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Abstract 

Real rigidities are an important feature of modern sticky price models and are policy-
relevant because of their welfare consequences, but cannot be structurally identified from 
time series. I evaluate the plausibility of capital specificity as a source of real rigidities 
using a two-dimensional generalized (s,S) model calibrated to micro evidence. Capital 
lumpiness reduces price stickiness as endogenous fluctuations in the marginal cost of 
output increase willingness to pay menu costs (an extensive effect), but increases price 
stickiness through complementarities (an intensive effect). The extensive effect warrants 
higher menu costs to match evidence on price changes, and the effects of 
complementarities prevail. 

JEL classification: E12, E22, E31 
Bank classification: Transmission of monetary policy 

Résumé 

Les rigidités réelles sont une caractéristique importante des modèles modernes à prix 
rigides et présentent un intérêt certain pour la conduite de la politique monétaire en raison 
de leur incidence sur le bien-être, mais elles ne peuvent être identifiées structurellement à 
partir de séries chronologiques. À l’aide d’un modèle (s,S) généralisé bidimensionnel 
étalonné en fonction de données microéconomiques, l’auteur évalue s’il est plausible de 
considérer le capital spécifique à une entreprise comme une source de rigidités réelles. La 
possibilité pour une firme de modifier temporairement et de façon importante son niveau 
d’investissement a un double effet sur la rigidité des prix : d’une part, elle la réduit, les 
variations endogènes du coût marginal de production rendant les entreprises plus enclines 
à assumer les coûts d’étiquetage (effet extensif); d’autre part, elle l’accroît en raison de la 
présence de complémentarités (effet intensif). Étant donné l’effet extensif, des coûts 
d’étiquetage plus élevés sont nécessaires afin de reproduire la fréquence de révision des 
prix observée, et l’effet intensif prédomine. 

Classification JEL : E12, E22, E31 
Classification de la Banque : Transmission de la politique monétaire 

 

 



1 Introduction

Infrequent changes in the prices of many �nal goods and the ability of this simple stylized

fact to introduce a role for nominal disturbances has spawned a proliferation of general equi-

librium implementations of sticky price models over the last two decades. The prevalent

use of this mechanism in models for policy analysis and the observation that counterfac-

tual policy considerations necessitate knowledge of structural parameters (Lucas (1976))

has been very in�uential, particularly as combined with compelling methods for evaluating

calibrated models (Prescott (1986)). Although increasingly nuanced in their implemen-

tation, a number of important challenges remain, one of which is the disparity between

microeconomic and macroeconomic empirical studies of prices.

In�ation is su¢ ciently persistent and insensitive to marginal cost movements to imply

average price durations of at least 5.9 quarters (Gali and Gertler (1999)) with evidence

that this estimate is biased in favor of price �exibility (Linde (2005)). Yet the prices of

individual products change frequently with high estimates around 3.0 quarters (Steinsson

and Nakamura (2008)) and others are much lower (Klenow and Kryvtsov (2008)). The

tension between the observation that prices of individual goods change frequently and the

duration of prices implied by the persistence of in�ation is successfully mitigated through

the introduction real rigidities (Kimball (1995), Sbordone (1999), Gali et. al. (2001)).

Interpretation of these real rigidities is ambiguous, however, because a number of plausible

structural explanations exist, including variable elasticity of demand (Dotsey and King

(2005)), heterogeneity in nominal rigidities across sectors (Carvalho (2007)), and merely

increasing short-run marginal cost directly (Woodford (1996)). None of these explanations

are identi�ed in macroeconometric studies because the time series can only identify the

reduced form parameter.1 Furthermore, this matters a great deal in terms of the conduct

of monetary policy because the source of real rigidities has strong implications for model

welfare properties (Levin et. al. (2007)).

One of the more popular ways of generating increasing short-run marginal cost is the

inclusion of �rm-speci�c capital, and in this paper I use microeconomic evidence from

the U.S. in an attempt to identify the role of �rm-speci�c capital in aggregate dynamics.

Firm-speci�c capital plays an important role in a number of important recent studies, in-

cluding Smets and Wouters (2007), Murchison and Rennisson (2006), Altig et. al. (2005),

Woodford (2005), Sveen and Weinke (2007), and many others, including policy models at

1Gali (2005) points this out very clearly in a discussion of Altig, et. al. (2005).
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many central banks. Its introduction is justi�ed by the widely shared idea that capital is

not freely transferable between �rms each period, and it is one of the most widely adopted

cases in which interesting dynamics obtain from the interaction of nominal and real rigidi-

ties (Ball and Romer (1990)). In each of these models, simulated plant-level investment

patterns are counterfactual. Monetary models with capital speci�city typically have very

smooth �rm-level investment rates in which depreciated capital is perpetually replaced

each period. Some of these studies use convex adjustment costs (Altig et. al. (2005),

Woodford (2005)), and others rely on ad hoc decision rules or complete maintenance in-

vestment (Sveen and Weinke (2007)). In contrast, while regular capital maintenance makes

up about half of the investment activity in the U.S., the majority of manufacturing plants

only partially maintain their equipment in a typical year and compensate for obsolescence

and maintenance shortcomings with large but infrequent investment episodes (Doms and

Dunne (1998)).

I produce and solve a theoretical model with several key features that enable me to

more closely match microeconomic evidence as I reexamine the extent to which �rm-speci�c

capital might be a means for resolving the dissonance above: (i) prices change infrequently

because of menu costs, (ii) large investment episodes occur infrequently because of �xed

installation costs; and (iii) capital maintenance allows machine failures to be repaired

without installation costs, but is not su¢ cient to fully compensate for degradation and

obsolescence over time. In my calibration, I match key moments from the price panels

for the U.S. Consumer Price Index and from the investment panels in the Longitudinal

Research Database before evaluating the implications of the model for aggregate dynamics

relative to U.S. time series.

Prices in sticky price models respond to changes in the marginal cost of output just

as they would in a purely real model; the partial e¤ect varies as small movements in

the marginal cost of output cannot justify any change in price, and large changes in the

marginal cost of output will justify payment of a �nite cost. A sticky price model with

�rm-speci�c productivity �uctuations (Golsov and Lucas (2008)) shows exactly this; and

the reasoning is somewhat similar in my model, except that changes in the marginal cost

of output are endogenous responses to the incentives to spread �xed installation costs

over large capital purchases. The periodicity of large investment episodes and e¢ cacy of

intermediate maintenance e¤orts dictate the magnitude of the changes in the marginal cost

of output, and I give the relevant parameters special care in my calibration. Large and

frequent price changes accompany large and frequent �uctuations in the marginal cost of
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output, and small and frequent price changes accompany constant �rm-speci�c production

factors (Kimball (1995)).

