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Abstract 

We develop a finite-sample procedure to test the beta-pricing representation of linear 
factor pricing models that is applicable even if the number of test assets is greater than 
the length of the time series. Our distribution-free framework leaves open the possibility 
of unknown forms of non-normalities, heteroskedasticity, time-varying correlations, and 
even outliers in the asset returns. The power of the proposed test procedure increases as 
the time-series lengthens and/or the cross-section becomes larger. This stands in sharp 
contrast to the usual tests that lose power or may not even be computable if the cross-
section is too large. Finally, we revisit the CAPM and the Fama-French three factor 
model. Our results strongly support the mean-variance efficiency of the market portfolio. 

JEL classification: C12, C14, C33, G11, G12 
Bank classification: Econometric and statistical methods; Financial markets 

Résumé 

Les auteurs élaborent une procédure permettant de tester, en échantillon fini, la 
représentation des coefficients bêta donnés par les modèles linéaires d’évaluation 
factorielle, et ce, même si le nombre des actifs dépasse celui des valeurs de la série 
chronologique. Leur cadre autorise des formes inconnues de distribution autres que la loi 
normale ainsi que la présence d’hétéroscédasticité, de structures de corrélation variables 
dans le temps, voire de rendements aberrants. La puissance de la procédure s’accroît avec 
l’allongement de la série chronologique et la hausse du nombre des actifs. Cette propriété 
tranche avec les limites des tests habituels, qui perdent de leur puissance ou peuvent 
même devenir inexécutables si le nombre des actifs est trop élevé. Pour finir, les auteurs 
réexaminent le modèle d’évaluation des actifs financiers et le modèle trifactoriel de Fama 
et French. Leurs résultats indiquent clairement que le portefeuille de marché se situe sur 
la frontière efficiente dans le plan moyenne-variance. 

Classification JEL : C12, C14, C33, G11, G12 
Classification de la Banque : Méthodes économétriques et statistiques; Marchés 
financiers 

 

 



1 Introduction

Many asset pricing models predict that expected returns depend linearly on “beta” coef-

ficients relative to one or more portfolios or factors. The beta is the regression coefficient

of the asset return on the factor. In the capital asset pricing model (CAPM) of Sharpe

(1964) and Lintner (1965), the single beta measures the systematic risk or co-movement

with the returns on the market portfolio. Accordingly, assets with higher betas should

offer in equilibrium higher expected returns. The Arbitrage Pricing Theory (APT) of

Ross (1976), developed on the basis of arbitrage arguments, can be more general than the

CAPM in that it relates expected returns with multiple beta coefficients. Merton (1973)

and Breeden (1979) develop models based on investor optimization and equilibrium ar-

guments that also lead to multiple-beta pricing.

Empirical tests of the validity of beta pricing relationships are often conducted within

the context of multivariate linear factor models. When the factors are traded portfolios

and a riskfree asset is available, exact factor pricing implies that the vector of asset return

intercepts will be zero. These tests are interpreted as tests of the mean-variance efficiency

of a benchmark portfolio in the single-beta model or that some combination of the factor

portfolios is mean-variance efficient in multiple-beta models. In this context, standard

asymptotic theory provides a poor approximation to the finite-sample distribution of

the usual Wald and likelihood ratio (LR) test statistics, even with fairly large samples.

Shanken (1996), Campbell, Lo, and MacKinlay (1997), and Dufour and Khalaf (2002)

document severe size distortions for those tests, with overrejections growing quickly as
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the number of equations in the multivariate model increases. The simulation evidence in

Ferson and Foerster (1994) and Gungor and Luger (2009) shows that tests based on the

Generalized Method of Moments (GMM) à la MacKinlay and Richardson (1991) suffer

from the same problem. As a result, empirical tests of beta-pricing representations can

be severely affected and can lead to spurious rejections of their validity.

The assumptions underlying standard asymptotic arguments can be questionable when

dealing with financial asset returns data. In the context of the consumption CAPM,

Kocherlakota (1997) shows that the model disturbances are so heavy-tailed that they do

not satisfy the Central Limit Theorem. In such an environment, standard methods of in-

ference can lead to spurious rejections even asymptotically and Kocherlakota instead relies

on jackknifing to devise a method of testing the consumption CAPM. Similarly, Affleck-

Graves and McDonald (1989) and Chou and Zhou (2006) suggest the use of bootstrap

techniques to provide more robust and reliable asset pricing tests.

There are very few methods that provide truly exact, finite-sample tests.1 The most

prominent one is probably the F-test of Gibbons, Ross, and Shanken (1989) (GRS).

The exact distribution theory for that test rests on the assumption that the vectors of

model disturbances are independent and identically distributed each period according to

a multivariate normal distribution. As we already mentioned, there is ample evidence

that financial returns exhibit non-normalities; for more evidence, see Fama (1965), Blat-

tberg and Gonedes (1974), Hsu (1982), Affleck-Graves and McDonald (1989), and Zhou

1A number of Bayesian approaches have also been proposed. These include Shanken (1987), Harvey

and Zhou (1990), and Kandel, McCulloch, and Stambaugh (1995).
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(1993). Beaulieu, Dufour, and Khalaf (2007) generalize the GRS approach for testing

mean-variance efficiency. Their simulation-based approach does not necessarily assume

normality but it does nevertheless require that the disturbance distribution be paramet-

rically specified, at least up to a finite number of unknown nuisance parameters. Gungor

and Luger (2009) propose exact tests of the mean-variance efficiency of a single reference

portfolio, whose exactness does not depend on any parametric assumptions.

In this paper we extend the idea of Gungor and Luger (2009) to obtain tests of multiple-

beta pricing representations that relax three assumptions of the GRS test: (i) the assump-

tion of identically distributed disturbances, (ii) the assumption of normally distributed

disturbances, and (iii) the restriction on the number of test assets. The proposed test

procedure is based on finite-sample pivots that are valid without any assumptions about

the distribution of the disturbances in the factor model. We propose an adaptive approach

based on a split-sample technique to obtain a single portfolio representation judiciously

formed to avoid power losses that can occur in naive portfolio groupings. For other exam-

ples of split-sample techniques, see Dufour and Taamouti (2005, 2010). A very attractive

feature of our approach is that it is applicable even if the number of test assets is greater

than the length of the time series. This stands in sharp contrast to the GRS test or

any other approach based on usual estimates of the disturbance covariance matrix. In

order to avoid singularities and be computable, those approaches require the size of the

cross-section be less than that of the time series. In fact, great care must be taken when

applying the GRS test since its power does not increase monotonically with the number of
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test assets and all the power may be lost if too many are included. This problem is related

to the fact that the number of covariances that need to be estimated grows rapidly with

the number of included test assets. As a result, the precision with which this increasing

number of parameters can be estimated deteriorates given a fixed time-series.2

Our proposed test procedure then exploits results from Coudin and Dufour (2009)

on median regressions to construct confidence sets for the model coefficients by inverting

exact sign-based statistics. A similar approach is used in Chernozhukov, Hansen, and

Jansson (2009) to derive finite-sample confidence sets for quantile regression models. The

motivation for using this technique comes from an impossibility result due to Lehmann

and Stein (1949) that shows that the only tests which yield reliable inference under suffi-

ciently general distributional assumptions, allowing non-normal, possibly heteroskedastic,

independent observations are based on sign statistics. This means that all other methods,

including the standard heteroskedasticity and autocorrelation-corrected (HAC) methods

developed by White (1980) and Newey and West (1987) among others, which are not

based on signs, cannot be proved to be valid and reliable for any sample size.

The paper is organized as follows. Section 2 presents the linear factor model used

to describe the asset returns, the null hypothesis to be tested, and the benchmark GRS

test. We provide an illustration of the effects of increasing the number of test assets on

the power of the GRS test. In Section 3 we develop the new test procedure. We begin

2The notorious noisiness of unrestricted sample covariances is a well-known problem in the portfolio

management literature; see Michaud (1989), Jagannathan and Ma (2003), and Ledoit and Wolf (2003,

2004), among others.
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that section by presenting the statistical framework and then proceed to describe each

step of the procedure. Section 4 contains the results of simulation experiments designed

to compare the performance of the proposed test procedure with several of the standard

tests. In Section 5 we apply the procedure to test the Sharpe-Lintner version of the CAPM

and the well-known Fama-French three factor model. Section 6 concludes.

2 Factor model

Suppose there exists a riskless asset for each period of time and define rt as an N × 1

vector of time-t returns on N assets in excess of the riskless rate of return. Suppose

further that those excess returns are described by the linear K-factor model

rt = a + Bft + εt, (1)

where ft is a K×1 vector of common factor portfolio excess returns, B is the N×K matrix

of betas (or factor loadings), and a and εt are N×1 vectors of factor model intercepts and

disturbances, respectively. Although not required for the proposed procedure, the vector

εt is usually assumed to have well-defined first and second moments satisfying E[εt|ft] = 0

and E[εtε
′
t|ft] = Σ, a finite N ×N matrix.

Exact factor pricing implies that expected returns depend linearly on the betas asso-

ciated with the factor portfolio returns:

Et[rt] = BλK , (2)

where λK is a K× 1 vector of expected excess returns associated with ft, which represent
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market-wide risk premiums since they apply to all traded securities. The beta-pricing

representation in (2) is a generalization of the CAPM of Sharpe (1964) and Lintner (1965),

which asserts that the expected excess return on an asset is linearly related to its single

beta. This beta measures the asset’s systematic risk or co-movement with the excess

return on the market portfolio—the portfolio of all invested wealth. Equivalently, the

CAPM says that the market portfolio is mean-variance efficient in the investment universe

comprising all possible assets.3 The pricing relationship in (2) is more general since it

says that a combination (portfolio) of the factor portfolios is mean-variance efficient; see

Jobson (1982), Jobson and Korkie (1982, 1985), Grinblatt and Titman (1987), Shanken

(1987), and Huberman, Kandel, and Stambaugh (1987) for more on the relation between

factor models and mean-variance efficiency.

