.0000 0.0000 0.0000
Portfolio20 BB1 0.0032 0.0001 0.0000 0.0000 0.0000
Portfolio21 BB1 0.0073 0.0001 0.0000 0.0000 0.0000
Portfolio22 BB4 0.0001 0.0000 0.0000 0.0000 0.0000
Portfolio23 BB4 0.0014 0.0001 0.0000 0.0000 0.0000
Portfolio24 Frank 0.0000 0.0000 0.0000 0.0000 0.0000
Portfolio25 BB1 0.0066 0.0000 0.0000 0.0000 0.0000

Table 7: Probability of simultaneous percentage losses
This table presents the probability that both assets in a bond portfolio decline by the same amounts or more. A
value of 0.1 in the table corresponds to 10 per cent. Bonds included in this table have a maturity of 10 years or
more.

Another way of determining the portfolios with the lowest probability of simulta-
neous losses is to construct a risk-cost frontier from Tables 6 and 7 in a similar way as
Garcia and Gençay (2006). For this application of the frontier, risk corresponds to
the probability of simultaneous losses, and the cost corresponds to the actual percent-
age losses for each asset. In Figures 8 and 9 we present selected risk-cost frontiers
for groups of five equity and bond portfolios. Figure 8 shows the frontier for ten
portfolios of equities. The first five are shown in the upper panel and the remaining
in the lower panel. In both panels, the x-axis corresponds to the percentage losses
for both assets of the portfolio, and the y-axis represents the probability of observing
simultaneous losses in both assets. Each curve represents one portfolio. Similarly,
Figure 9 illustrates the frontiers for portfolios of bonds. For both of these figures
the risk-cost frontiers that are further away from the origin (x- y-coordinates 0,0)
correspond to those portfolios with greater probability of simultaneous losses. In the
case of bonds, the frontier constructed from Table 6 permits the easy identification
of those portfolios which should be preferred from the others because they exhibit
a lower joint probability of losses. A noticeable difference with equity portfolios is
that as the simultaneous losses increase, bond portfolios converge to probabilities
close to zero much faster than equities.
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Figure 8: Risk-Cost Frontier for Equity Portfolios
This figure illustrates the risk-cost frontier for ten portfolios of equity instruments. The first five are shown in the
upper panel and the remaining in the lower panel. In both panels, the x -axis corresponds to the percentage losses
for both assets of the portfolio, and the y-axis represents the probability of observing simultaneous losses in both
assets. Each curve represents one portfolio. Dotted horizontal and vertical lines represent threshold levels necessary
for strategy 3. Threshold levels correspond to: 5 per cent probability, and 2 per cent simultaneous losses.
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Figure 9: Risk-Cost Frontier for Bond Portfolios
This figure illustrates the risk-cost frontier for the first ten portfolios of bond securities with maturities of 10 years
or more. The first five are shown in the upper panel and the remaining in the lower panel. In both panels, the
x -axis corresponds to the percentage losses for both assets of the portfolio, and the y-axis represents the probability
of observing simultaneous losses in both assets. Each curve represents one portfolio.
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Strategy 2: Set threshold values for the probability of losses and the
magnitude of the associated losses

This strategy requires the selection of a threshold for (i) the probability asso-
ciated with having simultaneous losses in both assets of the portfolio, and (ii) the
magnitude of those losses. Setting the threshold levels is a function of the capital
the organization has set aside to cover extreme events.

Figure 8 shows an example where the thresholds are: 5 per cent for the proba-
bility of simultaneous losses, and 2 per cent for the simultaneous losses (dotted lines
denote the interception of threshold levels). Using the thresholds (dotted lines), a
risk manager could re-balance or replace those portfolios that exceed the threshold
levels. For example, in the upper panel of Figure 8 we observe that one portfolio
exceeds the thresholds, therefore the risk manager following Strategy 3 may replace
this portfolio with others which are below the threshold levels.

Strategy 3: Stress test the dependence structure for the portfolio of col-
lateral
This strategy is meant to address the question: How would the portfolio perform if
there was an event that negatively affected the historical dependence structure? To
answer this question we use portfolio 1 to illustrate a stress test of the dependence
structure. The stress test consists of changing the dependence structure for the
marginal return distributions. This requires us to consider what would be the ap-
propriate copula that can be used as the extreme dependence case? We propose (i)
testing using a comprehensive set of copula families, and (ii) increasing the degree
of positive dependence for each copula. This approach will provide an envelop of the
possible adverse dependence that may exist during ‘systemic events’. During such
events, situations arise where the supply of securities exceeds the demand, driving
down the market value. Stress testing the dependence could provide information
about the magnitude of losses when events of this nature occur.

To stress test the dependence structure, we increase the level of positive depen-
dence, using as a starting value the pairwise historical correlation. To illustrate this
methodology, we use portfolio 1. The historical correlation for portfolio 1 is 0.68.
To stress test the dependence, we increase the correlation (up to 0.99) maintaining
the characteristics of the marginals. For the different correlations we estimate the
99 per cent Value-at-Risk for the equally weighted portfolio and report the results in
Table 8. We report the results for three models of the joint return distribution: the
first model is the one with t-marginals and a Gumbel copula; the second model is
the one with t-marginals and a normal copula; and the third model is the one with
normal marginals and a normal copula. The last one can be thought of as simply a
bivariate normal distribution. We compare the three models to show how different
the resulting losses can be. As can be observed in the table, the bivariate normal
model consistently gives losses that are lower than those reported by the copula
models. Although it is not known what the dependence structure will be during
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stress episodes, the copula approach to model dependence permits one to construct
plausible scenarios. The results presented in Table 8 are only meant to highlight the
importance of choosing various models for the joint distribution to stress test the
dependence, since the actual outcomes may be quite different.