Holding constant the speci�cation of nominal frictions (i.e., the distribution of menu

costs), �rm speci�c capital dramatically mitigates the real e¤ects of nominal disturbances

in the economy. A simple menu cost model needs surprisingly small menu costs to match

the average duration of prices in the U.S., and changes in capital structure (or in any of

the relevant �rm-speci�c states which a¤ect the marginal cost of output) don�t need to be

very large to motivate the �rm to change its prices as well. This is the extensive e¤ect

of �rm-speci�c capital documented in previous versions of this paper (Johnston (2007)).

Other studies have since con�rmed this e¤ect in similar environments (Reiter, Sveen, and

Weinke (2009)).

The complementarity e¤ect of short run diminishing returns to scale, frequently because

a factor of production is temporarily �xed, is much more well known, and has been for

some time (Woodford (1996)). Price changes in a positive in�ation environment are, on

average, positive; and decreasing returns to scale e¤ectively constrains the magnitude of

price increases: marginal cost falls after a relative price increase and gives the �rm reason

to choose a price lower than it otherwise would (Gali et. al. (2001)). This is the intensive

e¤ect.

A more realistic capital structure that matches key moments of U.S. evidence on plant

level capital investment patterns justi�es much larger nominal frictions if one wishes to

continue to also match the evidence on the frequency of price changes. While it�s interesting

in a theoretical sense to learn about the partial e¤ect on pricing behavior of a change in

the capital structure while holding other structural parameters (including those of the

distribution of menu costs) �xed, it�s not at all a fair comparison in terms of its usefulness

for model selection, and the question is more nuanced than the previous paragraphs (and

previous versions of this paper) would suggest. I ask which of two menu cost models �one

with �rm-speci�c capital, and the other without �produce the most desirable aggregate

dynamics when each model is calibrated to match microeconomic evidence on pricing and

investment behavior as closely as possible.

The intensive e¤ect remains and is the dominant force in determining aggregate dynam-

ics, after frictions on the nominal side of the model (i.e., the distribution of menu costs) are

raised to hold the average duration of prices constant at the level found in microeconomic

evidence. Output is higher (and in�ation lower) in the year following a moderately persis-

tent shock to the growth rate of money. I conclude that capital speci�city is an empirically
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justi�able real rigidity, although it alone is not su¢ cient to reconcile microeconomic and

macroeconomic evidence. The time series properties of the calibrated model I develop make

this clear, and there�s an important role for the other real rigidities mentioned earlier.

Section 2 describes the model, beginning with the fairly orthodox description of the

household, proceeds to describe the problem of the �rm, and concludes with equilibrium

conditions that close the model. Section 3 describes the calibration procedure. Section 4

presents the results, considering �rst the aggregate e¤ects of changing the capital structure

of a model while holding the nominal side of the model �xed, and concluding with the

implications that the capital structure modi�cation for the calibration of the nominal side.

Section 4 concludes.

2 Model

In order to learn more about the possible implications of attached factors for price adjust-

ment, I develop a sticky-price model in which the attached factor is capital. The capital

stock of each �rm depreciates over time concomitantly raising the marginal cost of out-

put as the production unit requires greater and greater quantities of labor to meet its

demands. Investment occurs infrequently as the �rm balances the higher marginal cost of

output against the bene�t of spreading a �xed cost of capital installation across a larger

number of units of capital.

Price changes are accordingly infrequent because of small menu costs of adjustment.

Each production unit balances the value of selecting a di¤erent expected markup path with

a small idiosyncratic �xed cost associated with the adoption of the new path.

I describe the choice problem of the �rms and households, its solution, and the evolution

of the joint distribution of prices and capital goods. I then characterize the connection

between the preceding elements and the dynamics of economic aggregates.

2.1 Preferences

Households have preferences over consumption and leisure and maximize the present dis-

counted value of lifetime utility. The household lifetime utility function is

E0

1X
t=0

�t [ln (Ct)� �Nt] (1)
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where Ct and Nt are aggregates constructed from consumption of di¤erentiated products

and hours worked at individual �rms.

In addition to labor incomeWtNt, households own shares in �rms and receive pro�ts Zt
earned through the extraction of monopoly rents and the real return on installed capital.

After imposition of a CIA constraint, the household intertemporal budget constraint is

Ct + It +Bt � ��1t (1 +Rt�1)Bt�1 +WtNt + Zt +QtIt�1: (2)

Euler equations constrain the demand for bonds and the supply of capital investment

goods to �rms. The direct interpretation of this setup is that households control production

of capital; however, it could also be interpreted as one in which a second perfectly compet-

itive sector of �rms perform the trasnformation and return the earnings to the household.

In the absence of capital frictions at the �rm level, this model reduces to a neoclassical

model of investment with pricing frictions.

Intertemporal transfer of wealth can occur through purchases Bt of nominal bonds

which promise a net nominal return Rt or through use of an investment technology which

converts output into capital with a one period delay. After the delayed transformation of

output to capital, the homogeneous capital good is sold to �rms at the market clearing price

Qt+1, which is the gross real rate of return on investment. This allows for a supply curve

for investment goods which is upward sloping a single period in advance but is vertical

within a period.

The capital good is produced by the household with a lag but is homogeneous and can

be installed and used by �rms immediately following installation. Capital homogeneity

might seem to be at odds with its concomitant speci�city, but this is not so; capital

becomes �rm-speci�c when it is installed. The story is that all machines are exactly the

same and are produced by a competitive industry and then sold to retail production units.

It is speci�c to a �rm when it is bolted down at a plant, but is otherwise identical to the

machines at other plants.

Modeling capital markets in this way works well for things like automobiles and copy

machines, but not for made-to-order capital goods or specialized production machinery. I

selected this structure for tractability, but it seems well-motivated and has been used in

prior studies to some extent (Abel, Dixit, Eberly and Pindyck (1996)).

Consumers have isoelastic preferences over a continuum of products such that relative
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price of a product determines its relative demand,

y (pt;Mt) = Ytp
�"
t (3)

where " is the absolute elasticity of demand and Mt is a collection of aggregates that

includes Yt. The output aggregate is composed of a basket of these goods (Dixit and

Stiglitz (1977)).

2.2 Technology

The problem of the �rm is to choose its current price and capital stock given the current

states, including its �xed idiosyncratic capital installation costs and menu costs. Economies

with heterogeneous agents are notably more intractable, largely because the state variables

and policies of other �rms impact future prices. Policies depend on the joint distribution

of prices and capital stocks and its evolution.

Solution methods for these economies can be broadly classi�ed into those which ap-

proximate the true distribution (Krusell and Smith (1998), Khan and Thomas (2007)) and

those which construct economies where the true distribution is a tractable (Dotsey, King,

and Wolman (1999), Thomas (2002), Khan and Thomas (2007)). I use the second ap-

proach. Idiosyncratic states which induce heterogeneity are i.i.d. so the joint distribution

is discrete at each point in time.

A few other studies have examined general equilibrium models with more than one

dimension of heterogeneity (Golosov and Lucas (2007), Dotsey, King, and Wolman (2009),

Khan and Thomas (2008), Midrigan (2008)), although this is the second study (to my

knowledge) in which the additional dimension of heterogeneity is endogenous. This tends

to generally complicate the analysis, but I make a simplifying assumption based on the

infrequent nature of investment spikes relative to price changes: price and capital can be

changed at any time (and even coordinated), but price is assumed to change whenever

large capital investment projects are undertaken.