The beta-pricing representation in (2) is a restriction on expected returns which can

be assessed by testing the hypothesis

H0 : a = 0 (3)

under the maintained factor structure specification in (1). If the pricing errors, a, are in

fact different from zero, then (2) does not hold meaning that there is no way to combine

the factor portfolios to obtain one that is mean-variance efficient.

GRS propose a multivariate F-test of (3) that all the pricing errors are jointly equal

3A benchmark portfolio with excess returns rp is said to be mean-variance efficient with respect to a

given set of N test assets with excess returns rt if it is not possible to form another portfolio of those N

assets and the benchmark portfolio with the same variance as rp but a higher expected return.
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to zero. Their test assumes that the vectors of disturbance terms εt, t = 1, ..., T , in (1)

are independent and normally distributed around zero with non-singular cross-sectional

covariance matrix each period, conditional on the the T × K collection of factors F =

[f ′1, ...,f
′
T ]′. Under normality, the methods of maximum likelihood and ordinary least

squares (OLS) yield the same unconstrained estimates of a and B:

â = r̄− B̂f̄ , (4)

B̂ =

[
T∑
t=1

(rt − r̄)(ft − f̄)′

][
T∑
t=1

(ft − f̄)(ft − f̄)′

]−1
, (5)

where r̄ = T−1
∑T

t=1 rt and f̄ = T−1
∑T

t=1 ft, and the estimate of the disturbance covari-

ance matrix is

Σ̂ =
1

T

T∑
t=1

(rt − â− B̂ft)(rt − â− B̂ft)
′. (6)

The GRS test statistic is

J1 =
T −N −K

N

[
1 + f̄ ′Ω̂−1f̄

]−1
â′Σ̂−1â, (7)

where Ω̂ is given by

Ω̂ =
1

T

T∑
t=1

(ft − f̄)(ft − f̄)′.

Under the null hypothesis H0, the statistic J1 follows a central F distribution with N

degrees of freedom in the numerator and (T −N −K) degrees of freedom in the denomi-

nator.

In practical applications of the GRS test, one needs to decide the appropriate number

N of test assets to include. It might seem natural to try to use as many test assets
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as possible in order to increase the probability of rejecting H0 when it is false. As the

test asset universe expands it becomes more likely that non-zero pricing errors will be

detected, if indeed there are any. However, the choice of N is restricted by T in order

to keep the estimate of the disturbance covariance matrix in (6) from becoming singular,

and the choice of T itself is often restricted owing to concerns about parameter stability.

For instance, it is quite common to see studies where T = 60 monthly returns and N

is between 10 and 30. The effects of increasing the number of test assets on test power

is discussed in GRS, Campbell, Lo, and MacKinlay (1997, p. 206) and Sentana (2009).

When N increases, three effects come into play: (i) the increase in the value of J1’s non-

centrality parameter, which increases power, (ii) the increase in the number of degrees of

freedom of the numerator, which decreases power, and (iii) the decrease in the number of

degrees of freedom of the denominator due to the additional parameters that need to be

estimated, which also decreases power.

To illustrate the net effect of increasing N on the power of the GRS test, we simulated

model (1) with K = 1, where the returns on the single factor are random draws from the

standard normal distribution. The elements of the independent disturbance vector were

also drawn from the standard normal distribution thereby ensuring the exactness of the

GRS test. We set T = 60 and considered ai = 0.05, 0.10, and 0.15 for i = 1, ..., N and we

let the number of test assets N range from 1 to 58. Figure 1 shows the power of the GRS

test as a function of N , where for any given N the higher power is associated with higher

pricing errors. In line with the discussion in GRS, this figure clearly shows the power

8



of the test given this specification rising as N increases up to about one half of T and

then decreasing beyond that. The results in Table 5.2 of Campbell, Lo, and MacKinlay

(1997) show several other alternatives against which the power of the GRS test declines

as N increases. Furthermore, there are no general results about how to devise an optimal

multivariate test. So great care must somehow be taken when choosing the number of test

assets since power does not increase monotonically with N and if the cross-section is too

large, then the GRS test may lose all its power or may not even be computable. In fact,

any procedure that relies on standard unrestricted estimates of the covariance matrix of

regression disturbances will have this singularity problem when N exceeds T .

3 Test procedure

In this section we develop a procedure to test H0 in (3) that relaxes three assumptions

of the GRS test: (i) the assumption of identically distributed disturbances, (ii) the as-

sumption of normally distributed disturbances, and (iii) the restriction on the number of

test assets. Our approach is motivated by results from classical non-parametric statis-

tics that show that the only tests which yield reliable inference under sufficiently general

distributional assumptions, allowing non-normal, possibly heteroskedastic, independent

observations are ones that are conditional on the absolute values of the observations; i.e.,

they must be based on sign statistics. This result is due to Lehmann and Stein (1949);

see also Pratt and Gibbons (1981, p. 218), Dufour and Hallin (1991), and Dufour (2003).

Next we present the statistical framework and then proceed to describe each step of the
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procedure.

3.1 Statistical framework

As in the GRS framework, we assume that the disturbance vectors εt in (1) are indepen-

dently distributed over time, conditional on F. We do not require the disturbance vectors

to be identically distributed, but we do assume that they remain symmetrically distributed

each period. In what follows the symbol
d
= stands for the equality in distribution.

Assumption 1. The cross-sectional disturbance vectors εt, t = 1, ..., T , are mutually

independent, continuous, and diagonally symmetric so that εt
d
= −εt, conditional on F.

The diagonal (or reflective) symmetry condition in Assumption 1 can be equivalently

expressed in terms of the density function as f(εt) = f(−εt). Recall that a random

variable v is symmetric around zero if and only if v
d
= −v, so the symmetry assumption

made here represents the most direct non-parametric extension of univariate symmetry.

See Serfling (2006) for more on multivariate symmetry. The class of distributions encom-

passed by the diagonal symmetry condition includes elliptically symmetric distributions,

which play a very important role in mean-variance analysis because they guarantee full

compatibility with expected utility maximization regardless of investor preferences; see

Chamberlain (1983), Owen and Rabinovitch (1983), and Berk (1997). A random vector

V is elliptically symmetric around the origin if its density function can be expressed as

|Σ|−1/2g(V′Σ−1V) for some nonnegative scalar function g(·), where Σ is (proportional

to) the covariance matrix. The class of elliptically symmetric distributions includes the
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well-known multivariate normal and Student-t distributions, among others. It is impor-

tant to emphasize that the diagonal symmetry condition in Assumption 1 is less stringent

than elliptical symmetry. For example, a mixture (finite or not) of distributions each one

elliptically symmetric around the origin is not necessarily elliptically symmetric but it is

diagonally symmetric. Note also that the distribution of ft in (1) may be skewed thereby

inducing asymmetry in the unconditional distribution of rt.

Assumption 1 does not require the vectors εt to be identically distributed nor does it

restrict their degree of heterogeneity. This is a very attractive feature since it is well known

that financial returns often depart quite dramatically from Gaussian conditions; see Fama

(1965), Blattberg and Gonedes (1974), and Hsu (1982). In particular, the distribution

of asset returns appears to have much heavier tails and is more peaked than a normal

distribution. The following quote from Fama and MacBeth (1973, p. 619) emphasizes the

importance of recognizing non-normalities:

In interpreting [these] t-statistics one should keep in mind the evidence of

Fama (1965) and Blume (1970) which suggests that distributions of common

stock returns are “thick-tailed” relative to the normal distribution and prob-

ably conform better to nonnormal symmetric stable distributions than to the

normal. From Fama and Babiak (1968), this evidence means that when one

interprets large t-statistics under the assumption that the underlying vari-

ables are normal, the probability or significance levels obtained are likely to

be overestimates.
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The present framework leaves open not only the possibility of unknown forms of non-

normality, but also heteroskedasticity and time-varying correlations among the εt’s. For

example, when (rt,f t) are elliptically distributed but non-normal, the conditional covari-

ance matrix of εt depends on the contemporaneous f t; see MacKinlay and Richardson

(1991) and Zhou (1993). Here the covariance structure of the disturbance terms could

be any function of the common factors (contemporaneous or not). The simulation study

below includes a contemporaneous heteroskedasticity specification.

3.2 Portfolio formation

A usual practice in the application of the GRS test is to base it on portfolio groupings in

order to have N much less than T . As Shanken (1996) notes, this has the potential effect of

reducing the residual variances and increasing the precision with which a = (a1, ..., aN)′

is estimated. On the other hand, as Roll (1979) points out, individual stock expected

return deviations under the alternative can cancel out in portfolios, which would reduce

the power of the GRS test unless the portfolios are combined in proportion to their

weighting in the tangency portfolio. So ideally, all the pricing errors that make up the

vector a in (1) would be of the same sign to avoid power losses when forming naive

portfolios of the test assets. In the spirit of weighted portfolio groupings, our approach

here is an adaptive one based on a split-sample technique, where the first subsample is

used to obtain an estimate of a. That estimate is then used to form a single portfolio that

judiciously avoids power losses. Finally, a conditional test of H0 is performed using only
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the returns on that portfolio observed over the second subsample. It is important to note

that in the present framework this approach does not introduce any of the data-snooping

size distortions (i.e. the appearance of statistical significance when the null hypothesis is

true) discussed in Lo and MacKinlay (1990), since the estimation results are conditionally

(on the factors) independent of the second subsample test outcomes.