Correlation
VaR99 0.68 0.70 0.75 0.80 0.85 0.95 0.99
Gumbel Copula 4.1182 4.1643 4.1987 4.2461 4.2967 4.3688 4.3825
Standard Error (0.0019) (0.0019) (0.0020) (0.0023) (0.0021) (0.0020) (0.0024)

Normal Copula 3.9518 4.0028 4.0637 4.1139 4.2224 4.3157 4.4235
Standard Error (0.0019) (0.0018) (0.0020) (0.0020) (0.0021) (0.0024) (0.0022)

Bivariate Normal 3.5246 3.5591 3.6104 3.6545 3.7216 3.8054 3.8675
Standard Error (0.0007) (0.0008) (0.0009) (0.0008) (0.0009) (0.0010) (0.0008)

Table 8: Portfolio Losses as Correlation Increases
This table presents the losses for portfolio 1 using a 99 per cent Value-at-Risk measure on the empirical distribution
for different levels of positive dependence. We use three models to capture the dependence: Normal copula with
semi-parametric GPD marginals; Gumbel copula also with semi-parametric GPD marginals; and a bivariate normal
distribution. We conduct a Monte Carlo simulation with 100 repetitions and report the average VaR at the 99
confidence level and the corresponding standard error. A value of 1 in the table corresponds to 1 per cent loss.
Losses are represented with positive values.

4 Conclusions

In this paper we propose various strategies to manage the market risk of portfolios
of securities. These strategies are designed to help reduce the losses that may arise
during normal and extreme market events. In proposing these strategies we high-
light that it is important to include in the risk management framework scenarios
that not only account for the realization of low quantiles in the return distribu-
tions of individual assets, but also account for adverse changes in the dependence
structure of the portfolio (e.g., a structure that exhibits lower or no diversification
benefits). These strategies are presented in a flexible framework that permits one to
model separately the marginal distributions, and the dependence structure. This is
achieved by adopting a copula approach. These strategies include (i) a framework
to calculate haircuts for individual assets, (ii) a methodology to monitor changes in
the dependence structure during normal times, and (iii) a methodology to stress test
and measure the possible effects on the portfolio value of adverse dependence struc-
tures. The proposed risk management strategies contribute to the existing policies
to measure and manage market risk during episodes where the dependence structure
becomes highly positively correlated.

There is at least one possible direction for future research. This is to study the
stylized facts of the dependence structure during extreme events with the objective
of recommending the copula that may provide the most accurate characterization.
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Appendix

Asset Ticker Asset Ticker Asset Ticker Asset Ticker
2 RY.TO 41 IGI.TO 80 FDG.u.TO 119 RON.TO
3 BNS.TO 42 ERF.u.TO 81 SPF.u.TO 120 MX.TO
4 TD.TO 43 RCIb.TO 82 MRUa.TO 121 TIH.TO
5 BMO.TO 44 A.TO 83 ABZ.TO 122 PEY.u.TO
6 BCE.TO 45 WN.TO 84 MHM.TO 123 IPL.u.TO
7 CM.TO 46 CIX.TO 85 X.TO 124 DIIb.TO
8 IMO.TO 47 POT.TO 86 PKZ.TO 125 CGSs.TO
9 ECA.TO 48 CIX.TO 87 ATDb.TO 126 SMU.u.TO
10 AL.TO 49 COS.u.TO 88 CSN.TO 127 ALRb.TO
11 NT.TO 50 ATY.TO 89 OCX.TO 128 ACOx.TO
12 SU.TO 51 CTRa.TO 90 NMC.TO 129 ROC.TO
13 MFC.TO 52 HSE.TO 91 GIBa.TO 130 IMG.TO
14 SLF.TO 53 TA.TO 92 TCLa.TO 131 PTF.u.TO
15 PCA.TO 54 SJRb.TO 93 TEU.TO
16 TRP.TO 55 BPO.TO 94 WRM.TO
17 CNQ.TO 56 T.TO 95 PJCa.TO
18 TLM.TO 57 MDS.TO 96 GLG.TO
19 BBDb.TO 58 REI.u.TO 97 TPL.u.TO
20 CNR.TO 59 PWT.TO 98 WTO.TO
21 ENB.TO 60 NCX.TO 99 WJA.TO
22 POW.TO 61 DTC.TO 100 BVF.TO
23 ABX.TO 62 AET.u.TO 101 HR.u.TO
24 MGa.TO 63 G.TO 102 IAG.TO
25 NA.TO 64 YLO.u.TO 103 CRW.TO
26 BNNa.TO 65 MOLa.TO 104 CU.TO
27 TOC.TO 66 DFS.TO 105 AGU.TO
28 L.TO 67 FL.TO 106 AGFb.TO
29 NRD.TO 68 PD.TO 107 QLT.TO
30 PWF.TO 69 MBT.TO 108 AIT.TO
31 NXY.TO 70 SNC.TO 109 ACMa.TO
32 RIM.TO 71 FTT.TO 110 PIF.u.TO
33 PDG.TO 72 TER.TO 111 BCB.TO
34 XIU.TO 73 K.TO 112 CAE.TO
35 GWO.TO 74 PGF.u.TO 113 SIF.u.TO
36 SC.TO 75 IQW.TO 114 UP.TO
37 TEKb.TO 76 CLS.TO 115 FHR.TO
38 N.TO 77 NF.TO 116 SAP.TO
39 CP.TO 78 EMA.TO 117 ESI.TO
40 SHC.TO 79 FFH.TO 118 OTC.TO

Table 9: Equity data
This table shows the ticker and the corresponding number for all the equity instruments in the database.

27