Doms and Dunne (1998) analyze the dynamics of capital investment patterns in man-

ufacturing plants in the U.S. using the Annual Survey of Manufacturers (ASM) of the

Longitudinal Research Database (LRD). In the 15-year period from 1973 to 1988, over half

of the �rms chose an investment rate above 37% per annum; and yet 80% of the plants have

an investment rate below 10% per annum. Despite fairly regular maintenance investment,

the typical production unit experiences a massive surge of investment following several
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years without large changes. Steinsson and Nakamura (2008) and Klenow and Kryvtsov

(2008) examine the panels of prices underlying the Consumer Price Index in the U.S. and

both conclude that most retail goods in the U.S. change prices every three quarters, at

most.

Simultaneously, theory suggests that prices will be markups over marginal cost, on

average, and that changes in the marginal cost of output very often motivate price changes

(Golosov and Lucas (2008)). With tractability as my motivation, and both empirical and

theoretical justi�cation, I assume retail prices will change whenever the producer pursues

large a large investment project. This condenses the joint distribution of prices and capital

to a discrete number of points. A �rm�s capital stock is unique to its vintage, as are labor

demand and output; and at various capital stocks there is a discrete density of prices which

are unique to their vintage and capital stock. Together these vintages uniquely identify �rms

up to their idiosyncratic �xed costs.

Although large investment episodes occur infrequently, there are relatively few cases

in which very small investment rates are observed as well. In the ASM, only 18.5% of

�rms have investment rates below 1% per annum. Matching plant-level stylized facts

necessitates both convex and non-convex investment, which I implement by allowing main-

tenance on broken machines in conjunction with larger capital changes to compensate for

non-repairable depreciation and technological obsolescence.

Given its state variables, the �rm chooses the optimal reset price-capital combination�
p̂t; k̂t

�
and �nds its value,

V PK (Mt) � sup
(p̂t;k̂t)2R2+

8<: z
�
p̂t; k̂t;Mt

�
�Qt

�
k̂t � kt

�
+EtSt;t+1

h
V 0
�

p̂t
�t+1

; (1� �) k̂t
�
� % kt+1

i 9=; (4)

as well as the optimal price ~pt supposing its capital stock is �xed and �nds its value,

V P (kt;Mt) = sup
~pt2R+

�
z (~pt; kt;Mt) + EtSt;t+1

�
V PK

�
~pt
�t+1

; (1� �) kt;Mt+1

�
� % kt+1

��
(5)

and �nally �nds the value of complete inaction,

V NA (pt; kt;Mt) = z (pt; kt;Mt) + EtSt;t+1

�
V 0
�

pt
�t+1

; (1� �) kt;Mt+1

�
� % kt+1

�
: (6)

Adjustment occurs when its net bene�t outweighs its net cost and the opportunity cost
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of other types of adjustment. Policies (aP ; aK) have value

V (pt; kt; �;Mt) = sup
(aP ;aK)2f0;1g�f0;1g

8><>:
(1� aP )

�
V NA (pt; kt;Mt)

�
+AP

 
(1� aK)V P (kt;Mt)�Wt�P;t

+aK
�
V PK (pt; kt;Mt)�Wt�K;t

� !
9>=>;
(7)

where in each of the expressions above,

V 0 (pt; kt;Mt) �
Z
[0;Bp]�[Bkl;Bkh]

V
�
pt; kt;

�
�P;t; �K;t

�
;Mt

�
F
�
d�P;t; d�K;t

�
(8)

integrates over the future joint distribution of idiosyncratic adjustment costs, and

z (pt; kt;Mt) � pty (pt;Mt)�Wtn (y (pt;Mt) ; kt;Mt) (9)

is the average �rm, Mt � (Ct;�t;Wt) is a vector of aggregates, and St;t+n � �n�t+n�t
is the

stochastic discount factor.

At the beginning of each period capital breaks down with probability  and needs a

capital investment that is distributed Uniform over [0; 2%] to work properly again. Each

producer then observes its idiosyncratic adjustment costs �t �
�
�P;t; �K;t

�
and chooses its

price and capital optimally and these become e¤ective immediately. Production occurs

using the labor required to clear the market at set prices taking its capital as given. This

is as in Gourio and Kashyap (2007), except that the repair cost is random in my model.

At the chosen price and capital levels the �rm must hire su¢ cient labor to clear the

market for its output good. Production occurs through a Cobb-Douglas production func-

tion

y (pt;Mt) = Atn (pt; kt;Mt)
� kt (10)

which determines labor demand. Technological progress takes place through geometric

growth in At over time at rate �a and all dynamics are presented in terms of deviations or

percentage deviations from the balanced growth path this induces. Cyclical �uctuations in

productivity follow a �rst-order autoregressive process with coe¢ cient �A.

Money demand comes from a constant velocity CIA constraint, mt = PtYt. Money

growth is stationary at a rate consistent with steady state in�ation, and cyclical �uctuations

in money growth follow a �rst-order autoregressive process with coe¢ cient �M .
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2.3 Solution

I �nd the policy and value functions of an average �rm in terms of its non-idiosyncratic state

variables (i.e., state variables other than the �xed cost realizations today) and the aggregate

laws of motion, including the law of motion for the price-capital density. First, I �nd reset

targets (p̂t; k̂t) and ~pt as they depend on aggregate states and on the �rms�historical prices

and capital stocks. Second, I use the value of these policies in conjunction with the joint

density of idiosyncratic adjustment costs to determine the expected adjustment policies

(aP ; aK). Third, I use this information to describe the dynamics of the joint density of

prices and capital, its evolution, and the relationship between �rm behavior and aggregate

dynamics. Dependence of policy functions on state variables is understood to be implicit

and is omitted for brevity.

2.3.1 Euler equations

Reset targets (p̂t; k̂t) and ~pt are determined by a set of Euler equation recursions. The

marginal value of a price is determined by the expected stream of marginal pro�ts it

provides.

@V (pt; kt;Mt)

@pt
=
@z (pt; kt;Mt)

@pt
(11)

+Et
St;t+1
�t+1

��
1� �P (�)� �PK (�)

� @V NA (pt+1; kt+1;Mt+1)

@pt+1

�

The marginal value of each reset target is set to zero, 0 = @V (~pt;kt;Mt)
@~pt

, and second-order

conditions assure their local optimality. This nests the case in which the capital stock is

altered simultaneously.

The marginal value of capital comes from its expected reduction in future marginal

cost of output as higher levels of capital motivate lower future labor demands (Woodford

(2005)), and higher capital purchases today marginally lower anticipated future purchases.
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These bene�ts are partially o¤set by the requirement that installed capital be maintained.