Let T = T1 + T2. In matrix form, the first T1 returns on asset i can be represented by

r1i = aiι+ F1bi + ε1i , (8)

where r1i = [ri1, ..., riT1 ]
′ collects the time series of T1 returns on asset i, ι is a vector of

ones, b′i is the ith row of B in (1), and ε1i = [εi1, ..., εiT1 ]
′.

Assumption 2. Only the first T1 observations on rt and ft are used to compute the

subsample estimates â1, ..., âN .

This assumption does not restrict the choice of estimation method, so the subsample

estimates â1, ..., âN could be obtained by OLS, quasi-maximum likelihood, or any other

method.4 A well-known problem with OLS is that it is very sensitive to the presence of

large disturbances and outliers. An alternative estimation method is to minimize the sum

of the absolute deviations in computing the regression lines (Bassett and Koenker 1978).

The resulting least absolute deviations (LAD) estimator may be more efficient than OLS

in heavy-tailed samples where extreme observations are more likely to occur. For more

on the efficiency of LAD versus OLS, see Glahe and Hunt (1970), Hunt, Dowling, and

4Of course, T1 must at least be enough to obtain the estimates â1, ..., âN by the chosen method.
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Glahe (1974), Pfaffenberger and Dinkel (1978), Rosenberg and Carlson (1977), and Mitra

(1987). The results reported below in the simulation study and the empirical application

are based on LAD.

With the estimates â1, ..., âN in hand, a vector of statistically motivated “portfolio”

weights ω̂ = (ω̂1, ω̂2, ..., ω̂N) is computed according to:

ω̂i =
âi

|â1|+ ...+ |âN |
= sign(âi)

|âi|
|â1|+ ...+ |âN |

, (9)

for i = 1, ..., N , and these weights are then used to find the T2 returns of a portfolio

computed as yt =
∑N

i ω̂irit, t = T1 + 1, ..., T . Note that having a zero denominator in (9)

is a zero probability event in finite samples (T < ∞) when the disturbance terms are of

the continuous type (as in Assumption 1). Let δ denote the sum of the weighted ai’s and

set xt = ft.

Proposition 1. Under H0 and when Assumptions 1 and 2 hold, yt is represented by the

single equation

yt = δ + x′tβ + ut, for t = T1 + 1, ..., T, (10)

where δ = 0 and (uT1+1, ..., uT )
d
= (±uT1+1, ...,±uT ), conditional on F and ω̂.

Proof. The conditional expectation part of (10) follows from the common factor structure

in (1), and the fact that δ is zero under H0 is obvious. The independence of the disturbance

vectors maintained in Assumption 1 implies that the T2 vectors εt, t = T1 + 1, ..., T , are

conditionally independent of the vector of weights (ω̂1, ω̂2, ..., ω̂N) given F, since under

Assumption 2 those weights are based only on the first T1 observations of rt and ft. Thus
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we see that given F and ω̂,

(
ω̂1ε1t, ω̂2ε2t, ..., ω̂NεNt

) d
=
(
− ω̂1ε1t,−ω̂2ε2t, ...,−ω̂NεNt

)
, (11)

for t = T1 + 1, ..., T . Let ut =
∑N

i ω̂iεit. For a given t, (11) implies that ut
d
= −ut,

since any linear combination of the elements of a diagonally symmetric vector is itself

symmetric (Behboodian 1990, Theorem 2). Moreover, this fact applies to each of the

T2 conditionally independent random variables uT1+1, ..., uT . So, given F and ω̂, the 2T2

possible T2 vectors (
± |uT1+1|,±|uT1+2|, ...,±|uT |

)
are equally likely values for (uT1+1, ..., uT ), where ±|ut| means that |ut| is assigned either

a positive or negative sign with probability 1/2. �

The construction of a test based on a single portfolio grouping is reminiscent of a mean-

variance efficiency test proposed in Bossaerts and Hillion (1995) based on
∑N

i=1 âi and

another one proposed in Gungor and Luger (2009) based on
∑N

i=1 ai. Those approaches

can suffer power losses depending on whether the ai’s tend to cancel out. Splitting the

sample and applying the weights in (9) when forming the portfolio offsets that problem.

Note that these weights do not correspond to any of the usual ones in mean-variance

analysis since finding those requires an estimate of the covariance structure and that is

precisely what we are trying to avoid. Furthermore, such estimates are not meaningful

in our distribution-free context where possible forms of distribution heterogeneity are left

completely unspecified. To see why the weights in (9) are reasonable, note that the sign
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component in the definition of ω̂i makes it more likely that all the intercept values in the

equation describing ω̂irit will be positive under the alternative hypothesis. The component

in (9) pertaining to the absolute values serves to give relatively more weight to the assets

that seem to depart more from H0 and to down weight those that seem to offer relatively

less evidence against the null hypothesis.

3.3 Confidence sets

The model in (10) can be represented in matrix form as y = δι + Xβ + u, where the

elements of u follow what Coudin and Dufour (2009) call a strict conditional “mediangale.”

Define a sign function as s[x] = 1 if x > 0, and s[x] = −1 if x ≤ 0. The following result

is an immediate consequence of the mediangale property.

Proposition 2. Under Assumptions 1 and 2, the T2 disturbance sign vector

s(y − δι−Xβ) =
(
s[yT1+1 − δι− x′T1+1β], ..., s[yT − δι− x′Tβ]

)
follows a distribution free of nuisance parameters, conditional on F and ω̂. Its exact

distribution can be simulated to any degree of accuracy simply by repeatedly drawing S̃T2 =

(s̃1, ..., s̃T2), whose elements are independent Bernoulli variables such that Pr[s̃t = 1] =

Pr[s̃t = −1] = 1/2.

A corollary of this proposition is that any function of the disturbance sign vector

and the factors, say Ψ = Ψ(s(y − δι −Xβ); F), is also free of nuisance parameters (i.e.

pivotal), conditional on F. To see the usefulness of this result, consider the problem
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of testing H0(δ0,β0) : δ = δ0,β = β0 against H1(δ0,β0) : δ 6= δ0 or β 6= β0. Under

H0(δ0,β0), the statistic Ψ(s(y − δι − Xβ); F) is distributed like Ψ(S̃T2 ; F), conditional

on F. This means that appropriate critical values from the conditional distribution may

be found to obtain a finite-sample test of H0(δ0,β0). For example, suppose that Ψ(·)

is a non-negative function. The decision rule is then to reject H0(δ0,β0) at level α if

Ψ(s(y− δι−Xβ); F) is greater than the (1−α)-quantile of the simulated distribution of

Ψ(S̃T2 ; F).

Following Coudin and Dufour (2009), we consider two test statistics given by the

quadratic forms

SX(δ0,β0) = s(y − δ0ι−Xβ0)
′XX′s(y − δ0ι−Xβ0), (12)

SP (δ0,β0) = s(y − δ0ι−Xβ0)
′P(X)s(y − δ0ι−Xβ0), (13)

where P(X) = X(X′X)−1X′ projects orthogonally onto the subspace spanned by the

columns of X. Boldin, Simonova, and Tyurin (1997) show that these statistics can be

associated with locally most powerful tests in the case of i.i.d. disturbances under some

regularity conditions and Coudin and Dufour extend that proof to disturbances that

satisfy the mediangale property. It is interesting to note that (13) can be interpreted

as a sign analogue of the F-test for testing the hypothesis that all the coefficients in a

regression of s(y − δ0ι−Xβ0) on X are zero.

An exactly distribution-free confidence set for δ and β can be constructed simply by

inverting either (12) or (13). Consider the test statistic in (13) for example, and let cα

represent its one-sided α-level simulated critical value. A simultaneous confidence set,
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say C1−α(δ,β), with level 1− α for δ and β is simply the collection of all values of δ0,β0

for which SP (δ0,β0) is less than cα. Note that the critical value cα only needs to be

computed once, since it does not depend on δ0,β0.

From the joint confidence set, it is possible to derive conservative confidence sets

and intervals for general functions of the coefficients δ,β using the projection method in

Coudin and Dufour (2009); see also Abdelkhalek and Dufour (1998), Dufour and Jasiak

(2001), Dufour and Taamouti (2005), and Chernozhukov, Hansen, and Jansson (2009) for

other examples of this technique. To introduce the method, consider a non-linear function

g(δ,β) of δ,β. It is easy to see that (δ,β) ∈ C1−α(δ,β)⇒ g(δ,β) ∈ g(C1−α(δ,β)) so that

Pr[(δ,β) ∈ C1−α(δ,β)] ≥ 1 − α ⇒ Pr[g(δ,β) ∈ g(C1−α(δ,β))] ≥ 1 − α. This means that

g(C1−α(δ,β)) is a conservative confidence set for g(δ,β); i.e., one for which the level is at

least 1− α. In the special case when g(δ,β) is scalar, the interval[
inf

(δ0,β0)∈C1−α(δ,β)
g(δ0,β0), sup

(δ0,β0)∈C1−α(δ,β)

g(δ0,β0)

]

satisfies

Pr

[
inf

(δ0,β0)∈C1−α(δ,β)
g(δ0,β0) ≤ g(δ,β) ≤ sup

(δ0,β0)∈C1−α(δ,β)

g(δ0,β0)

]
≥ 1− α.