@V (pt; kt;Mt)

@kt
=
@z (pt; kt;Mt)

@kt
(12)

+(1� �)EtSt;t+1

 �
1� �P (�)� �PK (�)

� @V NA(pt+1;kt+1;Mt+1)
@kt+1

+�P (�) @V
P (kt+1;Mt+1)
@kt+1

+ �PK (�)Qt+1 �  %

!

Expected marginal value of capital is equated to the unit cost of capital, Qt =
@V PK(Mt)

@kt
,

and the unit cost of capital �oats to clear the market because the supply of investment

goods is �xed one period in advance.

2.3.2 Adjustment

I integrate over the joint density of idiosyncratic price and capital adjustment costs, �nd-

ing optimal behavior at each point, to obtain sets of adjustment probabilities in terms of

non-idiosyncratic state variables. For the bivariate uniform density of adjustment costs

I employ, analytical expressions for both the adjustment probabilities and expected ad-

justment costs exist. Arguments of some functions are again implicit and are omitted for

brevity. Figure 1 provides an illustration of the case in which Bl = 0, and is especially

useful for thinking about the model when adjustment costs are bivariate uniform, as I

assume; in this case each adjustment probability is just the ratio of the dark region to the

domain (either dark or light).

Large investment projects accompanied by small price changes occur whenever the

associated net change in expected value exceeds the idiosyncratic costs and the change is

not dominated by a simple price adjustment.

�PK (pt; kt;Mt) =

Z
[0;Bp]�[Bkl;Bkh]

aPK
�
pt; kt;Mt; �P;t; �K;t

�
F
�
d�P;t; d�K;t

�
(13)

= âPK
�
V PK (Mt)�Qti (kt)� V NA (pt; kt;Mt)

Wt
;
V PK (Mt)�Qti (kt)� V P (kt;Mt)

Wt

�
where

âP (xP ; xD) =
(max (min (xD; Bh) ; Bl)�Bl)

Bh �Bl
max (min (xP ; Bp) ; 0)

Bp
(14)
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Figure 1: Figure 1: Calculation of adjustment proportions. Two conditions are necessary
for adjustment: (1) the discrete decision must yield weakly positive net value, and (2) must
not be dominated by another discrete decision.

Small price changes absent large investment projects occur whenever the net change

in expected value exceeds the idiosyncratic costs and the change is not dominated by a

change that incorporates a large capital investment project.

�P (pt; kt;Mt) =

Z
[0;Bp]�[Bkl;Bkh]

aP
�
pt; kt;Mt; �P;t; �K;t

�
F
�
d�P;t; d�K;t

�
(15)

= âP
�
V P (kt;Mt)� V NA (pt; kt;Mt)

Wt
; Bh �

V PK (kt;Mt)�Qti (kt)� V P (kt;Mt)

Wt

�
where

âPK (xPK ; xD) =
1

(Bh �Bl)Bp

8<:
R min(Bh;xD)
Bl

min (z2 +Bp; xPK) dz2

�1
2

�
min (Bh; xD)

2 � (Bl)2
� 9=;

and the integral in the expression above simpli�es to 12

�
min (Bh; xD)

2 � (Bl)2
�
+Bp (min (Bh; xD)�Bl)

when min (Bh; xD) + Bp � xPK , to xPK (min (Bh; xD)�Bl) for xPK � Bl + Bp, and is

= 1
2

�
(xPK �Bp)2 � (Bl)2

�
+Bp (xPK �Bp �Bl)+xPK (min (Bh; xD)� (xPK �Bp)) oth-
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erwise. Expected adjustment costs are computed found analogously, but are omitted from

the body for the sake of brevity. Derivations are in one of the technical appendices.

2.3.3 Heterogeneity and its evolution

Adjustment policy likelihoods and the restrictions below provide all of the information

necessary to exactly describe the evolution of the discrete density of prices and capital.

The end of period density is � (kt; pt). Firms either inherit their price and capital states as

they evolve from the previous period,

� (pt+1; kt+1) =
�
1� �P (pt; kt;Mt)� �PK (pt; kt;Mt)

�
� (kt; pt) (16)

or postpone large investment projects and change price,

� (pt+1 (kt) ; kt+1) =

Z
R+
�P (pt; kt;Mt) � (pt; dkt) (17)

and total �rm mass is normalized to unity,

1 =

Z
R+�R+

� (dpt; dkt) : (18)

Finally, conditional non-maintenance investment demand is i (kt) = k̂t � kt. Capital

otherwise depreciates at rate � so that kt+1 = (1� �) kt. When breakdowns occur they are
repaired automatically and a portion of the depreciated capital is automatically replaced

at the start of the period. Relative prices stochastically erode with in�ation realizations.

2.4 Market clearing

Aggregate resources in the current period are split between consumption and investment

and therefore must obey the resource constraint, Ct+It = Yt. Investment is an aggregation

of demands for capital goods across �rms,

It�1 =

Z
R+�R+

�
i (kt;Mt)�

PK (pt; kt;Mt) +  %kt
�
� (dpt; dkt) (19)

which includes lumpy investment, i (kt;Mt)�
PK (kt; pt;Mt) as the product of conditional

investment demand and the likelihood of drawing low enough �xed costs, and maintenance

on existing capital.
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Labor market clearing requires labor supply meet the aggregated labor demand,

Nt =

Z
R+�R+

(n (pt) + � (pt; kt;Mt)) � (dpt; dkt) (20)

where nt (pt) is labor for production and � (pt; kt) is labor for adjusting prices and installing

capital conditional on survival.

2.5 Numerical procedure

The economy in the previous section conveniently has a discrete density of prices and

capital with known evolution. My interest is in the implications of �rm behavior for

aggregate dynamics as opposed to �rm behavior itself, and for this reason I apply a solution

method in the style of Dotsey, King and Wolman (1999) wherein the model equations are

linearized around each of the discrete points in the density. The approach is more �exible

than standard approaches to linearization, such as linearizing around (p; k), because a

di¤erential approximation is taken around each point (p; k) in the discrete density � (p; k).

It is potentially more robust than some alternative approaches (Krusell and Smith (1998),

Khan and Thomas (2008)) because the evolution of the density � (p; k) and its law of

motion are known exactly; other methods necessitate conjectures for the density and its

evolution which are di¢ cult to implement, at best, and may be misleading, at worst (den

Haan (2008)).

I �nd the non-stochastic steady state of my model by solving the general equilibrium

problem into a sequence of partial equilibrium problems, each of which is solved using

standard policy function iteration techniques. In each of the partial equilibrium problems

the functional contraction mapping theorems apply and assure convergence. I check mar-

ket clearing conditions for each partial equilibrium problem and use a Newton-Raphson

method to �nd aggregates at which markets clear from a conjectured vector of initial ag-

gregates. The low dimension of the nonlinear search problem and the contraction mapping

theorems which apply to each partial equilibrium problem provide convergence and nu-

merical stability. A dynamic solution to the perturbation of the model equations around

the non-stochastic steady state is acquired using standard rational expectations techniques

(Sims (2002)).

14



3 Calibration

A number of parameters are set to match post-war business trends. The discount rate is

set to induce an average real interest rate of 4% per year. Technological progress occurs at

the geometric rate of 1.6% per year. The autocorrelation coe¢ cient in the process for the

log-deviation of aggregate productivity from trend is 0.97. The autocorrelation coe¢ cient

on the process for the deviation of the money growth rate from its stationary point is 0.5, a

value which allows predictable but not excessively protracted nominal demand movements.

I use this simple money supply rule as a diagnostic for judging the behavior of my models,

as is common in the New Keynesian literature, and not as a description of actual monetary

policy. Returns to scale in production are slightly diminishing at 0.9, a choice consistent

with the evidence in Basu and Fernald (1997), and the share of labor in output is 0.64 as in

Prescott (1986). The parameter on the disutility of labor in the utility function is selected

to generate steady state labor supply of 0.2.

New Keynesian studies have a long tradition of using very high elasticities of demand.

I follow microeconometric evidence which indicates that demand elasticities are, at most,

one third of the conventional values. For example, Bijmolt, Van Heerde and Pieters (2005)

survey more than a thousand microeconometric studies and �nd an average absolute price

elasticity of demand of 2.62, and virtually no microeconometric studies obtain demand

elasticity estimates above the value of 12 that is commonly used. I follow empirical evidence

and Midrigan (2007) in selecting a demand elasticity of 3.0. Because this value increases

the market power of �rms and demand is, by de�nition, less sensitive to price movements

in a way that serves to mitigate the impact of �rm-speci�c marginal cost movements on

pro�ts. This calibration will, if anything, cause the results I present to be tempered.
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Figure 2: Cumulative distribution functions for the annual investment to
capital ratio in three calibrated models and the Longitudinal Research

Database as reported in Cooper and Haltiwanger (2006).

Parameters of governing the maintenance, installation, and depreciation of capital are

selected to match moments from plant level data in the Annual Survey of Manufacturers

(ASM) in the Longitudinal Research Database (LRD) as reported by Cooper and Halti-

wanger (2006). First, I match the average investment to capital ratio of 12.2% per year,

a number that depends on the depreciation rate, obsolescence rate, the probability of ma-

chine failures, and the cost of machine repair in the case of a failure. Higher maintenance

investment, either through higher repair costs or lower machine reliability, requires lower

depreciation rates to match the observed investment spike rates. Matching this is critical

as more e¤ective capital maintenance decreases lumpiness and the depreciation rate net of
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Parameters
Name Parameter MLS LS S
Depreciation rate � 4.8% per yr. 12.2% per yr.
Maximum price adjustment cost Bp 0.0241 0.0351 0.0037
Minimum capital adjustment cost Bl 0.0008 0.0004 -
Maximum capital adjustment cost Bh 0.4015 0.0053 -
Elasticity of demand " 3
Steady-state labor supply �n 0.2
Money growth persistence �M 0.5
Discount factor � 0.9902 per qtr., 0.9615 per yr.
In�ation � 0.61% per qtr., 2.46% per yr.
Technology growth rate �A 0.4% per qtr., 1.6% per yr.
Share of labor in output 0.64
Returns to scale 0.9

Table 1: MLS: the most elaborate model with maintenance investment, lumpiness in in-
vestment, and sticky prices. LS: lumpy investment and sticky prices without opportunities
for capital maintenance. S: a simple sticky price model with capital.

repairs, an important parameter in this class of models (House (2008)). Second, I minimize

the weighted sum of squared di¤erences between the model CDF and the CDF and the

cross-sectional plant-level investment rates in the Longitudinal Research Database, where

the weights are the proportion of observations found at each investment rate.2 Figure 2

provides a visual comparison of the cross sectional distribution of plant-level investment

rates and compares them with the data.

Finally, I match the median duration of non-sale price changes (without substitutions)

in the panels underlying the U.S. Consumer Price Index from 1998 through 2005, as re-

ported in Steinsson and Nakamura (2008); at 7.4 months it is the largest estimate of the

elapsed time between price changes found in the U.S. Consumer Price Index over that

period. Average in�ation is set to 2.46% per year, the average rate in the U.S. between

1998 and 2005, the period included in the most recently analyzed panel of prices from the

U.S. Consumer Price Index.
2 I am grateful to John Haltiwanger and Russell Cooper for providing me with this information.
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4 Results

In my discussion of the results, I will focus primarily on the model that best �ts the micro-

economic evidence: it features both large but infrequent capital investment episodes and

regular maintenance of capital breakdowns, in addition to the nominal rigidities introduced

through menu costs of price adjustment. The adjustment probabilities implied by the gen-

eralized (s,S) policies found earlier are shown in Figure 3, where dark regions correspond to

high adjustment probabilities and light regions to low adjustment probabilities. Note how

unlikely it is for the �rm to undertake a major investment project without waiting several

years, a consequence of the lower bound on the �xed cost component associated with major

investment undertakings and the e¤ectiveness of capital maintenance activities.
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Figure 3: Hazard rates for price changes and large investment projects in
steady state for the fully articulated model with capital maintenance.
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I begin the discussion of the dynamic implications by holding the nominal frictions

constant across all models. Speci�cally, the results in Figure 4 obtain from a persistent

shock to the money supply growth rate when the average duration of product prices is held

constant at the Steinsson and Nakamura (2008) levels, and the distribution of menu costs

(parameterized by Bp) is adjusted as required. Both of the models with real rigidities have

larger and more protracted dynamic responses relative to the simple menu cost model. In

the simple (s,S) menu cost model, the upper bound on the support for the distribution of

adjustment costs is Bp = 0:003, and the average menu cost paid is fairly close to zero. By

contrast, the upper bound on the support for the distribution of menu costs is Bp = 0:045

in the exclusively lumpy model. The model with capital maintenance has a lower e¤ective

depreciation rate (and hence less cross-sectional variation in the marginal cost of output)

and requires only Bp = 0:024 to match the duration of prices in the U.S. Consumer Price

Index.

The dynamic responses con�rms, in a more nuanced environment, a well-known prop-

agation mechanism that was �rst introduced by Woodford (1996), and was subsequently

empirically investigated and found to be relevant in studies like Sbordone (1999) and Gali,

Gertler, and Lopez-Salido (2001). In a positive in�ation environment, the average price

change is naturally a price increase, and the size of the increase can be e¤ectively con-

strained when the marginal cost schedule the �rm faces is upward sloping. Price increases

lower output, and because of the upward sloping short-run marginal cost schedule, lower

marginal cost, providing an incentive for the �rm to select a price lower than it otherwise

would. Holding the frequency of price changes constant, the aggregate series should behave

somewhat more sluggishly when the average change is smaller. While returns to scale in

both factors are close to constant (0:9), the inability of the �rm to undertake major capital

restructuring projects without incurring a �xed cost leaves one factor of production e¤ec-

tively �xed in the short run; the marginal cost of output is determined by the number of

workers required to generate an additional unit of output.
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Figure 4: Dynamic responses in output, investment, and in�ation, to a
persistent shock to the growth rate of the money supply. For this

comparison, the support for the distribution of menu costs is varied to hold

the average frequency of price changes constant at the level observed in the

U.S. Consumer Price Index as reported by Steinsson and Nakamura (2008).