Hence, a marginal confidence interval of the form [δ̂L, δ̂U ] for δ in model (10) can be found

as

δ̂L = argmin
(δ0,β0)∈R×RK

δ0,

subject to SP (δ0,β0) < cα,

δ̂U = argmax
(δ0,β0)∈R×RK

δ0,

subject to SP (δ0,β0) < cα.

(14)

Once the solutions in (14) are found, the null hypothesis H0 : a = 0 is rejected at level α
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if zero is not contained in [δ̂L, δ̂U ], otherwise there is not sufficient evidence to reject it at

that level of significance.

Searching over the R × RK domain in (14) is obviously not practical and some re-

strictions need to be imposed. Here we perform that step by specifying a fine grid of

relevant points B(δ̂0, β̂0) around LAD point estimates δ̂0, β̂0 and calculating SP (δ0,β0)

at each of those points.5 An important remark about computation is that a single pass

over the grid is enough to establish both the joint confidence set and the limits of the

marginal confidence interval for δ. Note also that the grid search can be stopped and the

null hypothesis can no longer be rejected at the α level as soon as zero gets included in

the marginal confidence interval for δ.

More sophisticated global optimization methods could be used to solve for the limits

of the marginal confidence interval. For instance, Coudin and Dufour (2009) make use

of a simulated annealing algorithm (Goffe, Ferrier, and Rogers 1994). The advantage of

the naive grid search is that it is completely reliable and feasible when the dimension

of β is not too large. For high dimensional cases, a better appraoch would be to follow

Chernozhukov, Hansen, and Jansson (2009) and use Markov chain Monte Carlo methods

to generate an adaptive set of grid points that explores the relevant region of the parameter

space more quickly than the conventional grid search.

5This problem is naturally parallelizable on a multi-core computer; i.e., the grid can be split into

subgrids and those can be searched over in parallel across multiple cores.
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3.4 Summary of test procedure

Suppose that one wishes to use the SP statistic in (13). In a preliminary step, the

distribution of that statistic is simulated to the desired degree of accuracy and a one-

sided α-level critical value, cα, is determined. The rest of the test procedure then proceeds

according to the following steps.

1. The estimates âi of ai, i = 1, ..., N , are computed using the first subsample of

observations, rit and ft, t = 1, ..., T1.

2. For each i = 1, ..., N , weights ω̂i are computed according to:

ω̂i =
âi

|â1|+ ...+ |âN |
,

and T2 returns of a portfolio are computed as yt =
∑N

i ω̂irit, t = T1 + 1, ..., T .

3. For each candidate point (δ0,β0) ∈ B(δ̂0, β̂0), the statistic SP (δ0,β0) is computed.

The limits of the marginal confidence interval, δ̂L and δ̂U , are then found as:

δ̂L = argmin
(δ0,β0)∈B(δ̂0,β̂0)

δ0,

subject to SP (δ0,β0) < cα,

δ̂U = argmax
(δ0,β0)∈B(δ̂0,β̂0)

δ0,

subject to SP (δ0,β0) < cα.

4. The null hypothesis H0 : a = 0 is rejected if 0 /∈ [δ̂L, δ̂U ], otherwise it is accepted.

This procedure yields a finite-sample and distribution-free test of H0 over the class of

all disturbance distributions satisfying Assumption 1.
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4 Simulation evidence

We present the results of some small-scale simulation experiments to compare the per-

formance of the proposed test procedure with several standard tests. The first of the

benchmarks for comparison purposes is the GRS test in (7). The other benchmarks are

the usual likelihood ratio (LR) test, an adjusted LR test, and a test based on GMM.

The latter is a particularly important benchmark here, since in principle it is “robust” to

non-normality and heteroskedasticity of returns.

The LR test is based on a comparison of the constrained and unconstrained log-

likelihood functions evaluated at the maximum likelihood estimates. The unconstrained

estimates are given in (4), (5), and (6). For the constrained case, the maximum likelihood

estimates are

B̂∗ =

[
T∑
t=1

rtf
′
t

][
T∑
t=1

ftf
′
t

]−1
,

Σ̂∗ =
1

T

T∑
t=1

(
rt − B̂∗ft

)(
rt − B̂∗ft

)′
.

The LR test statistic, J2, is then given by

J2 = T
[
log |Σ̂∗| − log |Σ̂|

]
,

which, under the null hypothesis, follows an asymptotic chi-square distribution with N

degrees of freedom, χ2
N . As we shall see, the finite sample behavior of J2 can differ vastly

from what asymptotic theory predicts. Jobson and Korkie (1982) suggest an adjustment

to J2 in order to improve its finite-sample size properties when used with critical values
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from the χ2
N distribution. The adjusted statistic is

J3 =
T − (N/2)−K − 1

T
J2,

which also follows the asymptotic χ2
N distribution, under H0.

MacKinlay and Richardson (1991) develop tests of mean-variance efficiency in a GMM

framework. For the asset pricing model in (1), the GMM tests are based on the moments

of the following (K + 1)N × 1 vector:

gt(θ) =

 1

ft

⊗ εt(θ), (15)

where εt(θ) = rt − a − Bft. The symbol ⊗ refers to the Kronecker product. Here θ =

(a′, vec(B)′)′, where vec(B) is an NK × 1 vector obtained by stacking the columns of B,

one below the other, with the columns ordered from left to right. The model specification

in (1) implies the moment conditions E(gt(θ0)) = 0, where θ0 is the true parameter vector.

The system in (15) is exactly identified which implies that the GMM procedure yields the

same estimates of θ as does OLS applied equation by equation. The covariance matrix

of the GMM estimator θ̂ is given by V = [D′0S
−1
0 D0]

−1, where D0 = E[∂gT (θ)/∂θ′]

with gT (θ) = T−1
∑T

t=1 gt(θ) and S0 =
∑+∞

s=−∞E[gt(θ)gt−s(θ)′]; see Campbell, Lo, and

MacKinlay (1997, Chapter 5). The GMM-based Wald test statistic is

J4 = T â′
[
R
(
D̂′Ŝ−1D̂

)−1
R′
]−1

â, (16)

where D̂ and Ŝ are consistent estimators of D0 and S0, respectively, and R = (1,0K)⊗IN ,

with 0K denoting a row vector of K zeros and IN as the N × N identity matrix. Note
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that the J4 statistic cannot be computed whenever (K + 1)N exceeds T , since Ŝ then

becomes singular.

Our implementation of the proposed test procedure is computationally intensive owing

to the numerical grid search we perform in Step 3. This is not overly costly for a single

application of the procedure, but it does become prohibitive for a simulation study. For

that reason, we restrict our attention to cases with K = 1 in model (1). For convenience,

the single-factor specification is given again here as

rit = ai + bift + εit, t = 1, ..., T, i = 1, ..., N, (17)

in which case the null hypothesis is a test of the mean-variance efficiency of the given

portfolio. The returns of the reference portfolio, ft, follow a stochastic volatility process:

ft = exp(ht/2)εt with ht = λht−1 + ξt,

where the independent terms εt and ξt are both i.i.d. according to a standard normal

distribution and the persistence parameter λ is set to 0.5. The bi’s are randomly drawn

from a uniform distribution between 0.5 and 1.5. All the tests are conducted at the

nominal 5% level and critical values for SX(δ0,β0) and SP (δ0,β0) are determined using

10,000 simulations. In the experiments we choose mispricing values a and set half the

intercept values as ai = a and the other half as ai = −a. We denote this in the tables as

|ai| = a. The estimates of ai, i = 1, ..., N , in Step 1 are found via LAD. Finally, there are

1000 replications in each experiment.

In the application of the test procedure, a choice needs to be made about where to

split the sample. While this choice has no effect on the level of the tests, it obviously
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matters for their power. We do not have analytical results on how to split the sample,

so we resort to simulations. Table 1 shows the power of the test procedure applied with

the SX and SP statistics for various values of T1/T , where |ai| = 0.20, 0.15, and 0.10.

Here T = 60 and N = 100 and the disturbance terms εit are drawn randomly from the

Student-t distribution with ν degrees of freedom. We consider ν = 12 and 6 to examine

the effects of kurtosis on the power of the tests. As expected the results show that for any

given value of T1/T , the power increases as |ai| increases and decreases as the kurtosis of

the disturbance terms increases. Overall, the results suggest that no less that 30% and

no more than 50% of the time-series observations should be used as the first subsample

in order to maximize power. Accordingly, the testing strategy represented by T1 = 0.4T

is pursued in the remaining comparative experiments.

We also include in our comparisons two distribution-free tests proposed by Gungor

and Luger (2009) that are applicable in the single-factor context. The building block of

those tests is

zit =

(
ri,t+m
ft+m

− rit
ft

)
× (ft − ft+m)

ftft+m
, (18)

defined for t = 1, ...,m, where m = T/2 is assumed to be an integer. The first test is

based on the sign statistic

Si =

∑m
t=1 0.5(s[zit] + 1)−m/2√

m/4
(19)

and the second one is based the Wilcoxon signed rank statistic

Wi =

∑m
t=1 0.5(s[zit] + 1)Rank(|zit|)−m(m+ 1)/4√

m(m+ 1)(2m+ 1)/24
, (20)
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where Rank(|zit|) is the rank of |zit| when |zi1|, ..., |zim| are placed in ascending order of

magnitude. Gungor and Luger (2009) show that a time-series symmetry condition ensures

that both (19) and (20) have limiting (as m → ∞) standard normal distributions. Un-

der the further assumption that the disturbance terms are cross-sectionally independent,

conditional on (f1, ..., fT )′, their sum-type statistics

SD =
N∑
i=1

S2
i and WD =

N∑
i=1

W 2
i (21)

follow an asymptotic chi-square distribution with N degrees of freedom. Simulation re-

sults show that this approximation works extremely well and just like the test procedure

proposed here, the SD and WD test statistics can be calculated even if N is large.

Tables 2 and 3 show the empirical size (Panel A) and power (Panel B) of the considered

tests when |ai| = 0.15 and T = 60, 120 and N = 10, 25, 50, 100, 125. The power results for

the J1, J2, J3, and J4 are based on size-corrected critical values, since none of those tests

are exact under the two specifications we examine. It is important to emphasize that size-

corrected tests are not feasible in practice, especially under the very general symmetry

condition in Assumption 1. They are merely used here as theoretical benchmarks for the

truly distribution-free tests. In particular, we wish to see how the power of the new tests

compares to these benchmarks as T and N vary.

The results in Table 2 correspond to the single-factor model where the disturbance

terms εit are i.i.d. in both the time-series and the cross-section according to a Student-t

distribution with 6 degrees of freedom. From Panel A, we see that the parametric J1

and the distribution-free SD and WD tests behave well under the null with empirical
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rejection rates close to the nominal level. This finding for the GRS test is in line with

Affleck-Graves and McDonald (1989) who present simulation evidence showing the GRS

test to be fairly robust to deviations from normality. From Table 2, the (conservative) SX

and SP tests are also seen to satisfy the level constraint in the sense that the probability

of a Type I error remains bounded by the nominal level of significance.6 The J2, J3, and

J4 tests, however, suffer massive size distortions as the number of equations increases.7

When T = 120 and N = 100, the LR test (J2) rejects the true null with an empirical

probability of 100% and in the case of the adjusted LR test (J3) that probability is still

above 50%. Notice as well that the J1, J2, and J3 are not computable when N exceeds T ,

and the GMM-based J4 cannot even be computed here as soon as 2N exceeds T . (Those

cases are indicated with “-” in the tables.)

In Panel B of Table 2, we see the same phenomenon as in Figure 1: for a fixed T ,

the power of the GRS J1 test rises and then eventually drops as N increases. Note

that J1, J2, and J3 have identical size-corrected powers, since they are all related via

monotonic transformations (Campbell, Lo, and MacKinlay 1997, Chapter 5). On the

contrary, the power of the SD and WD tests and that of the new SX and SP tests

increases monotonically with N .

6Following the terminology in Lehmann and Romano (2005, Chapter 3), we say that a test of H0 has

level α if the probability of incorrectly rejecting H0 when it is true is not greater than α.
7This overrejection problem with standard asymptotic tests in multivariate regression models is also

documented in Stambaugh (1982), Jobson and Korkie (1982), Amsler and Schmidt (1985), MacKinlay

(1987), Stewart (1997), and Dufour and Khalaf (2002).
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The second specification we consider resembles a stochastic volatility model and in-

troduces dependence between the conditional covariance matrix and ft. Specifically, we

let εit = exp(λift/2)ηit, where the innovations ηit are standard normal and the λi’s are

randomly drawn from a uniform distribution between 1.5 and 2.5. It should be noted that

such a contemporaneous heteroskedastic specification finds empirical support in Duffee

(1995, 2001) and it is easy to see that it generates εit’s with time-varying excess kurtosis—

a well-known feature of asset returns. Panel A of Table 3 reveals that all the parametric

tests have massive size distortions in this case, and these over-rejections worsen as N

increases for a given T .8 When T = 120, the J tests all have empirical sizes around 20%.

The probability of a Type I error for all those tests exceeds 65% when N is increased

to 50. In sharp contrast, the four distribution-free tests satisfy the nominal 5% level

constraint, no matter T and N . As in the first example, Panel B shows the power of the

distribution-free tests increasing with both T and N in this heteroskedastic case.

At this point, one may wonder what is the advantage of the new SX and SP tests

since the SD and WD tests of Gungor and Luger (2009) seem to display better power

in Panel B of Tables 2 and 3. Those tests achieve higher power because they eliminate

the bi’s from the inference problem through the long differences in (18), whereas the new

tests proceed by finding set estimates of those nuisance parameters. A limitation of the

SD and WD tests, however, is that they are valid only under the assumption that the

model disturbances are cross-sectionally independent. Table 4 reports the empirical size

8The sensitivity of the GRS test to contemporaneous heteroskedasticity is also documented in MacKin-

lay and Richardson (1991), Zhou (1993), and Gungor and Luger (2009).
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of the those tests when the cross-sectional disturbances are multivariate Student-t with

an equicorrelation structure. Specifically, the disturbances have zero mean, unit variance,

and the correlation between any two disturbances is equal to ρ, which we vary between

0.1 and 0.5. The degrees of freedom parameter is equal to 12 in Panel A and to 6 in Panel

B. The nominal level is 0.05 and we consider T = 60, 120 and N = 10, 100. We see from

Table 4 that the SD and WD tests are fairly robust to mild cross-sectional correlation, but

start over-rejecting as the equicorrelation increases and this problem is further exacerbated

when T increases and more so when N increases. The second limitation of the SD and WD

tests is that they are designed for the single-factor model and cannot be easily extended

to allow for multiple factors. The new SX and SP tests are illustrated next in the context

of a single- and a three-factor model.

5 Empirical illustration

In this section we illustrate the new tests with two empirical applications. First, we

examine the Sharpe-Lintner version of the CAPM. This single-factor model uses the excess

returns of a value-weighted stock market index of all stocks listed on the NYSE, AMEX,

and NASDAQ. Second, we test the more general three-factor model of Fama and French

(1993), which adds two factors to the CAPM specification: (i) the average returns on

three small market capitalization portfolios minus the average return on three big market

capitalization portfolios, and (ii) the average return on two value portfolios minus the

average return on two growth portfolios. Note that the CAPM is nested within the
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Fama-French model. This means that if there were no sampling uncertainty, finding that

the market portfolio is mean-variance efficient would trivially imply the validity of the

three-factor model. We test both specifications with two sets of test assets comprising the

returns on 10 portfolios formed on size and 100 portfolios formed on both size and book-

to-market. All the data we use are from Ken French’s online data library.9 They consist

of monthly observations for the period covering January 1965 to December 2009 (540

months) and the one-month U.S. Treasury bill is considered the risk-free asset. Figure 2

plots the excess returns of the stock market index over the full sample period. From that

figure we see that this representative return series contains several extreme observations.

For instance, the returns seen during the stock market crash of October 1987, the financial

crisis of 2008, and at some other points in time as well are obviously not representative

of normal market activity; we discuss the effects of extreme observations at the end of

this section. It is also quite common in the empirical finance literature to perform asset

pricing tests over subperiods out of concerns about parameter stability. So in addition to

the entire 45-year period, we also examine nine 5-year and four 10-year subperiods. Here

the choice of subperiods follows that in Campbell, Lo, and MacKinlay (1997), Gungor

and Luger (2009), and Ray, Savin, and Tiwari (2009).

9We chose these well-known and readily available datasets so our findings can easily be reproduced.
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5.1 10 size portfolios

Table 5 reports the CAPM test results based on the ten size portfolios. Columns 2–5

show the results of the parameteric J tests and columns 6 and 7 show the results of the

non-parametric SD and WD tests. The numbers reported in parenthesis are p-values and

the numbers in square brackets in the last two columns show the limits of 95% confidence

intervals for δ based on the SX and SP statistics. The entries in bold represent cases of

significance at the 5% level.

From Table 5 we see that the parametric J tests reject the null hypothesis over the

entire sample period with p-values no more than 1%. In contrast, the p-values for the

non-parametric SD and WD tests, 82% and 60% respectively, and the 95% confidence

intervals for the new procedure with the SX and SP statistics clearly support the mean-

variance efficiency of the market index.

In three of the nine 5-year subperiods, 1/65–12/69, 1/90–12/94, and 1/00–12/04, the

J tests reject the CAPM specification with p-values less than 8%. The results of the non-

parametric SD and WD statistics are consistent with those of the J tests in subperiods

1/65–12/69 and 1/00–12/04, although, they also reject the null in the subperiods 1/70–

12/74 and 1/75–12/79. The new SX and SP tests, however, continue to indicate a

non-rejection of the mean-variance efficiency hypothesis, except for SP in the 1/75–12/79

subperiod. The results for the 10-year subperiods are more in line with the findings for

the entire sample period; i.e., the J tests tend to reject the null more often than the

non-parametric tests. Out of those four subsamples, the J tests all agree on a a rejection
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during the last three ones, while the SD and WD tests reject the null only in the second

subperiod.

Besides the obvious differences between the parametric and non-parametric inference

results, Table 5 also reveals some differences between the SD and WD tests and the

proposed SX and SP tests. One possible reason for the disagreement across these non-

parametric tests could be the presence of cross-sectional disturbance correlations. As we

saw in Table 4, the SD and WD tests are not robust to such correlations, whereas the

new tests allow for cross-sectional dependencies just like the GRS test.

Table 6 shows the results for the Fama-French model. The format is essentially the

same as in Table 5, except that here the SD and WD tests are not feasible in this

three-factor specification. For the entire 45-year sample period, the results in Table 6 are

very similar to those for the single-factor model in Table 5. The standard J tests reject

the null with very low p-values, whereas the distribution-free SX and SP tests are not

significant at the 5% level. In the 5-year subperiods, there is much disagreement among

the parametric tests. In seven of the nine subsamples, the GMM-based Wald test (J4)

rejects the null with p-values smaller than 6%. The usual J2 LR test rejects the null

during the subperiods 1/80–12/84, 1/90–12/94, and 1/95–12/99, whereas the adjusted

LR test (J3) tends to reject only during the 1/80–12/84 subperiod with a p-value of 6%.