I now examine aggregate dynamics, holding the level of nominal frictions (i.e., the

menu cost distribution as parameterized by Bp) constant, as opposed to varying menu

costs to hold price durations constant. I �x the distribution at one of the intermediate

calibrations found previously and examine the implications of altering the capital structure,

holding constant the distribution of nominal frictions. Figure 5 shows that the e¤ect of

nominal disturbances on the simple menu cost model are much larger than in the case just

considered. Output is almost zero on average over the �rst year following impact in Figure

4, as discussed earlier, and is large and positive in Figure 5, below.
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Figure 5: Dynamic responses in output, investment, and in�ation, to a
persistent shock to the growth rate of the money supply. For this

comparison, the distribution of menu costs is �xed across models at the

level implied by the calibration of the model with both (S,s) decisions in

prices and capital and maintenance of some capital breakdowns.

The cross sectional variation in the marginal cost of output that results from investment

lumpiness increases the relative willingness of the �rm to pay menu costs of price adjust-

ment, relative to the simple (s,S) sticky price model I consider. Each period, a portion of

each �rms�e¤ective capital stock decreases, either by obsolescence or depreciation; some

of these e¤ects are o¤set through maintenance, but not all. The marginal cost of output

rises with each quarter since the last major capital restructuring project, raising the value

to the �rm of paying menu costs. Intuitively, one can think about the typical (s,S) story

in which proximity to one of the bounds either deterministically or stochastically triggers
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a discrete decision in which the �rm returns the control state in question to its target. As

capital structures wear out and become old, workers are increasingly unproductive: this

raises the target price that would be chosen under �exibility � a markup over marginal

cost �and can be thought of as moving the (s,S) bands and target, making the target more

variable and the bounds more frequently encountered.

5 Conclusion

Is �rm speci�c capital, when calibrated to match key properties of U.S. data, capable of

increasing the protracted sensitivity of real variables to nominal disturbances? I answer yes,

based on results from a two-dimensional generalized (s,S) model which features capital

lumpiness and infrequent price changes. While the economic story is somewhat more

nuanced than previously ��rm-speci�c capital both motivates price changes, and changes

the prices chosen �the idea in the literature that this is a means of producing an upward

sloping short run marginal cost schedule (and hence smaller price changes) is robust.

Yet the magnitude to which this mechanism is typically used in the literature is exces-

sive, and the transitive nature of even the most persistent dynamics I present shows that

capital speci�city can only be one part of the story. There is clearly evidence of sectoral

price heterogeneity (Dhyne et. al. (2005)) and theoretical work that supports its e¢ cacy

(Carvalho (2007), Steinsson and Nakamura (2009)). So far no there is limited evidence on

the variable price elasticity of demand explanation (Dotsey and King (2005)), but the story

is intuitively appealing and will hopefully be more closely examined in future research.
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6 Appendix A: Adjustment hazards

6.1 Price and capital likelihood

âPK (xPK ; xD)

= (Bh �Bl)�1 (Bp)�1
Z xD

�1

Z xPK

�1
1[Bl�z2�Bh]1[z2�z1�z2+Bp]dz1dz2

= (Bh �Bl)�1 (Bp)�1
Z min(Bh;xD)

Bl

Z min(z2+Bp;xPK)

z2

dz1dz2

= (Bh �Bl)�1 (Bp)�1
8<:
R min(Bh;xD)
Bl

min (z2 +Bp; xPK) dz2

�1
2

�
min (Bh; xD)

2 � (Bl)2
� 9=;

Obviously, âPK (xPK ; xD) = 0 if either min (Bh; xD) < Bl or xPK < Bl. Otherwise,

the result can be easily derived in pieces. If min (Bh; xD) +Bp � xPK ,

Z min(Bh;xD)

Bl

min (z2 +Bp; xPK) dz2

=
1

2

�
min (Bh; xD)

2 � (Bl)2
�
+Bp (min (Bh; xD)�Bl)

and if xPK � Bl +Bp,

Z min(Bh;xD)

Bl

min (z2 +Bp; xPK) dz2

= xPK (min (Bh; xD)�Bl)

and for the values of a in between,

Z min(Bh;xD)

Bl

min (z2 +Bp; xPK) dz2 =

Z xPK�Bp

Bl

(z2 +Bp) dz2 +

Z min(Bh;xD)

xPK�Bp
xPKdz2

=
1

2

�
(xPK �Bp)2 � (Bl)2

�
+Bp (xPK �Bp �Bl) + xPK (min (Bh; xD)� (xPK �Bp))
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6.2 Price likelihood

âP (xP ; xD)

= (Bh �Bl)�1 (Bp)�1
Z xD

�1

Z xP

�1
1[Bl�z2�Bh]1[0�z1�Bp]dz1dz2

= (Bh �Bl)�1 (Bp)�1
Z min(Bh;xD)

Bl

Z min(Bp;xP )

0
dz1dz2

= (Bh �Bl)�1 (Bp)�1 (max (min (xD; Bh) ; Bl)�Bl)max (min (xP ; Bp) ; 0)

6.3 Expected cost

Note: this is not the same � (�) function used in the body of the paper.

� (xPK ; xP ; xD)

= (Bh �Bl)�1 (Bp)�1
( R xD

�1
R xPK
�1 z11[Bl�z2�Bk]1[z2�z1�z2+Bp]dz1dz2

+
R xD
�1

R xPK
�1 z11[Bl�z2�Bh]1[0�z1�Bp]dz1dz2

)

= (Bh �Bl)�1 (Bp)�1
( R min(Bh;xD)

Bl

R min(z2+Bp;xPK)
z2

z1dz1dz2

+
R min(Bh;xD)
Bl

R min(Bp;xP )
0 z1dz1dz2

)

= (Bh �Bl)�1 (Bp)�1
( R min(Bh;xD)

Bl
1
2

�
min (z2 +Bp; xPK)

2 � z22
�
dz2

+1
2 min (Bp; xP )

2 (min (Bh; xD)�Bl)

)

Because âPK (xPK ; xD) = 0 if either min (Bh; xD) < Bl or xPK < Bl, it is also the

case that the �rst component in the expression above is zero under the same conditions.