Note that, only in the subperiod 1/80–12/84, the GRS J1 test tends to reject the null

with a p-value of 7% and agrees with the non-parametric SX and SP on a non-rejection

for all the other 5-year intervals. The results for the 10-year subperiods resemble those for
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the entire sample period and the J tests depict a more consistent picture. Over the last

two of those subperiods, all the J tests indicate a clear rejection with p-values less than

3%, while SX and SP maintain a non-rejection. For the first two 10-year subperiods,

however, the Fama-French model is supported by all the test procedures.

Table 6 shows that the SX and SP tests never reject the three-factor specification.

Taken at face value, these results would suggest that the excess returns of the 10 size

portfolios are well explained by the three Fama-French factors. This is entirely consistent

with the non-rejections seen in Table 5 and it suggests that the size and the book-to-

market factors play no role; i.e., the CAPM factor alone can price the 10 size portfolios.

Upon observing that the Fama-French model is never rejected by the non-parametric

SX and SP statistics, one may be concerned about the ability of the new procedure to

reject the null, when the alternative is true. But the fact that the single-factor model is

rejected in the subperiod 1/75-12/79 suggests that the overall pattern of non-rejections is

not necessarily due to low power. In order to increase the probability of rejecting the null

hypothesis if it is indeed false, we proceed next with a tenfold increase in the number of

test assets.

5.2 100 size and book-to-market portfolios

Tables 7 and 8 show the test results for the two considered factor specifications using return

data on 100 portfolios formed on size and book-to-market. Note that with N = 100, none

of the parametric tests are computable in the 5-year subperiods where T = 60.
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Using the entire sample, the J tests decisively reject both factor specifications. In

the single-factor case (Table 7), the inference results based on the SD and WD tests are

in agreement with the parametric ones. In sharp contrast, the 95% confidence intervals

derived from the SX and SP tests continue to support the mean-variance efficiency of

the market portfolio.

In the nine 5-year subperiods, the SD and WD tests indicate a rejection in six of

them and the SP test rejects the null only in the 1/75-12/74 subperiod, as it did with

the 10 size portfolios (see Table 5). As mentioned before, such a difference among the

non-parametric procedures could be due to the presence of cross-sectional disturbance

correlations and as Table 4 shows, the overrejections by the SD and WD tests are far

worse in large cross-sections. Using the 10-year subperiod data, the J1, J2, and J3 tests

become feasible and along with the SD and WD tests they mostly reject the null with

very low p-values. In the same subperiods, SX and SP indicate non-rejection.

Table 8 presents the results for the Fama-French model. In the full 45-year period,

the non-parametric SP test agrees with the parametric ones on a rejection. A possible

reason for these rejections is the presence of temporal instabilities. Indeed, an implicit

assumption of all the tests used here is that the parameters associated with each test asset

are constant over time. That assumption is obviously less likely to hold over longer time

periods; see Ang and Chen (2007) for evidence of time-varying betas over the long run.

Over the shorter 5-year periods, the three-factor model finds clear support with the

SX and SP tests. Those results and the 10-year ones resemble the findings from Tables
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5 and 6 suggesting that the CAPM factor explains well the risk premiums of the 100 size

and book-to-market portfolios. It is interesting to note that this conclusion about the

validity of the CAPM is also reached by Zhou (1993), Vorkink (2003), and Ray, Savin,

and Tiwari (2009).

5.3 Extreme observations

A common theme in Tables 5–8 is the striking difference between the parametric and

non-parametric inference results. A plausible reason for these differences is the adverse

effect that a small number of extreme observations can have on the OLS estimates used

to compute the J tests; see Vorkink (2003). To investigate that possibility we recompute

the parametric tests with winsorized data. This procedure has the effect of decreasing the

magnitude of extreme observations but leaves them as important points in the sample.

Table 9 shows the results of the J tests with the 10 size portfolios when the full-

sample returns are winsorized at the 0.2%, 0.4%, 0.5%, 0.6%, 0.8%, and 1% levels. In

the single-factor case (Panel A), the J tests cease to be significant at the 5% level with

returns winosoized beyond 0.5%. For the three-factor model (Panel B), the same pattern

occurs but at even smaller winsorization levels. These results clearly show that OLS-based

inference can be very sensitive to the presence of even just a few extreme observations.
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6 Conclusion

The beta-pricing representation of linear factor pricing models is typically assessed with

tests based on OLS or GMM. In this context, standard asymptotic theory is known to

provide a poor approximation to the finite-sample distribution of those test statistics, even

with fairly large samples. In particular, the asymptotic tests tend to over-reject the null

hypothesis when it is in fact true, and these size distortions grow quickly as the number

of included test assets increases. So the conclusions of empirical studies that adopt such

procedures can be lead to spuriously reject the validity of the asset pricing model.

Exact finite-sample methods that avoid the spurious rejection problem usually rely on

strong distributional assumptions about the model’s disturbance terms. A prominent ex-

ample is the GRS test that assumes that the disturbance terms are identically distributed

each period according to a multivariate normal distribution. Yet it is known that finan-

cial asset returns are non-normal, exhibiting time-varying variances and excess kurtosis.

These stylized facts would put into question the reliability of any inference method that

assumes that the cross-sectional distribution of disturbance terms is homogenous over

time. Another important issue with standard inference methods has to do with the choice

of how many tests assets to include. Indeed, if too many are included relative to the

number of available time-series observations, the GRS test may lose all its power or may

not even be computable. In fact, any procedure that relies on unrestricted estimates of

the covariance matrix of regression disturbances will no longer be computable owing to

the singularity that occurs when the size of the cross-section exceeds the length of the
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time series.

In this paper we have proposed a finite-sample test procedure that overcomes these

problems. Specifically, our statistical framework makes no parametric assumptions about

the distribution of the disturbance terms in the factor model. The only requirement is

that the cross-section disturbance vectors be diagonally symmetric each period. The class

of diagonally symmetric distributions includes elliptically symmetric ones, which are the-

oretically consistent with mean-variance analysis. Our non-parametric framework leaves

open the possibility of unknown forms of time-varying non-normalities and many other

distribution heterogeneities, such as time-varying covariance structures, time-varying kur-

tosis, etc. The procedure is an adaptive one based on a split-sample technique that is

applicable even in large cross-sections. In fact, the power of the new test procedure in-

creases as either the time-series lengthens and/or the cross-section becomes larger. The

inference procedure developed here thus offers a potentially very useful way to assess

linear factor pricing models.
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Table 1

Empirical power comparisons for various sample splits

T1/T 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Panel A: t(12) Distribution

|ai| = 0.20

SX 85.9 91.9 89.2 84.7 76.3 50.7 10.9

SP 95.5 97.7 98.3 97.6 97.1 81.7 34.1

|ai| = 0.15

SX 37.5 46.9 49.3 43.3 35.7 19.1 3.2

SP 56.9 69.8 67.9 65.8 60.1 39.1 12.1

|ai| = 0.10

SX 6.6 7.2 9.2 7.8 7.1 3.2 0.8

SP 12.5 16.9 16.5 14.9 14.8 7.7 2.2

Panel B: t(6) Distribution

|ai| = 0.20

SX 71.5 81.9 81.4 76.0 62.8 36.6 7.5

SP 87.1 93.5 95.5 94.4 86.9 68.3 25.4

|ai| = 0.15

SX 24.7 32.6 32.9 31.1 25.3 12.0 1.9

SP 41.4 53.7 52.3 54.8 44.1 27.5 9.6

|ai| = 0.10

SX 4.0 6.2 4.5 4.2 4.5 2.2 0.3

SP 8.1 12.7 9.6 8.9 8.7 5.1 1.6

Notes: This table reports the empirical power (in percentages) of the proposed

test procedure based on the SX and SP statistics in (12) and (13) for various

sample splits, T1/T . The sample size is T = 60 and the number of test assets

is N = 100. The returns are generated according to a single-factor model with

i.i.d. disturbances following a Student-t distribution with degrees of freedom

equal to 12 (Panel A) or 6 (Panel B). The notation |ai| = a means that N/2

pricing errors are set as ai = −a and the other half are set as ai = a. The

nominal level is 0.05 and the results are based on 1000 replications.
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Table 2

Empirical size and power comparisons with homoskedastic disturbances

T N J1 J2 J3 J4 SD WD SX SP

Panel A: Size

60 10 4.6 9.5 4.7 7.9 5.5 4.2 0.2 0.9

25 4.3 32.1 5.6 14.9 4.4 5.2 0.4 1.4

50 6.0 98.7 41.2 - 5.2 4.1 0.7 1.1

100 - - - - 4.6 2.9 0.5 0.9

125 - - - - 4.5 4.2 1.0 2.0

120 10 3.8 5.8 3.8 5.2 3.8 4.2 0.1 1.2

25 5.1 12.0 5.2 7.8 4.2 3.4 0.5 1.0

50 5.5 45.0 7.5 13.9 5.2 4.8 0.6 1.5

100 4.0 100.0 53.5 - 4.2 3.7 0.8 1.8

125 - - - - 6.1 5.0 0.7 1.7

Panel B: Size-corrected power

60 10 41.5 41.5 41.5 41.9 16.7 18.4 1.7 4.5

25 55.5 55.5 55.5 52.7 26.0 25.3 5.7 11.0

50 24.1 24.1 24.1 - 40.8 43.4 14.2 29.3

100 - - - - 61.6 69.0 37.2 55.9

125 - - - - 67.3 75.2 44.5 64.0

120 10 83.1 83.1 83.1 83.8 32.6 39.0 11.5 22.1

25 97.0 97.0 97.0 97.4 55.9 62.4 33.2 51.4

50 99.6 99.6 99.6 99.5 79.4 86.6 66.2 83.4

100 91.1 91.1 91.1 - 96.4 98.2 94.4 98.7

125 - - - - 98.7 99.1 98.4 99.7

Notes: This table reports the empirical size (Panel A) and size-corrected power (Panel B) of the

GRS test (J1), the LR test (J2), an adjusted LR test (J3), a GMM-based test (J4), a sign test

(SD), a Wilcoxon signed rank test (SD), and the proposed SX- and SP-based tests. The returns

are generated according to a single-factor model with i.i.d. disturbances following a t(6)

distribution. The pricing errors are zero under H0, whereas N/2 pricing errors are set equal to

−0.15 and the other half are set to 0.15 under H1. The nominal level is 0.05 and entries are

percentage rates. The results are based on 1000 replications and the symbol “-” is used whenever

a test is not computable.
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Table 3

Empirical size and power comparisons with contemporaneous heteroskedastic distur-

bances

T N J1 J2 J3 J4 SD WD SX SP

Panel A: Size

60 10 23.2 32.8 23.6 26.6 5.9 5.3 0.4 0.9

25 46.6 81.6 50.5 62.8 5.5 4.3 0.3 1.1

50 50.6 97.4 90.2 - 3.9 4.4 0.9 2.1

100 - - - - 4.5 3.7 1.2 2.3

200 - - - - 5.4 4.2 1.1 2.6

120 10 19.0 23.1 19.1 18.5 4.9 4.4 0.3 1.5

25 37.8 54.6 38.3 45.5 4.2 5.0 0.6 1.8

50 67.8 92.8 72.2 78.2 4.8 3.9 1.1 2.4

100 73.7 96.6 94.0 - 5.7 5.2 1.8 2.2

200 - - - - 6.0 4.9 1.6 1.9

Panel B: Size-corrected power

60 10 14.9 14.9 14.9 15.0 14.0 15.9 2.0 4.2

25 27.2 27.2 27.2 25.1 20.6 26.0 4.0 6.3

50 32.3 32.3 32.3 - 28.6 35.4 6.7 11.6

100 - - - - 49.4 59.3 15.4 21.7

200 - - - - 72.4 80.3 29.9 38.8

120 10 23.0 23.0 23.0 24.0 26.8 31.2 7.3 10.8

25 47.8 47.8 47.8 45.7 43.7 51.7 17.6 23.2

50 78.6 78.6 78.6 73.6 69.4 78.9 36.0 44.2

100 76.3 76.3 76.3 - 91.0 95.7 63.9 71.2

200 - - - - 99.6 99.8 88.6 91.9

Notes: This table reports the empirical size (Panel A) and size-corrected power (Panel B) of the

GRS test (J1), the LR test (J2), an adjusted LR test (J3), a GMM-based test (J4), a sign test

(SD), a Wilcoxon signed rank test (SD), and the proposed SX- and SP-based tests. The returns

are generated according to a single-factor model with contemporaneous heteroskedastic

disturbances. The pricing errors are zero under H0, whereas N/2 pricing errors are set equal to

−0.15 and the other half are set to 0.15 under H1. The nominal level is 0.05 and entries are

percentage rates. The results are based on 1000 replications and the symbol “-” is used

whenever a test is not computable.
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Table 4

Empirical size under cross-sectional disturbance equicorrelation structure

N = 10 N = 100

ρ 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Panel A: t(12) Distribution

T = 60

SD 5.4 6.4 7.3 8.0 8.2 5.6 8.5 14.5 16.4 17.5

WD 6.5 7.2 7.8 9.3 9.9 5.9 10.8 14.5 17.0 18.6

T = 120

SD 4.8 6.0 6.8 8.1 8.9 8.2 12.4 14.8 17.5 19.6

WD 5.4 6.4 7.6 9.1 10.3 7.2 12.8 16.2 18.3 20.2

Panel A: t(6) Distribution

T = 60

SD 4.2 5.2 5.8 6.2 7.9 7.0 10.2 14.7 16.9 18.9

WD 3.8 5.3 6.9 7.8 9.4 7.8 13.1 16.1 19.0 20.3

T = 120

SD 4.4 5.0 7.0 7.8 7.7 6.1 9.7 13.0 15.5 18.1

WD 4.3 4.1 5.3 6.7 8.3 7.0 12.1 15.2 18.3 20.3

Notes: This table reports the empirical size of a sign test (SD) and a Wilcoxon signed rank test (WD)

when the single-model cross-sectional disturbances are multivariate Student-t with mean zero and the

correlation between any two disturbances is equal to ρ. The degrees of freedom parameter is equal to

12 in Panel A and to 6 in Panel B. The nominal level is 0.05 and entries are percentage rates. The

results are based on 1000 replications
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Table 5

Tests of the CAPM with 10 size portfolios

Time period J1 J2 J3 J4 SD WD SX SP

45-year period

1/65–12/09 2.30 22.94 22.64 23.04 5.91 8.31 [-1.34, 1.44] [-0.40, 0.16]
(0.01) (0.01) (0.01) (0.01) (0.82) (0.60)

5-year subperiods

1/65–12/69 1.80 18.80 16.61 18.42 24.00 34.80 [-4.79, 5.20] [-0.48, 1.37]
(0.08) (0.04) (0.08) (0.05) (0.01) (0.00)

1/70–12/74 1.45 15.52 13.71 14.27 34.93 34.94 [-3.72, 6.27] [-0.25, 2.30]
(0.19) (0.11) (0.19) (0.16) (0.00) (0.00)

1/75–12/79 1.30 14.09 12.45 18.50 33.07 58.75 [-3.86, 6.13] [0.28, 1.72]
(0.26) (0.17) (0.26) (0.05) (0.00) (0.00)

1/80–12/84 1.17 12.84 11.34 11.99 3.07 5.79 [-4.87, 5.12] [-0.45, 0.78]
(0.33) (0.23) (0.33) (0.29) (0.98) (0.83)

1/85–12/89 1.27 13.85 12.23 12.60 9.60 4.33 [-4.73, 5.26] [-0.31, 1.18]
(0.27) (0.18) (0.27) (0.25) (0.48) (0.93)

1/90–12/94 1.80 18.80 16.61 18.28 8.93 14.01 [-1.45, 0.66] [-0.24, 0.45]
(0.08) (0.04) (0.08) (0.05) (0.54) (0.17)

1/95–12/99 1.60 16.94 14.96 20.20 9.47 7.29 [-3.75, 6.24] [-1.10, 2.09]
(0.14) (0.08) (0.13) (0.03) (0.49) (0.70)

1/00–12/04 1.93 19.93 17.61 19.46 27.60 16.80 [-4.66, 5.33] [-0.88, 2.18]
(0.06) (0.03) (0.06) (0.03) (0.00) (0.08)

1/05–12/09 1.54 16.39 14.48 15.42 8.93 6.57 [-5.07, 4.92] [-1.07, 1.33]
(0.15) (0.09) (0.15) (0.12) (0.54) (0.77)

10-year subperiods

1/65–12/74 1.26 13.17 12.40 12.50 6.73 3.34 [-5.80, 4.19] [-1.89, 0.05]

(0.26) (0.21) (0.26) (0.25) (0.75) (0.97)

1/75–12/84 1.81 18.45 17.37 23.18 40.87 56.62 [-4.69, 5.30] [-0.19, 0.85]
(0.07) (0.05) (0.07) (0.01) (0.00) (0.00)

1/85–12/94 2.29 22.84 21.51 22.18 7.20 3.85 [-2.70, 2.65] [-0.61, 0.62]
(0.02) (0.01) (0.02) (0.01) (0.71) (0.95)

1/95–12/04 2.30 22.94 21.60 21.61 10.00 7.61 [-6.11, 3.88] [-2.29, 0.66]
(0.02) (0.01) (0.02) (0.02) (0.44) (0.67)

Notes: The results are based on value-weighted returns of 10 portfolios formed on size. The market portfolio is the

value-weighted return on all NYSE, AMEX, and NASDAQ stocks and the risk-free rate is the one-month Treasury

bill rate. Columns 2–5 report the results for the parametric J test; columns 6–7 report the results for the

non-parametric SD and WD statistics. The numbers in parentheses are the p-values. The results for the newly

proposed procedure, SX and SP , are reported in columns 8 and 9. The 95% marginal confidence intervals of the

intercept estimates are in square brackets. Entries in bold represent cases of significance at the 5% level.
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Table 6

Tests of the Fama-French model with 10 size portfolios

Time period J1 J2 J3 J4 SX SP

45-year period

1/65–12/09 2.44 24.43 24.02 24.86 [-0.59, 0.69] [-0.03, 0.21]
(0.01) (0.01) (0.01) (0.01)

5-year subperiods

1/65–12/69 1.03 11.87 10.09 12.18 [-1.00, 0.96] [-0.48, 0.40]
(0.44) (0.29) (0.43) (0.27)

1/70–12/74 1.39 15.59 13.25 19.55 [-0.88, 1.08] [-0.32, 0.44]
(0.21) (0.11) (0.21) (0.03)

1/75–12/79 0.41 5.08 4.31 6.09 [-1.04, 0.92] [-0.60, 0.48]
(0.93) (0.89) (0.93) (0.81)

1/80–12/84 1.92 20.55 17.47 28.76 [-0.71, 1.29] [-0.35, 0.61]
(0.07) (0.02) (0.06) (0.00)