Otherwise, the result can be easily derived in pieces. If min (Bh; xD) +Bp � xPK ,

Z min(Bh;xD)

Bl

1

2

�
(z2 +Bp)

2 � z22
�
dz2

=

Z min(Bh;xD)

Bl

1

2

�
2z2Bp +B

2
p

�
dz2

=
1

2

�
Bp

�
min (Bh; xD)

2 �B2l
�
+B2p (min (Bh; xD)�Bl)

�
and if xPK � Bl +Bp,
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Z min(Bh;xD)

Bl

1

2

�
x2PK � z22

�
dz2

=
1

2

�
x2PK (min (Bh; xD)�Bl)

�
� 1
6

�
min (Bh; xD)

3 �B3l
�

and for the values of a in between,

Z min(Bh;xD)

Bl

1

2

�
min (z2 +Bp; xPK)

2 � z22
�

=

Z xPK�Bp

Bl

1

2

�
2z2Bp +B

2
p

�
dz2 +

Z min(Bh;xD)

xPK�Bp

1

2

�
x2PK � z22

�
dz2

=
1

2

�
Bp

�
(xPK �Bp)2 �B2l

�
+B2p (xPK �Bp �Bl)

�
+
1

2

�
x2PK (min (Bh; xD)� (xPK �Bp))

�
� 1
6

�
min (Bh; xD)

3 � (xPK �Bp)3
�
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7 Appendix B: Steady state

Variables in this section are the stationary equivalents to the balanced growth path variables

of the body of the paper.

7.1 Introduction

I use an algorithm that transforms the general equilibrium steady state problem into a

sequence of partial equilibrium problems. For a vector of aggregate prices M , I solve the

functional �xed point program that is the problem of the �rm. Firm policies imply a

distribution � (p; k) from which I am able to evaluate market clearing conditions. I search

over M to �nd a value satisfying both the implied market clearing conditions g (M) = 0.

7.2 Market clearing conditions

I solve for M �
h
Y � W

i
to satisfy g (M) = 0 for

g (M) �

2664
N �

R
R +�R +

(n (p) + � (p; k)) � (dp; dk)

Y �
R
R +�R +

i (k)�PK (p; k) � (dp; dk)� ��1

Y �
R
R +�R +

py (p) � (dp; dk)

3775
7.3 Price reset targets

Given a capital stock, a new price ~p is independent of its cost of implementation, and

satis�es

@V (~p; k;M)

@~p
= 0

for

@V (p; k;M)

@p
=
@Z (p; k;M)

@p

+S

�
��1

�
1� �P

�
p0; k0;M 0�� �PK �p0; k0;M 0�� @V (p0; k0;M 0)

@p0

�
where conditions � > 0 and � 6= 0 guarantee this recursion is �nite.
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7.4 Capital reset targets

Capital k̂, chosen in conjunction with price, equates marginal value to marginal cost

Q =
@V PK (M)

@k̂

where

@V (p; k;M)

@k
=
@z (p; k;M)

@k

+(1� �)S
 �

1� �P (�)� �PK (�)
� @V NA(p0;k0;M 0)

@k0

+�P (�) @V
P (k0;M)
@k0 + �PK (�)Q0 �  %

!

and � > 0:

7.5 Stationary distribution

The stationary distribution of �rms across capital and price vintages is determined by

�
�
p0; k0

�
=
�
1� �P (p; k)� �PK (p; k)

�
� (p; k)

1 =

Z
R +�R +

� (dp; dk)

�
�
~p
�
k0
�
; k0
�
=

Z
R +

�P (p; k;M) � (dp; k)

which is linear in � over the known (p; k) grid implied by

p0 = ��1p

k0 = (1� �) k

and the targets determined previously.

7.6 Adjustment policies

See Appendix A.
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8 Appendix C: Model equations

8.1 Growth rates

Variables in this section are not identical to those in the body of the paper because they

are detrended. Technological progress in the steady state grows at rate �A where the

production function is Y =
R
y (j) dj = A

R
n (j)v k (j) dj so that both Y and y (j) grow

at rate �Y : The growth rate of output must satisfy �Y = �A (�K)
 . From the resource

constraints C + I = Y and I =
R
[kt (j)� (1� �) kt�1 (j)] dj, it must be the case that C,

I, Y , K and k (j) must grow at the same rate �Y . It must also therefore be the case that

�Y = (�A)
1

1� . From the �rst order household condition C�1 = � we know �� = (�C)
�1.

8.2 Household

The representative consumer maximizes the expected present discounted value of lifetime

utility, where preferences are separable in time, consumption and disutility of labor.

sup
fCt;Nt;Bt+1;Itg1t=0

Et

( 1X
t=0

�t [ln (Ct)� �Nt]
)

(21)

subject to

Ct + It +Bt+1 � ��1t (1 +Rt�1)Bt +WtNt + Zt +QtIt�1 (22)

where

Ct =

24H�1X
h=0

min(h;J�1)X
j=0

�j+1;h+1;t+1 (cjht)
("�1)
"

35 "
("�1)

(23)

Zt =

H�1X
h=0

min(h;J�1)X
j=0

�j+1;h+1;t+1 (Ytxjhtpjht �Wtnjht) (24)

Nt =

H�1X
h=0

min(h;J�1)X
j=0

�j+1;h+1;t+1njht +

HX
h=1

min(h;J)X
j=1

�jht�jht (25)

and Bt represents real consumer bond holdings, Rt is the nominal interest rate and Zt
contains pro�ts from the �rms which the household owns. The household �rst-order neces-
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sary conditions are included in what follows in addition to other aggregate de�nitions and

constraints.

1X
t=0

�t [ln (Ct)� �Nt]

+

1X
t=0

�t (��)
t �t

�
��1t (1 +Rt�1)Bt +WtNt + Zt +QtIt�1 � Ct � It �Bt+1

�

1 = Ct�t

�N�
t = Wt

�t = ���Et�
�1
t+1 (1 +Rt) �t+1

�t = Qt+1����t+1

8.3 Block 1: Aggregate variables and restrictions

1.A: Maginal utility of consumption

1 = �tCt

1.B: Labor supply

Wt�t = �

1.C: Consumption Euler equation

�t = �Et�
�1
t+1 (1 +Rt)���t+1

1.D: Aggregate investment

ILt =
HX
h=1

(k0t � kht)
min(h;J)X
j=1

�jht�
PK
jht +  %

HX
h=1

kht

min(h;J)X
j=1

�jht

1.E: Aggregate resource constraint
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Ct + It = Yt

1.F: Cash in advance constraint

mt = PtYt

1.G: Exogenous monetary rule

� lnmt+1 = �2� lnmt + em;t+1

1.H: Net in�ation

�t =
Pt
Pt�1

1.I: Lagged price level

�PLt+1 = Pt

1J: Total labour

Nt =

HX
h=1

min(h;J)X
j=1

�jht�jht +

H�1X
h=0

min(h;J�1)X
j=0

�j+1;h+1;t+1njht

1.K: Price level

1 =

H�1X
h=0

min(h;J�1)X
j=0

�j+1;h+1;t+1pjhtxjht

1.L: The aggregator constraint

This equation is viewed as implicitly de�ning �t.

1 =

H�1X
h=0

min(h;J�1)X
j=0

�j+1;h+1;t+1

�
1 +

"

1 + �
� "

1 + �

�
1 +

�

"
� �

"
xjht

� 1+�
�

�
1.M: Investment arbitrage constraint

Investors purchase capital at price 1 and sell it for Qt+1. As these investors are perfectly

competitive and have access to the bond with gross return (1 +Rt)��1t+1 it must be the
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case that the following holds. This equation is viewed as de�ning Qt+1.

�t = �EtQt+1���t+1

1.N: Lagged investment

ILt+1 = It

1.O: SDF

St;t+1 = ��Y��Et
�t+1
�t

8.4 Block 2: The evolution of �rm-level heterogeneity, and �rm technol-
ogy and demand

2.A: Distribution evolution

The mass of �rms in vintage (j + 1; h+ 1) at time t+ 1 is the mass of �rms in vintage

(j; h) at time t who do not choose to adjust capital or price.

�j+1;h+1;t+1 =
�
1� �Pjht � �PKjht

�
�jht

for h = 1; :::H � 1; j = 1; :::min (h; J � 1)

The mass of �rms choosing to adjust price, but not capital, de�nes all but one of the

remaining f�jhtg variables.

�1;h+1;t+1 =

min(h;J)X
j=1

�Pjht�jht

for h = 1; :::H � 1

2.C: Restriction on �rm mass

The total mass of the �rms must sum to a constant which, in this case, we pick to be

unity without loss of generality.
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1 =

H�1X
h=0

min(h;J�1)X
j=0

�j+1;h+1;t+1

2.D: Firm-speci�c capital evolution

Firms which do not adjust their capital stocks see their capital depreciate at rate � net

of maintenance.

kh+1;t+1 =
(1� �)
�K

kht

for h = 0; :::H � 1

2.E: Lagged prices

pLjh;t+1 = pjht

for h = 0; :::H � 2; j = 0; :::min (h; J � 2)

2.F: Current relative prices

The marginal value recursions imply the H prices p0ht for h = 0; :::H � 1. Non-reset
prices are restricted by this equation.

pjht =

�
1

1 + �t

�
pLj�1;h�1;t

for h = 1; :::H � 1; j = 1; :::min (h; J � 1)

8.5 Block 3: Firm output and demand

3A: Production

Production functions are Cobb-Douglas. This equation implicitly de�nes labour de-

mand njht since capital is �xed and �rms are required to meet demand given their current

relative price.
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Ytxjht = Atn
v
jhtk


ht

for h = 0; :::H � 1; j = 0; :::min (h; J � 1)

3B: Demand

Demand is as in Dotsey and King (2005) and Dotsey, King and Wolman (2007). The

parameter " is the local demand elasticity when x = 1; p = 1; � = 1 and � is a shape pa-

rameter. If � = �" this reduces to the standard Dixit-Stiglitz aggregator xjht =
�
pjht
�t

��"
.

xjht =
�
1 +

"

�

�
� "

�

�
pjht
�t

��
for h = 0; :::H � 1; j = 0; :::min (h; J � 1)

8.5.1 Block 4: Value function recursions

vjht = Ytxjhtpjht �Wtnjht

+EtSt;t+1

2664
�
1� �Pj+1;h+1;t+1 � �PKj+1;h+1;t+1

�
vj+1;h+1;t+1

+�PKj+1;h+1;t+1 (v00;t+1 �Qt+1 (k0;t+1 � kH;t+1))
+�Pj+1;h+1;t+1v0;h+1;t+1 �Wt+1�j+1;h+1;t+1 �  %kt+1

3775
for h = 0; :::H � 2; j = 0; :::min (h; J � 2)

vJ�1;h;t = YtxJ�1;h;tpJ�1;h;t �WtnJ�1;h;t

+EtSt;t+1

"
�PKJ;h+1;t+1 (v00;t+1 �Qt+1 (k0;t+1 � kh;t+1))

+�PJ;h+1;t+1v0;h+1;t+1 �Wt+1�J;h+1;t+1 �  %kt+1

#
for h = J � 1; :::H � 2
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vj;H�1;t = (Ytxj;H�1;tpj;H�1;t �Wtnj;H�1;t)

+EtSt;t+1

"
v00;t+1 �Qt+1 (k0;t+1 � kH;t+1)
�Wt+1�j+1;H;t+1 �  %kt+1

#
for j = 0; :::min (h; J � 1)

8.5.2 Block 5: Marginal value recursions

Marginal values with respect to capital are given by

@vjht
@kht

= Wt

�
�

� njht
kht

+

�
1� �
�K

�
EtSt;t+1

24 �1� �Pj+1;h+1;t+1 � �PKj+1;h+1;t+1� @vj+1;h+1;t+1@kh+1;t+1

+�PKj+1;h+1;t+1Qt+1 + �
P
h+1;t+1

@v0;h+1;t+1
@kh+1;t+1

�  %

35
for h = 1; :::H � 2; j = 0; :::min (h; J � 1)

@vJ�1;h;t
@kh;t

= Wt

�
�

� nJ�1;h;t
kh;t

+

�
1� �
�K

�
EtSt;t+1

"
�PKJ;h+1;t+1Qt+1

+�PJ;h+1;t+1
@v0;h+1;t+1
@kh+1;t+1

�  %

#
for h = J � 1; :::H � 2

@vj;H�1;t
@kH�1;t

= Wt

�
�

� nj;H�1;t
kH�1;t

+

�
1� �
�K

�
EtSt;t+1 [Qt+1 �  %]

for j = 0; :::J � 1

Qt =Wt

�
�

� n00t
k0t

+

�
1� �
�K

�
EtSt;t+1

" �
1� �P11;t+1 � �PK11;t+1

� @v11;t+1
@k1;t+1

�PK11;t+1Qt+1 + �
P
11;t+1

@v11;t+1
@k1;t+1

�  %

#

Marginal values with respect to price are given by
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@vjht
@pjht

= Ytxjht �
�
Ytpjht �Wt

�
1

�

�
njht
xjht

����
" (�t)

�� (pjht)
��1
�

+Et�
�1
t+1St;t+1

��
1� �Pj+1;h+1;t+1 � �PKj+1;h+1;t+1

� @vj+1;h+1;t+1
@pj+1;h+1;t+1

�
for h = 0; :::H � 2; j = 0; :::min (h; J � 2)

0 = Ytx0ht �
�
Ytp0ht �Wt

�
1

�

�
n0ht
x0ht

����
" (�t)

�� (p0ht)
��1
�

+Et�
�1
t+1St;t+1

��
1� �PK11;t+1 � �P11;t+1

� @v1;h+1;t+1
@p1;h+1;t+1

�
for h = 0; :::H � 1

5G: Price marginal values (terminal H and terminal J vintages) Marginal values

with respect to price for terminal H and terminal J �rms are

@vjht
@pjht

= Ytxjht �
�
Ytpjht �Wt

�
1

�

�
njht
xjht

����
" (�t)

�� (pjht)
��1
�

for j = J � 1; h = J; :::H � 2;

and for h = H � 1; j = 1; :::J � 1:

8.6 Block 6: Adjustment policies and costs

See Appendix A.
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