1/85–12/89 1.51 16.75 14.24 19.07 [-0.73, 1.27] [-0.13, 0.67]
(0.16) (0.08) (0.16) (0.04)

1/90–12/94 1.70 18.56 15.78 21.81 [-0.86, 1.10] [-0.34, 0.54]
(0.11) (0.05) (0.11) (0.02)

1/95–12/99 1.70 18.50 15.72 31.27 [-0.70, 1.30] [-0.14, 0.66]
(0.11) (0.05) (0.11) (0.00)

1/00–12/04 1.29 14.58 12.39 17.72 [-1.15, 0.81] [-0.91, 0.81]
(0.26) (0.15) (0.26) (0.06)

1/05–12/09 1.52 16.82 4.29 19.54 [-1.16, 0.80] [-0.44, 0.20]
(0.16) (0.08) (0.16) (0.03)

10-year subperiods

1/65–12/74 1.06 11.35 10.50 12.52 [-1.04, 0.92] [-0.16, 0.20]
(0.40) (0.33) (0.40) (0.25)

1/75–12/84 0.95 10.16 9.39 12.28 [-1.13, 0.83] [-0.45, 0.19]
(0.50) (0.43) (0.50) (0.27)

1/85–12/94 2.56 25.71 23.79 26.66 [-0.94, 1.02] [-0.18, 0.34]
(0.01) (0.00) (0.01) (0.00)

1/95–12/04 2.16 22.07 20.42 25.30 [-1.18, 0.78] [-0.54, 0.30]
(0.03) (0.01) (0.03) (0.00)

Notes: The results are based on value-weighted returns of 10 portfolios formed on size, the

returns on three Fama-French factors, and the one-month Treasury bill rate as the risk-free

rate. Columns 2–5 report the results for the parametric J statistics and the p-values in the

paranthesis. The results for the newly proposed distribution-free tests, SX and SP , are

reported in columns 6 and 7. The 95% marginal confidence intervals of the intercept estimates

are in square brackets. Entries in bold represent cases of significance at the 5% level.
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Table 7

Tests of the CAPM with 100 size and book-to-market portfolios

Time period J1 J2 J3 J4 SD WD SX SP

45-year period

1/65–12/09 2.74 262.02 236.79 277.65 260.95 314.09 [-0.92, 1.38] [-0.12, 0.35]
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

5-year subperiods

1/65–12/69 - - - - 143.33 186.92 [-4.68, 5.31] [-0.35, 1.36]
(0.00) (0.00)

1/70–12/74 - - - - 152.80 148.81 [-3.90, 6.09] [-0.36, 1.56]
(0.00) (0.00)

1/75–12/79 - - - - 227.47 355.90 [-3.03, 6.96] [0.33, 6.96]
(0.00) (0.00)

1/80–1/84 - - - - 96.40 96.91 [-4.59, 5.40] [-0.01, 0.71]
(0.58) (0.57)

1/85–12/89 - - - - 164.00 156.98 [-4.58, 5.41] [-0.09, 0.68]
(0.00) (0.00)

1/90–12/94 - - - - 156.67 185.98 [-3.88, 0.83] [-0.85, 0.25]
(0.00) (0.00)

1/95–12/99 - - - - 70.93 85.86 [-4.30, 5.69] [-1.00, 1.57]
(0.99) (0.84)

1/00–12/04 - - - - 219.47 201.90 [-4.16, 5.83] [-0.19, 1.47]
(0.00) (0.00)

1/05–12/09 - - - - 89.07 80.24 [-5.09, 4.90] [-0.50, 0.50]
(0.78) (0.93)

10-year subperiods

1/65–12/74 1.33 249.48 141.37 - 121.27 104.95 [-5.59, 4.40] [-1.43, 0.09]
(0.24) (0.00) (0.00) (0.07) (0.35)

1/75–12/84 0.94 214.31 121.44 - 263.00 345.82 [-4.56, 5.43] [-0.83, 1.06]
(0.60) (0.00) (0.07) (0.00) (0.00)

1/85–12/94 1.75 278.58 157.86 - 193.20 194.08 [-1.58, 1.78] [-0.12, 0.60]
(0.08) (0.00) (0.00) (0.00) (0.00)

1/95–12/04 2.57 321.22 182.03 - 186.07 212.82 [-5.39, 4.60] [-1.47, 0.53]
(0.01) (0.00) (0.00) (0.00) (0.00)

Notes: The results are based on value-weighted returns of 100 portfolios formed on size and book-to-market. The market

portfolio is the value-weighted return on all NYSE, AMEX, and NASDAQ stocks and the risk-free rate is the one-month

Treasury bill rate. Columns 2–5 report the results for the parametric J test; columns 6–7 report the results for the

distribution-free tests of SD and WD. The number in parentheses are the p-values. The results for the newly proposed

procedure, SX and SP , are reported in columns 8 and 9. The 95% marginal confidence intervals of the intercept estimates

are in square brackets. The symbol “-” is used whenever a test is not computable and entries in bold represent cases of

significance at the 5% level.
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Table 8

Tests of the Fama-French model with 100 size and book-to-market portfolios

Time period J1 J2 J3 J4 SX SP

45-year period

1/65–12/09 2.48 243.09 218.78 327.08 [-0.14, 0.74] [0.06, 0.22]
(0.00) (0.00) (0.00) (0.00)

5-year subperiods

1/65–12/69 - - - - [-0.88, 1.08] [-0.16, 0.48]

1/70–12/74 - - - - [-1.15, 0.81] [-0.35, 0.29]

1/75–12/79 - - - - [-0.93, 5.07] [-0.93, 5.08]

1/80–12/84 - - - - [-1.00, 0.96] [-0.32, 0.40]

1/85–12/89 - - - - [-0.94, 1.02] [-0.22, 0.58]

1/90–12/94 - - - - [-1.03, 0.93] [-0.51, 0.29]

1/95–12/99 - - - - [-0.63, 1.37] [-0.15, 1.02]

1/00–12/04 - - - - [-1.37, 2.63] [-1.37, 2.31]

1/05–12/09 - - - - [-1.01, 0.95] [-0.45, 0.63]

10-year subperiods

1/65–12/74 1.78 297.18 163.45 - [-0.95, 1.01] [-0.07, 0.25]

(0.09) (0.00) (0.00)

1/75–12/84 0.79 191.69 105.43 - [-1.92, 2.04] [-1.08, 1.68]

(0.76) (0.00) (0.34)

1/85–12/94 1.67 285.83 157.21 - [-0.85, 1.11] [-0.05, 0.39]

(0.11) (0.00) (0.00)

1/95–12/04 2.23 317.49 174.62 - [-0.84, 1.12] [-0.40, 0.56]

(0.03) (0.00) (0.00)

Notes: The results are based on value-weighted returns of 100 portfolios formed on size and

book-to-market, the returns on three Fama-French factors, and the one-month Treasury bill

rate as the risk-free rate. Columns 2–5 report the results for the parametric J statistics and the

p-values in the paranthesis. The results for the newly proposed distribution-free tests, SX and

SP , are reported in columns 6 and 7. The 95% marginal confidence intervals of the intercept

estimates are in square brackets. The symbol “-” is used whenever a test is not computable and

entries in bold represent cases of significance at the 5% level.
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Table 9

Sensitivity of parametric tests to extreme observations

0% 0.2% 0.4% 0.5% 0.6% 0.8% 1%

Panel A: CAPM

J1 2.30 2.30 2.14 1.99 1.71 1.37 1.53
(0.01) (0.01) (0.02) (0.03) (0.07) (0.19) (0.12)

J2 22.94 22.96 21.41 20.00 17.25 13.81 15.45
(0.01) (0.01) (0.02) (0.03) (0.07) (0.18) (0.12)

J3 22.64 22.66 21.13 19.74 17.02 13.63 15.25
(0.01) (0.01) (0.02) (0.03) (0.07) (0.19) (0.12)

J4 23.04 23.00 21.22 19.69 16.56 12.77 14.05
(0.01) (0.01) (0.02) (0.03) (0.08) (0.23) (0.15)

Panel B: Fama-French model

J1 2.44 2.40 1.71 1.45 1.21 1.11 1.24
(0.01) (0.01) (0.07) (0.15) (0.28) (0.35) (0.26)

J2 24.43 24.09 17.30 14.72 12.26 11.22 12.62
(0.01) (0.01) (0.07) (0.14) (0.26) (0.33) (0.24)

J3 24.02 23.68 17.01 14.47 12.05 11.04 12.41
(0.01) (0.01) (0.07) (0.15) (0.28) (0.35) (0.26)

J4 24.86 24.62 18.00 15.40 12.60 11.70 13.69
(0.01) (0.01) (0.05) ( 0.12) (0.25) (0.31) (0.30)

Notes: This table shows the results of the parametric tests with the 10 size portfolios when

the returns for the full sample period from Janaury 1965 to December 2009 are winsorized

at various small levels. Panels A and B correspond to the single- and three-factor models,

respectively. The numbers in parenthesis are p-values and bold entries represent cases of

significance at the 5% level.
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Figure 1
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Notes: This figure plots the power of the GRS test as a function of the number of included test assets.

The returns are generated from a single-factor model with normally distributed disturbances. The

sample size is T = 60 and the number of test assets N ranges from 1 to 58. The test is performed at a

nominal 0.05 level. The higher power curves are associated with greater pricing errors.
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Figure 2
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Notes: This figure plots the monthly excess returns (in percentage) of a value-weighted stock market

index of all stocks listed on the NYSE, AMEX, and NASDAQ for the period covering January 1965 to

December 2009.
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